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Abstract—The recently proposed Pearson codes offer immunity
against channel gain and offset mismatch. These codes have very
low redundancy, but efficient coding procedures were lacking. In
this paper, systematic Pearson coding schemes are presented. The
redundancy of these schemes is analyzed for memoryless uniform
sources. It is concluded that simple coding can be established at
only a modest rate loss.

I. INTRODUCTION

Dealing with rapidly varying offset and/or gain is an im-
portant issue in signal processing for modern storage and
communication systems. For example, methods to solve these
difficulties in Flash memories have been discussed in, e.g., [7],
[9], and [11]. Also, in optical disc media, the retrieved signal
depends on the dimensions of the written features and upon
the quality of the light path, which may be obscured by
fingerprints or scratches on the substrate, leading to offset
and gain variations of the retrieved signal. Automatic gain
and offset control in combination with dc-balanced codes
are applied albeit at the cost of redundancy [4], and thus
improvements to the art are welcome.

Immink and Weber [5] showed that detectors that use the
Pearson distance offer immunity to offset and gain mismatch.
Use of the Pearson distance demands that the set of codewords
satisfies certain special properties. Such sets are called Pearson
codes. In [10], optimal codes were presented, in the sense of
having the largest number of codewords and thus minimum
redundancy among all q-ary Pearson codes of fixed length n.
However, the important issue of efficient coding procedures
was not addressed. In this paper, we present simple systematic
Pearson coding schemes, mapping sequences of information
symbols generated by a q-ary source to q-ary code sequences.
The redundancy of these coding schemes is analyzed for
memoryless sources generating q-ary symbols with equal
probability.

The remainder of this paper is organized as follows. In
Section II, we review the concepts of Pearson detection and
q-ary Pearson codes. Then, in Section III, we present our
systematic coding schemes and analyze their redundancy.
Finally, in Section IV, we draw conclusions.

II. PRELIMINARIES

A. Codes and Redundancies

Let C be a q-ary code of length n, i.e., C ⊆ Qn, where
Q = {0, 1, . . . , q−1} is the code alphabet of size q ≥ 2. Here
the alphabet symbols are to be treated as being real numbers

rather than elements of Zq . The cardinality of the code is
denoted by M , i.e., M = |C|. Usually, the redundancy of
code C is then defined as

n− logq M. (1)

Actually, this assumes that all codewords are equally likely to
be selected. In a more general setting, an arbitrary probability
mass function (PMF) is specified on the codewords. Let the
probability that codeword xi ∈ C, 1 ≤ i ≤ M , is selected for
transmission or storage be Pi. Since the average amount of
information carried by a codeword is then −

∑M
i=1 Pi logq Pi

symbols, the redundancy of code C with PMF {Pi} is

n+

M∑
i=1

Pi logq Pi. (2)

In case Pi = 1/M for all i, then (2) reduces to (1).

B. Pearson Detection

For convenience, we use the shorthand notation av + b
= (av1 + b, av2 + b, . . . , avn + b). A common assumption
is that a transmitted codeword x is received as a vector
r = a(x + ν) + b in Rn. Here a and b are unknown real
numbers with a positive, called the gain and the (dc-)offset,
respectively. Moreover, ν is an additive noise vector, where
the νi ∈ R are noise samples from a zero-mean Gaussian
distribution. Note that both gain and offset do not vary from
symbol to symbol, but are the same for the whole block of n
symbols. The receiver’s ignorance of the channel’s momentary
gain and offset may lead to massive performance degradation
as shown, for example, in [5] when a traditional detector,
based on thresholds or the Euclidean distance, is used. In the
prior art, various methods have been proposed to overcome
this difficulty. In a first method, data reference, or ‘training’,
patterns are multiplexed with the user data in order to ‘teach’
the data detection circuitry the momentary values of the
channel’s characteristics such as impulse response, gain, and
offset. In a channel with unknown gain and offset, we may
use two reference symbol values, where in each codeword,
a first symbol is set equal to the lowest signal level and a
second symbol equal to the highest signal level. The positions
and amplitudes of the two reference symbols are known to
the receiver. The receiver can straightforwardly measure the
amplitude of the retrieved reference symbols, and normalize
the amplitudes of the remaining symbols of the retrieved

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future 
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



codeword before applying detection. Clearly, the redundancy
of the method is two symbols per codeword.

In a second prior art method, codes satisfying equal balance
and energy constraints [2], which are immune to gain and
offset mismatch, have been advocated. However, these codes
suffer from a rather high redundancy. In a recent contribution,
Pearson distance detection is advocated since its redundancy
is much less than that of balanced codes [5]. The Pearson
distance between the vectors u and v is defined as follows. For
a vector u, define u = 1

n

∑n
i=1 ui and σ2

u =
∑n

i=1(ui−u)2.
Note that σu is closely related to, but not the same as, the
standard deviation of u. The (Pearson) correlation coefficient
of u and v is defined by

ρu,v =

∑n
i=1(ui − u)(vi − v)

σuσv
, (3)

and the Pearson distance between u and v is given by

δ(u,v) = 1− ρu,v . (4)

The Pearson distance and Pearson correlation coefficient are
well-known concepts in statistics and cluster analysis. Since
|ρu,v | ≤ 1, it holds that 0 ≤ δ(u,v) ≤ 2. The Pearson
distance is translation and scale invariant, that is, δ(u,v) =
δ(u, av + b), for any real numbers a and b with a > 0.

Upon receipt of a vector r, a minimum Pearson distance
detector outputs the codeword argminx∈C δ(r,x). Since the
Pearson distance is translation and scale invariant, we conclude
that the Pearson distance between the received vector and
a codeword is independent of the channel’s gain or offset
mismatch, so that, as a result, the error performance of the
minimum Pearson distance detector is immune to gain and
offset mismatch, which is a big advantage in comparison to
Euclidean distance detectors. However, Pearson distance de-
tectors are more sensitive to noise. Therefore, hybrid minimum
Pearson and Euclidean distance detectors have been proposed
[6] to deal with channels suffering from both significant noise
and gain/offset.

C. Pearson Codes

Its immunity to gain and offset mismatch implies that
the minimum Pearson distance detector cannot be used in
conjunction with arbitrary codes, since δ(r,x) = δ(r,y) if
y = c1+c2x, with c1, c2 ∈ R and c2 positive. In other words,
since a minimum Pearson detector cannot distinguish between
the words x and y = c1 + c2x, the codewords must be taken
from a code C ⊆ Qn that guarantees unambiguous detection
with the Pearson distance metric (4) accordingly. Furthermore,
note that codewords of the format x = (c, c, . . . , c) should not
be used in order to avoid that σx = 0, which would lead to
an undefined Pearson correlation coefficient. In conclusion, the
following condition must be satisfied:

If x ∈ C then c1 + c2x /∈ C for all c1, c2 ∈ R
with (c1, c2) ̸= (0, 1) and c2 ≥ 0. (5)

A code satisfying (5) is called a Pearson code [10]. Known
constructions of Pearson codes read as follows.

• The set of all q-ary sequences of length n having at least
one symbol ‘0’ and at least one symbol ‘1’. We denote
this code by T (n, q). It is a member of the class of T -
constrained codes [3], consisting of sequences in which
T pre-determined reference symbols each appear at least
once.

• The set of all q-ary sequences of length n having at least
one symbol ‘0’, at least one symbol not equal to ‘0’,
and having the greatest common divisor of the sequence
symbols equal to ‘1’. We denote this code by P(n, q). It
is has been shown in [10] that this code is optimal in the
sense that it has the largest number of codewords among
all q-ary Pearson codes of length n.

Another code which is of interest, though not being a Pearson
code, is defined as follows.

• The set of all q-ary sequences of length n having at least
one symbol ‘0’. We denote this code by Z(n, q). It is also
a member of the class of T -constrained codes [3]. Due
to the presence of the reference symbol ‘0’ it is resistant
against offset mismatch.

Note that
T (n, q) ⊆ P(n, q) ⊆ Z(n, q). (6)

The cardinalities and redundancies (in the sense of (1)) of
these three codes, as derived in [10], are given in Table I,
where, for a positive integer d, the Möbius function µ(d) is
defined [1, Chapter XVI] to be 0 if d is divisible by the square
of a prime, otherwise µ(d) = (−1)k where k is the number
of (distinct) prime divisors of d.

III. SYSTEMATIC CODING

As stated, the Pearson code P(n, q) is optimal in the sense
of having largest cardinality and thus smallest redundancy.
However, an easy coding procedure mapping information
sequences to code sequences and vice versa is not evident
at all. In this section, we propose easy coding procedures,
possibly at the expense of a somewhat higher redundancy.
We only use code sequences of a fixed length n, but for the
information we consider both fixed-length and variable-length
sequences. Hence, fixed-to-fixed (FF) as well as variable-
to-fixed (VF) length coding schemes are proposed. For the
source we make the common assumption that it is memoryless
and that all q source symbols appear with equal probability
1/q. We start by introducing simple coding schemes resistant
against offset mismatch only. Then we continue with similar
procedures for Pearson coding.

A. Systematic Coding for Z(n, q)

The code Z(n, q) consists of all q-ary sequence of length
n containing at least one symbol ‘0’. Its cardinality and
redundancy are given in Table I. Here, we propose simple
coding procedures systematically mapping q-ary information
symbols to code sequences x = (x1, x2, . . . , xn) in Z(n, q).

A well-known extremely simple FF-scheme, which we call
ZFF(n, q), is to fill the code sequence x with n−1 information
symbols in the subsequence (x1, x2, . . . , xn−1) and to set



TABLE I
CARDINALITY AND REDUNDANCY OF THE CODES T (n, q), P(n, q), AND Z(n, q).

Cardinality Redundancy

T (n, q) qn − 2(q − 1)n + (q − 2)n − logq

(
1− 2

(
q−1
q

)n
+

(
q−2
q

)n)
≈

(
2
(

q−1
q

)n
−

(
q−2
q

)n)/
ln(q)

P(n, q)
∑q−1

d=1 µ(d)
((⌊

q−1
d

⌋
+ 1

)n
−

⌊
q−1
d

⌋n
− 1

)
− logq

(
1−

(
q−1
q

)n
+O

((
q+1
2q

)n))
= qn − (q − 1)n +O(⌈q/2⌉n) as n → ∞ ≈

((
q−1
q

)n
+O

((
q+1
2q

)n))/
ln(q)

Z(n, q) qn − (q − 1)n − logq

(
1−

(
q−1
q

)n)
≈

(
q−1
q

)n/
ln(q)

xn = 0. Due to the fixed last symbol, which acts as a
reference, the redundancy of this method is 1.

Note that while the redundancy of Z(n, q) is decreasing in
n, the redundancy of ZFF(n, q) remains 1. Next, we propose a
systematic VF-scheme, ZVF(n, q), for which the redundancy
decreases in n:

1) Take n − 1 information from the q-ary source and set
these as (x1, x2, . . . , xn−1).

2) If xi = 0 for at least one 1 ≤ i ≤ n−1, then choose xn

to be a (new) information symbol, otherwise set xn = 0.
It can easily be seen that the code sequence x is indeed in
Z(n, q) and that the information symbols can be uniquely
retrieved from x by checking whether it contains a zero in
its first n − 1 positions: if ‘yes’, then all n code symbols
are information symbols, if ‘no’, then only the first n − 1
code symbols are information symbols. Since the number of
information symbols may vary from codeword to codeword
(being either n or n − 1), while the length of the codewords
is fixed at n, this can be considered a variable-to-fixed length
coding procedure. All words in Z(n, q) can appear as code
sequence, but not necessarily with equal probability. This leads
to a redundancy as stated in the next theorem.

Theorem 1. For a memoryless uniform q-ary source, the
redundancy of coding scheme ZVF(n, q) is (1− 1/q)n−1.

Proof: This result can be obtained using (2), with the
observations that (i) Pi = (1/q)n−1 for the (q − 1)n−1 code
sequences xi with no zeroes among the first n−1 symbols and
thus with last code symbol equal to zero, and (ii) Pi = (1/q)n

for the other q(qn−1 − (q − 1)n−1) code sequences xi with
at least one zero among the first n − 1 symbols. Hence, the
resulting redundancy is

n+
M∑
i=1

Pi logq Pi

= n+ (q − 1)n−1(1/q)n−1 logq(1/q)
n−1 +

q(qn−1 − (q − 1)n−1)(1/q)n logq(1/q)
n

= (1− 1/q)
n−1

.

Another way to derive this result is to observe that the

TABLE II
ZVF(3, 2) CODING FOR A MEMORYLESS UNIFORM BINARY SOURCE.

Info Codeword ∈ Z(3, 2) Probability Redundancy
000 000 1/8 0
001 001 1/8 0
010 010 1/8 0
011 011 1/8 0
100 100 1/8 0
101 101 1/8 0
11 110 1/4 1

probability of the case that a sequence of n − 1 information
symbols does not contain a zero, leading to one redundant
symbol, is equal to (1 − 1/q)n−1, while the opposite case
leads to no redundancy at all. The weighted average

(1− 1/q)n−1 × 1 + (1− (1− 1/q)n−1)× 0 = (1− 1/q)n−1

then gives the redundancy of ZVF(n, q).
As an example, we consider scheme ZVF(3, 2) for a mem-

oryless binary source producing zeroes and ones with equal
probability. The seven codewords of Z(3, 2) are then used
with probabilities as indicated in Table II, and thus the average
redundancy is 1/4. This result can be obtained by applying (2),
i.e., 3 + 6 × (1/8) log2(1/8) + (1/4) log2(1/4) = 1/4, or by
directly applying Theorem 1, i.e, (1− 1/2)2 = 1/4. Note that
achieving the somewhat lower redundancy 3− log2(7) = 0.19
of the code Z(3, 2) as such would require all seven codewords
to be used with probability 1/7, which does not naturally match
the source statistics.

In conclusion, the redundancy of ZVF(n, q) is (1 −
1/q)n−1, while the approximate redundancy of Z(n, q) is
(1− 1/q)n/ ln q as given in Table I. Hence, the redundancy
of the proposed VF-scheme ZVF(n, q) is roughly a factor

q ln(q)/(q − 1)

higher than the redundancy of Z(n, q). Note that this factor
does not depend on the code length n, but only on the alphabet
size q. For the binary case q = 2 this factor is 2 ln(2) = 1.39,
for the quaternary case q = 4 it is (4/3) ln(4) = 1.85, while
for large values of q it is roughly ln(q).



B. Systematic Pearson Coding

An extremely simple FF scheme, called TFF(n, q), resistant
against both offset and gain mismatch, is to fill the first n− 2
positions in the code sequence x with information symbols and
to reserve the last two symbols for reference purposes: xn−1 =
0 and xn = 1. The resulting code sequence is in T (n, q) since
it contains at least one ‘0’ and at least one ‘1’. The redundancy
of this scheme is fixed at 2 symbols, but, again, it would
be desirable to have a systematic scheme with a redundancy
decreasing in the code length, preferably approaching zero for
large values of n.

The first VF Pearson scheme, called TVF(n, q), we propose
is similar to the VF scheme ZVF(n, q) presented in the
previous subsection. It reads as follows.

1) Take n − 2 information from the q-ary source and set
these as (x1, x2, . . . , xn−2).

2) If xi = 0 for at least one 1 ≤ i ≤ n − 2, then choose
xn−1 to be a (new) information symbol, otherwise set
xn−1 = 0.

3) If xi = 1 for at least one 1 ≤ i ≤ n−1, then choose xn

to be a (new) information symbol, otherwise set xn = 1.
Since any code sequence obtained this way contains at least
one ‘0’ and at least one ‘1’, it is a member of T (n, q). Also, the
n−2, n−1, or n information symbols can easily be retrieved
from the code sequence. The redundancy of this scheme is
given in the next theorem.

Theorem 2. For a memoryless uniform q-ary source, the
redundancy of coding scheme TVF(n, q) is(

2q − 1

q

)(
q − 1

q

)n−2

+

(
1

q

)(
q − 2

q

)n−2

.

Proof: The probability that a code sequence x has two
redundant symbols is

(1− 2/q)
n−2

, (7)

which is the probability of having an information sequence of
length n− 2 without zeroes and ones. Further, the probability
that x has only a redundant symbol in position n− 1 is

(1− 1/q)
n−2 − (1− 2/q)

n−2
, (8)

which is the probability of having an information sequence
of length n− 2 without zeroes but with at least one ‘1’. The
probability that x has only a redundant symbol in position n
is (

(1− 1/q)
n−2 − (1− 2/q)

n−2
)
(1− 1/q) , (9)

where the first multiplicative term is the probability of having
an information sequence of length n − 2 without ones but
with at least one ‘0’ and the second multiplicative term is the
probability that the information symbol in position n − 1 is
not equal to ‘1’. Hence, the redundancy is two times the term
in (7) plus the terms in (8) and (9), which gives the expression
stated in the theorem.

The redundancy of TVF(n, q) as stated in Theorem 2 is, for
large values of n, a factor

q(2q − 1)

2(q − 1)2
ln(q)

higher than the redundancy of T (n, q) as stated in Table I.
For the binary case q = 2 this factor is 3 ln(2) = 2.08, for
the quaternary case q = 4 it is (14/9) ln(4) = 2.16, while for
large values of q it is roughly ln(q).

The second VF Pearson scheme, called PVF(n, q), we
propose is based on relaxing the enforcement of having both
at least one ‘0’ and at least one ‘1’ in all code sequences to
the enforcement that all code sequences x contain at least one
‘0’ and have the greatest common divisor (GCD) of the xi

equal to one, i.e., GCD{x1, . . . , xn} = 1. It reads as follows.
1) Take n − 2 information from the q-ary source and set

these as (x1, x2, . . . , xn−2).
2) If xi = 0 for at least one 1 ≤ i ≤ n − 2, then choose

xn−1 to be a (new) information symbol, otherwise set
xn−1 = 0.

3) If GCD{x1, . . . , xn−1} = 1, then choose xn to be a
(new) information symbol, otherwise set xn = 1.

Any code sequence obtained in this way is a member of
P(n, q). Again, the n − 2, n − 1, or n information symbols
can easily be retrieved from the code sequence. For q = 2 and
q = 3, the scheme PVF(n, q) is the same as TVF(n, q), since
the condition that a sequence has a GCD of 1 is then equivalent
to the condition that a sequence contains a ‘1’. Therefore, the
redundancy is as stated in Theorem 2 in these cases. However,
this is not the case if q ≥ 4, for which we give the redundancy
of PVF(n, q) in the next theorem. First, we present a lemma,
of which the proof is summarized due to lack of space.

Lemma 1. For any fixed q ≥ 4, among the qn q-ary sequences
y of length n, there are

1) qn−(q−1)n+O(⌈q/2⌉n) sequences with GCD(y) = 1
containing at least one ‘0’,

2) O(⌈q/2⌉n) sequences with GCD(y) ̸= 1 containing at
least one ‘0’,

3) (q−1)n+O(⌊(q−1)/2⌋n) sequences with GCD(y) = 1
containing no symbol ‘0’,

4) O(⌊(q− 1)/2⌋n) sequences with GCD(y) ̸= 1 contain-
ing no symbol ‘0’.

Proof: The first result was proved in [10]. Combining this
with the fact that the number of q-ary sequence of length n
containing at least one ‘0’ is qn − (q − 1)n gives the second
result.

Using a well-known counting argument from, e.g., Section
16.5 in [1], it follows that the number of sequences of length
n with symbols from {1, 2, . . . , q− 1} and GCD equal to 1 is

q−1∑
d=1

µ(d)⌊(q − 1)/d⌋n = (q − 1)n +O(⌊(q − 1)/2⌋n),

where µ(d) is the Möbius function already mentioned at the
end of Subsection II-C. This proves the third result, which



combined with the fact that the number of q-ary sequence of
length n containing no symbol ‘0’ is (q − 1)n also gives the
fourth result.

Theorem 3. For a memoryless uniform q-ary source, with
fixed q ≥ 4, the redundancy of coding scheme PVF(n, q) is(

q − 1

q

)n−2

+O

((
⌈q/2⌉
q

)n−2
)
.

Proof: The probability that a code sequence x has two
redundant symbols is

O

((
⌊(q − 1)/2⌋

q

)n−2
)
, (10)

which is the probability of having an information sequence of
length n − 2 without zeroes and with a GCD unequal to 1,
as follows from result 4) in Lemma 1. Further, the probability
that x has only a redundant symbol in position n− 1 is(

q − 1

q

)n−2

+O

((
⌊(q − 1)/2⌋

q

)n−2
)
, (11)

which is the probability of having an information sequence of
length n − 2 without zeroes but with a GCD equal to 1, as
follows from result 3) in Lemma 1. The probability that x has
only a redundant symbol in position n is

O

((
⌈q/2⌉
q

)n−2
)
, (12)

as follows from result 2) in Lemma 1. Hence, the redundancy
is two times the term in (10) plus the terms in (11) and (12),
which gives the expression stated in the theorem.

The redundancy of PVF(n, q) as stated in Theorem 3 is, for
fixed q ≥ 4 and large values of n, a factor(

q

q − 1

)2

ln(q)

higher than the redundancy of P(n, q) as stated in Table I. For
the quaternary case q = 4 this factor is (16/9) ln(4) = 2.46,
while for large values of q it is roughly ln(q). Also, note that,
again for fixed q ≥ 4 and large values of n, the redundancy
of PVF(n, q) is a factor q/(q− 1) higher than the redundancy
of ZVF(n, q).

IV. CONCLUSIONS

We have presented simple systematic q-ary coding schemes
which are resistant against offset as well as gain mismatch or
against offset mismatch only. Both coding for fixed and coding
for variable length source sequences have been considered,
resulting in FF and VF schemes of fixed code block length
n, respectively. We analyzed the redundancy of the proposed
schemes for memoryless uniform sources. The major findings
are summarized in Table III.

The redundancy of the Pearson schemes TVF(n, q) and
PVF(n, q), resistant against offset as well as gain mismatch,
approaches zero for large n, as desired. The redundancy for

TABLE III
APPROXIMATE REDUNDANCY OF THE CODES T (n, q), P(n, q), AND
Z(n, q) AND THE RELATED FF AND VF SCHEMES, FOR LARGE n AND

FIXED q ≥ 4.

Redundancy Red. FF Red. VF

T (n, q) 2
(

q−1
q

)n/
ln(q) 2 2q−1

q

(
q−1
q

)n−2

P(n, q)
(

q−1
q

)n/
ln(q)

(
q−1
q

)n−2

Z(n, q)
(

q−1
q

)n/
ln(q) 1

(
q−1
q

)n−1

both schemes is equal if q = 2, 3 and the redundancy of
the former scheme exceeds the redundancy of the the latter
scheme by a factor of (2q − 1)/q if q ≥ 4. Furthermore,
the redundancy of the Pearson scheme PVF(n, q) exceeds the
redundancy of the ZVF(n, q) scheme, which offers immunity
to offset mismatch only, by a factor of (2q − 1)/(q − 1) if
q = 2, 3 and by a factor of only q/(q − 1) if q ≥ 4. The
schemes TFF(n, q) and ZFF(n, q) offer extreme simplicity,
using fixed training symbols in fixed positions, at the price
of a redundancy which does not decrease with increasing n.

Finally, the redundancy of the presented TVF(n, q),
PVF(n, q), and ZVF(n, q) schemes is a bit higher than the
redundancy of their T (n, q), P(n, q), and Z(n, q) associates.
However, note that the low redundancies of these codes as
such are only achieved under the assumption that all their
codewords are used equally likely, which is hard to realize for
memoryless uniform and other practical sources. In contrast,
our VF schemes come with natural simple coding mechanisms.
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