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Abstract—In this article, we study the problem of secret However, to approach capacity, the quantization rate aad th
key generation in the multiterminal source model, where the rate of public communication at each terminal must approach
terminals have access to correlated Gaussian sources. Wesame infinity. In practice, it is reasonable to have a constraint o

that the sources form a Markov chain on a tree. We give a th tizati t t h t inal. The t inal
nested lattice-based key generation scheme whose compunagal € Quantization rate at each terminal. € terminais can

complexity is polynomial in the number, N, of independent and ©Only use the quantized source for secret key generation.
identically distributed samples observed by each source. & Nitinawarat and Narayan [9] studied a two-terminal version
also compute the achievable secret key rate and give a clasb oof this problem, where a quantization rate constraint was
examples where our scheme is optimal in the fine quantization imposed on only one of the terminals. They gave a nested
!Imlt. However, we alsq give example; that shqw that our scimee |atti di h d sh d that it timal. i
is not always optimal in the limit of fine quantization. atlice coding scheme and showed that it was optimal, 1., n
other scheme can give a higher secret key rate. In relatek wor
|. INTRODUCTION Watanabe and Oohamnia12] characterized the maximum secret
We study secret key (SK) generation in the multitermindey rate achievable under a constraint on the rate of public
source model, where: terminals possess correlated Gaussiamommunication in the two-terminal setting. More recently,
sources. Each terminal observ€sndependent and identically Ling et al. [7] gave a lattice coding scheme for the public
distributed (iid) samples of its source. The terminals haw@mmunication-constrained problem and were able to aehiev
access to a noiseless public channel of infinite capacity, ai secret key rate withii/2 nats of the maximum in[12].
their objective is to agree upon a secret key by communigatin We consider a multiterminal generalization of the two-
across the public channel. The key must be such that amyminal version studied by[][9] where quantization rate
eavesdropper having access to the public communicatioh mesnstraints are imposed on each of the terminals. Termi-
not be able to guess the key. In other words, the key musthal i has access taV iid copies of a Gaussian source
independent (or almost independent) of the messages commuyfl), X;(2),..., X;(N). The sources are correlated across
nicated across the channel. A measure of performance is the terminals. We assume that the joint distribution of the
secret key rate that can be achieved, which is the numbersolurces has #Markov treestructure [[2, Example 7], which
bits of secret key generated per (source) sample. On the otisea generalization of a Markov chain. Let us define this
hand, the probability that any terminal is unable to recamst formally. Suppose thaf = (V, F) isatree and X; : i € V'}
the key correctly should be arbitrarily small. is a collection of random variables indexed by the vertices.
The discrete setting — the case where the correlated sourCemsider any two disjoint subsefs and 7 of V. Let v be
take values in a finite alphabet — was studied by Csiszany vertex such that removal af from 7' disconnectsZ
and Narayan[[2]. They gave a scheme for computing feom 7 (Equivalently, for everyi € Z andj € J, the path
secret key in this setting and found the secret key capacitgnnecting and; passes through). For every suclt, 7, v, if
i.e., the maximum achievable secret key rate. This was lateX; : : € 7} and{X; : j € J} are conditionally independent
generalized by Nitinawarat and Narayan [9] to the case whegiwen X,,, then we say thafX; : i € 7'} form a Markov chain
the terminals possess correlated Gaussian sources. on T. Alternatively, we say tha{X; : i € V} is a Markov
In a practical setting, we can assume that the randaree source.
sources are obtained by observing some natural parameterghe contributions of this paper are the following. We study
e.g., temperature in a field. In other words, the underlyinie problem of secret key generation in a Gaussian Markov
source is continuous. However, for the purposes of storagee source model with individual quantization rate caaists
and computation, these sources must be quantized, and gifijosed at each terminal. We give a nested lattice-based
the quantized source can be used for secret key generdtio,cheme and find the achievable secret key rate. For certain
each terminal uses a scalar quantizer, then we get the isCtgasses of Markov trees, particularly homogeneous Markov
source model studied irl[2]. However, we could do bettefee], we show that our scheme achieves the secret key
and instead use a vector quantizer to obtain a higher secret
key rate. Nitinawarat and Narayahl [9] found the secret keylWe say that a Markov tree is homogeneous (iX,; Xv) is the same for
capacity for correlated Gaussian sources in such a settiagedges(u, v)
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capacity as the quantization rates go to infinity. However, w 1

also give examples where our scheme does not achieve the key T Vo
capacity. A salient feature of our scheme is that the overall
computational complexity required for quantization ang ke
generation is polynomial in the number of sampl€s It is
also interesting to note that unlike the general schemég]jn [ V1 V1

[Q], we give a scheme where at least one terminal remains T - > T+ I
Vi 2 v
1
2

V3 V4

silent (does not participate in public communication), and Delete
omniscience is not attained. leaves v
V3 V4
Il. NOTATION AND DEFINITIONS

If Z is an index set andA4; : i € Z} is a class of
sets indexed byZ, then their Cartesian product is denoted
by X,.; Ai. Given two sequences indexed bye N, f(n) T*
and g(n), we say thatf(n) = O(g(n)) if there exists a v
constantc such thatf(n) < cg(n) for all sufficiently large V2
n. Furthermore f(n) = o0,(1) if f(n) = 0 asn — oo. v

Let G = (V,E) be a graph. The distance between two 2 .\.
verticesu andv in G is the length of the shortest path between T*
u andv. Given a rooted tre@ = (V, E') with rootr(7") we say va
that a vertexu is the parent ofr # r(T'), denoteds = par(v),
if u lies in the shortest path from(7") to v and the distance
between: andv is 1. Furthermore, for every € V', we define

Vi

I T, ® T,

V4

Fig. 1. lllustration of 7* for a tree having four vertices.

Nr(v) to be the set of all neighbours efin 7. Q. : RN — A, of rate Rc(f') — Llog, | X,|. Terminalv
I1l. SECRETKEY GENERATION FROMCORRELATED transmitsF{") € £ — which is a (possibly randomized)
GAUSSIAN SOURCES function of Q,(X%Y) — across a noiseless public channel
A. The Problem that an eavesdropper may have acceds Wsing the public

We now formally define the problem. We consider a mup_.ommunication a.nd their respective obs_ervations of thexqua
titerminal Gaussian source modéll [9], which is describdifd random vaﬂableﬂv(g({,v), the terminals must generate
as follows. There aren terminals, each having access t& S€cret keyK(™) e k() Wh'(?vh) is concealed from the
N independent and identically distributed (iid) copies of §avesdropper. LeFq := X, Fv '
correlated Gaussian source, i.e., thh terminal observes Fix anye > 0. We say thalK") is ane-secret key (-SK)
X;(1), X;(2), ..., X;(N) which are iid. Without loss of gen- if there exist functionsf, : (¥,, F¢) — K) such that:
erality, we can assume thaf; () has mean zero and variance N () ()

1. We can always subtract the mean and divide by the variance ~ F'T [fv(Qv(Xv ) AF ueVh #K } <6
to ensure that this is indeed the case. The joint distributio

{X;(i) : 1 <1 < m} can be described by their covariance log, [K™M| — HK™) <e,
matrix &.

Specifically, we assume that the sources form a Markov tréfjlen,d ) (¥)
defined in Sedl]l. Let” = (V, E) be a tree havingV| = m I ({Fv veVEK ) <¢

vertices, which defines the conditional independence tsireic
of the sources. Fout, v € V, let us definep,, := E[X, X,].
We can therefore write

We say thatRy., is an achievable secret key rate if for
everye > 0, there exist quantizer&Q, }, a scheme for public
communication{FSN)}, and a secret keKK("Y), such that for

Xu = puXo + V1 — p2, Zuy all sufficiently largeNV, K*) is ane-SK, and+4; log, [K™)] >
where Z,, IS a zero-mean, unit-variance Gaussian randoﬁf‘ey —“ . .
) N o Consider the following procedure to obtain a class of rooted
variable which is independent of,. Similarly, subtrees ofl"

Xy = puyXu+ V1= pd Zou « ldentify a vertexv in V' as the root. The tre@& with v
whereZ,, is also a zero-mean, unit-variance Gaussian random &S the rootis a rooted tree. Call thig.

) .
variable which is independent &, (and different fromz,,). ~ * Delete aL' the leaves ofy. Call the resulting rooted
Our objective is to generate a secret key using Subtreely.

pUb”C communication. Forv € v, let X‘]’V = 2In this work, we only consider noninteractive communicatig.e., the
(Xv(l), XV(2)7 s 7XV(N)) denote theN iid copies of X, public communfcation is only a function of the source and obthe brior

available at termina¥. Each terminal uses a vector quantizesommunication.



Let 7% := {T; : v € V} denote the set of all rooted subtreesf
of T' obtained in the above manner. Hg. 1 illustrates this for
a tree having four vertices. Note that there &® trees in = min L1 1
. ey — g2
T*, one corresponding to each vertex. For any such rooted" T+*eT* | veNr(x(T*)) 2 1- pf(T*)v
subtreel™ = (V*, E*) in T*, letr(T*) denote the root of ™. 9
We will see later that it is only the terminals that corregphon + Z min llogg ( pu-p&r(u)) }
to T that participate in the public communication while the wev () ENT®
other terminals remain silent. For any € V*, let Np(v) (5)
denote the set of all neighbourswoin 7" (not7*). Recall that )
each terminak operates under a quantization rate constrailf achievable.

(v) * * * 1 . . .
of Ry’. For everyI™ = (V*, £¥), us define If there are no constraints on the quantization rates, then
) from [9, Theorem 3.1] and [2, Example 7], we know that the
Rent = Rff(T ) maximum achievable secret key rate is

1 (w)
+ ) Slog, ((eQRq =D = parw) + 1) () _ o 1 !
weV () 2 Crey = (ww)er 2 log> { 7 02, )" ©

1)

1—p2

u,v

IV. REMARKS ON THE ACHIEVABLE SECRETKEY RATE

and A. The Two-User Case

Consider the two-user case with terminalsndv. Let us
- 10g2 <(€2R£1V) _ 1)(1 2 ) define

w
2R

(u)

1

[ q

+1+”‘”—>. @) Rlwv):=glog | —7 o
¢ (M7 = 1)(1 = pf,) + 14 B

We will show that the joint entropy of the quantized sourees js we will see later, the above SK rate is achieved with
at leastRe,, and the sum rate of public communication is af participating in the public communication and remain-
MOSt Reom IN OUr scheme. Also, the public communication,g sjlent. The achievable secret key rafg, (4), is equal to

that achievesR o requires only the terminals if™ 10 4 (R(u,v),R(v,u)}. A simple calculation reveals that
participate in the communication; the terminalsinV* are

silent. Let us also define e~ 2R(uy) _ ,—2R(v,u)
(u) 1 1
maXyecv = Rq = p2 ( — ) (7)
o= —— 3 uv ™) ™) ) )
minvev* Rc(lv) ( ) €2R(l (€2R(l _ 1) €2R(l (62RQl _ 1)

Hence, if R{” > R, thenR(u,v) > R(v,u). This means
that in order to obtain a higher secret key rate using our
Theorem 1. For a fixed quantization rate Constraip{tRé") . scheme, the terminal with the lower quantization rate must

Our aim is to prove the following result

v € V}, a secret key rate of communicate, while the other must remain silent.
If we let Rév) in R(u,v) go to infinity, then we get the rate
Rxn achieved in[[9], which was shown to be optimal when
Ryey = Shax, {Rcm — Rcom} (4) we only restrict the quantization rate of one terminal.

1 2R
is achievable using a nested lattice coding scheme whose Rxn = §1°g2 <(62ng —1)(1-p2) +1 '
computational complexity grows &@(No*1). e

. . . . o Fig. [@ illustrates the behaviour of the achievable rate for
Note that if all terminals have identical quantization rat§it. .ont sum-rate constraintg%ﬁu) + R — R). The rate
o = R).

. o .
constraints, then the cpmplexny 3(N?). Sec[Y describes achieved by the scheme of Nitinawarat and Naraan/jy,
the scheme and contains the proof of the above theorem. is also shown

We now discuss some of the implications of the result.

Letting the quantization rateR{" in @) go to infinity, i.e., as B. Optimality of Ry, in the Fine Quantization Limit

()
Rq” = oo for all v, we get that We present a class of examples whé&g, is equal to the

Corollary 2. In the fine quantization limit, a secret key ratesecret key capacityjlizf/) in the fine quantization limit. One



Achievable SK rates for different sum rate constraints in the two-terminal case
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Fig. 2. Plot of achievable secret key rates under a sum ratstreant for two
terminals.

such example is the classlmdmogeneouslarkov trees, where

puv = p Tor all edges(u, v). In this case,

1 1 - p12l ar(u
min = log, T Tweerl) | 0,
vENT(u) 2 1—p2,

and hence, by Corollaiy 2,

1 1 -
Py = gl (7= ) =

- Ykey *

P12 _ P23 _ P34

T

vy V2 V3
p23 > max{pi2, P34}
77 O—0—@ 77, —@

Vi Vg V3 V2 V3
P23 > P34 P23 > P34
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P23 > P12

0
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Fig. 3. An example where our scheme is suboptimal.

Irrespective of whichl™ € T* we choose (see Fidl 3), we
have

_ (0)
= Ckey -

, 1 o 1
min — —
VENT(x(T*)) 2 82\ 1= pf(T*)v

Furthermore, the second term [d (5) is negative for ety
This is because every* has someu # r(7*) for which

argminyey s Puy 7 par(v).
V. THE SECRETKEY GENERATION SCHEME

We now describe the lattice coding scheme that achieves
the promised secret key rate. Our scheme is very similar to

This property holds for a wider class of examples. Considére scheme given by Nitinawarat and Narayan [9] for the two-
the case wher& has a rooted subtréE* such that for every terminal case.

u € V*, argminge v, (w) pov = par(u). Once again, we have

1 1— pﬁ ar(u)
min =1lo ——wpeny =0.
vENT(u) 2 G2 < 1—p2,

Moreover, the edgéu,v) € E with the minimizing p,, (and
therefore, the minimizing mutual information) is incidear
r(T*). Hence,Ryey = qﬁ;’;%

C. Suboptimality of?y., in the Fine Quantization Limit

We can give several examples for whi¢t., in the fine

guantization limit is strictly less thad'ﬁjj). Note that

1 1— pﬁ ar(u)
in -1 — Y <0
VGIZI\IZ;I}u) 2 082 < 1-— av -7

and if these terms are nonzero for evdry € 7%, then the
scheme is suboptimal. As a specific example, consider
Markov chain of Fig[B, wher@ss > max{p12, p34}. Let us
further assume thai;» = p34. The secret key capacity is

We use a block encoding scheme just like the oné in [9].
Recall that each terminal has a quantization rate constraint
of Rc(f'). The total blocklengthV is partitioned into Ny
blocks of n samples each, i.ely = niNyyu, where Ny, =
min, onRS” _ 1. The secret key generation scheme comprises
two phases: an information reconciliation phase, and apyiv
amplification phase. The reconciliation phase is divided in
two subphases: a lattice coding-based analog phase, which
is followed by a Reed-Solomon coding-based digital phase.
The privacy amplification phase employs a linear mapping to
generate the secret key from the reconciled informatiois Th
uses the results of Nitinawarat and Narayah [9]. The digital
phase is also inspired by the concatenated coding scherde use
in [11] in the context of channel coding for Gaussian chasinel

Let us briefly outline the protocol for secret key generation
Each terminalr uses a chain of nested latticgs,, AW, A‘(,Q))
in R”, whereA? AV ¢ A,. The Gaussian input, at
erminal v is processed blockwise, with samples collected

Fform a block. Suppose, = (xSl),...,x§N°“°)) where
xSl) denotes theth block of lengthn. Each terminak also
generates random dithe{slf,z) : 1 <4 < Nout }, Which are all
uniformly distributed over the fundamental Voronoi regioi
A,, and independent of each other. These are assumed to be



known to all terminalf The protocol for secret key generatiorof blocklengthn over[,,, with p chosen large enough to ensure

is as follows. that these lattices satisfy the required goodness pregerti
« Quantization:Terminalv € V' computes Furthermore,ASl) and ASQ) are obtained from subcodes of
} , } } linear codes that generatg,. Fix anyd > 0. The lattices are
y& = [Qa, () +d{?) = d{?] mod AP chosen so that
« Information reconciliation: Analog phasetet 7% = 1 1 vol(A$?) ky .
(V*, E*) be the rooted subtree which achieves the max; log, [AV(A)] = n logy #Av)) — log, p = Ry,
imum in {4). Terminalv € V* broadcasts (8)

(Vol(ASQ))) 2/

wi = [y{] mod A(V. 5o = (1+0*(Ay)) (1 +9), )
across the public channel. Terminahas access tgff) and
and for everyv € Ny« (u), it estimates (1)\\2/n
1(Av
s . , , M = max (1 —p2 4+ 0 (A,) + p?wch(Au))
7 = w4+ Q0 (puyl —wih). 2me ueNT(v)
» X (14 9). (10)
Having estimatedy, " for all neighboursy, it estimates Furthermore, these lattices satisfy the following “gocshie

v for all v which are at a distance from u, and so

on, till it has estimatec[y\(,z) v e V1 <4< Nog b _ .
« Information reconciliation: Digital phaseTo ensure that ~ ° A‘(’1;S good@f)or covering. )

all N, blocks can be recovered at all terminals with an ° Ay andAy” are good for AWGN channel coding.

arbitrarily low probability of error, we use a Slepian-Wolfg. Quantization

scheme using Reed-Solomon codes. Each terminal use

an (Nout, Kout) Reed-Solomon code ovéf,.,, where

properties|[[4]:

Ferminalv observesV samplesk, = (2y(1),..., 2y (N)).
. - As mentioned earlier, the quantizer operates on blocks of
the parameterdy,,; and p* will be specified later. g P

) ) (Nowt)y 5. samples each, and there a¥g,; such blocks. We can write
The syndrome correspondlngﬂt(ﬁyv ey Y ) in _ (x(1) e X(Nout)) wherex'?) ¢ R” is given by
the code is publicly communicated by terminal We yoTE T o .

)= (@ = Dn +1),. w(jn)
show that this can be used by the other terminals i S oo ‘ .

Terminal v also generates N, dither vectors

. (i) . .
estimate all theyy’s with a probability of error that d‘(ll)’d‘(,2)7'..7d‘(lNout)’ which are all uniformly distributed

decays exponentially ifv. . .
. Key generationWe use the resul{9, Lemma 4.5] thatoverV(Av), ar?d independent of each other and of everything
) : : Ise. These dither vectors are assumed to be known to all the
there exists a linear transformation of the source symb(% S
) S rminals, and to the eavesdropper.
(viewed as elements of a certain finite field) that can act )
) . . - Forl <i < Ny andv € V, let
as the secret key. Since all terminals can estlnﬁgcéé) : ‘ . ‘ ‘
v € V*, 1 <i < Ny} reliably, they can all compute the vy =[Qa, (x +d?) — d] mod AP (11)
secret key with an arbitrarily low probability of error. . . .
y y P y denote the output of the lattice qu(a)ntlzer a}t ter)mmaﬂ'he
2 Nout

Be.ff(.)re V\;ehgo m(tjq the d:‘tans c\)/fveach stc—:}p, we deds::nb_e SOME inals can only usg, i— (ysl)’yv o ) for the
specifics of the coding scheme. We want the nested lattie¢s ), ..o key generation protocol. Frof (8) al (9), we can see
form the main component of our protocol to satisfy certaify, - ;

y y . X e at the quantization rates satisfy

goodness” properties. We begin by describing the features

that the lattices must possess. RO _ llogg (1 n 1 ) +logy(14 6) + on(1). (12)
2

. q 0.2(AV)
A. Nested Lattices C. Information Reconciliation: The Analog Phase

Some k_JaS|c_ definitions and relevant r_esults on lattices havq_et T+ — (V*, E*) denote the rooted tree iff* which
been outlined in AppendIxJA. Given a lattide we letV(A) be ; : . )
. . 5 achieves the maximum ikl(4). The terminalgiti are the only
the fundamental Voronoi region dof, ando“(A) denotes the : . .
. ) . ones that communicate across the public channel. Terminal
second moment per dimension &f Furthermore, we define v € V* broadcasts
vol(A) := vol(V(A)). . ‘
Each terminalv uses a chain ofv-dimensional nested w() = [y] mod A(M)
lattices (Av,Ag ) AL >): with A2 ¢ A§.> C A,. These are — [Qa, (%) + dDY] mod A (13)
all Construction-A latticed [3]/14] obtained from lineaoaes
for 1 < i < Ny, across the public channel. Prior to

3In principle, the random dither is not required. Similar®, we can show the analog phase, terminal € V only has access to
that there exist fixed dithers for which all our results halthe could avoid o (2 (Nout) . .
the use of dithers by employing the technique<in [7], but wenat take that Yu = (yu jyu RRER A ) At Fhe end of the information
approach here. reconciliation phase, every terminalwill be able to recover

“We show that there is a bijection betwean/A{”) andF s, . {y, : v € V*} with low probability of error. The analog phase



ensures that every‘(,i) can be individually recovered with low complexity (including all the phases of the protocol) isypol

probability of error. The digital phase guarantees thattitée nomial in V.

block y, can be recovered reliably. For everyv, let C, be a Reed-Solomon code of blocklength
Now consider anyr € V* andu € Nr(v) (not necessarily Ny, and dimension

in V*). Suppose that some termmﬁ(l (not necessarllya) has

a reliable estlrr)1ate ojru From y ) and wv , terminal v’ Kout = Nous(1 — 29). (19)
can estimatey{” as follows: Le(tl) y]zf;;t :( (y)‘(,l),y‘(,Q), o 7y(Nout)) and ylew =
50 = wl 1 Qu (puvyl(li) _ W‘(Ii)) _ a4) @ u .. New) “We can write
. aye . . ANout —_ Nout Nout
The following proposition is proved in Appendix BFA. I
Proposition 3. Fix a§ > 0. For everyl < i < Ny, we have whereelYou = (e, el ... efNm)) is the error vector, and
s from the previous section, we have
E o Pr[yy) # y(] < e mFwl® (15)
. . . ... .. P () 0 < —nEyw(0) <4é
where E,, is a quantity which is positive for all positiveand ey # 0 < v ugv?((v) ¢ -

all sufficiently largen, as long as

(1) 2/n for all sufficiently largen. EveryyNeut can be written uniquely
(vol(Ay )

> max (1 —p2 + 0% (Ay) + p?wcrz(Au)) as

2me u€Nr(v) y‘],Vout — C‘],Vout + S;Z,Vouc (20)
149 16 _ . . .
x(1+9), (16) whereclNew € C,, andslewt is a minimum Hamming weight
(vol(ASQ))) 2/n ) representative of the coset to whigfi-=* belongs irﬁzﬁi‘“ /Cy.
e > (1+07(Ay)(1 +9), (17)  Terminalv broadcastsNout across the public channel. This
and requires a rate of public communication of at most
(A2 2N0u 5
(\70(7)) > (14 02(Ay)(1 +9). (18) log2 |IFN°‘“/C | = ¢ ogz(pkv) = 26Ré"). (21)

27e
From sMNeut andyNewt | terminalu can compute

Since terminalu has yu), it can (with high probability) ENowe — gNowe
recover the corresponding quantized sources of its neigisbo M v

Assuming that these have been recovered correctly, it @m th For sufficiently large: the probability tha’y ) is estimated
estimate the quantized sources of all terminals at distamee incorrectly is less than, and terminah can recoverNow with

fromu, and so on, till ally{”’ for v in V* have been recovered.high probability using the decoder for the Reed-Solomorecod

Using the union bound, we can say that the probability that

terminalu correctly recovers{yV :v e V*}is at leastl — Proposition 4 (Theorem 2, [[11l}) The probability that the
—n By (8) Reed-Solomon decoder incorrectly decodgs: from clNout

> wey s MAXye Ny (u) € .

For all terminals to be able to agree upon the key, we mL%ecays exponentially itV

ensure that every terminal can recover all blogks : v € Having recoveredtNew reliably, the terminals can obtain
V*} with low probability of error. SinceV,.: is exponential yNew ysing [20). Therefore, at the end of the digital phase,
in n, the analog phase does not immediately guarantee thii.terminals can recovefy, : v € V*} with a probability of

Nout — Nout Nout
_Svou _Cvou _i_evou.

For that, we use the digital phase. error that decays exponentially iN.
D. Information Reconciliation' The Digital Phase E. Secret Key Generation
(1) . ..
Otéservte tht?yv Aelltxt NV(AS N ), V;ht?rel bothA, an/zw,e Let k := >,y kv. There exists a (set) bijection from
are Construction-A lattices obtained by linear codes dver D ) .
As a result)A, NV(AP)| is always an integer power f[4]. Xyey. Fpe. 10 i L?-ty( = Olyy v e V). We use the
following result by Nitinawarat and Narayahn| [9], which says
Let that there exists a linear function of the sources that can ac
A, NV(AP)] = ph as the secret key.
Then, there exists an (set) isomorphigmfrom AvﬁV(/(\_\()rz)) Lemma 5 (Lemma 4.5, [[9]) Let Y be a random vari-
toF,. . Foreveryv € V* andi € {1,2,..., Now}, letys” = able in a Galois field F, and D be an R"-valued
<pv(y\(, ). Similarly, let 7" = %(y&)). random variable jointly distributed withy. Consider

The key component of the digital phase is a Reed-Solomof,,; iid repetitions of (Y, D), namely (Y Neut| DNout) —
code overF . In [9], a Slepian-Wolf scheme with random((Y1, D1), ..., (YN,u Do ))-
linear codes was used for the digital phase. Using a Reediet B = BWaw) ¢ BNow) be a finite-valued rv with a
Solomon code, we can ensure that the overall computatiogaten joint distribution with(Y Neut | DNout),



Then, for every > 0 and every bits per sample. Here, we have used the fact that an MSE
1 quantization-good latticd, satisfiesvol(A,) — 2mea?(A) as
R<H({Y|D) -+ log [BNow)| — 25, n — co. We know from [21) that during the digital phase,
out terminal v communicateQzSR(({') bits per sample across the
there exists d =2 | x N, matrix L with F, -valued entries public channel. The total rate of communication by terminal
such that v is therefore

Now R — H(LYNewt) 4 [(LY Neuwt; DNowe B)

(1 - pﬁv + 02 (AV) + p121v02 (Au))
u€ N (v) 2 o2 (Av)

, , +0(1+2RY) +0,(1)  (25)

In other words LY Meut is ane-SK for suitablee. Letg = _ _
p* and B = (w,,sNew : v € V*). Then, the above lemma Dbits per sample. Using Lemnia 6 and](25)[nl(22), and finally
guarantees the existence of Bp.-valued matrix, so that substituting [IP), we obtairi{4). All that remains now is to
LyD, ..., yWeu))T is a secret key with a rate of find an upper bound on the computational complexity of our

scheme.

vanishes exponentially ifVy,.

1 " * v
NH(Y" vEVidy:veVT) - GZV R (22) H. Computation Complexity

' We now show that the computational complexity is polyno-
where R{%), denotes the total rate of communication ofnial in the number of samples. The complexity is measured
terminal v. We give a lower bound orf., by bounding in terms of the number of binary operations required, and
H(yy:v € V*|dy : v € V*) in the next section. we make the assumption that each floating-point operation
(i.e., operations inR) requiresO(1) binary operations. In

. o ] other words, the complexity of a floating-point operation is
The proof of the following lemma is given in Appenm'B'independent ofV.

Lemma 6. Fixa s > 0, and letD; := (d{” : v € V*). For Recall thatN = 1Ny, Where Nyy, = minyey - (2"5

chy =

F. Joint Entropy of the Quantized Sources

(v)
q  —

all sufficiently largen, we have 1). Also, o = (maxyev+ RY)/(mingey- RY).
1 . 1 1 o Quantization Each lattice quantization operation has
EH(Y\(,Z) v e VD) 2 5 logy <1 + m) complexity at mostO(2"f") = O(N<,). There are
. - =(T") Ny Such quantization operations to be performed at
i ~ Pupar(m) | each terminal, and hence the total complexity is at most
+u§v:* log, <1 ) ) 5 (23) o)

o Analog Phase Terminal v performs N, quantization
and modA{" operations to computéw!’ : 1 < i <
Nout }, @nd this requires a total complexity O N,
Computation of{?f,l) : 1 <4 < Nout, v € V*} requires
at most Ny (|V*| — 1) quantization operations, which
also has a total complexity a@b(N2).

« Digital Phase Each terminal has to compute the coset
representative. This is followed by the decoding of the

For everyv, {y‘(,l) : 1 < i < Ny} are independent and
identically distributed. IfD := {D; : 1 < i < Nou}, then
H(ys : v € V*|D) = Now H(y\"” : v € V*|D;). Substituting
for o2(A,) from (@I2) in [23), we get

1
NH(yV :v € VD) > Rent — g(6) — 0 (1),

whereR. is defined in[[L), and(4) is a quantity that goes Reed-Solomon code. Both can be done using the Reed-
to 0 asd — 0. Solomon decoder, and this requir€8 N, log, Nout)

_ operations irf¥,,», . Each finite field operation on the other
G. Achievable Secret Key Rate and Proof of Thedrem 1 hand require®)(log? p**) = O(n?) binary operationg 5,

Lemma[% guarantees the existence of a strong secret Chapter 2]. The total complexity is therefoftg N?).
key which is a linear transformation afy®), ..., y@ou)), « Secret Key Generatiomhis involves multiplication of a
From Proposition§]3 arld 4, all terminals are able to recover Lﬁ%‘;ﬂ X Nout Matrix with anNo,-length vector, which
(yV,...,yWNew)) with a probability of error that decays  requiresO(N2,,/logq) operations ovef,. Hence, the
exponentially inN = nNyy. complexity required i€)(N2 , log q) = O(N?).

During the analog phase, each termirain V* publicly  From all of the above, we can conclude that the complexity
communicates required is at mosO(N**1). If the quantization rate con-
0 1 . vol(ASl)) strair;ts are the same, i.eR((l“) = Rév), then the complexity is

analog — , 1082 “ol(Ay) O(N?). This completes the proof of Theordm 1. O

(1= pZ, 4+ 02(Ay) + p2,0%(Ay)) VI. ACKNOWLEDGMENTS
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APPENDIXA Y
LATTICE CONCEPTS Pr(Z ¢ V(A)] < ein(EU(H)fon(l))
In this appendix, we briefly review basic lattice concepts
that are relevant to this work. We direct the interested eead
to [, [3], [, [13] for more details. Letd denote a full-rank for all o2 that satisfyu > 27e. Here,Ey (), called thePoltyrev
n X n matrix with real entries. Then the set of all integer-lineagxponenis defined as follows:
combinations of the columns of is called a lattice ilR™, and

A is called a generator matrix of the lattice. Given a lattice

in R™, we defineQ) : R® — A to be the lattice quantizer that Tome if 8me < p
maps every point iR™ to the closest (in terms of Euclidean  Ey () = %m i if 4me < pu < 8me (26)
distance) point inA, with ties being resolved according to a £ — Il if 27e < p < 4re.

fixed rule. Thefundamental Voronoi regign/(A), is the set

of all points in R™ for which 0 is the closest lattice point,
i.e., V(A) := {x € R" : Qo(x) = 0}. For anyx € R"”, we Suppose that we use a subcollection of points from an AWGN-

define [x] mod A := x — Qx(x). We also defineol(A) := good lattice A as the codebook for transmission over an
vol(V(A)). The covering radiusof A, denotedr.., (A) is the AWGN channel. Then, as long as

radius of the smallest closed ball IR" centered a0 that
containsV(A). Similarly, the effective radiusr.s(A), is the

2/n
radius of a ball inR™ having volumevol(A). vol(V(4)) > 9re
The second moment per dimensiof a lattice, 0% (A) is a? N ’
defined as

1 9 the probability that a lattice decoder decodes to a lattaatp
nvol(A) /er(A) [, other than the one that was transmitted, decays exporigntial

in the dimensiond, with the exponent given by (P6).

and is equal to the second moment per dimension of a "N attices that satisfy the above “goodness” properties were
dom vector uniformly distributed ove?(A). The normalized y 9 prop

: . . : shown to exist in[[4]. Moreover, such lattice can be consédic
second moment per dimensiohA is defined as f , . : .

rom linear codes over prime fields. Lgtbe a prime number,

a?(A) andC be an(n, k) linear code oveifF,. In other words,C
vol(A)2/n” has blocklengthn and dimensionk. Let ¢ be the natural
. . ) embedding off, in Z, and for anyx € F};, let ¢(x) be the
It A and A, are two lattices inR™ that satisfyAo C A, jength vector obtained by operatigigon each component of

then we say that\, is asublatticeof A, or Ao is nestedin  y The setA := ¢(C) + pZ" := {$(x) +py : x € C,y € Z"}

o?(A) =

GA) =

A. Furthermore, is a lattice, and is called the Construction-A lattice ofai
vol(Ag) from the linear codeC. With a slight abuse of notation, we
[ANV(Ao)| = vol(A) will call any scaled version of\, i.e., aA for any a > 0,

. . a Construction-Alattice obtained fromC. A useful fact is
We say that a lattice\ (or more precisely, a sequence Othat A always containgZ" as a sublattice, and the nesting
lattices {A} indexed by the dimension) is good for mean ratio A/pzZ" = pk. It was shown in[[4] that ifk and p

squared error (MSE) quantizatioif are appropriately chosen functions ef then a randomly
. 1 chosen Construction-A lattice ovéf, is good for covering
Jim G(A) = o—. and AWGN channel coding with probability tending toas

A useful property is that ifA is good for MSE quantization, "o

then vol(A)2/™ — 2mec?(A) asn — oco. We say thatA We use the nested lattice construction[ih [3], [6] to obtain
is good for covering(or covering-good or Rogers-good) ifgood nested Iattic_es. Lét, be a Construction-A lattice which
Teow(A) /7ot (A) — 1 @asn — oc. It is a fact that ifA is good 1S good for covering and AWGN, and let be a generator

for covering, then it is also good for MSE quantization [4]. matrix for Ag. Then, if A’ is another Construction-A lattice,

Let Z be a zero-mean-dimensional white Gaussian vectotn€nA = pflA_A/ is a lattice that containd, as a sublattice.
having second moment per dimension equabioLet It was shown in[[6] that ifA and Ay are chosen at random,
then they are both simultaneously good for AWGN channel

B Vol(V(A))Q/" coding and covering with probability tending toasn — oo

o2 : (provided thatk andp are suitably chosen).



APPENDIX B B. Proof of Lemm&l6

TECHNICAL PROOFS We prove the result by expanding the joint entropy using

A. Proof of Propositiof 13 the chain rule, and then use a lower bound on the entropy of
a quantized Gaussian. To do this, we will expand the joint

Recall that entropy in a particular order. Le$ be any (totally) ordered
vy = [Qa, x) +dP) — d)] mod AP set con_taining the vertices @f* and satisfying the following
0 1o @ A A®) properties:
[Xu " + d,] mod } mod Ay . max, S = r(T%), i.e., r(T*) > v for all v € S.
=[x +d®] mod A, (27) o v > u if the distance betweem andr(7*) is less than

0 that betweeru andr (7).
wheredy’ is umformly distributed ovel(A,) and is inde- Essentiallyy > u if v is closer tar(7*) thanu, and we do not

pendent ofx" [BL Lemma 1]. SinceA, is good for MSE care how the vertices at the same level (vertices at the same
quantizationA{ is good for AWGN andl[{TI8) is satisfied, Wedistance fromr(7*)) are ordered. LeD = (dsl) cve V).

can usel[[4, Theorem 4] to assert Fhte probability Then,
(4) () L g —n(E1(6)—on (1)) i * i
Prlyy) # xy) +d] < e ™ (28) H(y® :v eV D) = H(y!. D)
where E1(6) > 0 for all § > 0. Similarly, we can write + > HyYIDy?:u>v)
i i ~0 veV*\r(T*)
) = )+ ) mod A, AN
0 , = HWVe(rr)
whered" is independent ok!”, and I Z Hy®|D,x® :u> v)
Priyl) £ () 4+ &) < e MEO0) (29) e @)
where E,(6) > 0 for all § > 0. — H(yii():r*) D)
Recall thatw!” = [y{"] mod A{". We can write D1r ()
. o + D HB DX
?51) = W‘(,l) + QAgu (Puvyl(f) - W‘(,l)) veV*\r(T™) (33)

=wi + Q0 (puvyl(f) v +Q <1>(.Y5i))) o ,
where [32) follows from the data processing inequality. We

=wi + Qo ¥\ + Qo (puvyl(l) - y\(,i)) would like to remark thaf{33) is the only place where we use
) @) @) Markov tree assumption. The rest of the proof closely foHow
=¥y FQum (puvyu -y ) (30) [9, Lemma 4.3], and we give an outline. The idea is to find the
NORNE0 average mean squared error distortion in represemiﬁgby
F[gm @)) an(?lllzg) we know that!" +dv’ and o (with or without the side |nformat|0|x () and then
+du” with high probablhty NOW argue that the rate of such a quantizer must be greater than or
puvxl(f) _ Xsi) _ m 5;)7 equal to the rate-distortion function.

Claim B.1.
and again using the AWGN goodness propertyA(Sf) and .

(I6), we have l 1 S
nH( )|D) 21og2 1+ 2 (Rrcrey) on(1). (34)
Pr [QA“) (—V1-pg Zx(ffl) + d(l d(l ) # 0}

< e nEs(®)=en(1) (31)  Making minor modifications to the proof of][9, Lemma
4.3], we can show that conditioned dpn, the average MSE

whereE3(0) > 0 for 6 > 0. Using [28), [2B) and (31), we get jstortion (averaged oveb) betweenx(() and
that

S0 £ (D) Z —n(Ei(8)—0n(1) O 1 ()
Priys” #57) < — *e(r) = 1+02(Ar(T*))yr(T*)
. .y ,
which completes the proof of the proposition. O isat mOStlia(zlzXT(;)*))) +on(1). Since any rate-distortion code

- (1)
5Note that there is a slight difference here sindg’ is not Gaussian. for quantlZInng(T*) must have a rate at least as much as the

However, the arguments in|[3, Theorem 5] can be used to srmwﬁf? +d(z) rate-distortion function, we Ca_-n ShOW. that (again follogithe
can be approximated by a Gaussian singeis good for MSE quantization. proof of [9, Lemma 4.3]) Clainh BI1 is true.



Claim B.2.

1 i 1 1- P?,_ ar(v

1D ) 2 5 logs | 14+ —i5E | —on()
(35)

The proof of the above claim also follows the same tech-
nigue. We can show that conditioned djh and Xpdr(v)' the

average MSE distortion betwegyf1 — puvzvu and
(z) (1 - pgv)

Zyy 1— pgv i 02 (Av) |:y\(ll) - puvx( azr(v):| mod A‘(IQ)

is ?{)ﬁ:ﬁ@% +o0,(1). Arguing as before, the claim follows.

Finally, using [3%) and(35) il (33) completes the proof of
Lemmal®. O
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