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Abstract—In this article, we study the problem of secret
key generation in the multiterminal source model, where the
terminals have access to correlated Gaussian sources. We assume
that the sources form a Markov chain on a tree. We give a
nested lattice-based key generation scheme whose computational
complexity is polynomial in the number, N , of independent and
identically distributed samples observed by each source. We
also compute the achievable secret key rate and give a class of
examples where our scheme is optimal in the fine quantization
limit. However, we also give examples that show that our scheme
is not always optimal in the limit of fine quantization.

I. I NTRODUCTION

We study secret key (SK) generation in the multiterminal
source model, wherem terminals possess correlated Gaussian
sources. Each terminal observesN independent and identically
distributed (iid) samples of its source. The terminals have
access to a noiseless public channel of infinite capacity, and
their objective is to agree upon a secret key by communicating
across the public channel. The key must be such that any
eavesdropper having access to the public communication must
not be able to guess the key. In other words, the key must be
independent (or almost independent) of the messages commu-
nicated across the channel. A measure of performance is the
secret key rate that can be achieved, which is the number of
bits of secret key generated per (source) sample. On the other
hand, the probability that any terminal is unable to reconstruct
the key correctly should be arbitrarily small.

The discrete setting — the case where the correlated sources
take values in a finite alphabet — was studied by Csiszár
and Narayan [2]. They gave a scheme for computing a
secret key in this setting and found the secret key capacity,
i.e., the maximum achievable secret key rate. This was later
generalized by Nitinawarat and Narayan [9] to the case where
the terminals possess correlated Gaussian sources.

In a practical setting, we can assume that the random
sources are obtained by observing some natural parameters,
e.g., temperature in a field. In other words, the underlying
source is continuous. However, for the purposes of storage
and computation, these sources must be quantized, and only
the quantized source can be used for secret key generation. If
each terminal uses a scalar quantizer, then we get the discrete
source model studied in [2]. However, we could do better
and instead use a vector quantizer to obtain a higher secret
key rate. Nitinawarat and Narayan [9] found the secret key
capacity for correlated Gaussian sources in such a setting.

However, to approach capacity, the quantization rate and the
rate of public communication at each terminal must approach
infinity. In practice, it is reasonable to have a constraint on
the quantization rate at each terminal. The terminals can
only use the quantized source for secret key generation.
Nitinawarat and Narayan [9] studied a two-terminal version
of this problem, where a quantization rate constraint was
imposed on only one of the terminals. They gave a nested
lattice coding scheme and showed that it was optimal, i.e., no
other scheme can give a higher secret key rate. In related work,
Watanabe and Oohama [12] characterized the maximum secret
key rate achievable under a constraint on the rate of public
communication in the two-terminal setting. More recently,
Ling et al. [7] gave a lattice coding scheme for the public
communication-constrained problem and were able to achieve
a secret key rate within1/2 nats of the maximum in [12].

We consider a multiterminal generalization of the two-
terminal version studied by [9] where quantization rate
constraints are imposed on each of the terminals. Termi-
nal i has access toN iid copies of a Gaussian source
Xi(1), Xi(2), . . . , Xi(N). The sources are correlated across
the terminals. We assume that the joint distribution of the
sources has aMarkov treestructure [2, Example 7], which
is a generalization of a Markov chain. Let us define this
formally. Suppose thatT = (V,E) is a tree and{Xi : i ∈ V }
is a collection of random variables indexed by the vertices.
Consider any two disjoint subsetsI andJ of V . Let v be
any vertex such that removal ofv from T disconnectsI
from J (Equivalently, for everyi ∈ I and j ∈ J , the path
connectingi andj passes throughv). For every suchI,J , v, if
{Xi : i ∈ I} and{Xj : j ∈ J } are conditionally independent
givenXv, then we say that{Xi : i ∈ T } form a Markov chain
on T . Alternatively, we say that{Xi : i ∈ V } is a Markov
tree source.

The contributions of this paper are the following. We study
the problem of secret key generation in a Gaussian Markov
tree source model with individual quantization rate constraints
imposed at each terminal. We give a nested lattice-based
scheme and find the achievable secret key rate. For certain
classes of Markov trees, particularly homogeneous Markov
trees1, we show that our scheme achieves the secret key

1We say that a Markov tree is homogeneous ifI(Xu;Xv) is the same for
all edges(u, v)
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capacity as the quantization rates go to infinity. However, we
also give examples where our scheme does not achieve the key
capacity. A salient feature of our scheme is that the overall
computational complexity required for quantization and key
generation is polynomial in the number of samplesN . It is
also interesting to note that unlike the general schemes in [2],
[9], we give a scheme where at least one terminal remains
silent (does not participate in public communication), and
omniscience is not attained.

II. N OTATION AND DEFINITIONS

If I is an index set and{Ai : i ∈ I} is a class of
sets indexed byI, then their Cartesian product is denoted
by×i∈I

Ai. Given two sequences indexed byn ∈ N, f(n)
and g(n), we say thatf(n) = O(g(n)) if there exists a
constantc such thatf(n) ≤ cg(n) for all sufficiently large
n. Furthermore,f(n) = on(1) if f(n) → 0 asn → ∞.

Let G = (V,E) be a graph. The distance between two
verticesu andv in G is the length of the shortest path between
u andv. Given a rooted treeT = (V,E) with rootr(T ) we say
that a vertexu is the parent ofv 6= r(T ), denotedu = par(v),
if u lies in the shortest path fromr(T ) to v and the distance
betweenu andv is 1. Furthermore, for everyv ∈ V , we define
NT (v) to be the set of all neighbours ofv in T .

III. SECRET KEY GENERATION FROMCORRELATED

GAUSSIAN SOURCES

A. The Problem

We now formally define the problem. We consider a mul-
titerminal Gaussian source model [9], which is described
as follows. There arem terminals, each having access to
N independent and identically distributed (iid) copies of a
correlated Gaussian source, i.e., thelth terminal observes
Xl(1), Xl(2), . . . , Xl(N) which are iid. Without loss of gen-
erality, we can assume thatXl(i) has mean zero and variance
1. We can always subtract the mean and divide by the variance
to ensure that this is indeed the case. The joint distribution of
{Xl(i) : 1 ≤ l ≤ m} can be described by their covariance
matrix Φ.

Specifically, we assume that the sources form a Markov tree,
defined in Sec. I. LetT = (V,E) be a tree having|V | = m
vertices, which defines the conditional independence structure
of the sources. Foru, v ∈ V , let us defineρuv := E[XuXv].

We can therefore write

Xu = ρuvXv +
√
1− ρ2

uv
Zuv

where Zuv is a zero-mean, unit-variance Gaussian random
variable which is independent ofXv. Similarly,

Xv = ρuvXu +
√
1− ρ2

uv
Zvu

whereZvu is also a zero-mean, unit-variance Gaussian random
variable which is independent ofXu (and different fromZuv).

Our objective is to generate a secret key using
public communication. For v ∈ V , let XN

v
:=

(Xv(1), Xv(2), . . . , Xv(N)) denote theN iid copies ofXv

available at terminalv. Each terminal uses a vector quantizer

Delete

leaves

Fig. 1. Illustration ofT ∗ for a tree having four vertices.

Qv : R
N → Xv of rate R

(v)
q := 1

N log2 |Xv|. Terminal v

transmitsF(N)
v ∈ F

(N)
v — which is a (possibly randomized)

function of Qv(X
N
v
) — across a noiseless public channel

that an eavesdropper may have access to2. Using the public
communication and their respective observations of the quan-
tized random variables,Qv(X

N
v
), the terminals must generate

a secret keyK(N) ∈ K(N) which is concealed from the
eavesdropper. LetFG :=×

v∈V
F

(N)
v .

Fix any ǫ > 0. We say thatK(N) is anǫ-secret key (ǫ-SK)
if there exist functionsfv : (Xv,FG) → K(N) such that:

Pr
[
fv(Qv(X

N
v
), {F(N)

u
: u ∈ V }) 6= K(N)

]
< ǫ,

log2 |K
(N)| −H(K(N)) < ǫ,

and
I
(
{F(N)

v
: v ∈ V };K(N)

)
< ǫ.

We say thatRkey is an achievable secret key rate if for
everyǫ > 0, there exist quantizers{Qv}, a scheme for public
communication,{F(N)

v }, and a secret keyK(N), such that for
all sufficiently largeN , K(N) is anǫ-SK, and 1

N log2 |K
(N)| ≥

Rkey − ǫ.
Consider the following procedure to obtain a class of rooted

subtrees ofT :

• Identify a vertexv in V as the root. The treeT with v

as the root is a rooted tree. Call thisT ′
v
.

• Delete all the leaves ofT ′
v
. Call the resulting rooted

subtreeT ∗
v

.

2In this work, we only consider noninteractive communication, i.e., the
public communication is only a function of the source and notof the prior
communication.



Let T ∗ := {T ∗
v
: v ∈ V } denote the set of all rooted subtrees

of T obtained in the above manner. Fig. 1 illustrates this for
a tree having four vertices. Note that there are|V | trees in
T ∗, one corresponding to each vertex. For any such rooted
subtreeT ∗ = (V ∗, E∗) in T ∗, let r(T ∗) denote the root ofT ∗.
We will see later that it is only the terminals that correspond
to T ∗ that participate in the public communication while the
other terminals remain silent. For anyv ∈ V ∗, let NT (v)
denote the set of all neighbours ofv in T (not T ∗). Recall that
each terminalv operates under a quantization rate constraint
of R(v)

q . For everyT ∗ = (V ∗, E∗), us define

Rent = R(r(T∗))
q

+
∑

u∈V ∗\r(T∗)

1

2
log2

(
(e2R

(u)
q − 1)(1− ρ2

u,par(u)) + 1
)

(1)

and

Rcom =
∑

v∈V ∗

max
u∈NT (v)

1

2
log2

(
(e2R

(v)
q − 1)(1− ρ2

uv
)

+ 1 +
ρ2
uv
e2R

(v)
q

e2R
(u)
q − 1

)
. (2)

We will show that the joint entropy of the quantized sources is
at leastRent and the sum rate of public communication is at
most Rcom in our scheme. Also, the public communication
that achievesRcom requires only the terminals inT ∗ to
participate in the communication; the terminals inV \V ∗ are
silent. Let us also define

α :=
maxu∈V ∗ R

(u)
q

minv∈V ∗ R
(v)
q

. (3)

Our aim is to prove the following result

Theorem 1. For a fixed quantization rate constraint{R(v)
q :

v ∈ V }, a secret key rate of

Rkey = max
T∗∈T ∗

{
Rent −Rcom

}
(4)

is achievable using a nested lattice coding scheme whose
computational complexity grows asO(Nα+1).

Note that if all terminals have identical quantization rate
constraints, then the complexity isO(N2). Sec. V describes
the scheme and contains the proof of the above theorem.

We now discuss some of the implications of the result.
Letting the quantization ratesR(u)

q in (4) go to infinity, i.e., as
R

(v)
q → ∞ for all v, we get that

Corollary 2. In the fine quantization limit, a secret key rate

of

Rkey = max
T∗∈T ∗

{
min

v∈NT (r(T∗))

1

2
log2

(
1

1− ρ2
r(T∗)v

)

+
∑

u∈V ∗\r(T∗)

min
v∈NT (u)

1

2
log2

(
1− ρ2

u,par(u)

1− ρ2
u,v

)}

(5)

is achievable.

If there are no constraints on the quantization rates, then
from [9, Theorem 3.1] and [2, Example 7], we know that the
maximum achievable secret key rate is

C
(∞)
key = min

(u,v)∈E

1

2
log2

(
1

1− ρ2
uv

)
. (6)

IV. REMARKS ON THE ACHIEVABLE SECRETKEY RATE

A. The Two-User Case

Consider the two-user case with terminalsu andv. Let us
define

R(u, v) :=
1

2
log2




e2R
(u)
q

(e2R
(u)
q − 1)(1− ρ2

uv
) + 1 +

ρ2
uv
e2R

(u)
q

e2R
(v)
q −1




As we will see later, the above SK rate is achieved with
u participating in the public communication andv remain-
ing silent. The achievable secret key rate, (4), is equal to
max{R(u, v),R(v, u)}. A simple calculation reveals that

e−2R(u,v) − e−2R(v,u)

= ρ2
uv

(
1

e2R
(v)
q (e2R

(v)
q − 1)

−
1

e2R
(u)
q (e2R

(u)
q − 1)

)
(7)

Hence, ifR(v)
q > R

(u)
q , thenR(u, v) > R(v, u). This means

that in order to obtain a higher secret key rate using our
scheme, the terminal with the lower quantization rate must
communicate, while the other must remain silent.

If we let R(v)
q in R(u, v) go to infinity, then we get the rate

RNN achieved in [9], which was shown to be optimal when
we only restrict the quantization rate of one terminal.

RNN =
1

2
log2

(
e2R

(u)
q

(e2R
(u)
q − 1)(1− ρ2

uv
) + 1

)
.

Fig. 2 illustrates the behaviour of the achievable rate for
different sum-rate constraints (R

(u)
q + R

(v)
q = R). The rate

achieved by the scheme of Nitinawarat and Narayan [9],RNN,
is also shown.

B. Optimality ofRkey in the Fine Quantization Limit

We present a class of examples whereRkey is equal to the
secret key capacityC(∞)

key in the fine quantization limit. One
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Fig. 2. Plot of achievable secret key rates under a sum rate constraint for two
terminals.

such example is the class ofhomogeneousMarkov trees, where
ρuv = ρ for all edges(u, v). In this case,

min
v∈NT (u)

1

2
log2

(
1− ρ2

u,par(u)

1− ρ2
u,v

)
= 0,

and hence, by Corollary 2,

Rkey =
1

2
log2

(
1

1− ρ2

)
= C

(∞)
key .

This property holds for a wider class of examples. Consider
the case whereT has a rooted subtreeT ∗ such that for every
u ∈ V ∗, argmin

v∈NT (u) ρuv = par(u). Once again, we have

min
v∈NT (u)

1

2
log2

(
1− ρ2

u,par(u)

1− ρ2
u,v

)
= 0.

Moreover, the edge(u, v) ∈ E with the minimizingρuv (and
therefore, the minimizing mutual information) is incidenton
r(T ∗). Hence,Rkey = C

(∞)
key .

C. Suboptimality ofRkey in the Fine Quantization Limit

We can give several examples for whichRkey in the fine
quantization limit is strictly less thanC(∞)

key . Note that

min
v∈NT (u)

1

2
log2

(
1− ρ2

u,par(u)

1− ρ2
u,v

)
≤ 0,

and if these terms are nonzero for everyT ∗ ∈ T ∗, then the
scheme is suboptimal. As a specific example, consider the
Markov chain of Fig. 3, whereρ23 > max{ρ12, ρ34}. Let us
further assume thatρ12 = ρ34. The secret key capacity is

C
(∞)
key =

1

2
log2

1

1− ρ212
.

Fig. 3. An example where our scheme is suboptimal.

Irrespective of whichT ∗ ∈ T ∗ we choose (see Fig. 3), we
have

min
v∈NT (r(T∗))

1

2
log2

(
1

1− ρ2
r(T∗)v

)
= C

(∞)
key .

Furthermore, the second term in (5) is negative for everyT ∗.
This is because everyT ∗ has someu 6= r(T ∗) for which
argminv∈V ∗ ρuv 6= par(v).

V. THE SECRET KEY GENERATION SCHEME

We now describe the lattice coding scheme that achieves
the promised secret key rate. Our scheme is very similar to
the scheme given by Nitinawarat and Narayan [9] for the two-
terminal case.

We use a block encoding scheme just like the one in [9].
Recall that each terminalv has a quantization rate constraint
of R

(v)
q . The total blocklengthN is partitioned intoNout

blocks of n samples each, i.e.,N = nNout, whereNout =

minv 2
nR(v)

q − 1. The secret key generation scheme comprises
two phases: an information reconciliation phase, and a privacy
amplification phase. The reconciliation phase is divided into
two subphases: a lattice coding-based analog phase, which
is followed by a Reed-Solomon coding-based digital phase.
The privacy amplification phase employs a linear mapping to
generate the secret key from the reconciled information. This
uses the results of Nitinawarat and Narayan [9]. The digital
phase is also inspired by the concatenated coding scheme used
in [11] in the context of channel coding for Gaussian channels.

Let us briefly outline the protocol for secret key generation.
Each terminalv uses a chain of nested lattices(Λv,Λ

(1)
v ,Λ

(2)
v )

in R
n, whereΛ(2)

v ⊂ Λ
(1)
v ⊂ Λv. The Gaussian inputxv at

terminal v is processed blockwise, withn samples collected
to form a block. Supposexv = (x

(1)
v , . . . ,x

(Nout)
v ) where

x
(i)
v denotes theith block of lengthn. Each terminalv also

generates random dithers{d(i)
v : 1 ≤ i ≤ Nout}, which are all

uniformly distributed over the fundamental Voronoi regionof
Λv, and independent of each other. These are assumed to be



known to all terminals.3 The protocol for secret key generation
is as follows.

• Quantization:Terminalv ∈ V computes

y(i)
v

=
[
QΛv

(x(i)
v

+ d(i)
v
)− d(i)

v

]
mod Λ(2)

v
.

• Information reconciliation: Analog phase:Let T ∗ =
(V ∗, E∗) be the rooted subtree which achieves the max-
imum in (4). Terminalv ∈ V ∗ broadcasts

w(i)
v

= [y(i)
v
] mod Λ(1)

v
.

across the public channel. Terminalu has access toy(i)
u

and for everyv ∈ NT∗(u), it estimates

ŷ(i)
v

= w(i)
v

+Q
Λ

(1)
v

(
ρuvy

(i)
u

−w(i)
v

)
.

Having estimatedy(i)
v for all neighboursv, it estimates

y
(i)
v for all v which are at a distance2 from u, and so

on, till it has estimated{y(i)
v : v ∈ V ∗, 1 ≤ i ≤ Nout}.

• Information reconciliation: Digital phase:To ensure that
all Nout blocks can be recovered at all terminals with an
arbitrarily low probability of error, we use a Slepian-Wolf
scheme using Reed-Solomon codes. Each terminal uses
an (Nout,Kout) Reed-Solomon code overFpkv , where
the parametersKout and pkv will be specified later.
The syndrome corresponding to4 (y

(1)
v , . . . ,y

(Nout)
v ) in

the code is publicly communicated by terminalv. We
show that this can be used by the other terminals to
estimate all they(i)

v s with a probability of error that
decays exponentially inN .

• Key generation:We use the result [9, Lemma 4.5] that
there exists a linear transformation of the source symbols
(viewed as elements of a certain finite field) that can act
as the secret key. Since all terminals can estimate{y

(i)
v :

v ∈ V ∗, 1 ≤ i ≤ Nout} reliably, they can all compute the
secret key with an arbitrarily low probability of error.

Before we go into the details of each step, we describe some
specifics of the coding scheme. We want the nested lattices that
form the main component of our protocol to satisfy certain
“goodness” properties. We begin by describing the features
that the lattices must possess.

A. Nested Lattices

Some basic definitions and relevant results on lattices have
been outlined in Appendix A. Given a latticeΛ, we letV(Λ) be
the fundamental Voronoi region ofΛ, andσ2(Λ) denotes the
second moment per dimension ofΛ. Furthermore, we define
vol(Λ) := vol(V(Λ)).

Each terminalv uses a chain ofn-dimensional nested
lattices (Λv,Λ

(1)
v ,Λ

(2)
v ), with Λ

(2)
v ⊂ Λ

(1)
v ⊂ Λv. These are

all Construction-A lattices [3], [4] obtained from linear codes

3In principle, the random dither is not required. Similar to [8], we can show
that there exist fixed dithers for which all our results hold.One could avoid
the use of dithers by employing the techniques in [7], but we do not take that
approach here.

4We show that there is a bijection betweenΛv/Λ
(2)
v

andFpkv .

of blocklengthn overFp, with p chosen large enough to ensure
that these lattices satisfy the required goodness properties.
Furthermore,Λ(1)

v and Λ
(2)
v are obtained from subcodes of

linear codes that generateΛv. Fix any δ > 0. The lattices are
chosen so that

1

n
log2 |Λv∩V(Λ

(2)
v

)| =
1

n
log2

vol(Λ(2)
v )

vol(Λv)
=

kv
n

log2 p = R(v)
q ,

(8)(
vol(Λ

(2)
v )
)2/n

2πe
=
(
1 + σ2(Λv)

)
(1 + δ), (9)

and
(
vol(Λ

(1)
v )
)2/n

2πe
= max

u∈NT (v)

(
1− ρ2

uv
+ σ2(Λv) + ρ2

uv
σ2(Λu)

)

× (1 + δ). (10)

Furthermore, these lattices satisfy the following “goodness”
properties [4]:

• Λv is good for covering.
• Λ

(1)
v andΛ(2)

v are good for AWGN channel coding.

B. Quantization

Terminalv observesN samplesxv = (xv(1), . . . , xv(N)).
As mentioned earlier, the quantizer operates on blocks ofn
samples each, and there areNout such blocks. We can write
x = (x

(1)
u ,x

(2)
u , . . . ,x

(Nout)
u ), wherex(j)

u ∈ R
n is given by

x
(j)
u = (xu((j − 1)n+ 1), . . . , xu(jn)).
Terminal v also generates Nout dither vectors

d
(1)
v ,d

(2)
v , . . . ,d

(Nout)
v , which are all uniformly distributed

overV(Λv), and independent of each other and of everything
else. These dither vectors are assumed to be known to all the
terminals, and to the eavesdropper.

For 1 ≤ i ≤ Nout andv ∈ V , let

y(i)
v

= [QΛv
(x(i)

v
+ d(i)

v
)− d(i)

v
] mod Λ(2)

v
(11)

denote the output of the lattice quantizer at terminalv. The
terminals can only useyv := (y

(1)
v ,y

(2)
v , . . . ,y

(Nout)
v ) for the

secret key generation protocol. From (8) and (9), we can see
that the quantization rates satisfy

R(v)
q =

1

2
log2

(
1 +

1

σ2(Λv)

)
+ log2(1 + δ) + on(1). (12)

C. Information Reconciliation: The Analog Phase

Let T ∗ = (V ∗, E∗) denote the rooted tree inT ∗ which
achieves the maximum in (4). The terminals inV ∗ are the only
ones that communicate across the public channel. Terminal
v ∈ V ∗ broadcasts

w(i)
v

:= [y(i)
v
] mod Λ(1)

v

= [QΛv
(x(i)

v
+ d(i)

v
)] mod Λ(1)

v
(13)

for 1 ≤ i ≤ Nout, across the public channel. Prior to
the analog phase, terminalu ∈ V only has access to
yu = (y

(1)
u ,y

(2)
u , . . . ,y

(Nout)
u ). At the end of the information

reconciliation phase, every terminalu will be able to recover
{yv : v ∈ V ∗} with low probability of error. The analog phase



ensures that everyy(i)
v can be individually recovered with low

probability of error. The digital phase guarantees that theentire
block yv can be recovered reliably.

Now consider anyv ∈ V ∗ andu ∈ NT (v) (not necessarily
in V ∗). Suppose that some terminalu

′ (not necessarilyu) has
a reliable estimate ofy(i)

u . From y
(i)
u and w

(i)
v , terminal u′

can estimatey(i)
v as follows:

ŷ(i)
v

= w(i)
v

+ Q
Λ

(1)
v

(
ρuvy

(i)
u

−w(i)
v

)
. (14)

The following proposition is proved in Appendix B-A.

Proposition 3. Fix a δ > 0. For every1 ≤ i ≤ Nout, we have

E
y
(i)
u

Pr[ŷ(i)
v

6= y(i)
v
] ≤ e−nEuv(δ) (15)

whereEuv is a quantity which is positive for all positiveδ and
all sufficiently largen, as long as
(
vol(Λ

(1)
v )
)2/n

2πe
> max

u∈NT (v)

(
1− ρ2

uv
+ σ2(Λv) + ρ2

uv
σ2(Λu)

)

× (1 + δ), (16)
(
vol(Λ

(2)
v )
)2/n

2πe
> (1 + σ2(Λv))(1 + δ), (17)

and (
vol(Λ

(2)
u )
)2/n

2πe
> (1 + σ2(Λu))(1 + δ). (18)

Since terminalu has y
(i)
u , it can (with high probability)

recover the corresponding quantized sources of its neighbours.
Assuming that these have been recovered correctly, it can then
estimate the quantized sources of all terminals at distancetwo
from u, and so on, till ally(i)

v for v in V ∗ have been recovered.
Using the union bound, we can say that the probability that
terminalu correctly recovers{y(i)

v : v ∈ V ∗} is at least1 −∑
u∈V ∗ max

v∈NT (u) e
−nEuv(δ).

For all terminals to be able to agree upon the key, we must
ensure that every terminal can recover all blocks{yv : v ∈
V ∗} with low probability of error. SinceNout is exponential
in n, the analog phase does not immediately guarantee this.
For that, we use the digital phase.

D. Information Reconciliation: The Digital Phase

Observe thaty(i)
v ∈ Λv ∩ V(Λ

(2)
v ), where bothΛv andΛ(2)

v

are Construction-A lattices obtained by linear codes overFp.
As a result,|Λv∩V(Λ

(2)
v )| is always an integer power ofp [4].

Let
|Λv ∩ V(Λ(2)

v
)| = pkv .

Then, there exists an (set) isomorphismϕv from Λv∩V(Λ
(2)
v )

to Fpkv . For everyv ∈ V ∗ andi ∈ {1, 2, . . . , Nout}, let y(i)v =

ϕv(y
(i)
v ). Similarly, let ŷ(i)v = ϕv(ŷ

(i)
v ).

The key component of the digital phase is a Reed-Solomon
code overFpkv . In [9], a Slepian-Wolf scheme with random
linear codes was used for the digital phase. Using a Reed-
Solomon code, we can ensure that the overall computational

complexity (including all the phases of the protocol) is poly-
nomial inN .

For everyv, let Cv be a Reed-Solomon code of blocklength
Nout and dimension

Kout = Nout(1− 2δ). (19)

Let y
Nout
v

= (y
(1)
v , y

(2)
v , . . . , y

(Nout)
v ) and ŷ

Nout
v

=

(ŷ
(1)
v , ŷ

(2)
v , . . . , ŷ

(Nout)
v ). We can write

ŷ
Nout
v

= y
Nout
v

+ e
Nout
v

,

whereeNout
v

= (e
(1)
v , e

(2)
v , . . . , e

(Nout)
v ) is the error vector, and

from the previous section, we have

Pr[e(i)
v

6= 0] ≤
∑

v∈V ∗

max
u∈NT (v)

e−nEuv(δ) ≤ δ

for all sufficiently largen. EveryyNout
v

can be written uniquely
as

y
Nout
v

= c
Nout
v

+ s
Nout
v

(20)

wherecNout
v

∈ Cv, andsNout
v

is a minimum Hamming weight
representative of the coset to whichyNout

v
belongs inFNout

pkv
/Cv.

Terminal v broadcastssNout
v

across the public channel. This
requires a rate of public communication of at most

1

N
log2 |F

Nout

pkv
/Cv| =

2Noutδ

N
log2(p

kv) = 2δR(v)
q . (21)

From s
Nout
v

and ŷNout
v

, terminalu can compute

ĉ
Nout
v

= ŷ
Nout
v

− s
Nout
v

= c
Nout
v

+ e
Nout
v

.

For sufficiently largen the probability thaty(i)
v is estimated

incorrectly is less thanδ, and terminalu can recovercNout
v

with
high probability using the decoder for the Reed-Solomon code.

Proposition 4 (Theorem 2, [11]). The probability that the
Reed-Solomon decoder incorrectly decodesc

Nout
v

from ĉ
Nout
v

decays exponentially inN .

Having recoveredcNout
v

reliably, the terminals can obtain
y
Nout
v

using (20). Therefore, at the end of the digital phase,
all terminals can recover{yv : v ∈ V ∗} with a probability of
error that decays exponentially inN .

E. Secret Key Generation

Let k :=
∑

v∈V ∗ kv. There exists a (set) bijectionφ from

×
v∈V ∗

Fpkv to Fpk . Let y(i) = φ(y
(i)
v : v ∈ V ∗). We use the

following result by Nitinawarat and Narayan [9], which says
that there exists a linear function of the sources that can act
as the secret key.

Lemma 5 (Lemma 4.5, [9]). Let Y be a random vari-
able in a Galois field Fq and D be an R

n-valued
random variable jointly distributed withY . Consider
Nout iid repetitions of (Y,D), namely (Y Nout , DNout) =
((Y1, D1), . . . , (YNout , DNout)).

Let B = B(Nout) ∈ B(Nout) be a finite-valued rv with a
given joint distribution with(Y Nout , DNout).



Then, for everyδ > 0 and every

R < H(Y |D)−
1

Nout
log |B(Nout)| − 2δ,

there exists a⌊NoutR
log q ⌋×Nout matrixL with Fq -valued entries

such that

NoutR−H(LY Nout) + I(LY Nout ;DNout , B)

vanishes exponentially inNout.

In other words,LY Nout is an ǫ-SK for suitableǫ. Let q =
pk andB = (wv, s

Nout
v

: v ∈ V ∗). Then, the above lemma
guarantees the existence of anFpk -valued matrixL, so that
L(y(1), . . . , y(Nout))T is a secret key with a rate of

Rkey =
1

N
H(yv : v ∈ V ∗|dv : v ∈ V ∗)−

∑

v∈V ∗

R(v)
com, (22)

where R
(v)
com denotes the total rate of communication of

terminal v. We give a lower bound onRkey by bounding
H(yv : v ∈ V ∗|dv : v ∈ V ∗) in the next section.

F. Joint Entropy of the Quantized Sources

The proof of the following lemma is given in Appendix B-B.

Lemma 6. Fix a δ > 0, and letDi := (d
(i)
v : v ∈ V ∗). For

all sufficiently largen, we have

1

n
H(y(i)

v
: v ∈ V ∗|Di) ≥

1

2
log2

(
1 +

1

σ2(Λ
r(T∗))

)

+
∑

u∈V ∗

1

2
log2

(
1 +

1− ρ2
u,par(u)

σ2(Λu)

)
− δ (23)

For everyv, {y(i)
v : 1 ≤ i ≤ Nout} are independent and

identically distributed. IfD := {Di : 1 ≤ i ≤ Nout}, then
H(yv : v ∈ V ∗|D) = NoutH(y

(i)
v : v ∈ V ∗|Di). Substituting

for σ2(Λv) from (12) in (23), we get

1

N
H(yv : v ∈ V ∗|D) ≥ Rent − g(δ)− on(1),

whereRent is defined in (1), andg(δ) is a quantity that goes
to 0 asδ → 0.

G. Achievable Secret Key Rate and Proof of Theorem 1

Lemma 5 guarantees the existence of a strong secret
key which is a linear transformation of(y(1), . . . , y(Nout)).
From Propositions 3 and 4, all terminals are able to recover
(y(1), . . . , y(Nout)) with a probability of error that decays
exponentially inN = nNout.

During the analog phase, each terminalv in V ∗ publicly
communicates

R
(v)
analog =

1

n
log2

vol(Λ
(1)
v )

vol(Λv)

≤ max
u∈NT (v)

1

2
log2

(
1− ρ2

uv
+ σ2(Λv) + ρ2

uv
σ2(Λu)

)

σ2(Λv)

+ on(1) + δ. (24)

bits per sample. Here, we have used the fact that an MSE
quantization-good latticeΛv satisfiesvol(Λv) → 2πeσ2(Λ) as
n → ∞. We know from (21) that during the digital phase,
terminal v communicates2δR(v)

q bits per sample across the
public channel. The total rate of communication by terminal
v is therefore

R(v)
com ≤ max

u∈NT (v)

1

2
log2

(
1− ρ2

uv
+ σ2(Λv) + ρ2

uv
σ2(Λu)

)

σ2(Λv)

+ δ(1 + 2R(v)
q ) + on(1) (25)

bits per sample. Using Lemma 6 and (25) in (22), and finally
substituting (12), we obtain (4). All that remains now is to
find an upper bound on the computational complexity of our
scheme.

H. Computation Complexity

We now show that the computational complexity is polyno-
mial in the number of samplesN . The complexity is measured
in terms of the number of binary operations required, and
we make the assumption that each floating-point operation
(i.e., operations inR) requiresO(1) binary operations. In
other words, the complexity of a floating-point operation is
independent ofN .

Recall thatN = nNout, whereNout = minv∈V ∗(2nR
(v)
q −

1). Also, α = (maxv∈V ∗ R
(v)
q )/(minv∈V ∗ R

(v)
q ).

• Quantization: Each lattice quantization operation has
complexity at mostO(2nR

(v)
q ) = O(Nα

out). There are
Nout such quantization operations to be performed at
each terminal, and hence the total complexity is at most
O(Nα+1

out ).
• Analog Phase: Terminal v performsNout quantization

and modΛ
(1)
v operations to compute{w(i)

v : 1 ≤ i ≤
Nout}, and this requires a total complexity ofO(Nα+1

out ).
Computation of{ŷ(i)

v : 1 ≤ i ≤ Nout, v ∈ V ∗} requires
at mostNout(|V

∗| − 1) quantization operations, which
also has a total complexity ofO(Nα+1

out ).
• Digital Phase: Each terminal has to compute the coset

representative. This is followed by the decoding of the
Reed-Solomon code. Both can be done using the Reed-
Solomon decoder, and this requiresO(Nout log2 Nout)
operations inFpkv . Each finite field operation on the other
hand requiresO(log22 p

kv) = O(n2) binary operations [5,
Chapter 2]. The total complexity is thereforeO(N2).

• Secret Key Generation: This involves multiplication of a
⌊NoutR

log2 q ⌋×Nout matrix with anNout-length vector, which
requiresO(N2

out/ log q) operations overFq. Hence, the
complexity required isO(N2

out log q) = O(N2).

From all of the above, we can conclude that the complexity
required is at mostO(Nα+1). If the quantization rate con-
straints are the same, i.e.,R

(u)
q = R

(v)
q , then the complexity is

O(N2). This completes the proof of Theorem 1.
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APPENDIX A
LATTICE CONCEPTS

In this appendix, we briefly review basic lattice concepts
that are relevant to this work. We direct the interested reader
to [1], [3], [4], [13] for more details. LetA denote a full-rank
n×n matrix with real entries. Then the set of all integer-linear
combinations of the columns ofA is called a lattice inRn, and
A is called a generator matrix of the lattice. Given a latticeΛ
in R

n, we defineQΛ : Rn → Λ to be the lattice quantizer that
maps every point inRn to the closest (in terms of Euclidean
distance) point inΛ, with ties being resolved according to a
fixed rule. Thefundamental Voronoi region, V(Λ), is the set
of all points in R

n for which 0 is the closest lattice point,
i.e., V(Λ) := {x ∈ R

n : QΛ(x) = 0}. For anyx ∈ R
n, we

define [x] mod Λ := x − QΛ(x). We also definevol(Λ) :=
vol(V(Λ)). The covering radiusof Λ, denotedrcov(Λ) is the
radius of the smallest closed ball inRn centered at0 that
containsV(Λ). Similarly, theeffective radius, reff(Λ), is the
radius of a ball inRn having volumevol(Λ).

The second moment per dimensionof a lattice,σ2(Λ) is
defined as

σ2(Λ) =
1

nvol(Λ)

∫

x∈V(Λ)

‖x‖2dx,

and is equal to the second moment per dimension of a ran-
dom vector uniformly distributed overV(Λ). The normalized
second moment per dimensionof Λ is defined as

G(Λ) :=
σ2(Λ)

vol(Λ)2/n
.

If Λ and Λ0 are two lattices inRn that satisfyΛ0 ⊂ Λ,
then we say thatΛ0 is a sublatticeof Λ, or Λ0 is nestedin
Λ. Furthermore,

|Λ ∩ V(Λ0)| =
vol(Λ0)

vol(Λ)
.

We say that a latticeΛ (or more precisely, a sequence of
lattices{Λ} indexed by the dimensionn) is good for mean
squared error (MSE) quantizationif

lim
n→∞

G(Λ) =
1

2πe
.

A useful property is that ifΛ is good for MSE quantization,
then vol(Λ)2/n → 2πeσ2(Λ) as n → ∞. We say thatΛ
is good for covering(or covering-good or Rogers-good) if
rcov(Λ)/reff(Λ) → 1 asn → ∞. It is a fact that ifΛ is good
for covering, then it is also good for MSE quantization [4].

Let Z be a zero-meann-dimensional white Gaussian vector
having second moment per dimension equal toσ2. Let

µ :=
vol
(
V(Λ)

)2/n

σ2
.

Then we say that{Λ} is good for AWGN channel coding(or
AWGN-good or Poltyrev-good) if the probability thatZ lies
outside the fundamental Voronoi region ofΛ is upper bounded
by

Pr[Z /∈ V(Λ)] ≤ e−n
(
EU (µ)−on(1)

)

for all σ2 that satisfyµ ≥ 2πe. Here,EU (·), called thePoltyrev
exponentis defined as follows:

EU (µ) =





µ
16πe if 8πe ≤ µ
1
2 ln

µ
8π if 4πe ≤ µ ≤ 8πe

µ
4πe − 1

2 ln
µ
2π if 2πe ≤ µ ≤ 4πe.

(26)

Suppose that we use a subcollection of points from an AWGN-
good latticeΛ as the codebook for transmission over an
AWGN channel. Then, as long as

vol
(
V(Λ)

)2/n

σ2
≥ 2πe,

the probability that a lattice decoder decodes to a lattice point
other than the one that was transmitted, decays exponentially
in the dimensiond, with the exponent given by (26).

Lattices that satisfy the above “goodness” properties were
shown to exist in [4]. Moreover, such lattice can be constructed
from linear codes over prime fields. Letp be a prime number,
and C be an (n, k) linear code overFp. In other words,C
has blocklengthn and dimensionk. Let φ be the natural
embedding ofFp in Z, and for anyx ∈ F

n
p , let φ(x) be the

n-length vector obtained by operatingφ on each component of
x. The setΛ := φ(C) + pZn := {φ(x) + py : x ∈ C,y ∈ Z

n}
is a lattice, and is called the Construction-A lattice obtained
from the linear codeC. With a slight abuse of notation, we
will call any scaled version ofΛ, i.e., αΛ for any α > 0,
a Construction-Alattice obtained fromC. A useful fact is
that Λ always containspZn as a sublattice, and the nesting
ratio Λ/pZn = pk. It was shown in [4] that ifk and p
are appropriately chosen functions ofn, then a randomly
chosen Construction-A lattice overFp is good for covering
and AWGN channel coding with probability tending to1 as
n → ∞.

We use the nested lattice construction in [3], [6] to obtain
good nested lattices. LetΛ0 be a Construction-A lattice which
is good for covering and AWGN, and letA be a generator
matrix for Λ0. Then, if Λ′ is another Construction-A lattice,
thenΛ = p−1AΛ′ is a lattice that containsΛ0 as a sublattice.
It was shown in [6] that ifΛ andΛ0 are chosen at random,
then they are both simultaneously good for AWGN channel
coding and covering with probability tending to1 asn → ∞
(provided thatk andp are suitably chosen).



APPENDIX B
TECHNICAL PROOFS

A. Proof of Proposition 3

Recall that

y(i)
u

= [QΛu
(x(i)

u
+ d(i)

u
)− d(i)

u
] mod Λ(2)

u

=
[
x(i)
u

− [x(i)
u

+ d(i)
u
] mod Λu

]
mod Λ(2)

u

= [x(i)
u

+ d̃(i)
u
] mod Λ(2)

u
, (27)

where d̃(i)
u is uniformly distributed overV(Λu) and is inde-

pendent ofx(i)
u [3, Lemma 1]. SinceΛu is good for MSE

quantization,Λ(2)
u is good for AWGN and (18) is satisfied, we

can use [4, Theorem 4] to assert that5 the probability

Pr[y(i)
u

6= x(i)
u

+ d̃(i)
u
] ≤ e−n(E1(δ)−on(1)) (28)

whereE1(δ) > 0 for all δ > 0. Similarly, we can write

y(i)
v

= [x(i)
v

+ d̃(i)
v
] mod Λ(2)

v
,

whered̃(i)
v is independent ofx(i)

v , and

Pr[y(i)
v

6= x(i)
v

+ d̃(i)
v
] ≤ e−n(E2(δ)−on(1)) (29)

whereE2(δ) > 0 for all δ > 0.
Recall thatw(i)

v = [y
(i)
v ] mod Λ

(1)
v . We can write

ŷ(i)
v

= w(i)
v

+Q
Λ

(1)
v

(ρuvy
(i)
u

−w(i)
v
)

= w(i)
v

+Q
Λ

(1)
v

(
ρuvy

(i)
u

− y(i)
v

+Q
Λ

(1)
v

(y(i)
v
)
)

= w(i)
v

+Q
Λ

(1)
v

(y(i)
v
) +Q

Λ
(1)
v

(
ρuvy

(i)
u

− y(i)
v

)

= y(i)
v

+Q
Λ

(1)
v

(
ρuvy

(i)
u

− y(i)
v

)
(30)

From (28) and (29), we know thaty(i)
v = x

(i)
v + d̃

(i)
v and

y
(i)
u = x

(i)
u + d̃

(i)
u with high probability. Now,

ρuvx
(i)
u

− x(i)
v

= −
√
1− ρ2

uv
z(i)
vu
,

and again using the AWGN goodness property ofΛ
(1)
v and

(16), we have

Pr
[
Q

Λ
(1)
v

(−
√
1− ρ2

uv
z(i)
vu

+ d̃(i)
u

− d̃(i)
v
) 6= 0

]

≤ e−n(E3(δ)−on(1)) (31)

whereE3(δ) > 0 for δ > 0. Using (28), (29) and (31), we get
that

Pr[ŷ(i)
v

6= y(i)
v
] ≤

3∑

i=1

e−n(Ei(δ)−on(1))

which completes the proof of the proposition.

5Note that there is a slight difference here sinced̃
(i)
u

is not Gaussian.
However, the arguments in [3, Theorem 5] can be used to show thatx(i)

u
+d̃

(i)
u

can be approximated by a Gaussian sinceΛu is good for MSE quantization.

B. Proof of Lemma 6

We prove the result by expanding the joint entropy using
the chain rule, and then use a lower bound on the entropy of
a quantized Gaussian. To do this, we will expand the joint
entropy in a particular order. LetS be any (totally) ordered
set containing the vertices ofT ∗ and satisfying the following
properties:

• maxv S = r(T ∗), i.e., r(T ∗) ≥ v for all v ∈ S.
• v > u if the distance betweenv andr(T ∗) is less than

that betweenu andr(T ∗).

Essentially,v > u if v is closer tor(T ∗) thanu, and we do not
care how the vertices at the same level (vertices at the same
distance fromr(T ∗)) are ordered. LetD = (d

(i)
v : v ∈ V ∗).

Then,

H(y(i)
v

: v ∈ V ∗|D) = H(y
(i)
r(T∗)|D)

+
∑

v∈V ∗\r(T∗)

H(y(i)
v
|D,y(i)

u
: u > v)

≥ H(y
(i)
r(T∗)|D)

+
∑

v∈V ∗\r(T∗)

H(y(i)
v
|D,x(i)

u
: u > v)

(32)

= H(y
(i)
r(T∗)|D)

+
∑

v∈V ∗\r(T∗)

H(y(i)
v
|D,x

(i)
par(v))

(33)

where (32) follows from the data processing inequality. We
would like to remark that (33) is the only place where we use
Markov tree assumption. The rest of the proof closely follows
[9, Lemma 4.3], and we give an outline. The idea is to find the
average mean squared error distortion in representingx

(i)
v by

y
(i)
v (with or without the side informationx(i)

par(v)), and then
argue that the rate of such a quantizer must be greater than or
equal to the rate-distortion function.

Claim B.1.

1

n
H(y

(i)
r(T∗)|D) ≥

1

2
log2

(
1 +

1

σ2(Λ
r(T∗))

)
− on(1). (34)

Making minor modifications to the proof of [9, Lemma
4.3], we can show that conditioned onD, the average MSE
distortion (averaged overD) betweenx(i)

r(T∗) and

x̂
(i)
r(T∗) =

1

1 + σ2(Λ
r(T∗))

y
(i)
r(T∗)

is at most
σ2(Λ

r(T∗))

1+σ2(Λ
r(T∗))

+on(1). Since any rate-distortion code

for quantizingx(i)
r(T∗) must have a rate at least as much as the

rate-distortion function, we can show that (again following the
proof of [9, Lemma 4.3]) Claim B.1 is true.



Claim B.2.

1

n
H(y(i)

v
|D,x

(i)
par(v)) ≥

1

2
log2

(
1 +

1− ρ2
v,par(v)

σ2(Λv)

)
− on(1)

(35)

The proof of the above claim also follows the same tech-
nique. We can show that conditioned onD and x

(i)
par(v), the

average MSE distortion between
√
1− ρ2

uv
z
(i)
vu and

ẑ(i)
vu

=
(1− ρ2

uv
)

1− ρ2
uv

+ σ2(Λv)

[
y(i)
v

− ρuvx
(i)
par(v)

]
mod Λ(2)

v

is (1−ρ2
uv
)σ2(Λv)

1−ρ2
uv
+σ2(Λv)

+on(1). Arguing as before, the claim follows.
Finally, using (34) and (35) in (33) completes the proof of

Lemma 6.
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