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Information Theoretic Caching:

The Multi-User Case
Sung Hoon Lim, Chien-Yi Wang, and Michael Gastpar

Abstract

In this paper, we consider a cache aided network in which eachuser is assumed to have individual

caches, while upon users’ requests, an update message is sent though a common link to all users.

First, we formulate a general information theoretic setting that represents the database as a discrete

memoryless source, and the users’ requests as side information that is available everywhere except at the

cache encoder. The decoders’ objective is to recover a function of the source and the side information.

By viewing cache aided networks in terms of a general distributed source coding problem and through

information theoretic arguments, we present inner and outer bounds on the fundamental tradeoff of cache

memory size and update rate. Then, we specialize our generalinner and outer bounds to a specific model

of content delivery networks: File selection networks, in which the database is a collection of independent

equal-size files and each user requests one of the files independently. For file selection networks, we

provide an outer bound and two inner bounds (for centralizedand decentralized caching strategies). For

the case when the user request information is uniformly distributed, we characterize the rate vs. cache

size tradeoff to within a multiplicative gap of4. By further extending our arguments to the framework

of Maddah-Ali and Niesen, we also establish a new outer boundand two new inner bounds in which it

is shown to recover the centralized and decentralized strategies, previously established by Maddah-Ali

and Niesen. Finally, in terms of rate vs. cache size tradeoff, we improve the previous multiplicative gap

of 72 to 4.7 for the average case with uniform requests.

Index Terms

Coded caching, function computation, multi-terminal source coding, source coding with side infor-

mation.
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I. INTRODUCTION

Consider a cache-aided network that consists of a data server andL users depicted in Figure 1. We

assume that the data server hasN equal size files each consisting ofk bits, and further assume that each

user is equipped with a cache of sizekRc bits, whereRc is the ‘rate’ of the cache size normalized by

the file length. Ideally, the data server places some description of the database during off peak hours

in the users’ caches such that, when the actual file requests take place (most likely in peak hours), the

total kRu bits sent to the users to recover the individual desired filesis minimized. In the considered

scenario, memory is traded for peak hour bandwidth. How can such trade be made efficiently? What is

the fundamental tradeoff between cache memory size and update rate?

Database

Data Server

User 1

User 2

User L

...

Cache

Cache

Cache

Fig. 1. A cache aidedL-user file selection network.

To put the problem in perspective, we consider the followingexample of afile selection network1.

Assume that the database hasN equal length files. Each file in the database consists ofk subfiles. Let

X
(n) = [X

(n)
1 , . . . ,X

(n)
k ], n ∈ [1 : N ] be an i.i.d.k-length sequence that represents thenth file in the

database. Here, each elementX
(n)
i , i = 1, . . . , k represents theith subfile ofX(n) and the collection of

source vectors(X(1), . . . ,X(N)) represents a set ofN independent files in the database. Before the actual

requests take place, the server caches some part of the database at each user. For eachi ∈ [1 : k], we

assume that each user requests a subfile from the database, namely, userℓ ∈ [1 : L] selects one subfile

from (X
(1)
i , . . . ,X

(N)
i ) for eachi ∈ [1 : k] from the database. The index of the file requested by user

ℓ for i ∈ [1 : k] is represented by the random variableYℓi. For example,Yℓ1 = 1, Yℓ2 = 4, . . . , Yℓk = 5

corresponds to the case that decoderℓ wishes to recover the sequence of subfilesX
(1)
1 , X(4)

2 , . . . X
(5)
k .

1The formal definition of a file selection network is given in Section II.
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Memory sharing

Rc

Ru

Optimal tradeoff

H(X(Y1), . . . , X(YL))

H(X(1), . . . , X(N))

0

Fig. 2. Cache memory size vs. update delivery rate tradeoff for file selection networks. The two extreme points is achieved by

either sending all the requested files or by caching the wholedatabase. The tradeoff represented by the solid curve is attained by

memory sharing between the extreme points. The non-increasing and convex optimal tradeoff curve will lie inside the memory

sharing tradeoff curve.

Under this formulation, the popularity of the files (or the users’ preferences) can be represented by the

distribution onYℓ.

Now, consider the extreme case whenRc = 0. Then, by the fundamental theorem of data compres-

sion [1], the total number of bits required to serve all the users iskH(X(Y1), . . . ,X(YL)). In the other

extreme withRc = H(X(1), . . . ,X(N)), i.e., every user has enough memory to store the whole database,

the data server does not need to send anything. Bymemory sharingbetween these two extremes, i.e., we

store a common fraction of the database in all the users’ caches and the data server sends the remaining

bits of the requested files, a straight-line tradeoff curve that connects between these two extreme points

is attained; see Figure 2. A simple improvement over this strategy is to cache the most popular files, i.e.,

prioritize the common cache content based on the popularityof the files. Restating the previous question:

How far can we push the tradeoff curve towards the origin?

Indeed, by formulating a cache-aided network in terms of adistributed source coding problem, the

authors have previously studied and characterized the fundamental limits of caching in [2] for single

user networks (with arbitrary source and request distributions) and some two-user cache aided networks

where exact solutions essentially follow from the single-user case. Moreover, in [2], it was revealed that

the caching problem had interesting connections to well studied information theoretic formulations, for

instance, source coding with side information [3], coding for computing [4], the Gray–Wyner network [5],

the problem of successive refinement [6], [7], and Wyner’s common information [8].
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In this paper, we restrict the general assumption on the joint distribution of the source and users’

requests as studied in [2] to the assumption that the source and users’ requests are independent. This

restriction (which still includes the important file section network formulation) enables a more tractable

environment to study cache aided networks witharbitrary number of users; this paper is a generalization

of [2] to the multi-user setting under the restricted distribution.

In the next section, we first give a formal problem statement of a distributed source coding network

with side information. The network consists of two encoders, a cache encoderand anupdate encoder

andL decoders. We assume a discrete memoryless source(X,Y ) ∼ p(x)p(y), whereXk is observed at

both sources, and the side informationY k is observed only at the update encoder and theL decoders;

see Figure 3. The objective of decoderℓ ∈ [1 : L] is to recover afunction of the source and side

information fℓ(Xi, Yi), i = 1, . . . , k. The cache encoder has a separate link of rateRcℓ connecting to

decoderℓ ∈ [1 : L], and the update encoder is assumed to have a common link of rateRu to all decoders.

The main motivation for studying cache aided networks in theabove setup is two-fold. First, it reveals

a stronger connection to distributed source coding problems which is armed with a rich set of coding

theorems. With this formulation at hand and by utilizing information theoretic arguments, we provide a

general outer and an inner bound for the general setup in Theorem 1 and Theorem 3, respectively. Second,

the general approach provides more flexibility and a unified treatment that enables extensions of these

fundamental theorems to different models and assumptions.Indeed, the file selection network is a specific

instance of the general distributed source coding formulation which can be represented by specifying the

discrete memoryless source pair(X,Y ), and the functionsfℓ(X,Y ), ℓ ∈ [1 : L] (formal statement is given

in Section II). The specialization of Theorem 1 and Theorem 3to file selection networks is established

in Theorem 2 for the outer bound and Theorems 4 and 5 for the inner bound. By comparing the outer

and inner bounds for uniform requests, we show that the innerbound is within a multiplicative gap of4

to the outer bound. Another important aspect of this problemformulation is the flexibility that enables

to extend our results to the framework of Maddah-Ali and Niesen [9], i.e., when the request is constant

and does not change along with the source. In particular, we provide a new outer bound (Proposition 1)

and a new inner bound (Proposition 2) and show that the inner bound recovers the results [9, Theorem 1]

and [10, Theorem 2], but from a different path. By comparing the new outer bound and the inner bound,

we improve the previous multiplicative gap of72 in [10] to 4.7 for the average rate vs. cache size tradeoff

with uniform requests, and improve the previous multiplicative gap of12 in [9] to 4.7 for the worst case

rate vs. cache size tradeoff. The extensions and statement of these results for the framework in [9] is

given in Section III.
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The remaining part of the paper is organized as follows. In Section IV we collectively treat and

prove the converse bounds stated throughout the paper. In Section V we develop and analyze the coding

strategies that establish the inner bounds. Numerical studies including some notes on the optimization of

the achievable rate regions is dicussed in Section VI, whichis followed by some concluding remarks in

Section VII. The lengthy proofs are deferred to the appendices.

A. Previous results

The pioneering work of Maddah-Ali and Niesen in [9] first demonstrated thatcodedcaching can

significantly outperform uncoded caching strategies. Thisimportant observation led to several followup

works on decentralized caching [10], non-uniform users requests [11], [12], delay-sensitive [13], online

[14], multiple layers [15], request of multiple items [16],secure delivery [17], improved outer bounds [18],

[19], caching with distortion constraints [20], wireless networks [21], [22], [23], and improved order-

optimality results [12], [24].

B. Notation

We closely follow the notation in [25]. In particular, for a discrete random variableX ∼ p(x) on

an alphabetX , and for someǫ ∈ (0, 1), we define the set ofǫ-typical n-sequencesxn (or the typical

set in short) [4] asT (n)
ǫ (X) = {xn : |π(x|xn) − p(x)| ≤ ǫp(x) for all x ∈ X}, whereπ(x|xn) is the

empirical pmf ofxn. We useδ(ǫ) > 0 to denote a generic function ofǫ > 0 that tends to zero asǫ→ 0.

A sequence of random variables is denoted byXk := (X1, . . . ,Xk). A tuple of random variables is

denoted byX(A) := (Xj : j ∈ A).

II. PROBLEM SETUP AND MAIN RESULTS

Let (X,Y ) be a pair of independent discrete memoryless sources. A(2kRc1 , . . . , 2kRcL , 2kRu) code for

the cache network consists of

• A cache encoderwhich assigns an index tuple(m1, . . . ,mL)(x
k) ∈ [1 : 2kRc1 ]× · · · × [1 : 2kRcL ] to

each sequencexk ∈ X k,

• An update encoderwhich assigns an indexm(xk, yk) ∈ [1 : 2kRu ] to each(xk, yk) ∈ X k ×Yk, and

• L decoders, where decoderℓ ∈ [1 : L] assigns an estimatêfℓ(Xk, Y k) to each(mℓ,m, y
k).

The performance metric is theaverageprobability of error,

P (k)
e = P{f̂ℓ(X

k, Y k) 6= fℓ(X
k, Y k) for someℓ ∈ [1 : L]}.

April 11, 2016 DRAFT
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We say that a rate tuple(Rc1, . . . , RcL, Ru) is achievable if there exists a sequence of(2kRc1 , . . . , 2kRcL , 2kRu)

codes such thatlimk→∞ P
(k)
e = 0. The optimalrate–cache regionR⋆ is the closure of the set of achievable

rate tuples. By designing efficient strategies for joint cache placement and update information processing,

our goal is to characterize the fundamental tradeoff between memory size and the update bandwidth

required to recover the desired contents.

Motivated by practical content delivery networks, we further specify the definition to afile selection

network(FSN) setup by the following. LetXk = X1, . . . ,Xk, p(xk) =
∏k

i=1 p(xi), where eachXi is

anN -length vector

Xi =
[

X
(1)
i , . . . ,X

(N)
i

]

,

and the componentsX(n)
i , n ∈ [1 : N ] are independentBern(1/2) random variables2. Further assume that

the side informationY k is independent ofXk, whereYi consists ofL components,Yi = [Y1i, . . . , YLi],

Yℓi = [1 : N ], ℓ ∈ [1 : L], andYℓi are independent of each other. Overall, we have the following joint

distribution

(Xk, Y k) ∼
k
∏

i=1

p(xi)p(yi)

=

k
∏

i=1

(

N
∏

n=1

p(x
(n)
i )

L
∏

ℓ=1

p(yℓi)

)

. (1)

We assume that decoderℓ ∈ [1 : L] wishes to recover

fℓ(X
k, Y k) =

[

X
(Yℓ1)
1 , . . . ,X

(Yℓk)
k

]

.

With slight abuse of notation, we denotefℓ(X,Y ) = X(Yℓ). In the sequel, we simply refer to this network

as FSNs. When we specialize our results to FSNs, we further assume a symmetric setting, i.e., we assume

symmetric cache memoryRc1 = · · · = RcL = Rc and we assume thatYℓ, ℓ ∈ [1 : L] are independently

and identically distributed, i.e.,pY (y) =
∏L

ℓ=1 pYℓ
(yℓ) andpY1

= · · · = pYL
. For notational convenience,

we denotepn = pY1
(n), n ∈ [1 : N ]. We assume without loss of generality thatp1 ≥ p2 ≥ · · · ≥ pN .

For some achievable rate regionR, let cl(R) be its closure. When possible, we will simply express the

tradeoff in terms of itsrate–cache tradeoff functionof R, i.e., for some achievable rate–cache regionR,

Ru(Rc) = min
(Rc,Ru)∈cl(R)

Ru.

2Since we define the rates by normalizing with respect to the source file size, assumingX (n)
i

to be binary is without loss of

generality, i.e., the results remain the same if we assume|X
(n)
i

| = q andX(n)
i

∼ Unif([1 : q]).
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Xk

f̂1(X
k, Y k)

f̂2(X
k, Y k)

f̂K(Xk, Y k)

Cache Enc.

Update Enc.

Decoder 1

Decoder 2

DecoderL

Rc1

Rc2

RcL

Ru

...

...

...

Y k

Y k

Y k

Y k

Fig. 3. The information theoreticL-user cache network (cf. Figure 1). The cache encoder has separate noiseless links with

rateRcℓ connected to decoderℓ ∈ [1 : L] and the update encoder has a common noiseless link to all the decoders with rateRu.

The update encoder and decoders have access to the user request side informationY k.

Adopting from the the rate–distortion function in rate–distortion theory, the rate–cache tradeoff function

for R⋆ is simply referred to asthe rate–cache functionR⋆
u(Rc). Note thatR⋆

u(Rc) is non-increasing and

due to memory sharing (the equivalent of time sharing in distributed source coding), is convex.

We are ready to state our main results.

A. Converse Bounds

In Section IV, we establish the following outer bound on the optimal rate–cache region.

Theorem 1 (General lower bound):If a rate tuple(Rc1, . . . , RcL, Ru) is achievable, then it satisfies

∑

ℓ∈S

Rcℓ ≥ I(X;V (S)),

Ru ≥ H(F (S)|V (S), Y ),

for all S ⊆ [1 : L] and some conditional pmfpV L|X , whereF (S) = {fℓ(X,Y ) : ℓ ∈ S}.

The outer bound is established by a cutset argument in which we assume that nodes inS ⊆ [1 : L]

cooperate, i.e., the decoders inSc are inactive while the decoders inS recoverF (S) by sharing the

caches. The proof of this theorem is given in Section IV.

By specializing Theorem 1 to FSNs, we establish the following closed-form converse bound.

April 11, 2016 DRAFT
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Theorem 2 (FSN lower bound):For FSNs withRc ∈ [0, N ],

R⋆
u(Rc) ≥ max

ℓ∈[1:L]

N
∑

n=1

(sn(ℓ)− sn+1(ℓ)) (n− ℓRc)
+ , (2)

where(x)+ = max(x, 0), sN+1(ℓ) = 0 andsn(ℓ) = 1− (1− pn)
ℓ, n ∈ [1 : N ].

By settingpYℓ
= Unif([1 : N ]), ℓ ∈ [1 : L] in Theorem 2, we have the following simplified converse

bound for the uniform case.

Corollary 1 (FSN lower bound for uniform requests):For FSNs with uniform requests andRc ∈ [0, N ],

R⋆
u(Rc) ≥ max

ℓ∈[1:L]
(1− (1− 1/N)ℓ)(N − ℓRc)

+. (3)

B. Inner Bounds

In Section V, we establish the following inner bounds on the optimal rate–cache region. The general

coding scheme and its specialization for FSNs with centralized and decentralized caching constitute the

key contributions for achievability.

Theorem 3 (General Inner bound):A rate tuple(Rc1, . . . , RcL, Ru) is achievable if

Rcℓ > I(Vℓ;X|Q), ℓ ∈ [1 : L]

Ru >
∑

S⊆[1:L]

max
ℓ∈S

I(US ;X|Vℓ, Y,Q)

for somep(q)
∏L

ℓ=1 p(vℓ|x, q)
∏

S⊆[1:L] p(uS |x, y, q) such that

H(fℓ(X,Y )|(US : S ⊆ [1 : L], ℓ ∈ S), Vℓ, Y,Q) = 0, (4)

for all ℓ ∈ [1 : L].

For FSNs, Theorem 3 can be specialized to the following Theorems. By a specific choice of auxiliary

random variables given in Section V-A we establish the first FSN inner bound in the following theorem.

Theorem 4 (Centralized caching for FSNs):For FSNs andRc = 0, 1
L ,

2
L , . . . , N ,

R⋆
u(Rc) ≤

N
∑

n=1

L−rn
∑

j=1

j

j + rn

(

L− rn
j

)

pjn(1− pn)
L−rn−j, (5)

for rn ∈ [0 : L], n ∈ [1 : N ] such that
∑N

n=1 rn = LRc.

The proof of this theorem is given in Subsection V-A.

Remark 1:The achievable rate–cache tradeoff in (5) is defined forRc = 0, 1
L ,

2
L , . . . , N such that

∑N
n=1 rn = LRc for somern ∈ [0 : L], n ∈ [1 : N ]. The rest of the points inRc ∈ [0, N ] are obtained

by memory-sharing between these discrete points resultingin a piece-wise linear tradeoff function.
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For the case with uniform requests, we establish the following corollary.

Corollary 2 (Centralized caching for uniform requests):For FSNs with uniform requests andRc =

N
L ,

2N
L , 3NL , . . . , N ,

R⋆
u(Rc) ≤ N E

[

Z

Z + r

]

,

for r ∈ [1 : L] such thatr = LRc/N , whereZ ∼ Binom(L− r, 1/N). Moreover, forRc = 0,

R⋆
u(Rc) = N(1− (1− 1/N)L).

By a different choice of the auxiliary random variables given in Section V-B, Theorem 3 can also be

specialized to the following inner bound for FSNs.

Theorem 5 (Decentralized caching inner bound):For FSNs withRc ∈ [0, N ],

R⋆
u(Rc) ≤

N
∑

n=1

pn(1− rn)

1− αn

[

1− αL
n

]

, (6)

for rn ∈ [0, 1] such that
∑N

n=1 rn = Rc, whereαn = (1− pn)(1− rn).

The proof of this theorem is given in Subsection V-B.

Remark 2:We call the strategy that attains Theorem 5 ‘decentralized’due to the additional feature

that, if rn, n ∈ [1 : N ] is chosen only based on the file popularity distribution, then the cache encoder

is decentralized. Following the convention of [10], we say that a cache encoder is decentralized if

(m1, . . . ,mL)(x
k) = (m1(x

k), . . . ,mL(x
k)), i.e., the cache encoder mapping for userℓ does not depend

on the mappings of the other users messages.

By further assuming uniform requests, we simplify Theorem 5to the following corollary.

Corollary 3 (Decentralized caching for uniform requests):For FSNs with uniform requests andRc ∈

[0, N ],

R⋆
u(Rc) ≤

N −Rc

1 +Rc(1− 1/N)

[

1−

((

1−
1

N

)(

1−
Rc

N

))L
]

. (7)

Denote byR̄u-dc(Rc) the right hand side of (7). The following theorem provides a universal (inN and

L) performance guarantee of the decentralized caching strategy in terms of a multiplicative gap from the

optimal tradeoff for uniform requests.

Theorem 6 (Multiplicative gap):For the case withpYℓ
= Unif([1 : N ]) andRc ∈ [0, N), it holds that

R̄u-dc(Rc)

R⋆
u(Rc)

≤ 4.

The proof of this theorem is given in Appendix A-A.
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The centralized strategy is optimal for some high-cache regime stated in the following corollary.

Corollary 4: For FSNs with arbitrary request distributions andRc ∈ [N − 1/L,N ],

R⋆
u(Rc) = pN (N −Rc). (8)

Moreover, for uniform requests, (8) holds forRc ∈ [N −N/L,N ].

The proof is given in Appendix D.

III. N EW RESULTS FOR THEFRAMEWORK OF MADDAH -ALI AND NIESEN

The framework studied in this paper was motivated by the pioneering work of Maddah-Ali and

Niesen [9] on coded caching. The main difference is in the approach we take for tackling the problem,

that is, we take an information theoretic approach by viewing the problem as a distributed source coding

problem. In this section, we extend the results of the previous section to the framework of [9].

We begin by formulating an extension of our problem setup in which the request informationY

changes only everyT source symbolsXT and fℓ(XT , Y ) = (fℓ,1(X1, Y ), . . . , fℓ,T (XT , Y )). We refer

to this model as thestatic request model3. By treating each block as a “super-symbol” and coding over

kT symbols and applying Theorem 3, a rate tuple(Rc1, . . . , RcL, Ru) is achievable if

TRcℓ > I(Ṽℓ;X
T |Q), ℓ ∈ [1 : L]

TRu >
∑

S⊆[1:L]

max
ℓ∈S

I(ŨS ;X
T |Ṽℓ, Y,Q)

for somep(q)
∏L

ℓ=1 p(ṽℓ|x
T , q)

∏

S⊆[1:L] p(ũS |x
T , y, q) such that

H(fℓ(X
T , Y )|(ŨS : S ⊆ [1 : L], ℓ ∈ S), Ṽℓ, Y,Q) = 0, ℓ ∈ [1 : L]. (9)

By choosingṼℓ = V T
ℓ and ŨS = UT

S such thatp(ṽℓ|xT ) =
∏T

i=1 pV |X,Q(vℓ,i|xi, q) and p(ũS |xT ) =
∏T

i=1 pUS |X,Y,Q(uS,i|xi, y, q), we can conclude that the exact expression in Theorem 3 is also achievable

for the static request model, if we allowencoding over multiple blocks. In this sense, the corresponding

rate region provides anergodicachievable rate–cache tradeoffRu(Rc).

One the other hand, consider the case when the encoders are restricted to encode over each block

separately.4 Naturally, we define a rate–cache region for this case as a setof achievable rate tuples

3A general discussion on the comparison of the models can be found in [2, Section VI].

4In the case for encoding over multiple blocks, the total number of blocks is assumed to be sufficiently large. On the other

hand, for coding within a single block, the number of symbolsin a block is assumed to be sufficiently large. The fitness of the

two models for practical networks depends on the underlinedassumption of how frequent the requests change compared to the

file size.
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(2nRc , (2nRu(y) : y ∈ Y)), whereRu(y) is the update rate when the request side information isy. The

corresponding rate–cache tradeoff functionRu(Rc, y) is thus defined for eachy ∈ Y. Depending on the

application criteria, we can further formulate the problemstatement in the following ways. Based on a

rate regionR for the static request single block encoding setup, the update rate tuples can be projected

to:

1) theworst case update rateor compound rate

Ru-wc(Rc) = max
y∈Y

Ru(Rc, y),

2) theaverage rate

Ru-ave(Rc) = EY [Ru(Rc, Y )].

We denote byR⋆
u-wc(Rc) andR⋆

u-ave(Rc) the optimal worst case rate–cache function and the optimal

average rate–cache function, respectively. For static request model, define a FSN by

(Xk, Y ) ∼
k
∏

i=1

p(xi)p(y)

=

(

k
∏

i=1

N
∏

n=1

p(x
(n)
i )

)

L
∏

ℓ=1

p(yℓ), (10)

and assume that decoderℓ ∈ [1 : L] wishes to recover

fℓ(X
k, Y ) =

[

X
(Yℓ)
1 , . . . ,X

(Yℓ)
k

]

.

For the static request FSN, the work of Maddah-Ali and Niesenin [9] studies the tradeoff betweenRc

and the worst case rate in [10], [9], and the tradeoff betweenRc and the average rate in [11].

In the following, we discuss some extensions of our results to the static request model with single

block encoding.

Proposition 1 (Converse Bound):For the static request model with single block encoding, if arate

tuple (Rc1, . . . , RcL, Ru(y), y ∈ Y) is achievable, then it satisfies

∑

ℓ∈S

Rcℓ ≥ I(X;V (S)),

Ru(y) ≥ H(F (S)|V (S), Y = y), y ∈ Y, (11)

for all S ⊆ [1 : L] and some conditional pmfpV L|X . Moreover, if an average rate is achievable, it satisfies

EY [Ru(Y )] ≥ EY [H(F (S)|V, Y = y)] (12)

= H(F (S)|V, Y ), (13)

April 11, 2016 DRAFT
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and if a worst case rate is achievable, it satisfies

max
y∈Y

Ru(y) ≥ max
y∈Y

H(F (S)|V, Y = y).

The proof of this proposition is given in Section IV.

Remark 3:For the static request FSN with single block encoding, due to(13), the outer bound for the

average rate–cache region in Proposition 1 has the same expression as Theorem 1. As a consequence,

Theorem 2 and Corollary 1 also apply toR⋆
u-ave(Rc). Consequently, Theorem 2 and Corollary 1 also

apply toR⋆
u-wc(Rc) sinceR⋆

u-wc(Rc) ≥ R
⋆
u-ave(Rc).

On the other hand, Theorem 3 can be extended to following proposition for the single block encoding

case.

Proposition 2 (Inner Bound):For the static request model with single block encoding, a rate tuple

(Rc1, . . . , RcL, Ru(y), y ∈ Y) is achievable if,

Rcℓ > I(Vℓ;X|Q), ℓ ∈ [1 : L] (14)

Ru(y) >
∑

S⊆[1:L]

max
ℓ∈S

I(US ;X|Vℓ, Y = y,Q), y ∈ Y, (15)

for somep(q)
∏L

ℓ=1 p(vℓ|x, q)
∏

S⊆[1:L] p(uS |x, y, q) such that

max
y∈Y

H(fℓ(X,Y )|(US : S ⊆ [1 : L], ℓ ∈ S), Vℓ, Y = y,Q) = 0, ℓ ∈ [1 : L]. (16)

Moreover, an average rateRu-ave = EY [Ru(Y )] is achievable if,

Ru-ave >
∑

y∈Y

pY (y)





∑

S⊆[1:L]

max
ℓ∈S

I(US ;X|Vℓ, Y = y,Q)



 (17)

and the worst case rateRu-wc = maxy∈Y Ru(y) is achievable if

Ru-wc > max
y∈Y

H(F (S)|V, Y = y).

The proof of this proposition is given in Section V.

Remark 4:Although the source–request pair(Xk, Y k) for the model in Section II, and the source–

request pair(Xk, Y ) for the static request model are different, the converse andachievability results for

both models are evaluated under the same form of single-letter random variables(X,Y ) ∼ pX(x)pY (y).

Accordingly, if we choose a joint distribution in Proposition 2 that results in

I(US ;X|Vℓ, Y = y,Q) = I(US ;X|Vℓ′ , Y = y,Q),
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for S ⊆ [1 : L], ℓ, ℓ′ ∈ S, ℓ 6= ℓ′, we can get rid of the maximum in equation (17). Under such

distributions the rate–cache region in Theorem 3 and the average rate–cache region in Proposition 2 are

equal.

By specializing Proposition 2, we establish a centralized rate–cache tradeoff for the static request single

block encoding FSN stated in the following theorem.

Theorem 7 (Centralized inner bound for static request):Consider the static request single block en-

coding FSN. ForRc = 0, 1
L ,

2
L , . . . , N , a rate tuple(Rc, (Ru(y) : y ∈ Y)) is achievable if

Ru(Rc, y) >
∑

S:|S|>0

(

1−
∏

ℓ∈S

1{ryℓ
6= |S| − 1}

)

1
( L
|S|−1

) , y ∈ Y, (18)

for rn ∈ [0 : L], n ∈ [1 : N ] such that
∑N

n=1 rn = LRc. Moreover, an average rateRu-ave(Rc) =

EY [Ru(Rc, Y )] is achievable if,

Ru-ave(Rc) >

L−1
∑

j=0

(L− j)

j + 1

(

1− (1− αj)
j+1
)

,

whereαj =
∑N

n=1 1{rn = j}pn.

Remark 5:By choosingrn = LRc/N in (18), a worst case rate–cache tradeoffRu-wc(Rc) is achievable

if

Ru-wc(Rc) >
L− LRc/N

1 + LRc/N
. (19)

This recovers the result of [9, Theorem 1]. In this sense, Theorem 7 generalizes the strategy of [9,

Theorem 1] to the average rate–cache tradeoffs with arbitrary request distributions. The underlined strategy

that establishes the theorem is based on distributed sourcecoding techniques instead of the explicit

network coding strategy in [9]. Potentially, the choice of auxiliary random variables used in the proof

of Theorem 4 can improve the inner bound presented in Theorem7 which is based on a simpler (but

easier to evaluate) choice. We refer to Appendix B for the explicit choice of auxiliary random variables

and the proof of Theorem 7.

Similarly, by specializing Proposition 2, we establish a decentralized rate–cache tradeoff for the static

request single block encoding FSN stated in the following theorem.

Theorem 8 (Decentralized inner bound for static request):Consider the static request single block en-

coding FSNs. ForRc ∈ [0, N ], a rate tuple(Rc, (Ru(y) : y ∈ Y)) is achievable if

Ru(Rc, y) >

L
∑

j=1

∑

S:|S|=j

max
ℓ∈S

rj−1
yℓ

(1− ryℓ
)L−j+1, (20)
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for rn ∈ [0, 1], n ∈ [1 : N ] such that
∑N

n=1 rn = Rc.

Remark 6:By choosingrn = Rc/N , in (20) a worst case rate–cache tradeoffRu-wc(Rc) is achievable

if

Ru-wc(Rc) >
(N −Rc)

Rc

(1− (1−Rc/N)L), (21)

which recovers the result of [10, Theorem 1] for decentralized caching.

Denote the right hand side of (21) byRMN(Rc). Note thatRMN(Rc) is not convex. Thus, by memory

sharing among the achievable points, the rate–cache tradeoff can be improved. We denote by̆RMN(Rc)

the corresponding convexified bound. By comparingR̆MN(Rc) with Theorem 2 we have the following

theorem.

Theorem 9 (Multiplicative gap for static request single block encoding):For the static request single

block encoding FSN withpYℓ
= Unif([1 : N ]) andRc ∈ [0, N),

R̆MN(Rc)

R⋆
u-ave(Rc)

≤ 4.7. (22)

Remark 7:We remark that Theorem 9 implies that (22) also holds whenR⋆
ave-u(Rc) is exchanged with

R⋆
wc-u(Rc), i.e., the worst case rate–cache function, since it is lowerbounded by the average rate–cache

functionR⋆
ave-u(Rc).

The above theorem improves upon the multiplicative gap of72 in [10]. Furthermore, for the worst

case, in light of Remark 7, we improve the previous gap of12 in [9]. The proof of this theorem is given

in Appendix A-B.

Remark 8: In an independent work [19], the authors introduce a lower bound specifically for the

worst-case that attains a multiplicative gap of 4. Comparedto the lower bound in [19], our lower bound

applies to arbitrary request distributions.

In Figure 4 we plot the performance of the ‘ergodic’ rate–cache tradeoff curves in Corollary 2 and

Corollary 3 for uniform requests, and the ‘compound’ rate–cache tradeoffs in Maddah-Ali and Niesen [9],

[10]. For both ergodic and compound settings, the centralized strategies uniformly perform better than

their respective decentralized strategies.

IV. PROOF OFCONVERSEBOUNDS

In this section, we present the proof of Theorem 1, Proposition 1, and Theorem 2. We begin with the

proof of Theorem 1.
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Fig. 4. The rate–cache tradeoff for the centralized and decentralized schemes, forN = 20, L = 300. The solid curves are

the ‘ergodic’ rate–cache tradeoff curves in Corollary 2 andCorollary 3 with uniform requests, and the dashed curves arethe

‘compound’ rate–cache tradeoff in Maddah-Ali and Niesen [9], [10].

Consider any subsetS ⊆ [1 : L]. DenoteVℓi = (Mℓ,X
i−1), ℓ ∈ [1 : L], i ∈ [1 : k]. SinceX andY

are independent by assumption, the Markov chain(Vi,1, . . . , Vi,L) → Xi → Yi holds for all i ∈ [1 : k].

Then, sinceH(Mℓ) ≤ kRcℓ for all ℓ ∈ [1 : L], we have

k
∑

ℓ∈S

Rcℓ ≥
∑

ℓ∈S

H(Mℓ)

≥ H(M(S))

= I(Xk;M(S))

=

k
∑

i=1

I(Xi;M(S)|Xi−1)

=

k
∑

i=1

I(Xi;M(S),Xi−1)

=

k
∑

i=1

I(Xi;Vi(S)).

RecallFℓ = fℓ(X,Y ). Then, we have

kRu ≥ H(M |Y k)

≥ H(M |M(S), Y k)
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= H(F k(S),M |M(S), Y k)−H(F k(S)|M,M(S), Y k)

(a)

≥ H(F k(S)|M(S), Y k)− kǫk

=

k
∑

i=1

H(Fi(S)|F
i−1(S),M(S), Y k)− kǫk

≥
k
∑

i=1

H(Fi(S)|X
i−1(S),M(S), Y k)− kǫk

=

k
∑

i=1

H(Fi(S)|X
i−1(S),M(S), Yi)− kǫk

=

k
∑

i=1

H(Fi(S)|Vi(S), Yi)− kǫk,

where (a) follows from the data processing inequality and Fano’s inequality, andǫk tends to zero as

k →∞. The rest of the proof follows from the standard time sharingargument and then lettingk →∞.

Thus, we have that

R⋆
u(Rc) ≥ min max

S⊆[1:L]
H(F (S)|V (S), Y ),

where the minimum is over all conditional pmfspV L|X such thatV L → X → Y form a Markov chain

and

I(X;V (S)) ≤
∑

ℓ∈S

Rcℓ, ∀S ⊆ [1 : L].

This concludes the proof of Theorem 1.

At this point, extending the proof to Proposition 1 requiresonly minor changes which we highlight

in the following. For the static request model with single block encoding, the proof steps for the bound

on Rc remains the same since the cache encoder does not utilize theinformation of Y in both cases.

For the bounds on the update rateRu, the difference is that in the static request model with single block

encoding, we have multiple messagesMy for eachy ∈ Y. Thus, we can redo the steps for the bounding

Ru with My ∈ [1 : 2kRu(y)] assumingY = y which gives the condition (11).

Next, we prove Theorem 2. First, we restrict attention to thecase of i.i.d. requests, i.e.,pY (y) =
∏L

ℓ=1 pYℓ
(yℓ) and pY1

= · · · = pYL
. Further specializing to FSNs, we obtain a closed-form bound on

R⋆
u(Rc) by switching between themin andmax (and thus relaxing the bound), i.e., we have that for

S ⊆ [1 : L],

R⋆
u(Rc) ≥ min

pV (S)|X

H(F (S)|V (S), Y ),
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such that

I(X;V (S)) ≤
∑

ℓ∈S

Rcℓ.

For S ⊆ [1 : L] andn ∈ [1 : N ], we denote

sn(S) := P{n ∈ Y (S)} =
∑

y:n∈y(S)

pY (y). (23)

For simplicity, we will use the short hand notationsn = sn(S) while keeping in mind thatsn depends

on S. Without loss of generality, we assume thats1 ≥ s2 ≥ · · · ≥ sN . Suppose that(Rc, Ru) ∈

R⋆. Then, there exists a conditional pmfpV (S)|X such that
∑

ℓ∈S Rcℓ ≥ I(X;V (S)) =: r andRu ≥

H(F (S)|V (S), Y ). For n ∈ [1 : N ], we have

∑

ℓ∈S

Rcℓ ≥ r = I(X;V (S))

≥ I(X([1:n]);V (S)|X([n+1:N ]))

= H(X([1:n]))−H(X(n)|V (S),X([n+1:N ]))−H(X([1:n−1])|V (S),X([n:N ])). (24)

Now we show thatRu can be lower bounded as in (2). First, we have

Ru ≥ H(F (S)|V (S), Y )

=
∑

y

pY (y)H((X(yℓ), ℓ ∈ S)|V (S))

≥
N
∑

n=1

snH(X(n)|V (S),X([n+1:N ])),

where the last inequality follows by recursively applying

∑

y

pY (y)H((X(yℓ), ℓ ∈ S)|V (S),X([n+1:N ]))

≥ snH(X(n)|V (S),X([n+1:N ]))

+
∑

y

pY (y)H((X(yℓ), ℓ ∈ S)|V (S),X(n),X([n+1:N ])),

in the orderN,N − 1, · · · , 1. Next,Ru can be further lower bounded as

Ru ≥
N
∑

n=1

snH(X(n)|V (S),X([n+1:N ]))

= sNH(X(N)|V (S)) +
N−1
∑

n=1

snH(X(n)|V (S),X([n+1:N ]))
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(a)

≥ sN

(

H(X([1:N ]))− r −H(X([1:N−1])|V (S),X(N))
)+

+

N−1
∑

n=1

snH(X(n)|V (S),X([n+1:N ]))

(b)

≥ sN

(

H(X([1:N ]))− r
)+
− sNH(X([1:N−1])|V (S),X(N)) +

N−1
∑

n=1

snH(X(n)|V (S),X([n+1:N ]))

= sN

(

H(X([1:N ]))− r
)+

+

N−1
∑

n=1

(sn − sN )H(X(n)|V (S),X([n+1:N ]))

= sN

(

H(X([1:N ]))− r
)+

+ (sN−1 − sN)H(X(N−1)|V (S),X(N))

+

N−2
∑

n=1

(sn − sN )H(X(n)|V (S),X([n+1:N ]))

(c)

≥ sN

(

H(X([1:N ]))− r
)+

+ (sN−1 − sN )
(

H(X([1:N−1]))− r −H(X([N−2])|V (S),X([N−1:N ]))
)+

+

N−2
∑

n=1

(sn − sN )H(X(n)|V (S),X([n+1:N ]))

(d)

≥ sN

(

H(X([1:N ]))− r
)+

+ (sN−1 − sN )
(

H(X([1:N−1]))− r
)+

− (sN−1 − sN)H(X([N−2])|V (S),X([N−1:N ])) +

N−2
∑

n=1

(sn − sN )H(X(n)|V,X([n+1:N ]))

= sN

(

H(X([1:N ]))− r
)+

+ (sN−1 − sN)
(

H(X([1:N−1]))− r
)+

+

N−2
∑

n=1

(sn − sN−1)H(X(n)|V (S),X([n+1:N ])),

where (a) and (c) follow from (24) andH(X(n)|V,X([n+1:N ])) ≥ 0 with n = N and n = N − 1,

respectively, and(b) and (d) follow since (u − v)+ ≥ (u)+ − v for all v ≥ 0. At this point, it is clear

that we can apply the same argument for anotherN − 2 times and arrive at

Ru ≥
N
∑

n=1

(sn − sn+1)
(

H(X([1:n]))− r
)+

,

=

N
∑

n=1

(sn − sn+1)





n
∑

j=1

H(X(j))− r





+

, (25)

where sN+1 = 0. Finally, for independent and identically distributed requests,sn(S) = sn(ℓ) for all

|S| = ℓ, which concludes the proof of Theorem 2.

V. PROOF OFINNER BOUNDS

In this section, we present the proof of Theorem 3, Proposition 2, Theorem 4, and Theorem 5. We

begin with the proof of Theorem 3.
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The cache contents are formulated by simple digital compressions of the source sequencexk. On the

other hand, the update message is formulated by using multiple compressions in whichUk
S , S ⊆ [1 : L],

S 6= ∅ represents a compression of the pair(Xk, Y k). The compressions are binned and broadcast through

the common link. The destination nodeℓ ∈ [1 : L] is required to recover only the compressionsUk
S such

that ℓ ∈ S.

We prove the achievability for|Q| = 1; the rest of the proof follows by time sharing.

Rate splitting. Divide indexm ∈ [1 : 2nRu ] into 2L − 1 indices, each indexed by a setS ⊆ [1 : L],

S 6= ∅. The indices are denoted bymS ∈ [1 : 2kRS ], S ⊆ [1 : L], S 6= ∅, where
∑

S RS = Ru.

Codebook construction. Fix a conditional pmf
∏L

ℓ=1 p(vℓ|x)
∏

S⊂[1:L] p(uS |x, y) such that (9) is satisfied.

To generate acache codebookfor userℓ ∈ [1 : L], randomly and independently generate2kRcℓ sequences

vkℓ (mℓ), mℓ ∈ [1 : 2kRcℓ ], each according to
∏k

i=1 p(vℓi). To generate theupdate codebook, for S ⊆

[1 : L], S 6= ∅, randomly and independently generate2kRS sequencesukS(mS , lS), mS ∈ [1 : 2kRS ],

lS ∈ [1 : 2kR̂S ], each according to
∏k

i=1 p(uSi). Before transmission, the cache codebook for userℓ and

the update codebook is revealed to userℓ ∈ [1 : L], and all codebooks are revealed to the encoders.

Cache encoding. Upon observingxk, for ℓ ∈ [1 : L] the cache encoder finds an indexmℓ ∈ [1 : 2kRcℓ ]

such that(vkℓ (mℓ), x
k) ∈ T

(k)
ǫ′ . From the covering lemma [25], it can be shown that this encoding step

is successful with high probability if

Rcℓ > I(Vℓ;X) + (.ǫ
′), ℓ ∈ [1 : L].

We denote byMℓ, ℓ ∈ [1 : L] the index sent to decoderℓ by the cache encoder.

Update encoding. Upon observing(xk, yk), for S ⊆ [1 : L], S 6= ∅, the update encoder finds an index

pair (mS , lS) ∈ [1 : 2kRS ]× [1 : 2kR̂S ] such that(ukS(mS , lS), x
k, yk) ∈ T

(k)
ǫ′ . If there is more than one

index pair, select one of them uniformly at random. If there is no such index pair, send an index pair

from [1 : 2kRS ]× [1 : 2kR̂S ] uniformly at random. From the covering lemma [25], it can be shown that

this encoding step is successful with high probability if

RS + R̂S > I(US ;X,Y ) + (.ǫ
′), S ⊆ [1 : L],S 6= ∅.

The messagemS is sent to the decoders. We denote byMS , S ⊆ [1 : L], S 6= ∅ the indices chosen by

the update encoder.

Decoding. With (MS : S ⊆ [1 : L],S 6= ∅), yk, andvkℓ (Mℓ) at hand, decoderℓ ∈ [1 : L] finds the unique

index lS that satisfies

(ukS(MS , lS), y
k, vkℓ (Mℓ)) ∈ T

(k)
ǫ ,
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for S such thatℓ ∈ S. From the packing lemma [25], it can be shown that this decoding step is successful

with high probability if

R̂S < I(US ;Y, Vℓ)− (.ǫ), S ⊆ [1 : L], ℓ ∈ S.

By using the fact thatI(US ;X,Y ) = I(US ;X,Y, Vℓ), eliminating the auxiliary ratesRS and R̂S with
∑

S RS = Ru the probability of error for recoveringukS tends to zero ask → ∞ if the conditions in

Theorem 3 are satisfied. Finally, since we choose a joint distribution that satisfies condition (4) and by

the typical average lemma [25], the probability of error tends to zero ask →∞.

Remark 9:The decoding phase for the update messages can be further improved by applying some

decoding order onUk
S such that receiverℓ ∈ S, ℓ ∈ S ′ decodesUk

S beforeUk
S′ for every |S| > |S ′|. By

this ordering, when decodingUk
S′ , the decoder can further useUS as side informationwhich results in

the condition

Ru >
∑

S⊆[1:L]

max
ℓ∈S

I(US ;X|(US′ : ℓ ∈ S ′, |S ′| > |S|), Vℓ, Y,Q).

Next, to prove Proposition 2 which applies to the static requests and the single block encoding case, we

only need some minor modifications from the above steps in which we highlight in the following. For

the cache encoder, we follow the same encoding step as in the previous case since for both cases,

the cache encoder does not depend on the request information. As for the update stage, we fix a

distribution
∏

S p(uS |x, y). For S ⊆ [1 : L], S 6= ∅, randomly and independently generate2kRS,y

sequencesukS(mS,y, lS,y), mS,y ∈ [1 : 2kRS,y ], lS,y ∈ [1 : 2kR̂S,y ], each according to
∏k

i=1 p(uSi|y),

where
∑

S RS,y = Ru(y). Upon observing(xk, y), for S ⊆ [1 : L], S 6= ∅, the update encoder finds an

index pair(mS,y, lS,y) such that(ukS(mS,y, lS,y), x
k) ∈ T

(k)
ǫ′ (US ,X), where the typical setT (k)

ǫ′ (US ,X)

is defined overp(uS , x|y). This step is successful with high probability if

RS,y + R̂S,y > I(US ;X|Y = y) + (.ǫ
′).

At the decoder, withMS,y, y, andvkℓ (Mℓ) at hand, decoderℓ ∈ [1 : L] finds the unique indexlS,y that

satisfies

(ukS(MS,y, lS,y), v
k
ℓ (Mℓ)) ∈ T

(k)
ǫ (US , V ),

for S such thatℓ ∈ S, where the typical setT (k)
ǫ (US , V ) is defined overp(uS , v|y). This decoding step

is successful with high probability if

R̂S < I(US ;Vℓ|Y = y)− (.ǫ), S ⊆ [1 : L], ℓ ∈ S.
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By eliminating the auxiliary ratesRS,y andR̂S,y with
∑

S RS,y = Ru(y), we arrive at the conditions in

Proposition 2.

In the next subsections, we specify the choice of auxiliary random variables to characterize achievable

rate regions for FSNs. The use of coded time sharing is critical in the analysis.

A. Proof of Theorem 4 and Corollary 2

We show the rate–cache tradeoff forRc = 0, 1
L ,

2
L , . . . , N . Fix rn ∈ [0 : L], n ∈ [1 : N ] such that

∑N
n=1 rn = LRc. The auxiliary random variables in Theorem 3 are chosen as follows. Let Q = (Qn :

n ∈ [1 : N ]), whereQn = {Tn : Tn ⊂ [1 : L], |Tn| = rn} andQn ∼ Unif (Qn). For n ∈ [1 : N ],

Tn ⊆ [1 : L], |Tn| = rn, define

W
(n)
Tn

= X(n) · 1{Qn = Tn}, (26)

where1{A} is the indicator function of the eventA. The auxiliary random variablesVℓ, ℓ ∈ [1 : L] and

US , S ⊆ [1 : L], S 6= ∅ are chosen as a collection ofW (n)
Tn

. For ℓ ∈ [1 : L], we choose

Vℓ =
(

W
(n)
Tn

: n ∈ [1 : N ],Tn ⊆ [1 : L], |Tn| = rn, ℓ ∈ Tn
)

. (27)

On the other hand, forS ⊆ [1 : L], S 6= ∅, we choose

US =
(

W
(n)
Tn
·AS(Tn, n) : n ∈ [1 : N ],Tn ⊆ [1 : L], |Tn| = rn

)

(28)

where

AS(Tn, n) = 1 {Tn ⊂ S}





∏

j∈S\Tn

1 {Yj = n}









∏

j∈Sc

1 {Yj 6= n}



 , (29)

andSc = [1 : L] \ S. Note that the above choice of auxiliary random variables satisfy (4).

With the above choice, the cache rate is given by

Rcℓ > I(Vℓ;X|Q)

= H(Vℓ|Q)

=

N
∑

n=1

∑

Tn⊆[1:L]:ℓ∈Tn,
|Tn|=rn

H(W
(n)
Tn
|Qn)

=

N
∑

n=1

∑

Tn⊆[1:L]:ℓ∈Tn,
|Tn|=rn

1
(

L
rn

)
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=

N
∑

n=1

(

L− 1

rn − 1

)

1
(

L
rn

)

=

N
∑

n=1

rn
L

= Rc. (30)

On the other hand, note thatI(US ;X|Vℓ, Y,Q) = H(US |Vℓ, Y,Q), and

H(US |Vℓ, Y,Q)

=

N
∑

n=1

∑

Tn:|Tn|=rn

H(W
(n)
Tn
· AS(Tn, n)|Vℓ, Y,Q)

(a)
=

N
∑

n=1

∑

Tn:|Tn|=rn,ℓ 6∈Tn

H(W
(n)
Tn
· AS(Tn, n)|Y,Q)

=

N
∑

n=1

∑

Tn:|Tn|=rn,ℓ 6∈Tn

1
(L
rn

)H(W
(n)
Tn
·AS(Tn, n)|Y,Q,Qn = Tn)

=

N
∑

n=1

∑

Tn:|Tn|=rn,ℓ 6∈Tn

1
(

L
rn

)

∑

y∈Y

pY (y)H(W
(n)
Tn
·AS(Tn, n)|Y = y,Q,Qn = Tn)

=

N
∑

n=1

∑

Tn:|Tn|=rn,ℓ 6∈Tn

1
(

L
rn

)

∑

y∈Y

pY (y)1 {Tn ⊂ S}





∏

j∈S\Tn

1 {yj = n}









∏

j∈Sc

1 {yj 6= n}





(b)
=

N
∑

n=1

∑

Tn:|Tn|=rn,
ℓ 6∈Tn,Tn⊂S

1
(L
rn

)p|S|−rn
n (1− pn)

|Sc|,

where pn = P{Y1 = n}, step (a) follows sinceW (n)
Tn
∈ Vℓ for ℓ ∈ Tn, and step(b) follows since

pY (y) =
∏L

j=1 pY1
(yj), pY1

(n) = pn. Let ψn(S) = p
|S|−rn
n (1 − pn)

|Sc|. Then, the update rate can be

evaluated by

Ru >
∑

S⊆[1:L]

max
ℓ∈S

H(US |Vℓ, Y,Q)

=
∑

S⊆[1:L]

max
ℓ∈S

N
∑

n=1

∑

Tn:|Tn|=rn,
ℓ 6∈Tn,Tn⊂S

1
(

L
rn

)ψn(S)

=
∑

S⊆[1:L]

max
ℓ∈S

N
∑

n=1

1{|S| > rn}

(|S|−1
rn

)

(

L
rn

) ψn(S)

=
∑

S⊆[1:L]

N
∑

n=1

1{|S| > rn}

(|S|−1
rn

)

(

L
rn

) ψn(S)
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=

L
∑

j=1

∑

S:|S|=j

N
∑

n=1

1{|S| > rn}

(|S|−1
rn

)

(

L
rn

) ψn(S)

=

L
∑

j=1

∑

S:|S|=j

N
∑

n=1

1{j > rn}

(j−1
rn

)

(L
rn

) pj−rn
n (1− pn)

L−j

=

N
∑

n=1

L
∑

j=1

1{j > rn}

(

L

j

)

(

j−1
rn

)

(

L
rn

) pj−rn
n (1− pn)

L−j

=

N
∑

n=1

L
∑

j=rn+1

(

L

j

)

(

j−1
rn

)

(L
rn

) pj−rn
n (1− pn)

L−j

=

N
∑

n=1

L−rn
∑

j=1

j

j + rn

(

L− rn
j

)

pjn(1− pn)
L−rn−j .

This concludes the proof of Theorem 4.

Next, specializing to uniform requests, letrn = r such thatr = LRc/N . Then,

Ru >

N
∑

n=1

L−rn
∑

j=1

j

j + rn

(

L− rn
j

)

pjn(1− pn)
L−rn−j

= N

L−r
∑

j=1

j

j + r

(

L− r

j

)(

1

N

)j (

1−
1

N

)L−r−j

.

Thus, forRc = 0, we haver = 0, which gives

Ru > N

L
∑

j=1

(

L

j

)(

1

N

)j (

1−
1

N

)L−j

= N

L
∑

j=0

(

L

j

)(

1

N

)j (

1−
1

N

)L−j

−N

(

1−
1

N

)L

= N(1− (1− 1/N)L).

For r ∈ [1 : L] such thatr = LRc/N , we have

Ru > N

L−r
∑

j=1

j

j + r

(

L− r

j

)(

1

N

)j (

1−
1

N

)L−r−j

= N

L−r
∑

j=0

j

j + r

(

L− r

j

)(

1

N

)j (

1−
1

N

)L−r−j

= E

[

Z

Z + r

]

,

whereZ ∼ Binom(L− r, 1/N).
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B. Proof of Theorem 5

Consider any cache rateRc ∈ [0, N ] and letrn ∈ [0, 1] such that
∑N

n=1 rn = Rc. The auxiliary random

variables are chosen in the following manner. LetQ = {Q
(n)
ℓ : n ∈ [1 : N ], ℓ ∈ [1 : L]}, whereQ(n)

ℓ are

independent of each other andQ(n)
ℓ ∼ Bern(rn). For ℓ ∈ [1 : L], we choose

Vℓ =
(

X(n)Q
(n)
ℓ : n ∈ [1 : N ]

)

. (31)

Note that with this particular choice ofVℓ, the caching strategy isdecentralized. On the other hand, for

S ⊆ [1 : L], S 6= ∅, we choose

US =
(

X(n) ·AS,n : n ∈ [1 : N ]
)

,

where

AS,n =
∏

j∈S

1{Yj = n or Q(n)
j = 1}

∏

j∈Sc

1{Yj 6= n andQ(n)
j = 0}.

Note that the above choice of auxiliary random variables satisfy (4). Then, the cache rate is given by

Rcℓ > I(X;Vℓ|Y,Q)

= H(Vℓ|Q)

=

N
∑

n=1

P(Q
(n)
ℓ = 1)

=

N
∑

n=1

rn = Rc.

Furthermore, forS ⊆ [1 : L] andℓ ∈ S, we have

H(X(n) ·AS,n|Vℓ, Y,Q)

= H(X(n) ·AS,n|(X
(n) ·Q

(n)
ℓ ), Y,Q)

= P{Q
(n)
ℓ = 0}H(AS,nX

(n)|(X(n) ·Q
(n)
ℓ ), Y,Q,Q

(n)
ℓ = 0)

= P{Q
(n)
ℓ = 0}P{Yℓ = n}

∏

j∈S\{ℓ}

(1− pjn)
∏

j∈Sc

pjn

= (1− rn) pn(1− αn)
|S|−1α|Sc|

n ,

wherepjn = P{Yj 6= n andQ(n)
j = 0} andαn = (1− pn)(1− rn). Thus, the update rate is given by

Ru >
∑

S⊆[1:L]

max
ℓ∈S

H(US |Vℓ, Y,Q)
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=

L
∑

j=1

∑

S:|S|=j

N
∑

n=1

(1− rn) pn(1− αn)
|S|−1α|Sc|

n

=

L
∑

j=1

(

L

j

) N
∑

n=1

(1− rn) pn(1− αn)
j−1αL−j

n

=

N
∑

n=1

pn (1− rn)

1− αn

L
∑

j=1

(

L

j

)

(1− αn)
jαL−j

n (32)

=

N
∑

n=1

pn (1− rn)

1− αn
(1− αL

n). (33)

This concludes the proof of Theorem 5.

VI. N UMERICAL EVALUATIONS

In this section, we provide an algorithm for numerically optimizing Theorem 4, some notes on the

optimization of Theorem 5, and some numerical examples of the outer bound and the centralized and

the decentralized inner bounds.

We begin by providing an optimization algorithm for Theorem4.

Proposition 3: For Rc = 0, 1
L ,

2
L , . . . , N , Algorithm 1 finds the minimum value ofRu(Rc) for the

centralized strategy in Theorem 4, whereZn ∼ Binom(L− rn, pn).

The proof of this proposition is given in Appendix E.

Next, we consider the decentralized strategy in Theorem 5. Then, forRc ∈ [0, N ], finding the minimum

rate–cache tradeoff for the right hand side of equation (6) requires optimization overrn ∈ [0, 1] such that
∑N

n=1 rn = Rc. The process can be cast as the followingconvex optimization problem[26]:

minimize
N
∑

n=1

pn

L−1
∑

ℓ=0

(1− pn)
ℓ (1− rn)

ℓ+1 ,

subject to 0 ≤ rn ≤ 1, ∀n ∈ [1 : N ],

N
∑

n=1

rn = Rc.

For the following discussion, we assume thatpn ∈ (0, 1) for all n ∈ [1 : N ] andL ≥ 2. Now let us

consider the Lagrange function

L(r, µ, ν, λ)

=

N
∑

n=1

pn

L−1
∑

ℓ=0

(1− pn)
ℓ (1− rn)

ℓ+1 +

N
∑

n=1

µn(−rn) +
N
∑

n=1

νn(rn − 1) + λ

(

N
∑

n=1

rn −Rc

)

,
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Algorithm 1 Greedy Algorithm
Initialization:

N ← [1 : N ];

Rc ← 0;

for n = 1, · · · , N do

rn ← 0;

en ← pn
(

1− (1− pn)
L
)

− EZn

[

Zn

Zn+1

]

;

end for

R←
∑N

n=1 pn
(

1− (1− pn)
L
)

;

Ru(Rc)← R;

for Rc =
1
L ,

2
L , · · · , N −

1
L , N do

m← argmax
n∈N

en;

R← R− em;

rm ← rm + 1;

if rm = L then

N ← N\{m};

else

em = EZn

[

Zn

Zn+rm+1

]

− EZn

[

Zn

Zn+rm

]

;

end if

Ru(Rc) = R;

end for

return Ru

wherer = (r1, . . . , rN ), µ = (µ1, . . . , µN ), and ν = (ν1, . . . , νN ). Denote byr⋆ and (µ⋆, ν⋆, λ⋆) the

optimal solutions for the primal and dual problems, respectively. Since the optimization problem is convex,

the corresponding Karush–Kuh–Tucker (KKT) conditions aresufficient for optimality. In particular, we

have forn ∈ [1 : N ],

1) rn = 1 if and only if pn ≥ λ⋆;

2) rn = 0 if and only if

pn

L−1
∑

ℓ=0

(ℓ+ 1)(1 − pn)
ℓ ≤ λ⋆;
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Fig. 5. The cache–rate tradeoff curves for the centralized scheme (upper solid curve), the decentralized scheme (dash-dotted

curve), the outer bound (bottom solid curve), and the HPF strategy (dashed curve) forN = 1000, L = 10, andα = 0.

3) rn ∈ (0, 1) if and only if

pn

L−1
∑

ℓ=0

(ℓ+ 1)(1 − pn)
ℓ(1− rn)

ℓ = λ⋆.

In the following, we compare the centralized and decentralized inner bounds with anuncodedbaseline

strategy which follows the principle of caching the highestpopularity first (HPF). In [2], it was shown

that HPF is optimal for the single user FSN. The HPF achievable rate pair for the multi-user network is

given by

RHPF(Rc) >

N
∑

n=Rc+1

(1− (1− pn)
L) (34)

for Rc ∈ [0 : N ].

For numerical examples, we consider a Zipf distribution on the file popularities, i.e., the popularity of

file n ∈ [1 : N ] is given by

pn =
n−α

∑N
ñ=1 ñ

−α
,

for some fixed parameterα ≥ 0.

In Figure 5 we compare the performance of the two inner bounds, the HPF strategy, and the outer

bound for the caseN = 1000, L = 10, andα = 0, i.e., the case when the files are uniformly distributed.

In Figures 6 and 7, we compare the inner bounds and the outer bound for the casesα = 1.2 with

(N = 1000, L = 10) and(N = 10, L = 1000), respectively. In all cases, the inner bounds in Theorems 4
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Fig. 6. The cache–rate tradeoff curves for the centralized scheme (upper solid curve), the decentralized scheme (dash-dotted

curve), the outer bound (bottom solid curve), and the HPF strategy (dashed curve) forN = 1000, L = 10, andα = 0.7.
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Fig. 7. The cache–rate tradeoff for the centralized and decentralized schemes (closely merged in the upper solid curve), the

outer bound (bottom solid curve), and the HPF strategy (dashed curve) forN = 10, L = 1000, andα = 0.7.

and 5 are within a constant multiplicative factor of4 from the outer bound in Theorem 2. On the other

hand, the HPF strategy shows poor performance when the users’ requests become uniformly distributed

or the number of users is large compared to the number of files.

VII. C ONCLUDING REMARKS

Following up on our previous information theoretic approach that formulated single and two-user

cache aided networks in terms of a distributed source codingproblem, in this paper, we have extended

the approach and provided inner and outer bounds for severalcache networks with multiple users.
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Looking back, there has been several diverse approaches that have been taken to understand the benefit

of coded caching, e.g., distributed source coding [2], [20], network coding [9], [10], computational [18],

and index coding [16], [24], [27] based approaches have beendeveloped. Compared to the distributed

source coding approach which is based on random coding arguments, the advantage of a (linear) network

coding approach is that it explicitly reveals the coding strategy with potentially lower complexity. On the

other hand, in terms of theoretical analysis on the performance of these coding techniques, as originally

developed in the paper by Ahlswede, Cai, Li, and Yeung [28], network coding can be specialized from

the more general random coding theorems, e.g., [29]. We havealso demonstrated this by showing that

our coding theorem based on random coding arguments can recover the network coding based strategies

which is accomplished by substituting network coding with random binning.

On the other hand, the relation with index coding based approaches is less apparent. The idea of

translating the cache network into an index coding problem is as follows. Under the assumption that the

cache content is fixed to some fraction of the database (in a uncoded fashion), and assuming that the

users’ requests are fixed, the update phase can be viewed as anindex coding problem. In general, the

uncoded cache placement assumption itself may lead to a sub-optimal strategy for the caching problem.

Nonetheless, several approaches adopt this assumption, including our choice of auxiliary random variables

which enables the analysis to be more tractable and in several cases is sufficient to obtain order optimality.

Under such assumptions, there is an interesting analogy with the index coding results in [30]. In [30],

the authors provide an achievable scheme based on random coding for the index coding problem instead

of the more commonly used graph theoretic, algebraic, and network coding based approaches. Using this

approach, the authors showed that a composite random codingstrategy is optimal for all index coding

problems with up to five messages. Our update coding strategyis reminiscent of this composite coding

strategy in that it is represented by the auxiliary random variablesUS , S ⊆ [1 : L], S 6= ∅, for which only

the decoders inℓ ∈ S recoversUS . However, in general, the composite coding strategy can be strictly

suboptimal for index coding. It would be interesting further work to seek for improved strategies over

our proposed composite coding strategy for cache aided networks.

APPENDIX A

ANALYSIS OF MULTIPLICATIVE GAP RESULTS

A. Proof of Theorem 6

Denote the right hand side of (7) bȳRu-dc(Rc). Note that we havēRu-dc(0) = R⋆
u(0). To prove

Corollary 3, we consider the following (relaxed) achievable rate–cache region given by the convex hull
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of the point(Rc, Ru) = (0, R∗
u(0)) and the set

{

(Rc, Ru) : Ru ≥
N −Rc

1 +Rc(1− 1/N)
, Rc ∈ [0, N ]

}

.

Denote byR̆u-dc(Rc) the corresponding rate region. Now, we show that given a fixedcache rateRc ≥

0, the decentralized coded caching scheme in Corollary 3 achieves an update rate within a constant

multiplicative factor from the rate–cache functionR⋆
u(Rc) for uniform requests. LetRu-lb(Rc) denote the

right hand side of (3).

SinceRu-lb(Rc) ≤ R⋆
u(Rc), it suffices to show thatR̆u-dc(Rc)

Ru-lb(Rc)
≤ 4 for Rc ∈ [0, N). If N = 1, it can

be easily checked that̆Ru-dc(Rc) = Ru-lb(Rc) = 1 − Rc. In the following, we assume thatN ≥ 2. For

notational convenience, we denoteL = min{L,N}. The lower boundRu-lb(Rc) is an intersection of

half planes, and the corner points ofRu-lb(Rc) are characterized by the setΩ = {(ωℓ, Ru-lb(Rc)) : ℓ ∈

{0, 1, · · · , L}}, where

ωℓ :=



























N if ℓ = 0,

N(1− 1

N
)
ℓ

N+(ℓ+1−N)(1− 1

N
)
ℓ if ℓ ∈ [L− 1],

0 if ℓ = L.

We note that forℓ ∈ [1 : L − 1], the two linesy = (1 − (1 − 1/N)ℓ)(N − ℓx) and y = (1 − (1 −

1/N)ℓ+1)(N − (ℓ+ 1)x) intersect atx = ωℓ.

Next, we relax the inner bound̆Ru-dc(Rc) by the following piecewise-linear bound resulting fromΩ:

R̆′
u-dc(Rc) := (1− θ)R̆u-dc(ωℓ) + R̆u-dc(ωℓ−1),

if Rc = (1 − θ)ωℓ + θωℓ−1 for someθ ∈ [0, 1), ℓ ∈ [1 : L]. Note thatR̆′
u-dc(Rc) = R̆u-dc(Rc) for all

Rc ∈ {ω0, ω1, · · · , ωL}. Then, for each segment[ωℓ, ωℓ−1), ℓ ∈ [1 : L], the ratio R̆′
u-dc(Rc)

Ru-lb(Rc)
is a linear-

fractional function with respect toRc and thus is quasiconvex [26]. A quasiconvex function has the

property that the value of the function on a segment does not exceed the maximum of its values at the

endpoints. Therefore, it suffices to check whetherR̆u-dc(Rc)
Ru-lb(Rc)

≤ 4 for all Rc ∈ {ω0, ω1, · · · , ωL}. First, it is

clear that we have

lim
Rc→N−

R̆u-dc(Rc)

Ru-lb(Rc)
= 1.

Also, we have

R̆u-dc(Rc)

Ru-lb(Rc)
=
N(1− (1− 1/N)L)

(1− (1− 1/N)L)N
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=
1− (1− 1/N)L

1− (1− 1/N)min{L,N}

=











1−(1−1/N)L

1−(1−1/N)N if L > N

1 if L ≤ N

(a)

≤
1

1− e−1
≈ 1.5820,

where(a) follows since(1− 1/z)z ≤ e−1 for all z ≥ 1. Finally, for all ℓ ∈ [1 : L− 1], we have

R̆u-dc(Rc)

Ru-lb(Rc)
=

N−ωℓ

1+ωℓ(1−1/N)

(1− (1− 1/N)ℓ)(N − ℓωℓ)

=

[

N + (ℓ−N)
(

1− 1
N

)ℓ
] [

N + (ℓ−N + 1)
(

1− 1
N

)ℓ
]

[

1−
(

1− 1
N

)ℓ
] [

N + ℓ
(

1− 1
N

)ℓ
] [

N + (−N + 1)
(

1− 1
N

)ℓ
]

=

[

1−
(

1− 1
N

)ℓ
+ ℓ

N

(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ+1
+ ℓ

N

(

1− 1
N

)ℓ
]

[

1−
(

1− 1
N

)ℓ
] [

1 + ℓ
N

(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ+1
]

≤

[

1−
(

1− 1
N

)ℓ
+ ℓ

N

(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ+1
+ ℓ

N

(

1− 1
N

)ℓ
]

[

1−
(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ+1
]

= 1 +
ℓ
N

(

1− 1
N

)ℓ

1−
(

1− 1
N

)ℓ
+

ℓ
N

(

1− 1
N

)ℓ

1−
(

1− 1
N

)ℓ+1
+

(

ℓ
N

(

1− 1
N

)ℓ
)2

[

1−
(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ+1
]

≤

(

1 +
ℓ
N

(

1− 1
N

)ℓ

1−
(

1− 1
N

)ℓ

)2

=

(

1 +
ℓ
Nα

−ℓ/N
N

1− α
−ℓ/N
N

)2

≤ sup
z∈(0,1]

(

1 +
z

ez lnαN − 1

)2

(a)
=

(

1 +
1

lnαN

)2

=

(

1−
1

N ln(1− 1/N)

)2

≤ 4,

whereαN = (1 − 1/N)−N and (a) follows since z
eaz−1 is a decreasing function for alla > 0. This

concludes the proof of Theorem 6.
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B. Proof of Theorem 9

Recall the definition ofR̆MN(Rc), which is defined as the convexified bound in (21). IfN = 1, it can

be easily checked that̆RMN(Rc) = 1−Rc = R⋆
u-ave(Rc). ForN ∈ {2, 3, 4}, we have

R̆MN(Rc)

R⋆
u-ave(Rc)

≤
N −Rc

maxℓ∈[1:L](1− (1− 1/N)ℓ)(N − ℓRc)

ℓ=1
≤

N −Rc

(1− (1− 1/N))(N −Rc)

= N < 4.7.

For the rest of analysis, we assume thatN ≥ 5. To facilitate the gap analysis, we consider the following

relaxed upper bound of (21):

R̆MN(Rc) ≤ (N −Rc) ·min

{

1

Rc

, 1

}

=: Rupper(Rc),

for all Rc ∈ (0, N ], and we defineRupper(0) := min{L,N}. We remark thatRupper(Rc) is quite

suboptimal as an upper bound and is not continuous atRc = 0 whenL < N . However, the corresponding

convexified bound̆Rupper(Rc) is sufficient for our analysis. On the other hand, we considerthe following

relaxed lower bound

R⋆
u-ave(Rc) ≥ max

ℓ∈[min{L,⌈N/4⌉}]
(1− (1− 1/N)ℓ)(N − ℓRc)

+

=: Rlower(Rc).

Since

Rlower(Rc) ≤ R
⋆
u-ave(Rc) ≤ R

⋆
u-wc(Rc) ≤ R̆MN(Rc) ≤ R̆upper(Rc), (35)

it suffices to show

R̆upper(Rc)

Rlower(Rc)
< 4.7, Rc ∈ [0, N).

For notational convenience, we denoteL = min{L, ⌈N/4⌉} andκ = min{L,N/4}. Note that the lower

boundRlower(Rc) is an intersection of half planes. The corner points ofRlower(Rc) are characterized by

the setΩ = {(ωℓ, Rlower(ωℓ)) : ℓ ∈ [0 : L]}, where

ωℓ =



























N if ℓ = 0,

N(1− 1

N
)
ℓ

N+(ℓ+1−N)(1− 1

N
)
ℓ if ℓ ∈ [L− 1],

0 if ℓ = L.
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Fig. 8. Plots of various bounds for(K,N) = (15, 10) andRc ∈ [0, 5].

We note that for allℓ ∈ [L− 1], the two lines

y = (1− (1− 1/N)ℓ)(N − ℓx),

y = (1− (1− 1/N)ℓ+1)(N − (ℓ+ 1)x)

intersect atx = ωℓ.

Next, we relax the upper bound̆Rupper(Rc) by the following piecewise-linear bound resulting from

{ωℓ : k ∈ [0 : K]}:

R′
upper(Rc)

:= (1− θ)Rupper(ωℓ) + θRupper(ωℓ−1),

whereRc = (1 − θ)ωℓ + θωℓ−1 for someθ ∈ [0, 1), ℓ ∈ [1 : L]. Note thatR′
upper(Rc) = Rupper(Rc) for

all Rc ∈ {ωℓ : ℓ ∈ [0 : L]}. In Figure 8, we provide an example with(K,N) = (15, 10) summarizing

the various bounds used in the analysis.

Then, for each segment[ωℓ, ωℓ−1), k ∈ [1 : L], the ratio
R′

upper(Rc)

Rlower(Rc)
is a linear-fractional function with

respect toRc, and thus it is quasiconvex [26]. As noted before, a quasiconvex function has the property

that the value of the function on a segment does not exceed themaximum of its values at the endpoints.

Thus, it suffices to check whether
R′

upper(Rc)

Rlower(Rc)
< 4.7 for all Rc ∈ {ω0, ω1, · · · , ωK}.

First, it is clear that we have

lim
Rc→N−

R′
upper(Rc)

Rlower(Rc)
= 1.
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Next, we have

R′
upper(0)

Rlower(0)
=

min{L,N}

(1− (1− 1/N)L)N

≤
4κ/N

1− (1− 1/N)κ

(a)

≤ 4 ·
κ/N

1− e−κ/N

(b)

≤
1

1− e−1/4
≈ 4.521,

where (a) follows since(1 − 1/z)z ≤ e−1 for all z > 1 and (b) follows sinceψ(z) = z
1−e−z is an

increasing function andκ/N ≤ 1/4.

As for ℓ ∈ [L− 1], we have

R′
upper(ωℓ)

Rlower(ωℓ)
≤

N−ωℓ

ωℓ

(1− (1− 1/N)ℓ)(N − ℓωℓ)

=

[

N + (ℓ−N)
(

1− 1
N

)ℓ
] [

N + (ℓ−N + 1)
(

1− 1
N

)ℓ
]

[

N
(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ
] [

N + (−N + 1)
(

1− 1
N

)ℓ
]

=

[

1−
(

1− 1
N

)ℓ
+ ℓ

N

(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ+1
+ ℓ

N

(

1− 1
N

)ℓ
]

(

1− 1
N

)ℓ
[

1−
(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ+1
]

=
1

(

1− 1
N

)ℓ






1 +

ℓ
N

(

1− 1
N

)ℓ

1−
(

1− 1
N

)ℓ
+

ℓ
N

(

1− 1
N

)ℓ

1−
(

1− 1
N

)ℓ+1
+

(

ℓ
N

(

1− 1
N

)ℓ
)2

[

1−
(

1− 1
N

)ℓ
] [

1−
(

1− 1
N

)ℓ+1
]







≤
1

(

1− 1
N

)ℓ

(

1 +
ℓ
N

(

1− 1
N

)ℓ

1−
(

1− 1
N

)ℓ

)2

(a)
= ez

(

1 +
1

ln(1− 1/N)−N

z

ez − 1

)2

(b)

≤ ez
(

1 +
z

ez − 1

)2

(c)

≤ ez
(

1 +
z

ez − 1

)2
∣

∣

∣

∣

∣

z=−N

4
ln(1−1/N)

,

where (a) follows by a change of variablez = −ℓ ln(1 − 1/N), (b) follows sincez ≥ 0 and (1 −

1/N)−N ≥ e for all N > 1, (c) follows sinceφ(z) = ez
(

1 + z
ez−1

)2
is an increasing function§5 and

5§ The functionφ(z) = ez
(

1 + z

ez−1

)2

, z ≥ 0, is an increasing function since its first derivative is nonnegative.
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z ≤ −N
4 ln(1− 1/N) (sinceℓ ≤ L− 1 ≤ N/4). Finally, since−N ln(1− 1/N) is a decreasing function

of N andN ≥ 5, we have

R′
upper(ωℓ)

Rlower(ωℓ)
≤ ez

(

1 +
z

ez − 1

)2
∣

∣

∣

∣

∣

z=− 5

4
ln(1−1/5)

= νν
(

1 +
ν ln ν

νν − 1

)2
∣

∣

∣

∣

∣

ν= 5

4

≈ 4.607.

APPENDIX B

PROOF OFTHEOREM 7

We show the achievable rate pairs forRc = 0, 1
L ,

2
L , . . . , N . Let rn ∈ [0 : L], n ∈ [1 : N ] such that

∑N
n=1 rn = LRc. For the cache encoding step, we reuse the choice ofVℓ in (27) based on the definition

of W (n)
Tn

in (26). For the auxiliary random variablesUS , S ⊆ [1 : L], S 6= ∅, we choose

US =
(

W
(n)
Tn
·AS(Tn, n) : n ∈ [1 : N ],Tn ⊆ [1 : L], |Tn| = rn

)

(36)

where

AS(Tn, n) = 1 {Tn ⊂ S}1 {|S| = rn + 1}





∏

j∈S\Tn

1 {Yj = n}



 . (37)

Note that the above choice of auxiliary random variables satisfy (16). Since

I(US ;X|Vℓ, Y = y,Q) = H(US |Vℓ, Y = y,Q)

=

N
∑

n=1

∑

Tn:|Tn|=rn

H(W
(n)
Tn
· AS(Tn, n)|Vℓ, Y = y,Q)

=

N
∑

n=1

∑

Tn:|Tn|=rn,ℓ 6∈Tn

H(W
(n)
Tn
· AS(Tn, n)|Y = y,Q)

=

N
∑

n=1

∑

Tn:|Tn|=rn,ℓ 6∈Tn

1
(L
rn

)H(W
(n)
Tn
·AS(Tn, n)|Y = y,Q,Qn = Tn)

=

N
∑

n=1

1{|S| = rn + 1}
∑

Tn:|Tn|=rn,
ℓ 6∈Tn,Tn⊂S

1
(L
rn

)1{yS\Tn
= n}

(b)
=

N
∑

n=1

1{|S| = rn + 1}
∑

Tn:|Tn|=rn,
ℓ 6∈Tn,Tn⊂S

1
(L
rn

)1{yℓ = n}
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=

N
∑

n=1

1{|S| = rn + 1}

(

|S| − 1

rn

)

1
(

L
rn

)1{yℓ = n}

=

N
∑

n=1

1{|S| = rn + 1}

(

rn + 1− 1

rn

)

1
(

L
rn

)1{yℓ = n}

=

N
∑

n=1

1{|S| = rn + 1}
1
(L
rn

)1{yℓ = n}

= 1{|S| = ryℓ
+ 1}

1
(

L
|S|−1

) ,

where step(a) follows sinceW (n)
Tn
∈ Vℓ for ℓ ∈ Tn and(b) follows since for|S| = |Tn|+1, ℓ 6∈ Tn, and

ℓ ∈ S, we haveS \ Tn = {ℓ}. Thus,

Ru(Rc, y) >
∑

S:|S|>0

max
ℓ∈S

H(US |Vℓ, Y = y,Q)

=
∑

S:|S|>0

max
ℓ∈S

1{|S| = ryℓ
+ 1}

1
( L
|S|−1

)

=
∑

S:|S|>0

(

1−
∏

ℓ∈S

1{ryℓ
6= |S| − 1}

)

1
(

L
|S|−1

) . (38)

This concludes the proof of the first part of Theorem 7.

Next, for the average rate–cache tradeoff,

EY [Ru(Rc, Y )] >
∑

y

pY (y)
∑

S:|S|>0

(

1−
∏

ℓ∈S

1{ryℓ
6= |S| − 1}

)

1
( L
|S|−1

)

(a)
=

∑

S:|S|>0

(

1−
∏

ℓ∈S

P{rYℓ
6= |S| − 1}

)

1
(

L
|S|−1

)

=
∑

S:|S|>0

(

1−
∏

ℓ∈S

(1− P{rYℓ
= |S| − 1})

)

1
( L
|S|−1

)

=
∑

S:|S|>0

(

1−
∏

ℓ∈S

(

1−
N
∑

n=1

P{rn = |S| − 1, Yℓ = n}

))

1
(

L
|S|−1

)

=
∑

S:|S|>0

(

1−
∏

ℓ∈S

(

1−
N
∑

n=1

1{rn = |S| − 1}pn

))

1
( L
|S|−1

)

=

L
∑

j=1

∑

S:|S|=j

(

1−
∏

ℓ∈S

(

1−
N
∑

n=1

1{rn = j − 1}pn

))

1
( L
j−1

)

=

L
∑

j=1

∑

S:|S|=j



1−

(

1−
N
∑

n=1

1{rn = j − 1}pn

)j




1
( L
j−1

)
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=

L
∑

j=1

(

L

j

)



1−

(

1−
N
∑

n=1

1{rn = j − 1}pn

)j




1
(

L
j−1

)

=

L
∑

j=1

L− j + 1

j



1−

(

1−
N
∑

n=1

1{rn = j − 1}pn

)j




=

L−1
∑

j=0

L− j

j + 1



1−

(

1−
N
∑

n=1

1{rn = j}pn

)j+1




=

L−1
∑

j=0

L− j

j + 1

(

1− (1− αj)
j+1
)

,

whereαj =
∑N

n=1 1{rn = j}pn, and step(a) follows sincepY (y) =
∏L

j=1 pY1
(yj). This concludes the

proof for the average rate–cache tradeoff.

Finally, to prove Remark 5, we choosern = r, n ∈ [1 : N ], such thatr = LRc/N . Then from (38),

Ru(Rc, y) >
∑

S:|S|>0

(

1−
∏

ℓ∈S

1{ryℓ
6= |S| − 1}

)

1
( L
|S|−1

)

=
∑

S:|S|>0

1{r = |S| − 1}
1

( L
|S|−1

)

=
∑

S:|S|=r+1

1
(

L
r

)

=

(

L

r + 1

)

1
(L
r

)

=
L− r

1 + r

=
L− LRc/N

1 + LRc/N
.

APPENDIX C

PROOF OFTHEOREM 8

Consider any cache rateRc ∈ [0, N ] and let rn ∈ [0, 1] such that
∑N

n=1 rn = Rc. We choose the

auxiliary random variables in the following manner. For thecache encoding step, we reuse the choice of

Q andVℓ in (31). LetTn = {ℓ : Q
(n)
ℓ = 1}. On the other hand, forS ⊆ [1 : L], S 6= ∅, we set

US =
(

X(n)AS,n : n ∈ [1 : N ]
)

,

where

AS,n = 1{Tn ⊂ S, |Tn| = |S| − 1, YS\Tn
= n}.
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Then, forS ⊆ [1 : L] andℓ ∈ S, we have

H(X(n) ·AS,n|Vℓ, Y = y,Q)

= H(X(n) · AS,n|(X
(n) ·Q

(n)
ℓ ), Y = y,Q)

= P{Q
(n)
ℓ = 0}H(X(n) ·AS,n|(X

(n) ·Q
(n)
ℓ ), Y = y,Q,Q

(n)
ℓ = 0)

= P{Q
(n)
ℓ = 0}P{Tn ⊂ S, |Tn| = |S| − 1, yS\Tn

= n|Q
(n)
ℓ = 0}

(a)
= P{Q

(n)
ℓ = 0}P{Tn ⊂ S, |Tn| = |S| − 1, yℓ = n|Q

(n)
ℓ = 0}

= P{Q
(n)
ℓ = 0}1{yℓ = n}P{Tn ⊂ S, |Tn| = |S| − 1|Q

(n)
ℓ = 0}

= P{Q
(n)
ℓ = 0}1{yℓ = n}

∏

j∈S\{ℓ}

1{Q
(n)
j = 1}

∏

j∈Sc

1{Q
(n)
j = 0}

= P{Q
(n)
ℓ = 0}1{yℓ = n}

∏

j∈S\{ℓ}

rn
∏

j∈Sc

(1− rn)

= 1{yℓ = n} (1− rn) r
|S|−1
n (1− rn)

|Sc|,

where(a) follows since for|S| = |Tn|+ 1, Tn ⊂ S, Q(n)
ℓ = 0, andTn = {ℓ′ : Q

(n)
ℓ′ = 1}, the condition

yS\Tn
= n is equivalent toyℓ = n. Thus, it holds that

Ru(Rc, y) >
∑

S⊆[1:L]

max
ℓ∈S

H(US |Vℓ, Y,Q)

=

L
∑

j=1

∑

S:|S|=j

max
ℓ∈S

N
∑

n=1

1{yℓ = n} (1− rn) r
|S|−1
n (1− rn)

|Sc|

=

L
∑

j=1

∑

S:|S|=j

max
ℓ∈S

N
∑

n=1

1{yℓ = n}rj−1
n (1− rn)

L−j+1

=

L
∑

j=1

∑

S:|S|=j

max
ℓ∈S

rj−1
yℓ

(1− ryℓ
)L−j+1.

This concludes the proof of the first part of Theorem 8.

Finally, to prove Remark 6, we choosern = r = Rc/N . Thus,

Ru(Rc, y) >

L
∑

j=1

∑

S:|S|=j

max
ℓ∈S

rj−1
yℓ

(1− ryℓ
)L−j+1

=

L
∑

j=1

∑

S:|S|=j

rj−1(1− r)L−j+1

=
(1− r)

r

L
∑

j=1

(

L

j

)

rj(1− r)L−j
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=
(1− r)

r
(1− (1− r)L)

=
(N −Rc)

Rc

(1− (1−Rc/N)L).

APPENDIX D

PROOF OFCOROLLARY 4

For Rc ≥ 0, we first relax the lower bound (2) by fixingℓ = 1 and get

R⋆
u(Rc) ≥

N
∑

n=1

(sn(1) − sn+1(1)) (n−Rc)
+ (39)

≥ pN (N −Rc) . (40)

For the uniform request case, by choosingr1 = · · · = rN = L− 1 for Rc = N −N/L in Theorem 4,

we have

R⋆
u(Rc) ≤

1

L
.

By memory-sharing betweenR⋆
u(N) = 0, we have that forRc ∈ [N −N/L,N ],

R⋆
u(Rc) ≤ pN (N −Rc) .

Furthermore, for arbitrary requests, by choosingr1 = · · · = rN−1 = L andrN = L−1 for Rc = N−1/L

in Theorem 4, we have

R⋆
u(N − 1/L) ≤

1

1 + rN
pN

=
pN
L
.

By memory-sharing betweenR⋆
u(N) = 0, we have that forRc ∈ [N − 1/L,N ],

R⋆
u(Rc) ≤ pN (N −Rc) .

APPENDIX E

PROOF OFPROPOSITION3

We prove the proposition by induction. First, forRc = 0, Algorithm 1 is initialized by the optimal

valueR⋆
u(0). Next, we assume that Algorithm 1 finds the minimum value ofRu(Rc) (the right hand

side of (5)) whenRc = s/L for somes ∈ [1 : NL]. Denote byr⋆s = (r⋆1, . . . , r
⋆
N ) the corresponding

assignment in Algorithm 1 forRc = s/L. For r ∈ [0 : L] andp ∈ [0, 1], denote

κ(r, p) =

L−r
∑

j=1

j

j + r

(

L− r

j

)

pj(1− p)L−r−j .
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We observe that forr ∈ [1 : L] andp ∈ [0, 1]

κ(r, p) = EZ

[

Z

Z + r

]

,

whereZ ∼ Binom(L− r, p), and

R(r) =

N
∑

n=1

κ(rn, pn).

Since it will be clear from the context, we simply denoteκ(rn) = κ(rn, pn). Note that the induction

hypothesis impliesRu(s/L) = R(r⋆s). Then, for the caseRc = (s + 1)/L, assume an arbitraryr =

(r1, . . . , rN ) ∈ [0 : L]N such that
∑N

n=1 rn = s+1. Note that from the pigeonhole principle, there exists

a componentj such thatrj ≥ r⋆j + 1. Let 1j be an all zero vector with thejth component replaced by

1. Then,

R(r) = R(r− 1j)− (κ(rj − 1)− κ(rj))

(a)

≥ R(r⋆s)− (κ(rj − 1)− κ(rj))

(b)

≥ R(r⋆s)− (κ(r⋆j )− κ(r
⋆
j + 1))

≥ R(r⋆s)− max
n∈[1:N ]

(κ(r⋆n)− κ(r
⋆
n + 1))

(c)
= R(r⋆s+1),

where for convenience we defineκ(L+1) = 0, step(a) follows from the fact that the element-wise sum

of r− 1j is s and from the induction hypothesis, step(b) follows since forr ∈ [1 : L− 1],

κ(r − 1)− κ(r) ≥ κ(r)− κ(r + 1), (41)

and thatrj ≥ r⋆j +1, and step(c) follows from the incremental assignment ofr
⋆
s+1 from r

⋆
s in Algorithm

1. It remains to prove (41) which we show in the following. First, we consider the caser = 1. Let

Z ∼ Binom(L−2, p) andA ∼ Bern(p). Assume thatZ andA are independent. Then, we haveZ+A ∼

Binom(L− 1, p) and thus

2κ(1) = 2E

[

Z +A

Z +A+ 1

]

= 2E

[

E

[

Z +A

Z +A+ 1

∣

∣

∣

∣

A

]]

= 2pE

[

Z + 1

Z + 2

]

+ 2(1 − p)E

[

Z

Z + 1

]

= κ(2) + E

[

(2p − 1)Z + 2p

Z + 2

]

+ E

[

2(1− p)Z

Z + 1

]
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= κ(2) + 1− 2(1 − p)E

[

1

(Z + 1)(Z + 2)

]

= κ(2) + 1− 2(1 − p)





1

2p2
(L
2

)

L
∑

j=2

(

L

j

)

pj(1− p)L−j





≤ κ(2) + 1− 2(1 − p)

[

1

2p2
(L
2

)

(

L

2

)

p2(1− p)L−2

]

= κ(2) + 1− (1− p)L−1

≤ κ(2) + κ(0).

Next, we consider the caser ≥ 2. LetU ∼ Binom(L−r−1, p) andA,B ∼ Bern(p). Assume thatU,A,B

are independent. DenoteV = U+A. Then, we haveV ∼ Binom(L−r, p), V +B ∼ Binom(L−r+1, p),

and

κ(r − 1)− κ(r)

= E

[

V +B

V +B + r − 1

]

− E

[

V

V + r

]

= pE

[

V + 1

V + r

]

+ (1− p)E

[

V

V + r − 1

]

− E

[

V

V + r

]

= pE

[

1

V + r

]

+ (1− p)E

[

V

V + r − 1

]

− (1− p)E

[

V

V + r

]

= pE

[

1

V + r

]

+ (1− p)E

[

V

(V + r − 1)(V + r)

]

≥ pE

[

1

U + r + 1

]

+ (1− p)E

[

U

(U + t)(U + r + 1)

]

= pE

[

1

U + r + 1

]

+ (1− p)E

[

U

U + r

]

− (1− p)E

[

U

U + r + 1

]

= pE

[

U + 1

U + r + 1

]

+ (1− p)E

[

U

U + r

]

− E

[

U

U + r + 1

]

= E

[

U +A

U +A+ r

]

− E

[

U

U + r + 1

]

= κ(r)− κ(r + 1).
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