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Information Theoretic Caching:
The Multi-User Case
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Abstract

In this paper, we consider a cache aided network in which eaehis assumed to have individual
caches, while upon users’ requests, an update messagetisheegh a common link to all users.
First, we formulate a general information theoretic settthat represents the database as a discrete
memoryless source, and the users’ requests as side infomtlaht is available everywhere except at the
cache encoder. The decoders’ objective is to recover aimof the source and the side information.
By viewing cache aided networks in terms of a general disteid source coding problem and through
information theoretic arguments, we present inner andrdagends on the fundamental tradeoff of cache
memory size and update rate. Then, we specialize our geénaraland outer bounds to a specific model
of content delivery networks: File selection networks, inieh the database is a collection of independent
equal-size files and each user requests one of the files indeptly. For file selection networks, we
provide an outer bound and two inner bounds (for centralamedl decentralized caching strategies). For
the case when the user request information is uniformlyiiged, we characterize the rate vs. cache
size tradeoff to within a multiplicative gap daf By further extending our arguments to the framework
of Maddah-Ali and Niesen, we also establish a new outer baunmttwo new inner bounds in which it
is shown to recover the centralized and decentralizedesfiest, previously established by Maddah-Ali
and Niesen. Finally, in terms of rate vs. cache size tradeafimprove the previous multiplicative gap

of 72 to 4.7 for the average case with uniform requests.
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. INTRODUCTION

Consider a cache-aided network that consists of a datarsameel users depicted in Figufe 1. We
assume that the data server Ma®qual size files each consisting lobits, and further assume that each
user is equipped with a cache of sig&. bits, whereR. is the ‘rate’ of the cache size normalized by
the file length. Ideally, the data server places some ddgnripf the database during off peak hours
in the users’ caches such that, when the actual file requastsplace (most likely in peak hours), the
total kR, bits sent to the users to recover the individual desired fdeminimized. In the considered
scenario, memory is traded for peak hour bandwidth. How cah $rade be made efficiently? What is

the fundamental tradeoff between cache memory size andeipatea?

User1l — Cache
Database
‘ User2 — Cache
Data Server
User L — Cache

Fig. 1. A cache aided-user file selection network.

To put the problem in perspective, we consider the followixgmple of afile selection netonL
Assume that the database hslsequal length files. Each file in the database consists sidibfiles. Let
XM = [Xf"), e ,X,i”)], n € [1: N] be an i.i.d.k-length sequence that represents tttle file in the
database. Here, each eIeméQ(tn), i=1,...,k represents théth subfile of X(™ and the collection of
source vector$X, ... X(V)) represents a set 6 independent files in the database. Before the actual
requests take place, the server caches some part of theadatabeach user. For eacke [1 : k], we
assume that each user requests a subfile from the databasglynaser/ € [1 : L] selects one subfile
from (Xi(l),...,XZ.(N)) for eachi € [1 : k] from the database. The index of the file requested by user
¢ for i € [1: k] is represented by the random variablg. For exampleYy = 1,V =4,..., Yy, =5

corresponds to the case that decodevishes to recover the sequence of subﬁ]él@), X§4), . XE’).

1The formal definition of a file selection network is given inc8en[Il
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Fig. 2. Cache memory size vs. update delivery rate tradeoffile selection networks. The two extreme points is aclddve
either sending all the requested files or by caching the wtialebase. The tradeoff represented by the solid curveaimedt by
memory sharing between the extreme points. The non-inagand convex optimal tradeoff curve will lie inside the nam

sharing tradeoff curve.

Under this formulation, the popularity of the files (or thesetss preferences) can be represented by the
distribution onY,.

Now, consider the extreme case whBp = 0. Then, by the fundamental theorem of data compres-
sion [1], the total number of bits required to serve all therasskH (X)) ... X(%)) In the other
extreme withR. = H(X™ ..., X(M)) j.e., every user has enough memory to store the whole dstaba
the data server does not need to send anythingnBgnory sharindpetween these two extremes, i.e., we
store a common fraction of the database in all the users’asaahd the data server sends the remaining
bits of the requested files, a straight-line tradeoff cuhag tonnects between these two extreme points
is attained; see Figufé 2. A simple improvement over thiatagy is to cache the most popular files, i.e.,
prioritize the common cache content based on the populefitlye files. Restating the previous question:
How far can we push the tradeoff curve towards the origin?

Indeed, by formulating a cache-aided network in terms afisdributed source coding problenthe
authors have previously studied and characterized theafuedtal limits of caching in_[2] for single
user networks (with arbitrary source and request disiobg) and some two-user cache aided networks
where exact solutions essentially follow from the singdetucase. Moreover, inl[2], it was revealed that
the caching problem had interesting connections to wetlisthinformation theoretic formulations, for
instance, source coding with side information [3], codiagdomputing[[4], the Gray—Wyner network [5],

the problem of successive refinemént [6], [7], and Wynerisiemn information [[3].
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In this paper, we restrict the general assumption on the gistribution of the source and users’
requests as studied in![2] to the assumption that the sourdeusers’ requests are independent. This
restriction (which still includes the important file sectioetwork formulation) enables a more tractable
environment to study cache aided networks veithitrary number of userghis paper is a generalization
of [2] to the multi-user setting under the restricted digition.

In the next section, we first give a formal problem statemdrd distributed source coding network
with side information. The network consists of two encodarsache encodeand anupdate encoder
and L decoders. We assume a discrete memoryless sQiice) ~ p(z)p(y), where X* is observed at
both sources, and the side informati®if is observed only at the update encoder and théecoders;
see Figurd13. The objective of decoderc [1 : L] is to recover afunction of the source and side
information f,(X;,Y;), i« = 1,...,k. The cache encoder has a separate link of teconnecting to
decoder € [1 : L], and the update encoder is assumed to have a common linkedRsab all decoders.

The main motivation for studying cache aided networks inaheve setup is two-fold. First, it reveals
a stronger connection to distributed source coding problerhich is armed with a rich set of coding
theorems. With this formulation at hand and by utilizingoimhation theoretic arguments, we provide a
general outer and an inner bound for the general setup inrféh&d and Theoref 3, respectively. Second,
the general approach provides more flexibility and a unifredtiment that enables extensions of these
fundamental theorems to different models and assumptindeed, the file selection network is a specific
instance of the general distributed source coding forrlawhich can be represented by specifying the
discrete memoryless source p@¥, Y'), and the functiong,(X,Y’), ¢ € [1 : L] (formal statement is given
in Section[l). The specialization of Theordh 1 and Theoréio Hle selection networks is established
in Theorem 2 for the outer bound and Theoréms 4[dnd 5 for theribaund. By comparing the outer
and inner bounds for uniform requests, we show that the ibnand is within a multiplicative gap of
to the outer bound. Another important aspect of this problermulation is the flexibility that enables
to extend our results to the framework of Maddah-Ali and Bie&], i.e., when the request is constant
and does not change along with the source. In particular, neeéige a new outer bound (Propositioh 1)
and a new inner bound (Propositian 2) and show that the ino@ndh recovers the resulfs [9, Theorem 1]
and [10, Theorem 2], but from a different path. By comparimg mew outer bound and the inner bound,
we improve the previous multiplicative gap i in [10] to 4.7 for the average rate vs. cache size tradeoff
with uniform requests, and improve the previous multigli@agap of12 in [9] to 4.7 for the worst case
rate vs. cache size tradeoff. The extensions and statemehése results for the framework inl[9] is

given in Sectiori .
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The remaining part of the paper is organized as follows. IntiSe[IV| we collectively treat and
prove the converse bounds stated throughout the paperctio®®&] we develop and analyze the coding
strategies that establish the inner bounds. Numericalegudcluding some notes on the optimization of
the achievable rate regions is dicussed in Se¢tidn VI, whadbllowed by some concluding remarks in

SectionVIl. The lengthy proofs are deferred to the appezxdic

A. Previous results

The pioneering work of Maddah-Ali and Niesen in [9] first demtrated thattoded caching can
significantly outperform uncoded caching strategies. Tmigortant observation led to several followup
works on decentralized caching [10], non-uniform usersiests [11], [[12], delay-sensitive [13], online
[14], multiple layers[[15], request of multiple items [16Ecure delivery [17], improved outer bounds|[18],
[19], caching with distortion constraints_[20], wirelesetworks [21], [22], [23], and improved order-

optimality results[[12], [[24].

B. Notation

We closely follow the notation in_[25]. In particular, for dsdrete random variabl& ~ p(x) on
an alphabett’, and for some: € (0,1), we define the set of-typical n-sequences™ (or the typical
set in short) 4] as7.™ (X) = {a" : |x(z]z") — p(z)| < ep(z) for all z € X}, wheren(z|z") is the
empirical pmf ofz™. We used(e) > 0 to denote a generic function ef> 0 that tends to zero as— 0.
A sequence of random variables is denoted¥¥ := (Xi,...,X}). A tuple of random variables is

denoted byX (A) := (X, : j € A).

Il. PROBLEM SETUP AND MAIN RESULTS
Let (X,Y) be a pair of independent discrete memoryless sourcg8%&: ... 2kt 9kl code for
the cache network consists of
e A cache encodewhich assigns an index tuplen, ..., mp)(z*) € [1: 28] x ... x [1 : 2FF] to
each sequence’ ¢ A%,
e An update encodewhich assigns an index (2%, y*) € [1 : 28] to each(z*,y*) € &¥ x Y*, and

e L decoderswhere decodef € [1 : L] assigns an estimatg(X*, Y*) to each(my, m, y*).

The performance metric is theverageprobability of error,

PW) = P{fy(X*,Y*) £ fo(X* Y*) for somel e [1: L]}.
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We say that a rate tupleR.y, . . . , Rer,, Ry) is achievable if there exists a sequenc€fie: ... 2kfer okRy)
codes such thaim;,_, o, Pe('“) = 0. The optimakate—cache regiofR* is the closure of the set of achievable
rate tuples. By designing efficient strategies for jointtmaplacement and update information processing,
our goal is to characterize the fundamental tradeoff betwmemory size and the update bandwidth
required to recover the desired contents.

Motivated by practical content delivery networks, we ferttspecify the definition to &ile selection
network (FSN) setup by the following. Lek* = X1,..., Xy, p(zF) = [T"_, p(x;), where eachX; is
an N-length vector

X, = [xW,. x™],

and the componentKi("), n € [1: N] are independertern(1/2) random variabl& Further assume that
the side informatiort’* is independent ofX*, whereY; consists of. componentsY; = [Yi;,..., Yz,
Wi =[1:NJ], ¢e[l: L], andYy are independent of each other. Overall, we have the follgvamt

distribution

Zzl N L
=11 <H p(z{™) HP(Z/&')) : @
i=1 \n=1 /=1

We assume that decodék [1 : L] wishes to recover
fox* vy =[x x (]

With slight abuse of notation, we denofg X, Y') = X(¥)_ In the sequel, we simply refer to this network
as FSNs. When we specialize our results to FSNs, we furtlsenasa symmetric setting, i.e., we assume
symmetric cache memor.; = --- = R, = R. and we assume thaf, ¢ € [1 : L] are independently
and identically distributed, i.epy (y) = HeLzlpyz (y¢) andpy, = --- = py, . For notational convenience,
we denotep,, = py,(n), n € [1 : N]. We assume without loss of generality that> ps > --- > py.

For some achievable rate regi@) let cl(R) be its closure. When possible, we will simply express the

tradeoff in terms of itgate—cache tradeoff functioof R, i.e., for some achievable rate—cache regin

Ru (Rc) = min Ru-
(Rc,Ry)ECI(R)

2Since we define the rates by normalizing with respect to thecsdfile size, assumingi(") to be binary is without loss of

generality, i.e., the results remain the same if we assh.mj@)| =g and Xf”) ~ Unif([1 : q]).
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AXE Y
Decoder 1
Rcl / ?
Yk:
Cache Enc. K Fa (X, YR
. . || Decoder 2
X* 1
A
Update Enc. Ry \ : )
fK(Xk7 Yk)
? DecoderL
Yk

f

Yk

Fig. 3. The information theoretié-user cache network (cf. Figuté 1). The cache encoder hasatepnoiseless links with
rate R., connected to decodére [1 : L] and the update encoder has a common noiseless link to aletwdrs with rate?,.

The update encoder and decoders have access to the usest rgigeeinformatiorly’™*.

Adopting from the the rate—distortion function in rate+tdrgon theory, the rate—cache tradeoff function
for R* is simply referred to athe rate—cache functioR}(R.). Note thatR}(R.) is non-increasing and
due to memory sharing (the equivalent of time sharing inrihisted source coding), is convex.

We are ready to state our main results.

A. Converse Bounds

In Section 1V, we establish the following outer bound on thtimal rate—cache region.

Theorem 1 (General lower bound)f a rate tuple(Rc1, ..., R, Ry) is achievable, then it satisfies
N Ry > I(X:V(S)),
les

Ry > H(F(S)|V(S),Y),

for all S C [1: L] and some conditional pmfy . x, where F'(S) = { fo(X,Y) : £ € S}.

The outer bound is established by a cutset argument in wheasgume that nodes & C [1 : L]
cooperate, i.e., the decoders §if are inactive while the decoders # recover F'(S) by sharing the
caches. The proof of this theorem is given in Secfioh IV.

By specializing Theorerl 1 to FSNs, we establish the follgnafosed-form converse bound.

April 11, 2016 DRAFT



Theorem 2 (FSN lower boundfor FSNs withR. € [0, N],
N

Ry(Re) 2 max n_l(sn(f) — sn41(0) (n = €R)T, (2)
where (z)* = max(x,0), sy41(£) =0 ands,(f) =1 — (1 —p,)*, n € [1 : N].
By settingpy, = Unif([1 : N]), £ € [1: L] in Theoren 2, we have the following simplified converse
bound for the uniform case.

Corollary 1 (FSN lower bound for uniform requestdjor FSNs with uniform requests ait} € [0, N],

Ry(Re) > max (1= (1 - 1/N))(N — (Ro)*. 3

B. Inner Bounds

In Section[V, we establish the following inner bounds on tpémal rate—cache region. The general
coding scheme and its specialization for FSNs with ceaidliand decentralized caching constitute the
key contributions for achievability.

Theorem 3 (General Inner boundj rate tuple(Rc1,. .., Rcr, Ry) is achievable if
Ry > 1(Vi X|Q), Ce[l:L]

R .
0> Y, maxI(Us; X[V, Y,Q)
SC[1:L]

for somep(q) [T72 p(velz, @) Tlscp.py plusle, v, g) such that
H(fo(X,Y)|(Us: SC1:L|,L€S),V,Y,Q) =0, (4)

forall £ e [1:L].
For FSNs, Theoreml 3 can be specialized to the following Térasr By a specific choice of auxiliary
random variables given in Sectibn A we establish the fiSNHRnner bound in the following theorem.

Theorem 4 (Centralized caching for FSN$jor FSNs and?. =0, 1,2, ... N,

7L7L7
N L—r, . . '
Ry <Y (BT ©)
e J+m j

for r, € [0: L], n € [1: N] such thaty™_| r,, = LR..
The proof of this theorem is given in Subsection V-A.

Remark 1: The achievable rate—cache tradeoff [ (5) is definedRer= 0,1,%,..., N such that
SN 1, = LR, for somer, € [0: L], n € [1 : N]. The rest of the points itk € [0,

n=1

N] are obtained

by memory-sharing between these discrete points resutirggpiece-wise linear tradeoff function.
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For the case with uniform requests, we establish the foligudorollary.

Corollary 2 (Centralized caching for uniform request$jor FSNs with uniform requests angd. =
N 2N 3N N

L> L L "

Z
* <
mry < e[ 2],

for r € [1: L] such thatr = LR./N, whereZ ~ Binom(L — r,1/N). Moreover, forR. = 0,
Ri(Re) = N(1—(1-1/N)").

By a different choice of the auxiliary random variables giie Sectior V-B, Theorerhl3 can also be
specialized to the following inner bound for FSNs.

Theorem 5 (Decentralized caching inner boun&pr FSNs withR. € [0, N],

<Zp1—an 1—aL] (6)

for r, € [0,1] such thaty™_| 7, = R, wherea,, = (1 — p,)(1 — 7).
The proof of this theorem is given in Subsection V-B.

Remark 2:We call the strategy that attains TheorEim 5 ‘decentralizee to the additional feature
that, if r,, n € [1 : N] is chosen only based on the file popularity distributionntitee cache encoder
is decentralized. Following the convention 6f [10], we sawatta cache encoder is decentralized if
(my,...,mp)(x*) = (my(2),...,mg(2*)), i.e., the cache encoder mapping for uéeioes not depend
on the mappings of the other users messages.

By further assuming uniform requests, we simplify Theoféno $he following corollary.

Corollary 3 (Decentralized caching for uniform request§jor FSNs with uniform requests arfi. €

o N — R. 1 R\ \*
o < e | (%) (%)) L

Denote byR, .(R.) the right hand side of{7). The following theorem providesniversal (in N and

L) performance guarantee of the decentralized cachingegtram terms of a multiplicative gap from the
optimal tradeoff for uniform requests.
Theorem 6 (Multiplicative gap)For the case witlpy, = Unif([1 : N]) and R. € [0, N), it holds that

Ru-dc(Rc)
Ri(Re)

The proof of this theorem is given in Appendix A-A.

<4.
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The centralized strategy is optimal for some high-cach@megstated in the following corollary.

Corollary 4: For FSNs with arbitrary request distributions aRd € [N — 1/L, N],
R:(Rc) = pN(N - Rc)' (8)

Moreover, for uniform requestd.1(8) holds f& € [N — N/L, N].
The proof is given in AppendikD.

1. NEwW RESULTS FOR THEFRAMEWORK OF MADDAH-ALI AND NIESEN

The framework studied in this paper was motivated by the guoing work of Maddah-Ali and
Niesen [9] on coded caching. The main difference is in the@ggh we take for tackling the problem,
that is, we take an information theoretic approach by vigwhe problem as a distributed source coding
problem. In this section, we extend the results of the previgection to the framework af][9].

We begin by formulating an extension of our problem setup mctv the request informatioy”
changes only ever§” source symbolsY” and f/(X7*,Y) = (fo1(X1,Y),..., for(Xr,Y)). We refer
to this model as thetatic request mooBal By treating each block as a “super-symbol” and coding over

kT symbols and applying Theorem 3, a rate tupl®, ..., R.., R,) is achievable if
TRe > 1(Vi; XT|Q), £e[1: L]
TRy > maxI(Us; X"|V;,Y,Q)
SC[1:L)
for somep(q) [T/, p(3el2", q) [Tscpy.ny p(is|z™, v, g) such that

H(f(XTV)|(Us:SC1:L],£€S),Vs,Y,Q)=0, fec[l:L]. (9)

By choosingV, = VI and Us = UZ such thatp(¢z”) = []/_, pvix.q(veilzi q) and p(isla”) =
HLlpUS|X7y7Q(u57i|xi,y,q), we can conclude that the exact expression in Thebitem 3dsaalsievable
for the static request model, if we allomncoding over multiple blockén this sense, the corresponding
rate region provides aergodicachievable rate—cache tradedif(R.).

One the other hand, consider the case when the encodersstieted to encode over each block

separatelH. Naturally, we define a rate—cache region for this case as afsathievable rate tuples

3A general discussion on the comparison of the models can walfin [2, Section VI].

“In the case for encoding over multiple blocks, the total nemif blocks is assumed to be sufficiently large. On the other
hand, for coding within a single block, the number of symhaola block is assumed to be sufficiently large. The fitness ef th
two models for practical networks depends on the underlassimption of how frequent the requests change comparda to t

file size.
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(20 (2nfay) 1y € ), where R, (y) is the update rate when the request side informatiop. iShe
corresponding rate—cache tradeoff functiBp(R., y) is thus defined for each € ). Depending on the
application criteria, we can further formulate the problstatement in the following ways. Based on a
rate regionR for the static request single block encoding setup, the tepdde tuples can be projected

to:

1) theworst case update rater compound rate

Ru-wc Rc = Ru Rca 3
(Re) max (Re,y)

2) theaverage rate
Ru—ave(Rc) = EY[RU (RC7Y)]

We denote byR}..(R.) and R}_,..(R.) the optimal worst case rate—cache function and the optimal

u-wc

average rate—cache function, respectively. For statioegigmodel, define a FSN by

k
(X%, V) ~ [ pp(y)
=1

k N L
= (H 1T p(ﬂﬂ@)) 1120, (10)

i=1n=1 =1
and assume that decodee [1 : L] wishes to recover

fo(xt vy =[x, x ().

For the static request FSN, the work of Maddah-Ali and Nieise[®] studies the tradeoff betweeR.
and the worst case rate in_[10], [9], and the tradeoff betwRgmand the average rate in [11].
In the following, we discuss some extensions of our reswtthe static request model with single
block encoding.
Proposition 1 (Converse BoundJor the static request model with single block encoding, rate
tuple (Rc1, ..., R, Ru(y),y € Y) is achievable, then it satisfies
Y Ra > I(X;V(S)),
tes

Ru(y) = HF(S)|V(S),Y =y), ye, (11)
forall S C [1: L] and some conditional pmf - x. Moreover, if an average rate is achievable, it satisfies
Ey[Ru(Y)] 2 Ey[H(F(S)|V,Y =y)] (12)

= H(F(S)|V,Y), (13)
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and if a worst case rate is achievable, it satisfies

Ry (y) > H(F(S)|V,Y =v).
max (y)_r;leag (F(S)] Y)

The proof of this proposition is given in SectipnlIV.

Remark 3:For the static request FSN with single block encoding, du@®), the outer bound for the
average rate—cache region in Proposifibn 1 has the samessigm as Theorefd 1. As a consequence,
Theorem 2 and Corollary] 1 also apply & ,,.(R.). Consequently, Theorefd 2 and Corollaty 1 also
apply to R (Rc) since Ry, (Rc) = Riave(Re).-

On the other hand, Theordm 3 can be extended to followinggsitipn for the single block encoding
case.

Proposition 2 (Inner Bound)for the static request model with single block encoding,ta taple
(Re1y- -, Rer, Ru(y),y € Y) is achievable if,

Ree > I(Vi X[Q), L€ [1:1] (14)
Ru<y>>S§L]1?ea§<1<Us;X|w,Y=y,Q), yey, (15)

for somep(q) [T/ p(velz, @) Tlscp.py plusle, v, q) such that

mea;}(H(fé(X>Y)|(US:Sg[I:LLEGS)v‘/bY:y»Q):O» te [IL] (16)
Yy

Moreover, an average rafe,.... = Ey[R,(Y")] is achievable if,

R,. ; =
u-ave > ZPY(Z/) Z I?eag{I(USaX“/Z?Y yaQ) (17)
yey SC[1:L]

and the worst case ra,.,.. = max,cy R,(y) is achievable if

Rywe > max H(F(S)|V,Y =y).
yey

The proof of this proposition is given in Sectipn V.

Remark 4:Although the source-request p&ik*, Y*) for the model in Sectioflll, and the source—
request pai(X*,Y") for the static request model are different, the converseaahitvability results for
both models are evaluated under the same form of singk-lethdom variable§X,Y') ~ px (z)py (y).

Accordingly, if we choose a joint distribution in Propositi[2 that results in

[(US;X’V&Y:?J,Q) :[(US;X’VZUY:%Q)’
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for S C[1: L], 6,0 € S, ¢ # ¢, we can get rid of the maximum in equatidn(17). Under such
distributions the rate—cache region in Theofedm 3 and theageerate—cache region in Propositidn 2 are
equal.

By specializing Proposition 2, we establish a centralizgd-+cache tradeoff for the static request single
block encoding FSN stated in the following theorem.

Theorem 7 (Centralized inner bound for static requegiinsider the static request single block en-

coding FSN. ForR. = 0,1, 2,..., N, a rate tuple(Rc, (Ru(y) : y € ))) is achievable if

1
Ru(Rey) > Y <1 — ] 2{ry. #1851 - 1}) ——. YE, (18)
S:S8|>0 tes (|5|—1)
for r, € [0: L], n € [1 : N] such thatanzlrn = LR.. Moreover, an average ratg, ,ve(Rc.) =
Ey[Ru(Rc,Y)] is achievable if,

wherea; = ZnNzl {r, = j}pn.

Remark 5:By choosingr,, = LR./N in (18), a worst case rate—cache traddff...(R.) is achievable

L — LR./N

Rue(Fe) > 1+LR./N°

(19)

This recovers the result of[[9, Theorem 1]. In this sense,ofédm[7 generalizes the strategy of [9,
Theorem 1] to the average rate—cache tradeoffs with arpitegjuest distributions. The underlined strategy
that establishes the theorem is based on distributed samadieg techniques instead of the explicit
network coding strategy in_[9]. Potentially, the choice of#iary random variables used in the proof
of Theorem 4 can improve the inner bound presented in Thef@tevhich is based on a simpler (but
easier to evaluate) choice. We refer to Apperdix B for thdieghoice of auxiliary random variables
and the proof of Theorei 7.

Similarly, by specializing Propositidd 2, we establish @ealgralized rate—cache tradeoff for the static
request single block encoding FSN stated in the followireptem.

Theorem 8 (Decentralized inner bound for static reque€nsider the static request single block en-
coding FSNs. FoR. € [0, N], a rate tuple(R., (Ru(y) : y € ))) is achievable if

S S @0

J=18:|8|=j
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for 7, € [0,1], n € [1: N] such thaty"™_, 7, = R..
Remark 6:By choosingr, = R./N, in (20) a worst case rate—cache tradeff,.(R.) is achievable

(N — Rc)
R

which recovers the result of [10, Theorem 1] for decentealizaching.

Denote the right hand side df (21) Wn(Rc). Note thatRyn(R.) is not convex. Thus, by memory

Rywe(Re) > (1 — (1= R/N)H), (21)

sharing among the achievable points, the rate—cache ffazleobe improved. We denote b‘?MN(RC)
the corresponding convexified bound. By compar}th(Rc) with Theorem 2 we have the following

theorem.

Theorem 9 (Multiplicative gap for static request singledda@ncoding):For the static request single
block encoding FSN withyy, = Unif([1 : N]) andR. € [0, N),

Run(Re)

R:—ave(RC)

Remark 7:We remark that Theorem 9 implies thatl22) also holds wR&p._, (R.) is exchanged with

<4.7. (22)

Ry, (Rc), i.e., the worst case rate—cache function, since it is Idveemded by the average rate—cache
function R}, (Rc).

The above theorem improves upon the multiplicative gag2in [10]. Furthermore, for the worst
case, in light of Remark] 7, we improve the previous gap2fn [9]. The proof of this theorem is given
in Appendix[A-B.

Remark 8:In an independent work _[19], the authors introduce a lowenniospecifically for the
worst-case that attains a multiplicative gap of 4. Compaoetthe lower bound in [19], our lower bound
applies to arbitrary request distributions.

In Figure[4 we plot the performance of the ‘ergodic’ rate-fmatradeoff curves in Corolladyl 2 and
Corollary[3 for uniform requests, and the ‘compound’ rateke tradeoffs in Maddah-Ali and Niesén [9],
[10]. For both ergodic and compound settings, the cengadligtrategies uniformly perform better than

their respective decentralized strategies.

IV. PROOF OFCONVERSEBOUNDS

In this section, we present the proof of Theorlegm 1, Propweii, and Theorermnl 2. We begin with the
proof of Theoreni 1.
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22 T T T T
——OQuter bound

00~ _ ——Centralized
T ——Decentralized
18 ‘| - - MA-N Centralized
Y\ - — MA-N Decentralized

Fig. 4. The rate—cache tradeoff for the centralized and rdesized schemes, faV = 20, L = 300. The solid curves are
the ‘ergodic’ rate—cache tradeoff curves in Corollaly 2 @wtollary[3 with uniform requests, and the dashed curvestse

‘compound’ rate—cache tradeoff in Maddah-Ali and Nieseg) [€0].

Consider any subs& C [1 : L]. DenoteVy; = (My, X*~1), ¢ € [1: L], i € [1:k]. SinceX andY
are independent by assumption, the Markov cHé&in,...,V; ) — X; — Y; holds for all: € [1 : £].
Then, sinceH (M;) < kR, for all £ € [1: L], we have

kY Ry >> H(M,)
tes tes

> H(M(S))

=1
k
=Y I(Xi; M(S), X"
Zzl
= 31X VA(S)).
=1

Recall F; = fy(X,Y). Then, we have
kRy > H(M[Y")

> H(M|M(S),Y")

April 11, 2016 DRAFT
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H(F*(S), M|M(S),Y"*) — H(F*(S)|M,M(S),Y")

Ve

H(FH(S)|M(8),Y") — ke

H(E(S)’Fl_l(S)jM(S)ij) — key,

I

.
I
—_

H(F;(S)|X"1(S), M(S),Y*) — key,

M-

.
I
—_

H(F(S)|X'™H(S), M(S),Y;) — ke

I

.
Il
—

I
M=

H(Fi(S)|Vi(S),Yi) — kex,
1

where (a) follows from the data processing inequality and Fano’s uadity, ande¢; tends to zero as

.
Il

k — oo. The rest of the proof follows from the standard time shadmgument and then letting — ooc.

Thus, we have that

R*(R.) > mi H(F(S)|V(S),Y),
i(Re) = min max H(F(S)|V(S).Y)

where the minimum is over all conditional pmfg--|x such thatV' — X — Y form a Markov chain
and
I(X;V(8)) <Y Ry, YSCL:I].

s
This concludes the proof of Theordrm 1.

At this point, extending the proof to Propositidh 1 requicgdy minor changes which we highlight
in the following. For the static request model with singledi encoding, the proof steps for the bound
on R. remains the same since the cache encoder does not utilizefttmation of Y in both cases.
For the bounds on the update rdtg, the difference is that in the static request model with Igifdock
encoding, we have multiple messageg for eachy € V. Thus, we can redo the steps for the bounding
R, with M, € [1: 2*%W)] assumingy” = y which gives the conditior(11).

Next, we prove Theoreml 2. First, we restrict attention to ¢ase of i.i.d. requests, i.epy (y) =
Hlepy[(yg) and py, = --- = py,. Further specializing to FSNs, we obtain a closed-form ldoan
R} (R.) by switching between thenin and max (and thus relaxing the bound), i.e., we have that for
SC[l:1],

Ri(Rc) =2 min H(F(S)|V(S),Y),

pPv(s)|x
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such that

)) < Z Rcé-

tes
ForSC[1:L]andn € [1: N], we denote

$n(S)=P{neY(S)}= > . (23)

ymey(S)
For simplicity, we will use the short hand notatiep = s,(S) while keeping in mind that,, depends
on S. Without loss of generality, we assume that > s; > --- > sy. Suppose thatR., R,) €
R*. Then, there exists a conditional pmf(s) x such thaty , s Ry > I(X;V(S)) =: r and R, >
H(F(S)|V(S),Y). Forn € [1: NJ], we have

> Ry >r=I1(X;V(8))
LeS

> [(x 1Dy (8) | x (I +1ND)
- H(X([lzn])) _ H(X(”)|V(S),X([“+1=N])) _ H(X([lzn—ll)w(‘g)’X([n:N}))' (24)
Now we show thatR, can be lower bounded as il (2). First, we have
R, > H(F(S)|V(S),Y)

_Zpy H((XW), £ € $)[V(S))

> ZSTLH(X(n)|V(S)7X([n—i_l:N}))?

where the last inequality follows by recursively applying

Zpy X ¢ e )V (S), x[n+1:ND)

> s, H(XM|V(S), x [ +1:ND)

+Zpy H(X®), 0 e 8)V(S), x™, x[nt:ND),
in the orderN, N —1,--- ,1. Next, R, can be further lower bounded as
Ry > g:an(X(")]V(S),X([”“:ND)
N-1

n=1
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—~
e
N

> sy (H(X([LN})) —r— H(X([lzN—l})’V( X(N ) + Z spH (X (S), X([n+1:N}))
Q) + N-1
> sy (HOCUN) =) = sy BN D (8), X ) 4 3 s HXW[V(S), X
n=1
L N1
= SN (H(X([I:ND) - 7") + (sn — sn)H(XM|V(S), X [r+1ND)

n=1

=S

. +
H(xNDy - r) + (w1 — sn)HEXVDY(S), X))

2
—

=
|

2
+ Y (50— sn)HXM[V(S), XN
1

—
o

)

v

. + N _ 1 +
sy (H (XN _r) + (N1 — 5N) (H(Xm.fv Dy~ — HXN=2D |y (8), x (¥ 1.N1>)>

2
+ Y (50— s HXM[V(S), XN
1

Z 3
—

=
|

n

@ - + N_ +
> sy (HXTND) = r) 7 4 (syoy = ) (H(X([l-N 0y _ T)
N-2
—(sn_1 — sy HXW=21v(8), X ) + Z — sn)H(X ™|V, X (LN
n=1

— sy (H(X“LN”) ) (oo — ) (HOXEN ) r)+

+ Z " — SN 1 X(n |V( ) X([n—i—l:N}))’

where (a) and (c) follow from @4) and H(X ™|V, X((»+1:ND) > o with n = N andn = N — 1,
respectively, andb) and (d) follow since (u — v)* > (u)* — v for all v > 0. At this point, it is clear

that we can apply the same argument for anoflier 2 times and arrive at
N

. +
Ry >3 (30— snet) (HXTD) 1) 7

v

3
Il
—_

I
Mz

.
n = Snt1) (ZH X) ) : (25)

where syy+1 = 0. Finally, for independent and identically distributed wegts,s,,(S) = s,(¢) for all

|S| = ¢, which concludes the proof of Theordm 2.

n 1

V. PROOF OFINNER BOUNDS

In this section, we present the proof of Theoreim 3, Propmsifl, Theoreni 4, and Theordmh 5. We
begin with the proof of Theoref 3.
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The cache contents are formulated by simple digital consjwas of the source sequencé. On the
other hand, the update message is formulated by using meuttgmpressions in Whichfg, SC1:L]
S # ) represents a compression of the d&*, Y'*). The compressions are binned and broadcast through
the common link. The destination nodes [1 : L] is required to recover only the compressicﬁﬁs such
that/ € S.

We prove the achievability fofQ| = 1; the rest of the proof follows by time sharing.
Rate splitting. Divide indexm < [1 : 2*%] into 2% — 1 indices, each indexed by a s8tC [1 : L],
S # . The indices are denoted bys € [1: 28], S C[1: L], S # 0, where} s Rs = Ry.

Codebook construction. Fix a conditional pmi{ [~ p(v¢|z) [Isc.ry pus|z,y) such that((B) is satisfied.
To generate @ache codeboofor user/ € [1 : L], randomly and independently generat&- sequences
vk (my), my € [1 : 2¥F«], each according t(}—[lep(vg,-). To generate theipdate codebogkfor S C
[1: L], S # 0, randomly and independently generaté’s sequencesf(ms,ls), ms € [1 : 28],
lsel: QkRS], each according tc}T[lep(ugi). Before transmission, the cache codebook for dsand

the update codebook is revealed to uéer[1 : L], and all codebooks are revealed to the encoders.

Cache encoding. Upon observinge*, for £ € [1 : L] the cache encoder finds an index ¢ [1 : 28]
such that(vé?(mg),m’f) € 7;@’“). From the covering lemma [25], it can be shown that this ermopdiep
is successful with high probability if

R > I(Vis X) +(€), (e[L:L].
We denote byM,, ¢ € [1: L] the index sent to decodérby the cache encoder.

Update encoding. Upon observing z*,4*), for S C [1 : L], S # ), the update encoder finds an index
pair (ms, ls) € [1: 28Fs] x [1 : 25As) such that(uk(ms, Ls), 2*, y*) € TS¥). If there is more than one
index pair, select one of them uniformly at random. If thesend such index pair, send an index pair
from [1: 2FFs] x [1 - QkRS] uniformly at random. From the covering lemmal[25], it can bewen that
this encoding step is successful with high probability if

Rs+Rs>I1(Us; X,Y)+(€), SC[1:L],S#0.
The message:s is sent to the decoders. We denote g, S C [1: L], S # () the indices chosen by
the update encoder.
Decoding. With (Ms : S C [1: L], S # (), y*, andv’(M,) at hand, decodef € [1 : L] finds the unique

index Is that satisfies

(ug‘(MS’ 13)7yk’U§(Mf)) € 7Z(k)7
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for S such that € S. From the packing lemma [25], it can be shown that this dewpdtep is successful

with high probability if
Rs <I(Us;Y,Vy) —(e), SC[l:L],L€S.

By using the fact that (Us; X,Y) = I(Us; X, Y, V), eliminating the auxiliary rate®s and Rs with

> s Rs = R, the probability of error for recovering@ tends to zero ag& — oo if the conditions in
Theorem B are satisfied. Finally, since we choose a jointilligion that satisfies conditionl(4) and by
the typical average lemma [25], the probability of errordeno zero agk — oo.

Remark 9:The decoding phase for the update messages can be furthesvidpby applying some
decoding order o/% such that receivef € S, ¢ € S’ decoded/% beforeU%, for every|S| > |S'|. By
this ordering, when decodin@g, the decoder can further ugg asside informationwhich results in
the condition

Ry> ) maxI(Us;X|(Us : L€ S',[S'| > |S]). V2. Y. Q).
scL)

Next, to prove Propositionl 2 which applies to the static essiand the single block encoding case, we
only need some minor modifications from the above steps irchwvhie highlight in the following. For
the cache encoder, we follow the same encoding step as inréwops case since for both cases,
the cache encoder does not depend on the request inform#&®ror the update stage, we fix a
distribution []¢ p(us|z,y). For S C [1 : L], S # 0, randomly and independently generats.»
sequencesit (ms. . ls,), msy € [1 : 2¥Fsy], Ig, € [I : 2¢Rss], each according tq T, p(usi|y),
where) "¢ Rs, = Ry(y). Upon observingz*,y), for S C [1 : L], S # ), the update encoder finds an
index pair(msy, ls,y) such that(uk(ms,,ls,), z%) € ng)(Ug,X), where the typical Seljk)(Us,X)

is defined ovep(us, z|y). This step is successful with high probability if
Rsy+ Rsy > I(Us; X|Y = y) + ().

At the decoder, with\/s ,, y, andvf(M,) at hand, decodef € [1 : L] finds the unique indeXs , that

satisfies
(U (Ms . ls ), vf (My) € TH (Us, V),

for S such that’ € S, where the typical seﬁ(k)(Ug, V') is defined ovep(us,v|y). This decoding step

is successful with high probability if

Rs <I(Us;VilY =y)—(e), SC[:L],l€S.
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By eliminating the auxiliary rate®s , and Rs, with 3" ¢ Rs, = R,(y), we arrive at the conditions in
Propositior P.
In the next subsections, we specify the choice of auxiliarydom variables to characterize achievable

rate regions for FSNs. The use of coded time sharing is alilitthe analysis.

A. Proof of Theorerhl4 and Corollafy 2

We show the rate—cache tradeoff fi = 0,1,2,...,N. Fixr, € [0 : L], n € [1 : N] such that
ZN rn, = LR.. The auxiliary random variables in Theoréin 3 are chosen ésn® Let Q = (Q,, :

n=1
n € [1: NJ]), whereQ, = {7, : T, C [L : L],|Ts| = r} and @, ~ Unif (Q,,). Forn € [1 : NJ,
To C[1: L], |Tn| = 7, define

Wi = X . 1{Q, = To}, (26)

where1{.A} is the indicator function of the evept. The auxiliary random variableg, ¢ € [1 : L] and

Us, SC[1:L], S #0 are chosen as a collection W%). For¢ e [1: L], we choose
Vi= (W in €[l NL Ty C [ LL Tl = sl € T,) (27)
On the other hand, fo§ C [1: L], S # (), we choose
Us = (WA - As(Toun) in € [1: N T C (15 L[ Tal = 12 (28)

where

JES\Tn JES®

As( n,n>ﬂmcs}( 11 ﬂ{an}) (Hﬂ{ifj#n}), (29)

andS¢=[1: L]\ S. Note that the above choice of auxiliary random variablesfya).

With the above choice, the cache rate is given by
Rcé > I(VZQ X|Q)

= H(Vi|Q)
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(e

N
> R, (30)

On the other hand, note thatUs; X |V;,Y,Q) = H(Us|V,, Y, @), and

3

H(US“/Z) Y7 Q)

N
=5 Y HWY - As(To )V, Y, Q)

n=1T,:|T.|=rn

> 2 AT w)Y,Q)

n=1T,:|To|=rn (2T,

=2

(

S

=2

. H(W;’” As(Tas )Y, Q, Qn = Ta)

% S oy HWE - As(To )Y =4,Q,Qn = Tp)

=T, () o3

:i > & )Zpy Y)1{T, CS}( 11 Jl{yjn}) (H Jl{yj#n})

n=1T:|To|=rn &Tn yey FES\Tn JES®

3
I
NN
;1

N
(:)Z > ()p'ns' (1= pn),

z&zgl_gfs
wherep, = P{Y; = n}, step(a) follows sinceW%) € Vy for £ € T,, and step(b) follows since
py(y) = [121pvi (), pyi(n) = pn. Let 9, (S) = p
evaluated by

IS1=r2 (1 — p,)I5°I. Then, the update rate can be

Ry > Z %%XH(US|W,Y,Q)

SCl1:L]
> maxZ > ()
SC1:L] n=1T,:|Tn|="n, (rn)
b T, TnCS
(==
= Z maXZJl{IS|> Tn } 210y (S)
SC[1:L] (T’n)
Gl
= > Zn{|8|>rn} T L) (S)
SCl1:L]n=1 (r)
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I N (|5|—1)
=3 > 1{|S] > b (S)

Jj=18:|8|=jn=1 (rn)
L N (j—l) ' ‘
=2 > D tiE e (- p)t
Jj=18:|S|=jn=1 (T’n)
N L j—1
-2 s> n(j) ((2”)) )
n=1j=1 Tn
N L I ]r_l . ~
:Z Z <]>((Ln))pzl n(l_pn)L /
n=1j=r,+1 T
N L-—r
_ J _(L—-mm .
_,;jzlwrrn( J )m(l_p)L ’

This concludes the proof of Theordmh 4.

Next, specializing to uniform requests, lgt = r such that- = LR./N. Then,

N L—r,

SEW TG L

R

L—r ]
=N -
;]—I-r

Thus, for R. = 0, we haver = 0, which gives

SEHIONCON
() (-8 (5)

= N(1—(1-1/N)b).

Forr € [1: L] such that- = LR./N, we have

L—r . ] L—r—1q
j L—r 1Y\’ 1) J
R, >N - ) — 1-—
() (F) (-5
)08
j:Oj—l—r j N N
A
s ]

Z+r
whereZ ~ Binom(L — r,1/N).
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B. Proof of Theorerhl5

Consider any cache rafe. € [0, N] and letr,, € [0, 1] such thath:1 rn, = Rc. The auxiliary random
variables are chosen in the following manner. et {Qé") :n€ll: N,Le[l: L]}, whereQé") are

independent of each other a@") ~ Bern(r,). For¢ € [1: L], we choose
V= (X(")Qén) in e [1:N]>. (31)

Note that with this particular choice df;, the caching strategy idecentralizedOn the other hand, for

SCIl:L],S+#0, we choose
Us = (X(") “Asp:nell: N]) ,
where

Asn=[[H{Y;=nor Qﬁ”) =1} J] 1{¥; #n and Qg.") =0}.

jES jES*
Note that the above choice of auxiliary random variablesfafd)). Then, the cache rate is given by
Ry > I(X;Vi|Y, Q)

= H(V/|Q)

N
Z P(ng =1)

3
Il
—

rn = Re.

I
WE

3
Il
—

Furthermore, forS C [1: L] and? € S, we have
H(X(n) : AS,TL|W7Y7 Q)
= H(X™ . Ag,|(X™ .Qén)),Y, Q)
— P{Q\" = 0} H (A5, XM (X" . Q") Y,Q,Q =0
{QZ } ( Sn ’( QZ )7 7Q7Q£ )

=P =03P{yi=n} T] (=pp) [] pin

jes\{¢} JES”
= (L —7n) pu(1 - QN)‘S‘_la‘r‘LSCI7
wherep,, = P{Y; #n andQ(") =0} anda,, = (1 — p,)(1 — r,). Thus, the update rate is given by
J J i
Ry> ) maxH(Us|Vi,Y,Q)

SC[1:1]
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N
= > > -r)pall = o)l

J=1 8:|8|=jn=1
L I N
— Z (]) Z (I —7rp)pn(l — ozn)j_lozﬁ_j
j=1 n=1
N L
s pnl(l_ = ) 3 (f) (1= oy Yol (32)
n=1 noo=1
N
:anl“_i—a’“%_ag). (33)
n=1 n

This concludes the proof of Theordm 5.

VI. NUMERICAL EVALUATIONS

In this section, we provide an algorithm for numerically iopzing Theoreni ¥4, some notes on the
optimization of Theorenmh]5, and some numerical examples efdiiter bound and the centralized and
the decentralized inner bounds.

We begin by providing an optimization algorithm for Theorén

Proposition 3: For R, = 0, %, %,...,N, Algorithm [1 finds the minimum value oR,(R.) for the
centralized strategy in Theordm 4, whefg ~ Binom(L — r,,, p,).

The proof of this proposition is given in AppendiX E.

Next, we consider the decentralized strategy in Thegdenh&nTforR. € [0, N], finding the minimum

rate—cache tradeoff for the right hand side of equafibndguires optimization over, € [0, 1] such that

Zi\’zl rn, = Rc. The process can be cast as the followaamvex optimization problef26]:

N L-1
minimize > pp > (1—pp) (1 1),
n=1 £=0

subjectto 0<r, <1, Vne[l:N],

N
Z rn = Re.
n=1

For the following discussion, we assume thate (0,1) for all n € [1 : N] and L > 2. Now let us

consider the Lagrange function

L(r,pu,v,\)
N L-1 N N N
= an Z (1 _pn)g (1- Tn)Z—H + Zl‘n(_rn) + Z Un(rn — 1) + A (Z Tn — Rc) )
n=1 =0 n=1 n=1 n=1

April 11, 2016 DRAFT



26

Algorithm 1 Greedy Algorithm
Initialization:

N« [1:NJ;
R:. < 0;
forn=1,---,N do

Ty < 0;

en < pn (1= (1—pa)*) —Egz, [ZZ—L}
end for
R SN pn (11 —pa)h);
Ru(R) « R;

for Re=1,2,... N—1,Ndo

m <— argmax e,;

neN
R+ R—e,,;
Tm < Tm + 1;
if r,, = L then
N = M\{m};
else
e = B, |7t - B [
end if
Ry(Rc) = R;
end for
return 2,
wherer = (r1,...,rn), p = (tt1,...,4n), @ndv = (v1,...,vy). Denote byr* and (u*,v*, A*) the

optimal solutions for the primal and dual problems, respelt Since the optimization problem is convex,
the corresponding Karush—Kuh-Tucker (KKT) conditions suéficient for optimality. In particular, we
have forn € [1: N],

1) r, =1if and only if p,, > \*;

2) r, =0 if and only if

L-1

DPn Z(@"ﬁ‘ 1)(1 _pn)é < )\*3
/=0
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Fig. 5. The cache-rate tradeoff curves for the centralizderme (upper solid curve), the decentralized scheme (diatséd
curve), the outer bound (bottom solid curve), and the HP&egy (dashed curve) fav = 1000, L = 10, anda = 0.

3) r, € (0,1) if and only if
L—1

Pn Y (04 1)1 —pp) (1 —r) =N
=0

In the following, we compare the centralized and decenrgdlinner bounds with anncodedbaseline
strategy which follows the principle of caching the highpspularity first (HPF). In[[2], it was shown
that HPF is optimal for the single user FSN. The HPF achievedtie pair for the multi-user network is
given by

N
Rupr(Re) > Y (1—(1—pn)") (34)
n=R.+1

for R. € [0 : NJ.

For numerical examples, we consider a Zipf distribution lom file popularities, i.e., the popularity of
file n € [1: N] is given by

n—a

bn==§ """

POPEREa

for some fixed parameter > 0.

In Figure[5 we compare the performance of the two inner boutids HPF strategy, and the outer
bound for the cas& = 1000, L = 10, anda = 0, i.e., the case when the files are uniformly distributed.
In Figures[6 and]7, we compare the inner bounds and the outerdbfor the casesr = 1.2 with

(N =1000, L = 10) and (NN = 10, L = 1000), respectively. In all cases, the inner bounds in Theoféms 4
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\ —~Quter bound 1
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c

Fig. 6. The cache-rate tradeoff curves for the centralizderme (upper solid curve), the decentralized scheme (diatséd

curve), the outer bound (bottom solid curve), and the HP&exly (dashed curve) fav = 1000, L = 10, anda = 0.7.

10 T T T T T

T T T

o - -~ HPF
R —Centralized caching
8 N ----Decentralized caching|
RN —Outer bound

Fig. 7. The cache-rate tradeoff for the centralized and rdeslized schemes (closely merged in the upper solid cuthe)
outer bound (bottom solid curve), and the HPF strategy @hslurve) forv = 10, L = 1000, anda = 0.7.

and[5 are within a constant multiplicative factor ©from the outer bound in Theoreph 2. On the other
hand, the HPF strategy shows poor performance when the’' usquests become uniformly distributed

or the number of users is large compared to the number of files.

VIlI. CONCLUDING REMARKS

Following up on our previous information theoretic apptioabhat formulated single and two-user
cache aided networks in terms of a distributed source copinglem, in this paper, we have extended

the approach and provided inner and outer bounds for sewachle networks with multiple users.
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Looking back, there has been several diverse approachdsatebeen taken to understand the benefit
of coded caching, e.g., distributed source coding [2]] ,[P@fwork coding([®],[[10], computational [18],
and index coding [16],[[24],[27] based approaches have loeseloped. Compared to the distributed
source coding approach which is based on random coding amfsirthe advantage of a (linear) network
coding approach is that it explicitly reveals the codingggy with potentially lower complexity. On the
other hand, in terms of theoretical analysis on the perfageaf these coding techniques, as originally
developed in the paper by Ahlswede, Cai, Li, and Yeung [28}lwork coding can be specialized from
the more general random coding theorems, €.al, [29]. We &eedemonstrated this by showing that
our coding theorem based on random coding arguments cavereite network coding based strategies
which is accomplished by substituting network coding wimaom binning.

On the other hand, the relation with index coding based ambres is less apparent. The idea of
translating the cache network into an index coding problemsi follows. Under the assumption that the
cache content is fixed to some fraction of the database (incaded fashion), and assuming that the
users’ requests are fixed, the update phase can be viewediadeancoding problem. In general, the
uncoded cache placement assumption itself may lead to asirbal strategy for the caching problem.
Nonetheless, several approaches adopt this assumpiitudiimy our choice of auxiliary random variables
which enables the analysis to be more tractable and in dmasas is sufficient to obtain order optimality.
Under such assumptions, there is an interesting analody thvé index coding results in_[30]. In_[30],
the authors provide an achievable scheme based on randdangdodthe index coding problem instead
of the more commonly used graph theoretic, algebraic, atdank coding based approaches. Using this
approach, the authors showed that a composite random cetimiggy is optimal for all index coding
problems with up to five messages. Our update coding straseggminiscent of this composite coding
strategy in that it is represented by the auxiliary randonaéesUs, S C [1: L], S # 0, for which only
the decoders if € S recoversUs. However, in general, the composite coding strategy cantriilys
suboptimal for index coding. It would be interesting funtiveork to seek for improved strategies over

our proposed composite coding strategy for cache aidedoniesw

APPENDIX A

ANALYSIS OF MULTIPLICATIVE GAP RESULTS
A. Proof of Theorerh]6
Denote the right hand side ofl(7) b#, 4.(R.). Note that we haveR,4.(0) = RX(0). To prove

Corollary[3, we consider the following (relaxed) achiewaldte—cache region given by the convex hull
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of the point(R., R,) = (0, R;(0)) and the set

N — R,
Ry >
{(RC’R“) & 1+ R(1—1/N)

,RCE[O,N]}.

Denote byRu_dc(Rc) the corresponding rate region. Now, we show that given a foathe rateR. >
0, the decentralized coded caching scheme in Corollary 3emebian update rate within a constant
multiplicative factor from the rate—cache functi®j(R.) for uniform requests. LeR,.;,(R.) denote the
right hand side off(3).

Since R,.b(Re) < Rj(R.), it suffices to show thav“u'_‘l’:((ﬁ:)) < 4 for Rc € [0,N). If N =1, it can
be easily checked that,.4c(R.) = Ru-n(Rc) = 1 — Re. In the following, we assume thal > 2. For
notational convenience, we denate= min{L, N}. The lower boundR,,(R.) is an intersection of
half planes, and the corner points Bf.,(R.) are characterized by the s@t= {(wy, Ry.b(Rc)) : £ €

{0,1,--- ,L}}, where

N if =0,
- N(1-%)" i 7_
Wy 1= N+(Z+1—N)(1—%)Z if £e[L—1],
0 if ¢=1L.

We note that for¢ € [1 : L — 1], the two linesy = (1 — (1 — 1/N)*)(N — ¢z) andy = (1 — (1 —
1/N)HH) (N — (¢ + 1)7) intersect atr = wy.

Next, we relax the inner bounéu_dc(Rc) by the following piecewise-linear bound resulting frdm
uL—dc(RC) = (1 - Q)Ru—dc(wﬁ) + éu—dc(wﬁ—l)y

(Re) = Ruy-ac(Re) for all

R € {wo,w1, -+ ,wr}. Then, for each segmeft,,w,—1), ¢ € [1 : L], the ratio% is a linear-

if Re = (1 —@)wy + Ouwy_, for somed € [0,1), £ € [1 : T]. Note thatR/
fractional function with respect td?. and thus is quasiconvex [26]. A quasiconvex function has the
property that the value of the function on a segment does xaeesl the maximum of its values at the
endpoints. Therefore, it suffices to check whet u_lb((ﬁ:)) < 4forall R € {wo,wr1,--- ,wr}. First, it is

clear that we have

v

lim Ru—dc (Rc)

e <l .
R—N- Ry p(Re)
Also, we have

uu-dc(Rc) N(l B (1 — 1/N)L)

R
Rymn(Re)  (1—(1—1/N)L)N
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1-(1-1/N)-
1— (1 _ 1/N)min{L,N}

1—(1—-1/N)E .
% if L >N

1 if L<N

(i)
—1—e!

~ 1.5820,

where (a) follows since(1 — 1/z)* < e~ for all z > 1. Finally, for all ¢ € [1 : L — 1], we have

™~ N—wg
Ru—dc(Rc) 14w, (1-1/N)

Ryp(Re) (1= (1= 1/N) (N — L)
14

B L O Ut O0 (St DM TR Ol
_ L-0-H[-0-5H"
EPURE U ) M. 1L ) M (f0-%))

< su 1—1—77: :
< o, (e
2
o)
Inay

<1‘ mf
4,

—~
=

IN

whereay = (1 — 1/N)~" and (a) follows since 2~ is a decreasing function for af > 0. This

ez —1

concludes the proof of Theorelm 6.
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B. Proof of Theorerhl9

Recall the definition oﬂ?MN(RC), which is defined as the convexified bound[inl(21)Mf= 1, it can
be easily checked thatyy(R.) = 1 — Rc = R’ ,..(Rc). For N € {2,3,4}, we have

Run(Re) < N — R,

Ry ave(Re) — maXZe[l:L}(l - (1~ 1/N)Z)(N —(Rc)
1 N — R,
T (1-Q1-1/N))(N - R)
=N <4.7.

For the rest of analysis, we assume that> 5. To facilitate the gap analysis, we consider the following

relaxed upper bound of (21):

T (Re) < (N — Re)- min{%, 1}

c
= Rupper(Rc)7

for all R. € (0,N], and we defineR,pper(0) := min{L, N}. We remark thatRpper(Rc) iS quite
suboptimal as an upper bound and is not continuoug.at 0 whenZ < N. However, the corresponding
convexified boun(Ruppe,(Rc) is sufficient for our analysis. On the other hand, we condigerfollowing

relaxed lower bound

R} e(Re) > (1—(1=1/N)")(N = (R)*

> max
Le[min{ L,[N/41}]

=: Riower(Rc)-
Since
Riower(Re) < Ry ye(Re) < Riwe(Re) < Run(Re) < Rupper (Re). (35)
it suffices to show
RUPPGF(RC)

<47, R.€|0,N).
Rlower(Rc) c [ )

For notational convenience, we dendte= min{L, [N/4]} andx = min{L, N/4}. Note that the lower
bound Rjower (Rc) is an intersection of half planes. The corner pointsRpf.. (R.) are characterized by

the set® = { (wr, Riower (wr)) : £ € [0: L]}, where

N if £=0,
_ N(i-%)" - 7
wee N+(t+1-N)(1-%)" it ¢ e[l -1,
0 if ¢=1L.
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Fig. 8. Plots of various bounds fdé, N) = (15,10) and R. € [0, 5].

We note that for al¥ € [L — 1], the two lines
y=(01-1-1/N) )N ~la),
y=(1-Q1-1/N)THN ~(+ 1))

intersect atr = wy.
Next, we relax the upper bounﬂupper(Rc) by the following piecewise-linear bound resulting from

{we:ke0: K|}

RLpper(RC)

= (1 - H)RUPper(wZ) + eRupper(wé—l)a
where R. = (1 — 0)w; + w,_, for somed € [0,1), £ € [1 : L]. Note thatR/, e, (Rc) = Rupper (Rc) for
all Re € {wy : £ €[0: L]}. In Figure[8, we provide an example witli(, N) = (15,10) summarizing

the various bounds used in the analysis.

Then, for each segmefit,,wy_1), k € [1 : L], the ratio Fiosa(B) g 3 linear-fractional function with

Rlower(-R{)
respect toR., and thus it is quasiconvex [26]. As noted before, a quaseofunction has the property

that the value of the function on a segment does not exceechdxenum of its values at the endpoints.

Thus, it suffices to check wheth%””’% < 4.7 for all R € {wp, w1, - ,wﬁ}.

lower

First, it is clear that we have
R pper (Fe)

lim —P 2 — 1,
R.—N~— Rlower(Rc)
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Next, we have

Rijpper(o) _ miD{L,N}
Riower (0) (1-(1-1/N)I)N
4k /N
~1-(1-1/N)*
(a) k/N
=4 1—er/N
(2) L 4.521
=T T
where (a) follows since(1 — 1/z)* < ¢! for all z > 1 and (b) follows sincey(z) = =% is an

increasing function and/N < 1/4.

As for ¢ € [L — 1], we have

N
R(Jpper (wf) we

Rlower(wﬁ) (1 - (1 - 1/N)Z (N &UZ)

)
(1-

z=—2In(1-1/N)
where (a) follows by a change of variable = —¢In(1 — 1/N), (b) follows sincez > 0 and (1 —
1/N)=N > e forall N > 1, (c) follows since¢(z) = e* (

2
P Z_l) is an increasing functiéH and

2
5 The functiong(z) = ¢* (1 + ﬁ) , z > 0, is an increasing function since its first derivative is negetive.
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z<—8%In(1-1/N) (sincel <L —1 < N/4). Finally, since—N In(1 — 1/N) is a decreasing function
of N and N > 5, we have

2
Rilpper(wf) o7 <1 + z >
Riower (WZ)

IN

~ 4.607.

APPENDIX B

PROOF OFTHEOREM[7]

We show the achievable rate pairs 8 = 0, 1,2,...,N. Letr, € [0: L], n € [1 : N] such that

ZN rn = LR.. For the cache encoding step, we reuse the choidé of (27) based on the definition

n=1

of W%) in (26). For the auxiliary random variablé&, S C [1: L], S # (), we choose

Us = (Wi - As(Tayn) in € [1: N T € (15 L[ Tal = 1) (36)
where
As<n,n>n{7;cs}n{8rn+1}( 11 wjn}) 37)
JES\T.

Note that the above choice of auxiliary random variables&a{l6). Since

2

n=17,:|T,|=rn

S BHWY  As(Ton)lY =.Q)
1T Tol=rn LT,

I
NE

n

1 .
— HW - As(To )Y = 4,Q,Qn = Ty,)

LT To|=rn L& T (rn)

I
E

3
Il

1
1{|S] = rn + 1} Z —~Hys\7, = n}
7:#'7:1‘:7‘7“ (Tn)

I
WE

n=1
0T, T CS
N
(b) 1
=S 1{ISl=r+1} Y Hye=n}
n=1 %5‘7—71‘:7“717 (Tn)
LETn, T CS
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N
SR 5] - .

= Zﬂ{ISI =7Tn + 1}<T" e 1) (L]l{w =n}

")
_Z]l{|5|—7‘n—|—1}( )]l{yezn}
A
= 1{|S :Tye+1 7
{IS| }(|S|L_1)

where stepa) follows sincve(rf) eV, for £ € T, and(b) follows since for|S| = |7,|+1, { &€ T,, and
¢ e S, we haveS \ 7, = {¢}. Thus,

Ry(Re,y) > > max H(Us|Ve, Y =4,Q)

S:|S8|>0
Z max]l{|5| =71y, +1}——
S:|S|>0 (\S\ 1)
= > (1 — T 1fry. #15I - 1}) (38)
S:[S[>0 tes ( |—1)

This concludes the proof of the first part of Theoreim 7.

Next, for the average rate—cache tradeoff,

Ey [RU(RC7Y)] > ZPY(?J) Z <1 - Hﬂ{rye 7é ‘S’ - 1}> ( i )

S:|S|>0 leS |S|—1

e (1—Hp{m#\sr—1}> :
S:18|>0 tes (\5\_1)

-y <1—H(1—P{m=l5|—1})> !
2o (1s1-1)

S:|8| es
al 1
- (1—1‘[(1—Zp{rn:\sy—1,n:n}>> -
S:|S|>0 LeS n=1 (|S|—1)
al 1
- 1_H<1— ﬂ{rn=!3\—1}pn>> T
S:|S8|>0 leS n=1 ( _
N
-3 s (T (- -i- ) ) o
Jj=18:|S|=j lesS n=1
L N
:Z 1—<1—Z]l{rn:j—1}pn> =
i=18:8|=j n=1 (j—l)
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L orp N . N
EO(- (B )

L . N J
oy Lzirl 1—(1—Zl{rn:j—1}pn>

j=1 J n=1

L1 ay N J+l
:jzom (1 (1—;1{%:]}%) )

= ? (1—(1—aj)j+1),

wherea; = Y20 1{r, = j}pn, and step(a) follows sincepy (y) = [}_, py; (y;). This concludes the
proof for the average rate—cache tradeoff.
Finally, to prove Remark]5, we choosg = r, n € [1 : N], such that- = LR./N. Then from [(38),

Ry(Re,y) > > <1—H1{Ty,f#l5|—1}> ( i )
S

S:|8]>0 €8 |-1

=Y =S| - 1}

8:8|>0 (ISI—I)

= > ;

S:|S|=r+1 (

_ L 1
N <r+1>@
_L-—r
147
_L—LRC/N

1+ LR/N"

3 -

APPENDIXC

PROOF OFTHEOREM[8

Consider any cache ratg. < [0, N] and letr, € [0,1] such thatZQ’:1 rn, = R.. We choose the
auxiliary random variables in the following manner. For taehe encoding step, we reuse the choice of

Q andV; in (31). Let7, = {¢: Qé") = 1}. On the other hand, fof C [1: L], S # 0, we set
Us = (X(”)Agm :nell: N]) )
where

Asn =T CS,|Tal = S| =1, Ys\7, = n}.
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Then, for§ C [1: L] and/ € S, we have
H(X™ - As Ve, Y = 9,Q)
= H(X™ . A, [(X™ . Q)Y = 4,Q)
= P{QY = 0}H(X™ - As (XM - Q)Y = 4,0, = 0)
— P{Q\" = 0} P{T, C S.|To| = IS| - Lys\r. = nQ™ = 0}
W p Q™ = 0} P{T, € 8, |Tal = 18] — 1,y = Q'™ =0}
= P{Q™ = 0}1{y, = n} P{T, C S.|Tal = IS — 11Q™ = 0}
=P{Q/" =0)1{ye=n} [] 1@\ =1} ] 2{Q}" =0}

jeS\{¢} jES”

=P{Q" =01{ye=n} ] n [[—ra)

jes\{ey  gjese
= 1{ye =n} (1 —ra) P71 (1 =)',
where (a) follows since for|S| = |7,| + 1, 7, C S, Qé”) =0, and7, = {¢: Qéfl) = 1}, the condition

ys\1, = n is equivalent toy, = n. Thus, it holds that

R
U(Rc7y)> Z I?ég{H(US|W7Y7Q)
SC[1:L]

L N
- Z Z %%XZ 1{ye =n} (1 —ry) rlS711 = 7,5
] n=1

Jj=18:|S|=5
N
S3 Y Yt
J=18:|8|=j n=1
L
:Z %%XT; 1(1 Ty )L—]—i—l

This concludes the proof of the first part of Theorem 8.
Finally, to prove Remark]6, we choosg = r = R./N. Thus,
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~ D0y
_ (N_Rc)
= T(l—(l—Rc/N)L)-

APPENDIXD

PROOF OFCOROLLARY [

For R, > 0, we first relax the lower boundl(2) by fixing= 1 and get

N
Ri(Re) 2 ) (su(1) = snsa(1)) (n — Re) ™ (39)
n=1
>pn (N = Re). (40)
For the uniform request case, by choosing=---=ry =L —1 for R. = N — N/L in Theoreni 4,
we have
RA(R) <~
u c) = L

By memory-sharing betweeR}(N) = 0, we have that folR. € [N — N/L, N],
R:(Rc) < PN (N - Rc) :

Furthermore, for arbitrary requests, by choostng=--- =ry_1 = Landry = L—1for Re = N—1/L

in Theoren#, we have

Ri(N —1/L) < PN

“14ry
_ PN
T
By memory-sharing betweeR}(N) = 0, we have that folR. € [N — 1/L, N],

R:(Rc) < PN (N - Rc) :

APPENDIX E

PROOF OFPROPOSITIONJ
We prove the proposition by induction. First, f&. = 0, Algorithm [1 is initialized by the optimal
value R}(0). Next, we assume that Algorithid 1 finds the minimum valueRf R.) (the right hand
side of [5)) whenR. = s/L for somes € [1 : NL]. Denote byr} = (r1,...,7}%) the corresponding
assignment in Algorithma]1 foR. = s/L. Forr € [0: L] andp € [0, 1], denote
L—r ] I —r ' .
wrp) =3 ( . )pfa _p)ra,

I\
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We observe that for € [1: L] andp € [0, 1]

K(r,p) = Ez [Zir} ;

whereZ ~ Binom(L — r,p), and

N
R(I‘) = Z ’{(Tmpn)'
n=1

Since it will be clear from the context, we simply deneté,) = (r,,p,). Note that the induction
hypothesis impliesRk,(s/L) = R(r%). Then, for the cas&?. = (s + 1)/L, assume an arbitrary =
(r1,...,rn) € [0: L] such thathLV:1 r, = s+ 1. Note that from the pigeonhole principle, there exists

a componeny such thatr; > r; + 1. Let 1; be an all zero vector with thgth component replaced by
1. Then,

R(r) = R(r — 1;) — (k(rj — 1) — k(r)))
> R(ry) — (k(rj — 1) — &(r;))

> R(r) = (w(r}) = w(rj +1))

>R *\ *\ * 1
> B(rt) = max (s(r}) — (7% +1)

(9 *
= R(rs—l—l)a

where for convenience we defirgL + 1) = 0, step(a) follows from the fact that the element-wise sum

of r — 1, is s and from the induction hypothesis, st@p follows since forr € [1: L — 1],
k(r—1)—k(r) > k(r) — k(r +1), (41)

and thatr; > 7 +1, and stef(c) follows from the incremental assignmentudf, ; from ry in Algorithm
[. It remains to prove[(41) which we show in the following. SEjrwe consider the case= 1. Let
Z ~ Binom(L —2,p) and A ~ Bern(p). Assume thaZ and A are independent. Then, we halfe A ~
Binom(L — 1,p) and thus

Z+ A
2r(1) = 2E [m}

e[
= 2pE [g—iﬂ +2(1-p)E {Z—H}

— k(2) +E [(2}9 —lerZer Qp} e [2(1211,1)2}
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i L
:ﬁ@)+1—%1—p)2?;g§:<5>¥ﬂ—pfﬂ
2/) j=2
<kK(2)+1-2(1-p) %%ﬂ<§>ﬂ@—py4]
L 2

= 5(2)+1 - (1-p)*!
< K(2) + k(0).

Next, we consider the cage> 2. LetU ~ Binom(L—r—1,p) andA, B ~ Bern(p). Assume that/, A, B
are independent. Denoté = U + A. Then, we havé” ~ Binom(L—r,p), V+ B ~ Binom(L—r+1,p),

and

K(r—1) — r(r)
-5 vl

V+B+r—1 Vitr
=pE_gii +@—mE_V1%i7}_ [vzr]
I PN 2 RN S
ZPE_ViT_+(1_p)E_(V+r—V1)(V+7’J
ZPE_EI%IT_+“’””EJU+¢X5+T+1J
R ot S
e[ o one[ot] e

el U4 U
U4+ A+r U+r+1

=k(r) —k(r+1).
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