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Abstract

It is well known that lossless compression of a discrete memoryless source with near-uniform encoder output
is possible at a rate above its entropy if and only if the encoder is randomized. This work focuses on deriving
conditions for near-uniform encoder output(s) in the Wyner-Ziv and the distributed lossy compression problems.
We show that in the Wyner-Ziv problem, near-uniform encoder output and operation close to the WZ-rate limit
is simultaneously possible, whereas in the distributed lossy compression problem, jointly near-uniform outputs is
achievable in the interior of the distributed lossy compression rate region if the sources share non-trivial Gács-Körner
common information.

Index Terms

Rate-distortion, Slepian-Wolf problem, Wyner-Ziv problem, distributed lossy source coding.

I. INTRODUCTION

Owing to the source-channel separation theorem for point-to-point communication and the convenience separation
offers, separate source and channel coding and the optimality of separation have been studied in several multi-user
problems. Separation-based approaches, especially in multi-user settings, usually assume that the output of source
encoders are near-uniform in its alphabet, where uniformity is measured using the variational distance metric.
While the lack of near-uniform encoder output(s) does not necessarily cause separation-based approaches to fail,
a characterization of when compression of sources can be achieved with near-uniform encoder output(s) simplifies
the analysis of separation-based schemes, and is certainly valuable from a theoretical perspective.

Lossless compression with vanishing error probability and near-uniform encoder output was explored in [1],
[2]. Hayashi showed that vanishing error probability and near-uniform encoder output cannot be simultaneously
achieved [2]. However, one can design lossless codes with near-uniform encoder output if the encoder and decoder
share a random seed whose size is roughly the square root of the blocklength of the code [3], [4]. In [4], we
have also shown using finite-length results of Kontoyiannis et al. [5] that lossy compression arbitrarily close to the
rate-distortion limit is possible even with near-uniform encoder output. In this work, we analyze the rate points for
the Wyner-Ziv (WZ) and distributed lossy compression problems at which compression with near-uniform encoder
output(s) is possible. Specifically, we have proven the following results.
• Wyner-Ziv Problem: Lossy compression with near-uniform encoder output is possible at all rates above the WZ-
rate limit.
• Two-source Distributed Lossy Compression Problem: If the sources share non-trivial Gács-Körner common in-
formation, then lossy compression with jointly near-uniform encoder outputs is achievable at any rate pair in the
interior of the distributed lossy compression rate region. The case where the sources share no Gács-Körner common
information is open.

The proofs for both problems employ ideas from channel resolvability [6, p. 404] and the likelihood encoder [7].
The result for the distributed lossy compression case is proven without needing a characterization of the underlying
rate region. Instead, we exploit the existence of codes with near-uniform encoder outputs for a variant of the
Slepian-Wolf problem with a non-standard decoding constraint.

This work is supported by NSF grants CCF-1440014, CCF-1439465, CCF-1320304, and CCF-1527074.
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The remainder of the paper is organized thus. Section II provides the notation, Section III defines the problems
studied, Section IV details the main results of this work, and lastly, Section V presents the results used in the proofs
of Section IV.

II. NOTATION

For m,n ∈ N with m < n, Jm,nK , {m,m + 1, . . . , n}. Uppercase letters (e.g., X , Y ) denote random
variables, lower cases denote their realizations (e.g., x, y), and the respective script versions (e.g., X , Y) denote
their alphabets. In this work, all alphabets are assumed to be finite. Superscripts indicate the length of vectors,
and subscripts indicate the component index. Given a finite set S, unif(S) denotes the uniform probability mass
function (pmf) on S. Given a pmf pX , supp(pX) indicates the support of pX , p⊗nX indicates the joint pmf of n i.i.d
random variables distributed according to pX , and Tnε [pX ] denotes the set of ε-strongly letter typical sequences of
length n [8]. Given an event E, P(E) denotes the probability of its occurrence. Lastly, given two pmfs p and q
over a set X , the variational distance is denoted by

V(p, q) ,
∑
x∈X
|p(x)− q(x)|. (1)

III. PROBLEM DEFINITION

The lossy coding problems studied in this work impose a near-uniform encoder output constraint on the classical
Wyner-Ziv and distributed lossy compression problems, and are formally defined here for the sake of completeness.

Definition 1: Let discrete memoryless sources (X,Y ) correlated according to pmf QXY , a bounded distortion
measure d : X × X̂ → [0, dmax], and ∆ ∈ [0, dmax] be given. We say that Wyner-Ziv coding of the source X with
receiver side-information Y at an average per-symbol distortion of ∆ and is achievable with near-uniform encoder
output at a rate R ∈ R+ if for every ε > 0, there exist an n ∈ N, an encoding function fX : X n → J1, 2n(R+ε)K
and a reconstruction function gX : J1, 2n(R+ε)K× Yn → X̂ n at the receiver such that

V(QfX(Xn), unif(J1, 2n(R+ε)K)) ≤ ε, (2)∑n
i=1 E d(Xi, X̂i) ≤ n(∆ + ε), (3)

where QfX(Xn) is the pmf of the encoder output fX(Xn) and X̂n = gX(fX(Xn), Y n) is the receiver reconstruction.
Definition 2: Let discrete memoryless sources (X,Y ) correlated according to pmf QXY , bounded distortion

measures dX : X × X̂ → [0, dxmax] and dY : Y × Ŷ → [0, dymax], and ∆x ∈ [0, dxmax], ∆y ∈ [0, dymax] be given.
We say that distributed lossy compression with jointly near-uniform encoder outputs and at average per-symbol
distortions of ∆x and ∆y for sources X and Y , respectively, is achievable at a rate pair (Rx, Ry) ∈ R+2 if for
every ε > 0, there exist an n ∈ N, encoding functions fX : X n → J1, 2n(Rx+ε)K, fY : Yn → J1, 2n(Ry+ε)K, and a
reconstruction function gXY : J1, 2n(Rx+ε)K× J1, 2n(Ry+ε)K→ X̂ n × Ŷn such that

V(QfX(Xn),fY (Y n), QU ) ≤ ε, (4)∑n
i=1 E d(Xi, X̂i) ≤ n(∆x + ε), (5)∑n
i=1 E d(Yi, Ŷi) ≤ n(∆y + ε), (6)

where QU is the uniform pmf on J1, 2n(Rx+ε)K× J1, 2n(Ry+ε)K, QfX(Xn),fY (Y n) is the pmf of the outputs fX(Xn),
fY (Y n)) of the two encoders, and (X̂n, Ŷ n) = gXY (fX(Xn), fY (Y n)) are the receiver reconstructions.

IV. MAIN RESULTS

A. Near-uniform Wyner-Ziv Coding

Theorem 1: Near-uniform encoder output is achievable in the Wyner-Ziv problem at rates R ≥ RWZ(∆).
Proof: The proof builds codes based on channel resolvability [6, p. 404] and the likelihood encoder [7], which

allow us to track the distribution of the encoder output more readily than when using the covering lemma. We first
pick a channel QW |X such that:
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• the pmf QW |XQXY satisfies

I(X;W |Y ) = I(X;W )− I(Y ;W ) = RWZ(∆), (7)

• E[d(X, f(W,Y )] ≤ ∆ for some function f of (W,Y ).
Now, fix ε > 0, and let R , I(X;W |Y ) + 2ε, and R′ , I(W ;Y ) − ε. Let the codebook C comprising of

2n(R+R′) X̂-codewords with each codeword selected i.i.d accroding to Q⊗nW , where QW is the marginal of W
derived from QW |XQX . We arrange the codewords of the random codebook C in a table of 2nR rows and 2nR

′

columns. Suppose that

(K,K ′) ∼ QK,K′ , unif(J1, 2nRK× J1, 2nR′K). (8)

denotes the random pair of indices used to select the codewords from the codebook C. Let Wn(K,K ′) be selected
and transmitted over the discrete memoryless channel (DMC) QX|W , and X̃n be the corresponding output, and let
Ỹ n be the output when X̃n is transmitted over the DMC QY |X .

QY |XXnK̊ , K̊ 0 Y n Receiver

(a) Channel resolvability code for generating the source X

(b) The derived scheme for near-uniform WZ coding

Wn(K, K 0) QX|W

X̃n

QK,K0,X̃n

QY |XỸ n‘decoder’gC0(Ỹ
n, K)

X̂i , f(Wi(K̊, gC0
(Y n, K̊)), Yi)

( K , K 0) ⇠ unif(J1, 2nRK ⇥ J1, 2nR0K)

Qapprox

K,K0|X̃n

Fig. 1. Source generation and the derived near-uniform WZ scheme.

For this construction, the following hold:
1. Since R+R′ > I(X;W ), the channel resolvability theorem [6, Theorem 6.3.1] guarantees that

EC [V(QX̃n ,Q
⊗n
X )]

n→∞−→ 0, (9)

where the expectation is over all codebook realizations.
2. Since R′ < I(W ;Y ), there must exist a ‘decoding’ function gC : Yn × J1, 2nRK → J1, 2nR′K (depending on
C) such that

EC
[
P[K ′ 6= gC(Ỹ

n,K)]
] n→∞−→ 0. (10)

3. Since Wn(K,K ′) ∼ Q⊗nW , and since Wn(K,K ′) and (X̃n, Ỹ n) are related through the DMC QY |XQX|W ,
by the weak law of large numbers, we have

P
[
(Wn(K,K ′), X̃n, Ỹ n) /∈Tnε [QW |XQXY ]

] n→∞−→ 0. (11)

Now, for sufficiently large n, we can find a realization C0 = {wnC0(j, k) : j ∈ J1, 2nRK, k ∈ J1, 2nR′K} of the
codebook such that the sources X̃n and Ỹ n generated by transmitting a codeword selected uniformly at random
from C0 satisfy:

V(QX̃n ,Q
⊗n
X ) ≤ ε/2 (12)
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P[K ′ 6= gC0(Ỹ
n,K)] ≤ ε/2 (13)

P
[
(Wn(K,K ′), X̃n, Ỹ n) /∈ Tnε [QW |XQXY ]

]
≤ ε/2. (14)

Let QK,K′X̃n be the pmf induced by the codebook C0. Now, to derive a (randomized) WZ scheme from this channel
resolvability code, we proceed as given in Fig. 1. We first pick an approximation Qapprox

K,K′,X̃n
of QK,K′,X̃n such that

V(Qapprox

K,K′,X̃n
, QK,K′,X̃n) ≤ ε/2. (15)

The need for an approximation will become clear later when we emulate QK,K′,X̃n using X̃n and a near-uniform
random seed. Upon choosing Qapprox

K,K′,X̃n
, we encode Xn by generating (K̊, K̊ ′) ∼ Qapprox

K,K′|X̃n
(·, ·|Xn). We then

transmit only K̊ to the receiver. The joint pmf of (K̊, K̊ ′, Xn) is given by

QK̊,K̊′,Xn (̊k, k̊′, xn) , Qapprox

K,K′|X̃n
(̊k, k̊′|xn)Q⊗n(xn). (16)

From (12), (15) and (16), we are guaranteed that

V(QK̊,K̊′,Xn , QK,K′,X̃n) ≤ V(Qapprox

K̊,K̊′,X̃n
, QK,K′,X̃n) + V(QX̃n ,Q

⊗n
X ) ≤ ε. (17)

Further, since Y n and Ỹ n are the outputs when Xn and X̃n, respectively, are fed into the DMC QY |X , we are
guaranteed to have

V(QK̊,K̊′,Xn,Y n , QK,K′,X̃n,Ỹ n) ≤ ε. (18)

Consequently, the following also hold

V(QK̊,K̊′,Y n , QK,K′,Ỹ n) ≤ ε (19)

V(QK̊,K̊′ , QK,K′) ≤ ε, (20)

From (8) and (20), we see that K̊ and K̊ ′ are jointly nearly uniform. Hence, K̊, which is the WZ encoder output,
is also nearly uniform. Further, (14) and (18) jointly imply that

P
[
(Wn(K̊, K̊ ′), Xn, Y n) /∈ Tnε [QW |XQXY ]

]
≤ 3ε/2. (21)

Next, from (13), (18) and Lemma 1 of Section V, we see that:

P[K̊ ′ 6= gC0(Y
n, K̊)] ≤ 3ε/2, (22)

P
[
Wn(K̊, K̊ ′) 6= Wn(K̊, gC0(Y

n, K̊))
]
≤ 3ε/2. (23)

Combining (21) and (23), we conclude that

P
[
(Wn(K̊, gC0(Y

n, K̊)), Xn, Y n) /∈Tnε [QW |XQXY ]
]
≤ 3ε. (24)

Thus, if the receiver estimates K̊ ′ using gC0(Y
n, K̊), and sets X̂i , f(Wi(K̊, gC0(Y

n, K̊)), Yi) as the reconstruction
for Xi, i = 1, . . . , n, then with a probability of 1− 3ε, the per-symbol distortion is at most ∆(1 + 3ε), since

P
[
d(Xn, f(Wn(K̊, g̊C0(Y

n, K̊)), Y n))>∆(1+ε)
]
≤3ε. (25)

Thus, we are guaranteed to have an average per-symbol distortion of no more than ∆ + 3εdmax. We are nearly
done, if we ensure that:
(1) a suitable Qapprox

K,K′X̃n
is selected; and

(2) the encoding is deterministic. (The encoding above involves randomly generating (K̊, K̊ ′) using Qapprox

K,K′X̃n
.)

We can guarantee the first requirement by invoking Lemma 2 of Section V, which ensures that an approximation
Qapprox

K,K′,X̃n
of QK,K′,X̃n meeting (15) can be realized if the encoder is given a uniform random seed of rate

R+R′ − I(X;W ) + ε = 2ε that is independent of X̃n. We can ensure the second requirement by approximating
this uniform seed by a near-uniform seed of rate 2ε obtained as a function of {Xn+` : ` = 1, . . . , 3εn

H(X)} that
extracts its intrinsic randomness (Lemma 6 of Section V). Thus, both the pmf QK̊,K̊′,Xn of (16) and the encoding
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operation can be realized as a deterministic function of n+ 3εn
H(X) symbols of the X source.

Finally, since the last 3εn
H(X) source symbols are used solely to generate the random seed, it can be assumed

that the average distortion corresponding to each of these symbols is no more than dmax. Combining this with the
estimate for the first n symbols, we see that the overall average per-symbol distortion offered by the code is at
most ∆ + 3εdmax + 3ε

H(X)dmax. The result then follows by limiting ε to zero.

B. Near-uniform Distributed Lossy Source Coding Problem

We begin by analyzing joint near-uniformity of encoder outputs in a variant of the Slepian-Wolf (SW) problem,
which will be used for the corresponding distributed lossy compression problem. Since the lossless compression of
a source with near-uniform output is not possible without shared randomness between encoder and decoder [4], SW
coding with jointly near-uniform encoder outputs is also not possible. However, if we relax the decoder constraint
to lossless recovery of all but a small fraction of symbols, then there exist distributed coding schemes with jointly
near-uniform encoder outputs provided the two sources share non-trivial Gács-Körner common information. The
following result quantifies this precisely.

Theorem 2: Let (X,Y ) ∼ QXY and suppose that the random variable U common to X and Y (in the Gács-Körner
sense) be non-trivial. Let ε ∈ (0, H(U)). Then, for any (Rx, Ry) in the interior of the Slepian-Wolf rate region,
there exist n ∈ N and m ∈ Jn, n + 9εn

H(U)K, encoding functions fX : Xm → J1, 2nRxK and fY : Ym → J1, 2nRyK
operating over m source symbols, and a decoding function gXY : J1, 2nRxK× J1, 2nRyK→ X n × Yn outputting n
symbols of both sources such that

V(QfX(Xm),fY (Y m), unif(J1, 2nRxK× J1, 2nRyK)) ≤ ε, (26)

P[(Xn, Y n) 6= gXY (fX(Xm), fY (Y m))] ≤ ε. (27)

Proof: The proof proves that the claim holds for a corner point of the SW rate region, which extends to the
other corner point by reversing the roles of the sources, and to the interior of the rate region by time-sharing.
Without loss of generality, let us build a coding scheme for the corner point at which Y is available at the decoder.
Let U indicate the Gács-Körner common randomness between X and Y . Let

[Ru Rx Ry] , [H(U) + ε/2 H(X|Y ) + ε/2 H(Y |U) + ε/2] (28)

R′x , I(X;Y |U) + ε/2 < I(X;Y ) (29)

Thus, Ru +Ry > H(U, Y ) = H(Y ), and Rx > H(X|Y ).

Un(1)

Un(2nRu)

···

Un(i)

Y n(i, 1)

Y n(i, l)

Y n(i, 2nRy )

Xn(i, 1, 1)

Xn(i, 2nRx , 1) Xn(i, 2nRx , 2nR0
x)

Xn(i, 1, 2nR0
x)

Xn(i, j, k)

· · ·

· · ·

. . .

. . .

...

...

···

···
···

Fig. 2. Codebook setup for the Slepian-Wolf problem

As illustrated in Fig. 2, a random codebook {Un(1), . . . , Un(2nRu)} by choosing codewords i.i.d. according to
Q⊗nU . For each i ∈ J1, 2nRU K, generate a codebook of X-codewords arranged as 2nRx rows and 2nR

′
x columns with

codewords selected i.i.d. using Q⊗nX|U (·|Un(i)). Note that this codebook has 2n(H(X|U)+ε) entries. Next, for each
i ∈ J1, 2nRU K, generate a codebook of 2nRy Y -codewords with codewords selected i.i.d. using Q⊗nY |U (·|Un(i)). We
let C to jointly represent the three codebooks. Now, let random indices I, J,K,L satisfy

QI,J,K , unif(J1, 2nRuK× J1, 2nRxK× J1, 2nR′xK), (30)

QI,L , unif(J1, 2nRuK× J1, 2nRyK). (31)
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Let Ûn , Un(I), X̂n , Xn(I, J,K) and Ỹ n , Y n(I, L), and let Ŷ n be the output of the DMC QY |X when the
input is X̂n = Xn(I, J,K). By an application of Lemma 5 of Section V, we see that

EC [DKL(QX̂n ‖ Q⊗nX )]
n→∞−→ 0, (32)

EC [DKL(QỸ n ‖ Q⊗nY )]
n→∞−→ 0, (33)

since Ru + Rx + R′x > H(U,X) = H(X), Ru + Ry > H(Y,U) = H(Y ), and Ru > H(U). Note that since Ŷ n

and Y n are obtained by transmitting X̂n and Xn, respectively, on the DMS QY |X , we are also guaranteed that

EC [DKL(QX̂nŶ n ‖ Q⊗nXY )]
n→∞−→ 0, (34)

Further, using a similar argument, we can also show that

EC

[
2−nRu

∑
i

DKL

(
QŶ n|I=i ‖ Q⊗nY |U (·|Un(i))

)] n→∞−→ 0, (35)

EC

[
2−nRu

∑
i

DKL

(
QỸ n|I=i ‖ Q⊗nY |U (·|Un(i))

)] n→∞−→ 0. (36)

Now, let ηn , E[DKL(QŶ n,I,J ‖ QŶ n,IQJ)]. Then, the following argument holds.

ηn = EC
[
DKL(QŶ n,I,J ‖ QŶ n,IQJ)

]
(37)

= EC
[
DKL(QŶ n,I,J ‖QIQJQ⊗nY |U (·|Un(I)))−DKL(QŶ n,I ‖QIQ⊗nY |U (·|Un(I))

]
(38)

(a)

≤ EC
[
DKL(QŶ n,I,J‖QI,JQ⊗nY |U (·|Un(I)))

]
(39)

(b)
= EC

[∑
yn

[∑
k Q
⊗n
Y |X(yn|Xn(1,1,k))

2nR
′
x

]
log2

∑
k′ Q

⊗n
Y |X(yn|Xn(1, 1, k′))

2nR′xQ⊗nY |U (yn|Un(1))

]
(40)

=
∑
yn,k

EUn(1),Xn(1,1,k)

[
Q⊗nY |X(yn|Xn(1, 1, k))

2nR′x
Erest

[
log2

∑
k′ Q

⊗n
Y |X(yn|Xn(1, 1, k′))

2nR′xQ⊗nY |U (yn|Un(1))

∣∣∣∣∣ Un(1)
Xn(1,1,k)

]]
(41)

≤
∑
yn,k

EUn(1),Xn(1,1,k)

[
Q⊗nY |X(yn|Xn(1, 1, k))

2nR′x
log2 Erest

[∑
k′ Q

⊗n
Y |X(yn|Xn(1, 1, k′))

2nR′xQ⊗nY |U (yn|Un(1))

∣∣∣∣∣ Un(1)
Xn(1,1,k)

]]
(42)

≤
∑
yn,k

EUn(1),Xn(1,1,k)

[
Q⊗nY |X(yn|Xn(1, 1, k))

2nR′x
log2

[
1 +

Q⊗nY |X(yn|Xn(1, 1, k))

2nR′xQ⊗nY |U (yn|Un(1))

]]
(43)

≤ log2

(
1 + 2n(I(X;Y |U)−R′x+2δ log2 |Y|)

)
+ 2|X ||Y||U|e−nδ2µ log2

(
1 + µ−n

) n→∞−→ 0 (due to (29)), (44)

where
• (a) follows by dropping the second non-negative term that is subtracted;
• (b) due to the i.i.d. construction of the random codebooks;
• (41) uses the law of iterated expectations, where Erest is the expectation over all codewords except (Un(1), Xn(1, 1, k));
• (42) uses Jensen’s inequality for the log function;
• (43) because Xn(1, 1, k′) ∼ Q⊗nX|U (·|Un(1)) for k′ 6= k, and

Erest
[
Q⊗nY |X(·|Xn(1, 1, k′))

∣∣Xn(1, 1, k)
]
=Q⊗nY |U (·|Un(1)), (45)

since Xn(1, 1, k′) is chosen using
n∏
`=1

QX|U (·|U`(1)); and

• finally, (44) follows by splitting the outer sum depending on whether the realization of the codeword Xn(1, 1, k)
and yn are jointly δ-strongly letter typical, where δ < ε/(4 log2 |Y|), and

µ , min{QX,Y,U (x, y, u) : (x, y, u) ∈ supp(QX,Y,U )}. (46)
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Note that because of the choice of R′x in (29), the bound in (44) approaches 0 as n → ∞. From (32)-(36) and
(44), we conclude that there must exist for a sufficiently large n, a codebook C∗ such that

V(QÛn ,Q
⊗n
U ) < ε (47)

V(QX̂nŶ n ,Q
⊗n
XY ) < ε, (48)

V(QỸ n ,Q
⊗n
Y ) < ε, (49)

V(QŶ n,I,J , QŶ n,IQJ) < ε, (50)

V(QŶ n,I,, QỸ n,I) < ε. (51)

The code C∗ induces two joint pmfs Q∗
I,J,K,Ûn,X̂n,Ŷ n

and Q∗
I,L,ÛnỸ n

for which Q∗I,J,K = QI,J,K and Q∗I,L = QI,L.

Since (51) holds, there must exist a joint pmf Q†
Ŷ n,Ỹ n,I

over Yn × Yn × J1, 2nRuK that optimally couples (Ŷ n, I)

and (Ỹ n, I) so that

P[(Ŷ n, I) 6= (Ỹ n, I)] ≤ 2ε. (52)

Further, since Ŷ n and Ỹ n are generated from the same U -codebook, they share Ûn as common randomness in the
Gács-Körner sense. Now, let Q◦

I,J,K,X̂n,Ỹ n,L
be the marginal pmf of (I, J,K, X̂n, Ỹ n, L) obtained from

Q◦
I,J,K,X̂n,Ŷ n,Ỹ n,L

, Q∗
I,J,K,X̂n,Ŷ n

Q†
Ỹ n|Ŷ n,I

Q∗
L|I,Ỹ n . (53)

For the pmf Q◦
I,J,K,X̂n,Ỹ n,L

, we can show the following:

V(Q⊗nXY , Q
◦
X̂nỸ n

)
(48),(52),(53)
≤ 3ε, (54)

V(Q◦
Ỹ n,I,J

, Q◦
Ỹ n,I

QJ)
(50),(52),(53)
≤ 5ε, (55)

V(Q◦
Ỹ n,I,L

, Q∗
Ỹ n,I,L

)
(52)
≤ 2ε, (56)

Note that even though Q◦
Ỹ n,I,L

and Q∗
Ỹ n,I,L

could be different, we can still view Ỹ n as being generated using the
two-stage codebook by first choosing the U -codeword uniformly at random, and then the Y -codeword by selecting
the index L according to Q◦L|I , which is only nearly uniform. Lastly, since in Q◦, we have Lk (I, Ỹ n)k (J,K),
we also have

V(Q◦L,I,J , Q
◦
L,IQJ)

(55),(53)
≤ 5ε, (57)

V(Q◦L,I,J , Q
∗
L,IQJ)

(57),(56)
≤ 7ε. (58)

Thus, under the law Q◦, (I, L) and J are jointly nearly-uniform. We now use an approach similar to the Wyner-Ziv
case to build a code for the problem at hand.
• The X-encoder first generates I◦ ∼ Q◦

I|Ûn(·|Un), and then (J◦,K◦)∼Q◦
J,K|X̂n,I

(·|Xn, I◦). It sends J◦ to the
receiver;

• The Y -encoder generates I◦ ∼ Q◦
I|Ûn(·|Un) that matches the index generated by the X-encoder, and then

generates L◦ ∼ Q◦
L|Ỹ n,I(·|Y

n, I◦). It sends (I◦, L◦) to the receiver;
• The decoder declares Y n(I◦, L◦) as the realization of Y n. It then looks for an index K such that Xn(I◦, J◦,K)

is jointly typical with Y n(I◦, L◦). With high probability, the search will yield a unique K that matches K◦,
since K ∈ J1, 2nR′xK and R′x < I(X;Y ) (see (29)).

The above encoding and decoding operations emulate the following joint pmf of sources and indices:

Q⊗nXYQ
◦
I|Ûn(·|Un)Q◦

J,K|X̂n,I
(·|Xn, ·)Q◦

L|Ỹ n,I(·|Y
n, ·). (59)

According to (54), the variational distance between the emulated pmf and Q◦
I,J,K,X̂,Ỹ ,L

is no more than 3ε, which
when combined with (58) implies that the variational distance of the emulated joint pmf of (I◦, J◦, L◦) is at most
10ε away from the jointly uniform pmf QL,IQJ . Lastly, as in the Wyner-Ziv case, we are done if we approximate
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the randomized encoders by functions, for which we use near-uniform seeds derived from additional source symbols
in the following manner.
• At both encoders, we use Un+1, . . . , Un+ 3εn

H(U)
to obtain the same near-uniform random seed over J1, 22nεK ,

and then use the seed to approximate the random index selection according to Q◦
I|Ûn(·|Un).

• We use Xn+ 3εn

H(U)
+1, . . . , Xn+ 6εn

H(U)
to obtain a near-uniform random seed over J1, 22nεK, and then use the seed

to realize index selection according to Q◦
J,K|X̂n,I

(·|Xn, ·).
• We use Yn+ 6εn

H(U)
+1, . . . , Xn+ 9εn

H(U)
to obtain a near-uniform random seed over J1, 22nεK, and then use the seed

to realize index selection according to Q◦
L|Ỹ n,I(·|Y

n, ·).

In the above, extracting random seeds and realizing index selections as a function of the random seed and the
sources are done by invoking Lemmas 2 and 6 of Section V.

Thus, for sufficiently large n, there exist codes that encode n+ 9εn
H(U) source symbols into a jointly nearly uniformly

distributed pair of indices, using which the first n symbols can be losslessly retrieved with high probability.
We are now ready to present our result pertaining to uniform lossy compression in the two-source distributed

lossy source coding problem. Note that the proof does not require a characterization of the underlying rate region.
Theorem 3: Given jointly correlated sources (X,Y ) ∼ QXY with non-trivial Gács-Körner common information,

distributed lossy compression with jointly near-uniform encoder outputs is possible at all rate points in the strict
interior of the distributed lossy compression rate region.

Proof: Let (Rx, Ry) be in the interior of the distributed lossy compression rate region. Fix ε > 0. Then, for
sufficiently large n, there exist encoders fX and fY operating at rates no more than Rx + ε and Ry + ε, and a
reconstruction function gXY that operates on the encoder outputs to generate reconstructions for X and Y with
an average per-symbol distortion of at most ∆x + ε and ∆y + ε, respectively. Without loss of generality, we may
assume that fX(Xn) and fY (Y n) share non-trivial Gács-Körner common information. Else, we can increase the
encoded message rates by ε by appending to each encoder output, a function of U – the random variable common
to X and Y in the Gács-Körner sense.

Now, let X̊ = fX(Xn) and Y̊ = fY (Y n), and let Ů be the random variable common to X̊ and Y̊ in the
Gács-Körner sense. From Theorem 2, we see that there exists sufficiently large N ∈ N, sufficiently small δ, and
M ≤ N + 9δN such that there exists a code that encodes M symbols of the correlated source (X̊, Y̊ ) in any
interior point of its SW rate region and recovers the first N source symbols of X̊ and Y̊ losslessly. Concatenating
M copies of the lossy source code with encoders fX and fY (as the outer code) followed by the above code for X̊
and Y̊ (as the inner code) will yield a joint code operating at rates of no more than Rx + 2ε+ δ and Ry + 2ε+ δ,
respectively. Moreover, the average distortions offered by this joint code for the nM symbols of X and Y are at
most ∆x+ε+9δdxmax

1+9δ and ∆y+ε+9δdymax

1+9δ , respectively. Since ε and δ are arbitrary, the claim holds.

V. REQUIRED RESULTS

Lemma 1: Let p.m.f. QA,B over a finite set A×B be such that for (A,B) ∼ QAB , there exists a function φ(B)
such that P[A 6= φ(B)] ≤ ε. Now, let (Ã, B̃) ∼ Q̃Ã,B̃ be such that V(Q̃Ã,B̃, QA,B) ≤ ε. Then, P[Ã 6= φ(B̃)] ≤ 2ε.

Proof: Let S = {(a, b) : a 6= φ(b)}. Then,

P[A 6= φ(B)] = QA,B(S) (60)

P[Ã 6= φ(B̃)] = Q̃Ã,B̃(S). (61)

Thus,

|P[Ã 6= φ(B̃)] ≤ P[A 6= φ(B)]|+ |Q̃Ã,B̃(S)−QA,B(S)|
≤ ε+

∑
(a,b)∈S

|Q̃Ã,B̃(a, b)−QA,B(a, b)| (62)

≤ ε+ V(Q̃Ã,B̃, QA,B) ≤ 2ε. (63)

Lemma 2: Given p.m.f. QAB over a finite alphabet A × B and R > I(A;B), suppose that we construct a
random codebook Cn of 2nR A-codewords generated randomly using QA. Let L ∼ unif(J1, 2nRK). Suppose that
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An(L) is transmitted over the DMC QB|A and B̃n is the corresponding output. Let S ∼ unif(J1, 2nρK), where
ρ > R− I(A;B). Then, there exists φCn : Bn × J1, 2nρK→ J1, 2nRK (that depends on Cn) such that

lim
n→∞

E
[
V(Qφ(B̃n,S),B̃n , QL,B̃n)

]
= 0, (64)

where QL,B̃n is the joint p.m.f. of (L, B̃n) induced by Cn.
Proof: Let δ, ε > 0 be chosen such that

ρ−R+ I(A;B)− 4δ log2(|A||B|) > ε. (65)

By the random codebook construction, it follows that (An(L), B̃n) is as if it is the output from a DMS QAB .
Hence, by [8, Theorem 1.1], it follows that

P
[
(An(L), B̃n) /∈ Tnδ [QAB]

]
≤ 2Me−nδ

2µ, (66)

where M , |A||B| and µ , min
(a,b)∈supp(QAB)

QAB(a, b). Now, let for a codebook C◦ , {(an(l)}l∈J1,2nRK and bn ∈ Bn,

LC◦(bn) ,
{
l : (an(l), bn) ∈ Tnδ [QAB]

}
. (67)

From Lemma 3 below, the following holds for sufficiently large n.

E
[
|LC(B̃n)|

]
≤ 21+n(R−I(A;B)+2δ log2M). (68)

Let F be the collection of codebooks C0 , {an(l)}l∈J1,2nRK such that the following hold.

P
[
(an(L), B̃n) /∈ Tnδ [QAB]

∣∣ C = C0

]
≤
√

2Me−nδ2µ (69)

E
[
|LC(B̃n)|

∣∣C = C0

]
E
[
|LC(B̃n)|

] ≤ 2δ log2M . (70)

By Markov’s inequality, we then have

P[C /∈ F ] ≤
√

2Me−nδ2µ + 2−nδ log2M . (71)

Now, pick C∗ ,
{
a∗n(l)

}
l∈J1,2nRK ∈ F and define GC∗ as the set of all bn such that

P
[
(a∗n(L), B̃n) /∈ Tnδ [QAB]

∣∣∣ B̃n= bn
C= C∗

]
≤ 4
√

2Me−nδ2µ (72)

|LC∗(bn)| ≤ 21+n(R−I(A;B)+4δ log2 S). (73)

Again, by Markov’s inequality, it follows that

P[B̃n /∈ GC∗ | C = C∗] ≤ η0 , 4
√

2Me−nδ2µ + 2−nδ log2M .

Further, it also follows that for each bn ∈ GC∗ ,∑
l /∈LC∗ (bn)

QLB̂n(l, bn)
(73)
≤ 4
√

2Me−nδ2µ. (74)

Thus by Lemma 4, we see that given a random seed S ∼ unif(J1, 2nρK) for all bn ∈ GC∗ , we can construct
fbn : J1, 2nρK→ J1, 2nRK with

‖ Qfbn (S) −QL|B̃n=bn ‖1 ≤
|LC∗(bn)|

2nρ
+

4
√

2Me−nδ2µ (75)

(73)
≤ 21+n(R−I(A;B)+4δ log2M−ρ) +

4
√

2Me−nδ2µ (76)
(65)
≤ η , 21−nε +

4
√

2Me−nδ2µ. (77)
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We can now glue these functions to define

ΛC∗(b
n, S) ,

{
fbn(S) bn ∈ GC∗
l∗k bn /∈ GC∗

, (78)

where l∗ ∈ J1, 2nρK. By construction, for the selected code C∗, we now have∑
bn∈GC∗

QB̃n(bn) ‖ QΛC∗ (bn,S) −QL|B̃n=bn ‖1 ≤ η,∑
bn∈Bn

QB̃n(bn) ‖ QΛC∗ (bn,S) −QL|B̃n=bn ‖1 ≤ η + 2η0.

Since the RHS does not depend on the choice of C∗ in F ,

E
[
‖ QΛC(B̃n,S),B̃n −QL,B̃n ‖1| C ∈ F

]
≤ η + 2η0.

Next. using the fact that the variational distance between two p.m.f.s is at most 2, we also have

E
[
‖ QΛC(B̃n,S),B̃n −QL,B̃n ‖1|| C /∈ F

]
≤ 2P[C /∈ F ].

Finally, combining the above two equations and using (71) completes the claim.
Lemma 3: Consider the setup of Lemma 2. Let LC(·) be as defined in (67). Then, for n large,

E
[
|LC(B̃n)|

]
≤ 21+n(R−I(A;B)−2δ log2(|A||B|)). (79)

Proof: Owing to the random codebook construction,

E
[
|LC(B̃n)|

]
= E

[
|LC(B̃n)|

∣∣L = 1
]

(80)

=
∑
l

E
[
1{l ∈ LC(B̃n)}

∣∣L = 1
]
. (81)

Since the codewords are chosen randomly, it follows that E
[
1{l ∈ LC(B̃n)}|L = 1

]
is the same for l > 2. Hence,

E
[
|LC(B̃n)|

]
≤ 1 + (2nR − 1)E

[
1{2 ∈ LC(B̃n)}|L = 1

]
. (82)

Clearly, E
[
1{2 ∈ LC(B̃n)}|L = 1

]
is exactly the probability that realizations An ∼ Q⊗nA , Bn ∼ Q⊗nB selected

independent of one another are jointly δ-letter typical. Thus, by [8, Theorem 1.1], it follows that

E
[
1{2 ∈ LC(B̃n)}|L = 1

]
=

∑
(a,bn)∈Tnδ [QAB ]

QA(an)QB(bn) ≤ 2−n(I(A;B)−2δ log2 |A||B|).

Combining the above bound with (82) completes the proof.
Lemma 4: Let Q be a p.m.f. on a finite set A such that there exists B ⊆ A with |B| = M and

∑
b∈BQ(b) ≥ 1−ε

for 0 < ε < 1. Now, suppose that L ∼ unif(J1, `K). Then, there exists f : J1, `K → A such that Qf(L), the p.m.f.
of f(L), satisfies ‖ Qf(L) −Q ‖1≤ ε+ M

` .
Proof: Let b1 � b2 � · · · � bM be an ordering of B. Let p0 = 0, and for 1 ≤ i ≤ M , let pi ,

∑i
j=1Q(bj)

denote the cumulative mass function. Now, let Ni , bpi`c, i = 0, . . . ,M , and let f : J1, NM K→ B be defined by
the pre-images via f−1(bi) = {Ni−1 +1, . . . , Ni}, i = 1, . . . ,M . Fig. 3 provides an illustration of these operations.
Now, by construction, we have

0 ≤ pi − P [f(L) ∈ {b1, . . . , bi}] ≤ `−1, i = 1, . . . ,M. (83)

Consequently, we also have for any i = 1, . . . ,M ,

−`−1 ≤ pi − pi−1 −Qf(L)(bi) = Q(bi)−Qf(L)(bi) ≤ `−1. (84)
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. . .

Q(b1)
Q(b2)

Q(bM )

pM = Q(b1) + · · · + Q(bM ) � 1 � "

0 1. . . . . .
⌘ 2⌘ N1⌘

(N1 + 1)⌘ (N2 + 1)⌘

N2⌘ NM⌘

p1 p2 pM

1, . . . , N1 N1 + 1, . . . , N2 NM�1 + 1, . . . , NM

b1 b2 bM

. . . . . . . . .
f

...

1
2

M
...

Fig. 3. An illustration of approximating a p.m.f. using a function of a uniform RV.

Hence, we see that ∑
a∈A
|Q(a)−Qf(L)(a)| =

M∑
i=1

|Q(bi)−Qf(L)(bi)|+ P[A /∈ B]
(84)
≤ M

`
+ ε. (85)

Lemma 5: Given pmf pAB and rates RA, RB ∈ [0,∞) such that RB > I(C;B) and RA + RB > I(C;A,B),
let us construct a random codebook {Bn(1), . . . , Bn(2nRB)} with codewords chosen i.i.d. using p⊗nB . For each i ∈
J1, 2nRBK, generate a random codebook {An(i, 1), . . . , An(i, 2nRA)} with codewords chosen i.i.d. using Q⊗nA|B(·|Bn(i)).
Let (I, J) ∼ unif(J1, 2nRBK× J1, 2nRAK), and let Ĉn be the output when (An(I, J), Bn(I)) is sent over the DMC
QC|AB . Then,

E[DKL(QĈn ‖ Q⊗nC )]
n→∞−→ 0, (86)

where the expectation is over all the codebook realizations.
Proof: The proof follows from the achievability scheme and (10)-(15) in [9] by setting h = 2, A0 = B,

A1 = A, X1 = C, and B1 = B2 = X2 = const.
Lemma 6 (Theorem 2.2.2 [6]): Let Xn be i.i.d. according to pX . Then, for each R < H(X), there exists a

sequence of mappings {φn,R : X n → J1, 2nRK}n∈N such that

lim
n→∞

V
(
φn,R(Xn), unif(J1, 2nRK)

)
= 0. (87)
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