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Abstract—Recently, Samorodnitsky proved a strengthened ver-
sion of Mrs. Gerber’s Lemma, where the output entropy of a
binary symmetric channel is bounded in terms of the average
entropy of the input projected on a random subset of coordinates.
Here, this result is applied for deriving novel lower boundson the
entropy rate of binary hidden Markov processes. For symmetric
underlying Markov processes, our bound improves upon the best
known bound in the very noisy regime. The nonsymmetric case
is also considered, and explicit bounds are derived for Markov
processes that satisfy the(1,∞)-RLL constraint.

I. I NTRODUCTION

Let {Xn}, n = 1, 2, . . ., be a symmetric stationary binary
Markov process with transition probability0 < q < 1

2 , such
thatX1 ∼ Bernoulli(12 ) and for anyn > 1

Xn = Xn−1 ⊕Wn,

where{Wn}, n = 2, 3, . . ., is a sequence of i.i.d.Bernoulli(q)
random variables, statistically independent ofX1. We consider
the hidden Markov process{Yn}, n = 1, 2, . . ., obtained at the
output of a binary symmetric channel (BSC) with crossover
probability 0 < α < 1

2 , whose input is the process{Xn}.
Namely,

Yn = Xn ⊕ Zn,

where{Zn}, n = 1, 2, . . ., is a sequence of i.i.d.Bernoulli(α)
random variables, statistically independent of{Xn}. The task
of finding an explicit form for the entropy rate

H̄(Y ) , lim
n→∞

H(Y1, . . . , Yn)

n

of the process{Yn} is a long-standing open problem, and the
main contribution of this paper is in providing novel lower
bounds for this quantity.

A simple lower bound onH̄(Y ) can be obtained by in-
voking Mrs. Gerber’s Lemma (MGL) [1], which states that if
{Xn} is the input to a BSC with crossover probabilityα, and
{Yn} is the output, then

H(Y1, . . . , Yn) ≥ nh

(

α ∗ h−1

(
H(X1, . . . , Xn)

n

))

, (1)

whereh(p) , −p log(p) − (1 − p) log(1 − p) is the binary
entropy function,h−1(·) is its inverse restricted to the interval
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[0, 12 ], and a ∗ b , a(1 − b) + b(1 − a). Here, as well as
throughout the rest of the paper, logarithms are taken to base2.
Since the entropy rate of the symmetric Markov process{Xn}
is H̄(X) = h(q), for symmetric hidden Markov processes the
bound (1) takes the simple form

H̄(Y ) ≥ h (α ∗ q) . (2)

Unfortunately, this bound is quite loose for many regimes of
the process parametersα andq.

Recently, Samorodnitsky [2] proved a strengthened ver-
sion of MGL, where the normalized input entropy
H(X1, . . . , Xn)/n in the right hand side of (1) is replaced
by the average normalized entropy of the random vector
(X1, . . . , Xn) projected on a random subset of coordinates.
In this paper we apply the results of [2] to derive a novel
lower bound onH̄(Y ). Despite its simplicity, we show that
this bound is stronger than the best known lower bounds for
the very noisy regime (α → 1

2 ), and recovers the strongest
bound for the fast transitions regime (q → 1

2 ). For finite
values of(α, q) it is numerically demonstrated that the bound
is reasonably close to the true value ofH̄(Y ), which can
be estimated to an arbitrary precision by various known
approximation algorithms.

We also derive a lower bound on̄H(Y ) for the case where
the process{Xn} is a nonsymmetric binary Markov process.
For the special case of Markov processes that satisfy the so-
called(1,∞)-RLL constraint, our bound is shown to be tight
in the very noisy regime.

II. PRELIMINARIES

Let X = (X1, . . . , Xn) be a binaryn-dimensional random
vector, [n] , {1, . . . , n}, and S ⊆ [n] some subset of
coordinates. The projection ofX ontoS is defined as

XS , {Xi : i ∈ S}.

As before, we assume thatY is the output of a BSC
with crossover probabilityα, whose input is the vectorX.
Samorodnitsky has proved the following result.

Theorem 1 ( [2, Theorem 1.11]): Let λ = (1−2α)2 and let
B be a random subset uniformly distributed over all subsets
of [n] with cardinality⌈λn⌉. Then

H(Y) ≥ nh

(

α ∗ h−1

(
H(XB|B)

λn

))

− E, (3)

http://arxiv.org/abs/1601.06453v2


whereE = O

(√
logn
n

)

· (n−H(X)).

By Han’s inequality [3], the quantityH(XB|B)/λn is
monotonically nonincreasing inλ, and therefore, ignoring the
error termE, it can be seen that the bound (3) is stronger
than (1).

For our purposes, it will be convenient to replaceH(XB|B)
with H(XS |S), whereS is a random subset of[n] generated
by independently sampling each elementi with probabilityλ.
It is easy to verify that for any distributionPX on {0, 1}n

holds

lim
n→∞

H(XB|B)−H(XS |S)

λn
= 0,

and we can therefore indeed replaceB with S in Theorem 1,
perhaps with a different convergence rate forE. In fact,
Polyanskiy and Wu [4] distilled from [2] the inequality

I(U : Y) ≤ I(U : XS |S), (4)

that holds for any random variableU satisfying the Markov re-
lationU → X → Y. Using (4), the chain rule of entropy, and
the convexity of the MGL functionϕ(t) , h(α∗h−1(t)), it is
a simple exercise to prove the following form of Theorem 1.

Proposition 1: Let λ = (1 − 2α)2 and letS be a random
subset of[n] generated by independently sampling each ele-
ment i with probabilityλ. Then

H(Y) ≥ nh

(

α ∗ h−1

(
H(XS |S)

λn

))

. (5)

III. M AIN RESULT

In order to apply Proposition 1 for lower boundinḡH(Y ),
we need to evaluate the quantityH(XS |S)/λn for symmetric
Markov processes{Xn}. We will use the notation

q∗k , q ∗ q ∗ · · · ∗ q
︸ ︷︷ ︸

k times

,

and note that

q∗k = Pr (W1 ⊕ · · · ⊕Wk = 1) =
1− (1− 2q)k

2
. (6)

Proposition 2: Let 0 < λ < 1, and letS be a random subset
of [n] generated by independently sampling each elementi
with probabilityλ. Then

lim
n→∞

H(XS |S)

λn
= Eh

(
q∗G
)
,

whereG is a geometric random variable with parameterλ, i.e.
Pr(G = g) = (1− λ)g−1λ for g = 1, 2, . . ..

Proof: Let Gi, i = 1, 2, . . ., be a sequence of i.i.d.
geometric random variables with parameterλ. Define the
autoregressive process

Ak =

k∑

i=1

Gk, k = 1, 2, . . . ,

and define the random variableK as the largestk for which
Ak ≤ n. Clearly, the subsetS and the subset{A1, . . . , AK}
have the same distribution, and therefore

H(XS |S)

n
=

1

n
E

K∑

i=1

H(XAi
|XAi−1

, . . . , XA1
)

=
1

n
E

(
n∑

i=1

H(XAi
|XAi−1

, . . . , XA1
)1(i ≤ K)

)

=
1

n
E

(
n∑

i=1

H(XAi
|XAi−1

)1(i ≤ K)

)

(7)

=
1

n
E

(

1(1 ≤ K) +

n∑

i=2

H(XAi−Ai−1+1|X1)1(i ≤ K)

)

(8)

=
1

n

(

Pr(K ≥ 1) +

n∑

i=2

E (H(XGi+1|X1)1(i ≤ K))

)

,

(9)

where1(T ) is an indicator on the eventT , (7) follows since
{Xn} is a first-order Markov process, and (8) follows from
the stationarity of{Xn}. For any2 ≤ i ≤ n we have

E (H(XGi+1|X1)1(i ≤ K))

= EGi
(H(XGi+1|X1) Pr(K ≥ i|Gi))

= EGi
(H(XGi+1|X1) Pr(Binomial(n−Gi, λ) ≥ i− 1))

By the law of large numbers, for anyǫ > 0 and fixedgi, there
exists someN0 such that for alln > N0 holds

Pr(Binomial(n− gi, λ) ≥ i− 1) ∈

{

[1− ǫ, 1) i ≤ (λ− ǫ)n

(0, ǫ] i ≥ (λ+ ǫ)n

Combining this with (9) gives that

lim
n→∞

1

n
H(XS |S) = λEH(XG+1|X1)

= λH(XG+1|X1, G), (10)

and our claim follows sinceH(XG+1|X1, G) = Eh
(
q∗G
)

for
stationary symmetric Markov processes.

Remark 1: An expression similar to (10) can also be recov-
ered from [5, Corollary II.2].

Our main result now follows directly from combining
Propositions 1 and 2 and using the continuity of the MGL
functionϕ(t).

Theorem 2: The entropy rate of the process obtained by
passing a symmetric binary Markov process with transition
probability q through a BSC with crossover probabilityα
satisfies

H̄(Y ) ≥ h
(
α ∗ h−1

(
Eh
(
q∗G
)))

, (11)

whereG is a geometric random variable with parameterλ =
(1− 2α)2.



IV. A SYMPTOTIC ANALYSIS AND NUMERICAL EXAMPLES

In this section we evaluate the bound from Theorem 2 in
the limits of α → 1

2 and q fixed (very noisy regime), and in
the limit of q → 1

2 andα fixed (fast transitions regime).

Theorem 3: Let q be fixed andα = 1
2 − ǫ. Then

H̄(Y ) ≥ 1− 16ǫ4
∞∑

k=1

log(e)

2k(2k − 1)

(1 − 2q)2k

1− (1− 2q)2k
+ o(ǫ4).

Proof: By, e.g., [6, Lemma 1], we have that for any0 ≤
α, γ ≤ 1 holds

h(α ∗ γ) ≥ h(γ) + (1− h(γ)) · 4α(1− α)

= 1− (1− 2α)2 (1− h(γ)) . (12)

Settingβ , Eh
(
q∗G
)
, the RHS of (11) readsh(α ∗ h−1(β)),

which, by (12) and the parametrizationα = 1
2 − ǫ, can be

bounded as

h
(
α ∗ h−1(β)

)
≥ 1− 4ǫ2(1− β).

It therefore, remains to approximateβ. Recall the Taylor
expansion of the binary entropy function

h

(
1

2
− p

)

= 1−
∞∑

k=1

log(e)

2k(2k − 1)
(2p)2k. (13)

Using (6), we have

β = Eh

(
1− (1− 2q)G

2

)

= 1−
∞∑

k=1

log(e)

2k(2k − 1)
E(1− 2q)2kG (14)

= 1−

∞∑

k=1

log(e)

2k(2k − 1)

λ(1− 2q)2k

1− (1− λ)(1 − 2q)2k
, (15)

where (14) is justified since the sum
∑

∞

k=1
log(e)

2k(2k−1)E(1 −

2q)2kG converges, and in (15) we have used the fact that
EtG = λt

1−(1−λ)t . To further approximate (15), we write

λ(1 − 2q)2k

1− (1− λ)(1 − 2q)2k
=

λ(1− 2q)2k

1− (1− 2q)2k
·

1

1 + λ(1−2q)2k

1−(1−2q)2k

=
λ(1− 2q)2k

1− (1− 2q)2k
· (1 +O(λ))

= 4ǫ2
(1− 2q)2k

1− (1− 2q)2k
+O

(
ǫ4
)
.

Consequently,

β = 1− 4ǫ2
∞∑

k=1

log(e)

2k(k − 1)

(1 − 2q)2k

1− (1− 2q)2k
+O

(
ǫ4
)
.

which yields the desired result.

To date, the best known upper and lower bounds onH̄(Y )
in the very noisy regime were the ones found in [7, Theorem
4.13]. In particular, the ratio1−H̄(Y )

ǫ4
was bounded form above

and below. The upper and lower bounds from [7, Theorem
4.13] on (1 − H̄(Y ))/ǫ4 are plotted in Figure 1, along with
the upper bound from Theorem 3. It is seen that Theorem 3
improves upon the best known lower bounds onH̄(Y ) in the
limit of α → 1

2 . Furthermore, unlike [7, Theorem 4.13] that
only holds forq ≥ 1

4 , our result holds for allq.

q
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Fig. 1. Comparison between the bounds from [7, Theorem 4.13]on H̄(Y )
in the very noisy regime, and the new bound from Theorem 3.

Next, we move to show that the lower bound from Theo-
rem 2 is tight in the extreme regime of fast transitions, i.e.,
q → 1

2 andα fixed. Let q = 1
2 − ǫ. With this parametriza-

tion, (15) reads

β = 1−

∞∑

k=1

log(e)

2k(2k − 1)

λ(2ǫ)2k

1− (1− λ)(2ǫ)2k
(16)

= 1− 2 log(e)λǫ2 +O(ǫ4).

Now, using (12) and Theorem 2, we have the following
proposition.

Proposition 3: Let α be fixed andq = 1
2 − ǫ. Then

1− H̄(Y ) ≤ λ(1− β)

= 2 log(e)λ2ǫ2 +O(ǫ4)

= 2 log(e)(1 − 2α)4ǫ2 +O(ǫ4)

In [7, Theorem 4.12] it was proved that for0 ≤ α ≤ 1
2 ,

q = 1
2 − ǫ, asǫ ↓ 0

1− H̄(Y ) = 2 log(e)(1− 2α)4ǫ2 + o(ǫ3).

It therefore follows that the bound from Theorem 2 becomes
tight asq → 1

2 .

It can be shown that in the regimes of very high-SNR (α →
0 and q fixed) and rare transitions (q → 0 andα fixed), the
bound from Theorem 2 is looser than the bounds found in [7,
Theorem 4.11] and in [8], respectively.
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Fig. 2. Comparison between the lower bound (11), MGL based bound (2), and the approximate value of̄H(Y ) computed using [7, Algorithm 4.25].

For any pair of finite values of(α, q), the entropy ratēH(Y )
can be approximated to an arbitrary precision. For example,[3,
Theorem 4.5.1] shows that

H(Yn|Yn−1 . . . , Y1, X1) ≤ H̄(Y ) ≤ H(Yn|Yn−1 . . . , Y1)

and the two bounds converge to the same limit asn → ∞.
Unfortunately, the computational complexity of the lower
bound (as well as the upper bound) above, is exponential inn.1

To that end, various works introduced different algorithmsfor
approximatingH̄(Y ) [7], [10]–[12], each algorithm exhibiting
a different trade-off between approximation accuracy and
complexity.

To obtain a better appreciation of the tightness of the bound
from Theorem 2 for finite values of(α, q), we numerically
compare it to the output of one such approximation algorithm.
In particular, we use [7, Algorithm 4.25] to approximate
H̄(Y ), where the algorithm parameters are chosen to ensure
high enough accuracy, and plot the results alongside with
the lower bound of Theorem 2. We also plot the lower
bound (2) obtained by simply applying Mrs. Gerber’s Lemma.
The results for fixedα = 0.11 and varyingq are shown in
Figures 2a, and those for fixedq = 0.11 and varyingα, in
Figure 2b.

V. NONSYMMETRIC MARKOV CHAINS

In this section we extend our lower bound from Theorem 2
to the case where the input to the BSC is a nonsymmetric
Markov process. Let

P =

[
1− q01 q01
q10 1− q10

]

be a transition probability matrix, andπ = [π0 π1] be a
stationary distribution forP, such thatπP = π. Let {Xn}
be a stationary first-order Markov process with transition

1Although, as shown by Birch [9], the gap between the two bounds also
decreases exponentially (but possibly with a small exponent) in n.

probability matrix P, such thatX1 ∼ Bernoulli(π1) and
for n = 2, 3, . . . holdsPr(Xn = j|Xn−1 = i) = Pij . For
k = 1, 2, . . ., we define the quantities

q#k
ij ,

(
P

k
)

ij
= Pr (Xn = j|Xn−k = i) .

The following is an extension of Proposition 2 for nonsym-
metric hidden Markov processes.

Proposition 4: Let {Xn} be a stationary first-order Markov
process with transition probability matrixP and stationary
distributionπ. Let 0 < λ < 1, and letS be a random subset
of [n] generated by independently sampling each elementi
with probabilityλ. Then

lim
n→∞

H(XS |S)

λn
= π0Eh

(

q#G
01

)

+ π1Eh
(

q#G
10

)

, (17)

whereG is a geometric random variable with parameterλ, i.e.
Pr(G = g) = (1− λ)g−1λ for g = 1, 2, . . ..

Proof: The proof is similar to that of Proposition 2 up to
equation (10), where nowH(XG+1|X1, G) = π0Eh

(

q#G
01

)

+

π1Eh
(

q#G
10

)

.

Combining this with Proposition 1 and the continuity of the
MGL function ϕ(t) gives the following.

Theorem 4: The entropy rate of the process obtained by
passing a stationary first-order Markov process with transition
probability matrixP and stationary distributionπ through a
BSC with crossover probabilityα satisfies

H̄(Y ) ≥ h
(

α ∗ h−1
(

π0Eh
(

q#G
01

)

+ π1Eh
(

q#G
10

)))

,

whereG is a geometric random variable with parameterλ =
(1− 2α)2.

A. Example: Processes Satisfying the (1,∞)-RLL Constraint

In this subsection we lower bound the entropy rate of a
nonsymmetric first order Markov process, withq01 = q and



q10 = 1, passed through a BSC with crossover probabilityα.
This underlying Markov process satisfies the so-called(1,∞)-
RLL constraint, where no consecutive ones are allowed to
appear in a sequence. It is not difficult to verify that for this
choice ofq01 andq10 we have

π0 =
1

1 + q
, π1 =

q

1 + q
,

q#k
01 =

q + (−q)k+1

1 + q
, q#k

10 =
1− (−q)k

1 + q
.

In this case we havēH(Y ) ≥ h(α ∗ h−1(β)), where

β , E

(
1

1 + q
h

(
1− (−q)G+1

1 + q

)

+
q

1 + q
h

(
1− (−q)G

1 + q

))

.

(18)

By the concavity ofh(·), for any natural numberg hold

h

(
1− (−q)g+1

1 + q

)

= h

(
(1− qg) + qg(1− q(−1)g+1)

1 + q

)

≥ (1− qg)h

(
1

1 + q

)

+ qgh

(
1− q(−1)g+1

1 + q

)

. (19)

and

h

(
1− (−q)g

1 + q

)

= h

(
(1− qg−1) + qg−1(1− q(−1)g)

1 + q

)

≥ (1− qg−1)h

(
1

1 + q

)

+ qg−1h

(
1− q(−1)g

1 + q

)

. (20)

Substituting (19) and (20) into (18), we obtain

β ≥

(

1− 2
EqG

1 + q

)

h

(
1

1 + q

)

+
EqG

1 + q
h

(
1− q

1 + q

)

. (21)

Now, using again the fact thatE(qG) = λq
1−(1−λ)q , and

invoking Theorem 4 gives the following result.

Theorem 5: The entropy rate of a nonsymmetric stationary
binary first-order Markov process with transition probabilities
q01 = q and q10 = 1, passed through a BSC with crossover
probabilityα, is lower bounded as̄H(Y ) ≥ h

(
α ∗ h−1(γ)

)
,

where

γ , h

(
1

1 + q

)

−
(1− 2α)2q

(1 + q)(1− 4α(1− α)q)

(

2h

(
1

1 + q

)

− h

(
1− q

1 + q

))

.

The following Corollary of Theorem 5, shows that our
bound becomes tight asα → 1

2 , and partially recovers the
results of [13, Section 4.2] and [14, Appendix E].

Corollary 1: For the very noisy regime, whereα = 1
2 − ǫ

and0 ≤ q < 1, we have

H̄(Y ) = 1− 2 log(e)

(
1− q

1 + q

)2

ǫ2 +O(ǫ4).

Proof: Clearly, H̄(Y ) ≤ H(Yn) = h(α ∗ π1). From [6,
equation (11)] combined with (13) we have

h(α ∗ π1) = 1−

∞∑

k=1

log(e)

2k(2k − 1)
(2ǫ(1− 2π1))

2k (22)

= 1− 2 log(e)(1− 2π1)
2ǫ2 +O(ǫ4),

which establishes our upper bound. For the lower bound, note
thatγ ≥ h(π1)− cǫ2 for some universal constantc > 0. From
the concavity ofh(·) we have that for all0 ≤ x ≤ 1 holds
h(x) ≤ h(π1)+h′(π1)(x−π1). Thus, using the monotonicity
of h−1(·) and the fact thath′(π1) > 0 for all 0 ≤ q < 1, we
have

h−1(γ) ≥ h−1(h(π1)− cǫ2) ≥ π1 −
c

h′(π1)
ǫ2. (23)

Now, by Theorem 5, (23) and (22), we have

H̄(Y ) ≥ h(α ∗ h−1(γ)) ≥ h

(

α ∗

(

π1 −
cǫ2

h′(π1)

))

= 1− 2 log(e)(1 − 2π1)
2ǫ2 +O(ǫ4).
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