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Abstract—Recently, Samorodnitsky proved a strengthened ver- [0,1], anda * b £ a(1 — b) + b(1 — a). Here, as well as

sion of Mrs. Gerber's Lemma, where the output entropy of a throughout the rest of the paper, logarithms are taken tehas
binary symmetric channel is bounded in terms of the average Since the entropy rate of the symmetric Markov prodeks }

entropy of the input projected on a random subset of coordintes. .~ = B 7
Here, this result is applied for deriving novel lower boundson the 'S H(X) = h(q), for symmetric hidden Markov processes the

entropy rate of binary hidden Markov processes. For symmetic  bound (1) takes the simple form
underlying Markov processes, our bound improves upon the bst =
known bound in the very noisy regime. The nonsymmetric case H(Y) = h(axq). )

is also considered, and explicit bounds are derived for Markv ; : : :
processes that satisfy thef1, oc)-RLL constraint. Unfortunately, this bound is quite loose for many regimes of
the process parametetisand q.

I. INTRODUCTION Recently, Samorodnitskyi [2] proved a strengthened ver-

. . . sion of MGL, where the normalized input entropy

Let {X,}, n = 1,2,..., be a symmetric statlon%ry blnaryH(Xl, .., X,)/n in the right hand side of{1) is replaced
Markov process with transition probability < ¢ < 3, such by the average normalized entropy of the random vector

(1
that X; ~ Bernoulli(3) and for anyn > 1 (X1,...,X,) projected on a random subset of coordinates.
Xp=Xpn1® W, In this paper we apply the_res.ults.of [_2]_ to derive a novel
) N . lower bound onH(Y'). Despite its simplicity, we show that
where{W,},n =2,3,..., is asequence of i.i.dBernoulli(q)  this bound is stronger than the best known lower bounds for

random variables, statistically independenfiaf. We consider the very noisy regimeo — 1), and recovers the strongest
the hidden Markov process’, }, n = 1,2, ..., obtained at the pound for the fast transitions regimg (- ). For finite
output of a binary sygnmetrlc channel (BSC) with crossovggyes of(a, g) it is numerically demonstrated that the bound
probability 0 < a < 3, whose input is the processX,.}. s reasonably close to the true value Bi(Y), which can
Namely, be estimated to an arbitrary precision by various known

Y, =X, & 7, approximation algorithms.

We also derive a lower bound di(Y') for the case where
the procesq X,,} is a nonsymmetric binary Markov process.
For the special case of Markov processes that satisfy the so-
called (1, 00)-RLL constraint, our bound is shown to be tight
H(Y,...,Y,) in the very noisy regime.

where{Z,},n =1,2,..., is a sequence of i.i.Bernoulli(«)
random variables, statistically independentdf,, }. The task
of finding an explicit form for the entropy rate

H(Y) é nh—>H;o n

. . Il. PRELIMINARIES
of the procesdY,,} is a long-standing open problem, and the

main contribution of this paper is in providing novel lower LetX = (Xi,...,X,) be a binaryn-dimensional random
bounds for this quantity. vector, [n] £ {1,...,n}, and S C [n] some subset of

A simple lower bound onf(Y) can be obtained by in- coordinates. The projection & onto S is defined as

voking Mrs. Gerber's Lemma (MGL) [1], which states that if Xs2{X; i€ S}
{X,} is the input to a BSC with crossover probability and

[Y,} is the output, then As before, we assume thaf is the output of a BSC

with crossover probabilityy, whose input is the vectoK.
HYVi... Y)) > nh <a o (H(Xh .. ,Xn)>) W Samorodnitsky has proved the following resuilt. 2

n Theorem 1 ( [[2, Theorem 1.11]): Let A = (1—2«)“ and let
B be a random subset uniformly distributed over all subsets
of [n] with cardinality [An]. Then

A

where h(p) = —plog(p) — (1 — p)log(1 — p) is the binary
entropy function,=1(-) is its inverse restricted to the interval

_, ( HXg|B
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whereE = O ( /10%) - (n — H(X)). and define the random variabl€ as the largesk for which
Aj < n. Clearly, the subse§ and the subsefA,,..., Ak}

By Han's inequality [[3], the quantityd (Xp|B)/An is have the same distribution, and therefore
monotonically nonincreasing ih, and therefore, ignoring the

error term E, it can be seen that the bourld (3) is strongerH (Xs|S) 1 K
than ﬂ) n = EE;H(XAi|XAi71,...,XA1)
For our purposes, it will be convenient to repldéé€X z | B) n
with H(Xs|S), whereS is a random subset df] generated — lE ZH(XA‘ Xa, e Xa)1(G < K)
by independently sampling each elemémtith probability . noo\i=
It is easy to verify that for any distributiof’x on {0,1}" 1 n
holds =_FE (Z H(X4,|Xa, )1(i < K)) )
n ,
i HXalB) — HXs|S) =1
n—00 n ’ 1 ~
= —E(1Q<K)+Y H(Xa,_a,_ 1| XD)1(i<K
and we can therefore indeed repla@ewith S in Theorentl, n ( (1<K ; Ka—am| X106 )
perhaps with a different convergence rate fbr In fact, (8)
Polyanskiy and Wu[[4] distilled fronm_[2] the inequality 1 n
IU:Y) <I(U : X5|9), @ =5 (Pr(K > 1)+ ;E(H(Xclel)ll(i < K))) ;
that holds for any random variablé satisfying the Markov re- 9)

lationU — X — Y. Usin , the chain rule of entropy, and . . .
the convexity of the MGLgfﬂ)ctiom(f) s h(a*h—l(t)),pi)t/is where1(T') is an indicator on the evert, (7) follows since

a simple exercise to prove the following form of Theorem 1{X”} IS a flr_st-order Markov process, ard (8) follows from
- the stationarity off X,,}. For any2 < i < n we have
Proposition 1: Let A = (1 — 2a)? and letS be a random

subset of[n] generated by independently sampling each elef (H(Xq, 1]X)1(i < K))
menti with probability A\. Then = Eq, (H(Xg,+1|X1) Pr(K > i|Gy))
HIY) > nh (a ol (H(XslS))) . 5 = Ea (H(Xg,+1|X1) Pr(Binomial(n — Gy, \) > i — 1))

An
By the law of large numbers, for arey> 0 and fixedyg;, there

exists some&V, such that for alln > Ny holds
IIl. MAIN RESULT

. . . . . 1—¢61) i<(A—¢€)n
In order to apply Propositiofi 1 for lower boundid§(Y), Pr(Binomial(n —g;,A) >i—1) € (0, i>(+eon
we need to evaluate the quanti(X|.S)/An for symmetric ’ -
Markov processe$ X, }. We will use the notation Combining this with [9) gives that
¢t Egrgr--xg, 1
D lim —H(Xs|S) = \EH(Xg11|X1)
k times n—oo N
and note that = AH(Xg41]X1,G), (10)
GF = Pr (W @ Wi = 1) = 1—(1—2q) 6) and our claim follows sincé! (X¢+1|X1,G) = Eh (¢*¢) for

2 ' stationary symmetric Markov processes. ]

Proposition 2: Let0 <\ < 1, and letS be a random subset Remark 1: An expression similar t(mO) can also be recov-
of [n] generated by independently sampling each elemengred from [5, Corollary 11.2].

with probability \. Then
H(Xs|5)

Our main result now follows directly from combining
Propositiond 1 anfl2 and using the continuity of the MGL

: _ *G
Jm === = Eh (077), function o (t).
whereG is a geometric random variable with parameter.e. Theorem 2: The entropy rate of the process obtained by
Pr(G=g)=(1-)X91Aforg=1,2,.... passing a symmetric binary Markov process with transition
Proof: Let Gy, i = 1,2,..., be a sequence of ii.d. probability ¢ through a BSC with crossover probability
geometric random variables with parameter Define the Satisfies
autoregressive process H(Y) > h(axh™" (Eh (q*G))) , (11)
k
Ay = Z Gk, k=1,2,..., whereG is a geometric random variable with paramekter
=1 (1 — 20&)2.



IV. ASYMPTOTIC ANALYSIS AND NUMERICAL EXAMPLES

In this section We evaluate the bound from Theotdm 2
and q fixed (very noisy regime), and in .

the limits of o« — 5

the limit of ¢ — £ anda fixed (fast transitions regime).

Theorem 3: Let q be fixed andn = = —e. Then
o log(e (1 —29)**
) >1—16€* 4.
H(Y)>1-16e ZQk:Qk:—l T— (1= 2g T o)
Proof: By, e.g., [6, Lemma 1], we have that for afy<
a,v < 1 holds
hlax7y) 2 h(y) + (1 = h(7)) - 4a(l = a)
=1-(1-22)*1-h(y)). (12)
Setting3 £ Eh (¢*¢), the RHS of [(T]1) reads(a * h=1(8)),
which, by [12) and the parametrizatien = % €, can be
bounded as
h(axh™H(B)) >1—4€6*(1 - B).

It therefore, remains to approximate Recall the Taylor
expansion of the binary entropy function

1 B . log(e) :
Using (@), we have
_ (1 _9,C
ﬂIEh<1 (12 2q) >

B > log(e)

=1- ; mm — 2¢)*"¢ (14)
_ N ) A(1 —2¢q)%k

=1- ; 2k(2k —1) 1 — (1 — \)(1 — 2¢)2k” (15)

where [I%) is justified since the sufi;, %E(

2¢)%k¢ converges, and in_(15) we have used the fact th

Et¢ = ﬁ To further approximatd (15), we write
A(1 —2¢q)%k A1 —2¢)% 1
—_(1— “ 902k 1 _ (1 —_92q)2k A(1—2q)2k
TN 20 " 1= (129 1y A7
A(L - 2¢)%
=—— (1
g (100
2 (11— 29)*F 4
= 4e 71_(1_2@% +(9(e )
Consequently,
= log (1 —2q)2k
42 4
p=1 Z _1 1_(1_2q)2k+0(6)'
which yields the deswed result. [ |

To date, the best known upper and lower bounds#’)

and below. The upper and lower bounds frdm [7, Theorem
4.13] on(1 —
ffle upper bound from Theorelh 3. It is seen that Thedrem 3
improves upon the best known lower bounds/@(Y) in the
limit of o — L. Furthermore, unlike]7, Theorem 4.13] that

H(Y))/e* are plotted in Figuréll, along with

2

only holds forg > X, our result holds for all.
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Fig. 1. Comparison between the bounds from [7, Theorem a3y (V)
in the very noisy regime, and the new bound from Thedém 3.

Next, we move to show that the lower bound from Theo-
rem[2 is tight in the extreme regime of fast transitions, i.e.

g — 1 anda fixed. Letq = § — e. With this parametriza-

tion, (I8) reads

= log(e) A(2¢)%F
; 2k(2k —1) 1 — (1 — X\)(2¢)2k

=1 —2log(e) e + O(eh).

B=1- (16)

pw using [(IR) and Theoreml 2, we have the following
proposmon

Proposition 3: Let « be fixed andg = 5 — e. Then
1—HY)<M1-p5)
= 2log(e)A\?e? + O(e*)
= 2log(e)(1 — 2a)*e® + O(e*)

In [7 Theorem 4.12] it was proved that for < o < 1,
g=s—¢asel0

1— H(Y) =2log(e)(1 — 2a)*e® + o(€?).
It therefore follows that the bound from Theoré&in 2 becomes
tight asq — 1.

It can be shown that in the regimes of very high-SNR-§
0 and ¢ fixed) and rare transitions;(— 0 and « fixed), the

in the very noisy regime were the ones foundlin [7, Theorefbund from Theorerml2 is looser than the bounds foundlin [7,
4.13]. In particular, the rané— was bounded form above Theorem 4.11] and iri_[8], respectively.
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Fig. 2. Comparison between the lower bouhdl (11), MGL basedt#d2), and the approximate value Bf(Y") computed using[7, Algorithm 4.25].

For any pair of finite values dfv, ¢), the entropy ratéf (Y')  probability matrix P, such thatX; ~ Bernoulli(r;) and
can be approximated to an arbitrary precision. For exani@le, for n = 2,3,... holdsPr(X, = j|X,—1 = i) = P;;. For
Theorem 4.5.1] shows that k=1,2,..., we define the quantities

HYp Y 1., Y1, X)) <HY)<HYp|Yn 1..., Y1) qj;k £ (Pk)ij =Pr (X, = j|Xpn_p =1i).
and the two bounds converge to the same limithasy oco.
Unfortunately, the computational complexity of the IoweFn
bound (as well as the upper bound) above, is exponentigflin . _ . i
To that end, various works introduced different algoritHiors Proposition 4: Let { X} be a stationary first-order Markov
approximatingl (Y) [7], [10]-[12], each algorithm exhibiting process with transition probability matriP and stationary

a different trade-off between approximation accuracy arffstributionzr. Let0 < A <1, and letS be a random subset
complexity. of [n] generated by independently sampling each element

ith ility A. Th
To obtain a better appreciation of the tightness of the bou\r%lt probability A. Then

from Theoren{ for finite values ofa, ¢), we numerically . H(Xgl|S) e #G
. ’ . . ; 1 —————= =moEh Eh 17
compare it to the output of one such approximation algorithm n>oc A o (qm ) tm (qw ) > an
In particular, we usel[7, Algorithm 4.25] to approximat§yhereG is a geometric random variable with parameter.e.
H(Y'), where the algorithm parameters are chosen to eNSWRG —g) = (1 —A)9 A forg=1,2,....

high enough accuracy, and plot the results alongside with Proof: The proof is similar to that of Propositiah 2 up to
the lower bound of Theorer 2. We also plot the lower o e
bound [2) obtained by simply applying Mrs. Gerber's Lemm&duation[(ID), where now (X¢ 1| X1, &) = mEh (qm ) +

The following is an extension of Propositibh 2 for nonsym-
etric hidden Markov processes.

The results for fixech = 0.11 and varyingg are shown in . gp, (qua). -
Figures[2h, and those for fixed= 0.11 and varyingea, in . o . oo
Figurelz%.h o yinge Combining this with Proposition 1 and the continuity of the

MGL function o(¢) gives the following.
Theorem 4: The entropy rate of the process obtained by

In this section we extend our lower bound from Theofém &?c?tf;nb%i? Srt’r?gt?ir:(afr’y;rzzt-sotg%nl\;?rZci)\s/tfil;%(t:ieos; m:gl}[ﬁ'
to the case where the input to the BSC is a nonsymmet %C withycrossover robabilit sgtisfies 9
Markov process. Let P ¥

HY)>h (a « ! (wOEh (qZﬁG) + mEh (q#))) :

whereG is a geometric random variable with parametee
be a transition probability matrix, and = |7y 7] be a (1 —2a)2.

stationary distribution fo, such thatrP = =. Let {X,,}

be a stationary first-order Markov process with transitioA. Example: Processes Satisfying the (1, c0)-RLL Constraint

V. NONSYMMETRIC MARKOV CHAINS

p_| 1l 9 o
qo  1—qo

1Although, as shown by Birch 9], the gap between the two bsualdo In this Subse_Ction we lower bound the er_1tropy rate of a
decreases exponentially (but possibly with a small expprian.. nonsymmetric first order Markov process, wifly = ¢ and



qi0 = 1, passed through a BSC with crossover probability
This underlying Markov process satisfies the so-calledo)-
RLL constraint, where no consecutive ones are allowed to
appear in a sequence. It is not difficult to verify that forsthi
choice ofgg; andg¢;p we have

1 q
770:1+q7 771:1+q7
ak g+ (=gt s 1— (=9
01 — 1+q ’ 10 — 1+q .

Proof: Clearly, H(Y) < H(Y,,) = h(a x 7). From [6,

equation (11)] combined with (13) we have

N~ log(e)
h(a*m)—l—zm

(2¢(1—2m))**  (22)
k=1

=1 —2log(e)(1 — 2m1)2%€? + O(e*),

which establishes our upper bound. For the lower bound, note
thaty > h(m ) — ce? for some universal constant> 0. From
the concavity ofh(-) we have that for al0 < = < 1 holds

h(z) < h(m)+ R (m)(xz —m1). Thus, using the monotonicity

In this case we havél (Y) > h(a* h~1(8)), where

of h~1(-) and the fact that/(r;) > 0 forall 0 < ¢ < 1, we

L, (1m0t A T
A —\=q q —\=q _ _ c
ﬂE<1+qh< 1+gq >+1+qh< l+gq )) R 2 BT () — o) 2 m = s (29)
(18) Now, by Theoreni5,[(23) and (2), we have
By the concavity ofh(-), for any natural numbey hold _ 2
Y y on(). for any N A(Y) > haxh™} (7)) 2h<a* (m—h,"’( ))>
1— (—g)ot! (1—¢%) +¢7(1 —g(=1)7*") m
h ( 1+q =h 1+4 =1 —2log(e)(1 — 2m1)%€® + O(*).
1 1—gq(-1)9+! |
e () (DY g
ta ta ACKNOWLEDGMENT
and The author is grateful to Alex Samorodnitsky for many
1-(=9) (1—q9 Y +¢971(1 — q(-1)9) valuable discussions and observations, and to Yury Pokjans
h ( 1+gq ) =h ( 1+gqg ) and Yihong Wu for sharing an early draft ofi [4].

N 1 1, (1—=q(=1)7
> (1 —q¢ Y| —— g-lp [ — 22
=(1-q )(1+q)+q ( 1+4q

Substituting [(ZB) and_(20) int¢_(1L8), we obtain
Eq¢ 1
>(1-2 h
v= ( 1+ Q) (1 + Q)
Now, using again the fact thaf(¢”) = =%,
invoking Theoreni ¥ gives the following result. 5]

Theorem 5: The entropy rate of a nonsymmetric stationary
binary first-order Markov process with transition probaisis (6]
qo1 = q andqip = 1, passed through a BSC with crossovetyy;
probability «, is lower bounded agf (Y) > h (ax h=1(v)),
where

1
(it
" 1+g¢

(1-20)%¢
(1+9)(1—4a(l —a)g)

) . (20)
[1]
[2]

Eq“ 1—q)
h . (21
+1+q (1+q @

(4]

w

and

(8]

)
(r(53) -+ (653))
1+q 11q¢)) no

The following Corollary of Theorenf]5, shows that oufll

bound becomes tight as — % and partially recovers the 1

results of [18, Section 4.2] and [14, Appendix E].
Corollary 1: For the very noisy regime, where = % —€

and0 < ¢ < 1, we have

[13]

_ 1-q\? [14]
H(Y)=1-2log(e) <m) e+ 0O(eh).
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