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Abstract

In this paper, we consider the problem of variable-lengtira® coding allowing errors. The exponential moment
of the codeword length is analyzed in the non-asymptotiomegand in the asymptotic regime. Our results show that
the smooth Rényi entropy characterizes the optimal exgitaienoment of the codeword length.
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I. INTRODUCTION

Renato Renner and Stefan Walf [1]] [2] introduced a new imfation measure called ttenooth Rnyi entropy
which is a generalization of the Rényi entropy [3]. Theywhd that two special cases of the smooth Rényi entropy
have clear operational meaning in the fixed-length sourcingoproblem and the intrinsic randomness problem:
(i) the smooth max Rényi entrops{§ characterizes the minimum number of bits needed for witrodeg error
probability at most, and (ii) the smooth min Rényi entrogy2, characterizes the amount of uniform randomness
that can be extracted from a random variable.

As the notations indicate, the smooth max/min Rényi ene®f§ and HS, are defined as limits of the smooth

Rényi entropyH:, of orderc«; see Sectiofi]l for details. Hence it is natural to ask
Does the smooth&yi entropyH;, of order a have operational meaning?

In this study, we answer this question by demonstratingttimsmooth Rényi entropy characterizes the optimal
exponential moment of the codeword length of variablederapurce code allowing errors. Our contributions in

this paper are summarized as follows.
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A. Contributions

We considers-variable-length source coding problem, that is, a vaedéhgth source coding problem where
decoding error is allowed as long as it is smaller than or etpughe given values > 0. Usually, in this setting,
the average codeword lengBj/(X)] is investigated; see, e.g.,/[4]. In this study, however, Weph the criterion
of minimizing the exponential moment of the codeword lengtl), i.e., E[exp{\¢(X)}] for a given parameter
A>0.

Our first contribution is to give non-asymptotic upper angido bounds on the exponential mom&xp{ (X )}]
of the codeword length of-source codes. Our one-shot coding theorems (Thedrems [P)atemonstrate that the
optimal exponential moment of the codeword length is charamed by the smooth Rényi entropy.

Our second contribution is general formula(in the sense of Verdt-Hahl[5],][6]) for the asymptotic empotial
rate of the exponential moment of the codeword length (Téxed8). Moreover, to apply our general formula to
the mixture of i.i.d. sources, we analyze the asymptoticabiel of the smooth Rényi entropy of the mixture of

i.i.d. sources (Theorefd 4).

B. Related Work

The smooth Rényi entropy was first introduced by Renner aafil [&], [2]. In our analysis, we use the result of
Koga [7], where the smooth Rényi entropy is investigatedubyng majorization theory. As mentioned above, the
smooth max and min Rényi entropies have clear operatiorahing respectively in the fixed-length source coding
[1], [2], [B] and the intrinsic randomness problem [1]] [£9]. Recently it was shown that the smooth max Rényi
entropy has an application also in variable-length lossksurce coding [10], where it is shown that the smooth
max Rényi entropy characterizes the threshold of codevesrgth under the condition that the overflow probability
is at moste. Similarly, thesmooth Rnyi divergencailso finds applications in several coding problems; see, e.g
[ZT]-[23).

On the other hand, conventional Rényi entropy [3] also glag important role in analyses of variable-length
source codind [14]/115] and fixed-length codingl[16]. Intgarar, Campbell[14] proposed the exponential moment
of the codeword length as an alternative to the average amdelength as a criterion for variable-length lossless
source coding, and gave upper and lower bounds on the exfimanoment in terms of conventional Rényi entropy.
Our one-shot coding theorems (Theorérs 1[dnd 2) can be evedids a generalization of Campbell’s result to the
case where the decoding error is allowed. It should be meadidiere that a general problem for the optimization
of the exponential moment of a given cost function was ingastd by Merhav([17], [18].

Although we consider variable-length codes subject to ym@nstraints in this paper, studies on variable-length
codeswithout prefix constraints are also important [19], [20]. In part&u Courtade and Verddi [20] gave non-
asymptotic upper and lower bounds on the distribution ofepantd length by bounding the cumulant generating
function of the optimum codeword lengths. It should be ndked in [19] and[[20] codes are required to be injective

so that the decoder can losslessly recover the source ofutpntthe codeword. The problem of variable-length
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source codingallowing errors was investigated under the criterion of the average codéuenrgth by Koga and

Yamamoto [[4] and Kostinat al. [21], [22].

C. Paper Organization

The rest of the paper is organized as follows. At first, we aevthe definition of the smooth Rényi entropy
in Section[1l. Then, in Sectiof]ll, non-asymptotic codirfgebrems fore-variable-length source coding is given.
The general formula for the optimal exponential moment &f todeword length achievable byvariable-length
source codes is given in Sectibnl IV. Sectich V concludes ty@ep To ensure that the main ideas are seamlessly

communicated in the main text, we relegate all proofs to {hgeadices.

[I. SMOOTH RENYI ENTROPY

Renner and Wolf[[2] defined the smooth Rényi entropy as WddloFix ¢ € [0,1). Given a distributionP on
a finite or countably infinite set’, let B5(P) be the set of non-negative functiois with domain X’ such that
Q(z) < P(z), forallz € X, and) " _, Q(z) > 1 —¢. Then, fora € (0,1) U (1, 00), thee-smooth Rnyi entropy

of order « is defined

HE(P) 2 —— logri(P) ®
where
ra(P) £ dnf ;[Q(I)]“- @

For basic properties ofZ (P), see[[2] and[[7].

Remark 1. The definition of HZ (P) above is slightly different from the original definition gim in [1]. However,
in [2], it is pointed out that this version is more appropei&r generalization to conditional smooth Rényi entropy.
Our result in this paper demonstrates that this version jsagpiate also for describing the variable-length source

coding theorem allowing errors.

Remark 2. The max and min smooth Rényi entropies are defined respgcts

H; (P) 2 lim HE(P), 3)
HE,(P) £ lm HE(P). )

As shown in [1], HE (P) for o € (0,1) is, up to an additive constant, equal & (P). This fact may be one of
the reasons thal/s (P) has received less attentions. However, as shown in Thedfieems{2 belowHE (P) itself

plays an important role in the evaluation of the exponemtiament of the length function.

1Throughout this paper, log denotes the natural logarithm.
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IIl. ONE-SHOT CODING THEOREM

Let X be a finite or countably infinite set and be a random variable oA with the distributionP. Without
loss of generality, we assunfe(X) > 0 for all =z € X.

A variable-length source cod®e = (¢, ,C) is determined a triplet of a sét C {0, 1}* of finite-length binary
strings, an encoder mapping X — C, and a decoder mapping: C — X. Without loss of generality, we assume
thatC = {p(z) : © € X'}. Further, we assume thétsatisfies the prefix condition. The error probability of tfoele

® is defined as
Pe(®) £ Pr{X # ¢(p(X))}. (6)
The length of the codeword(z) of = (in bits) is denoted by|p(z)||. Let ¢ be the length function (in nats):
U(z) £ [lo(z)] log 2. (6)

In this study, we focus on the exponential moment of the leffighction. For a given\ > 0, let us consider the

problem of minimizing
Ep [exp{M(X)}] ()

subject toP.(®) < ¢, whereEp denotes the expectation with respect to the distribuffon

Remark 3. In Theoremg1l anfll2 below, we allow the encoder mapgirtg be stochastic. LelV,, (c|x) be the

probability thatz € X is encoded irc € C. Then,P.(®) andEp [exp{\/(X)}] are precisely written as

Po(®) = Plz) Y Wyl (8)

zeX c:x#P(c)
and

Ep [exp{M(X)}]

- Z p(I)ZWg,(qx) exp{\||¢|| log 2} 9)

reX ceC

where||c| is the length (in bits) of: € C. Note that, without loss of optimality we can assume thatdbeoder

mappingy is deterministic. Indeed, for a giveliy,,, we can choose so that
(c) = arg max W, (c|z)P(x). (10)

The following theorems demonstrate that the exponentiainerd Ep [exp{\¢(X)}] is characterized by the
smooth Rényi entropyiy ;5 (P).

Theorem 1. For anyA > 0 ande € [0, 1), there exists a cod® (with a stochastic encoder) such tiat(®) < e

and

Ep [exp{M(X)}] < 22* exp {AHf e (P)} + e, (11)
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Theorem 2. Fix A > 0 ande € [0,1). Then, for any cod@ such thatP.(®) < ¢, we have
Ep [exp{M(X)}] > exp {110 (P) } (12)
TheorenT]L and Theorem 2 will be proved in respectively AppeBdand AppendixB.

In Theorent1l, we allow the encoder mappipdo be stochastic. However, it is not hard to modify the theore
for the case where only deterministic encoder mappingslimeed. To see this, lek’ = {1,2,3,...} and assume

that P(1) > P(2) > ---. Then, letk* = k*(¢) be the minimum integer such th§t:f;1 P(i) >1—¢ and let

P(i), i=1,2,.. .k — 1,
QM) 231-e—-SF 1 P6), i=k, (13)
0, P>k

Since0 < 1/(1+ A) < 1 for all A > 0, we can use (A) of Theorem 1 dfl[7] and obtain

ieX
Based on this fact, we can modify the proof of Theofdm 1 andiokhe following result (See AppendixX C for

details).

Proposition 1. For any\ > 0 ande € [0, 1), there exists a cod® with a deterministic encoder mappirRgsuch
that P.(®) < e + 7. and

Ep [exp{M(X)}]

< 2P exp (A} [ 150 (P)} + (2 + 72022 (15)

wherey, 21— — Y571 p(j),

IV. GENERAL FORMULA

In this section, we consider coding problem for general sesirAgeneral source
X ={x"=(x" x{" . XM, (16)

is defined as a sequence of random variall@son then-th Cartesian product™ of X [6]. The distribution of
X™ is denoted byPx~, which is not required to satisfy the consistency condition

We consider a sequence of coding problems indexed by th&lblugthn. A code of block length is denoted
by ®,, = (¥n, ¥n,Cyn). The length function ofb,, is denoted by,,, i.e., ., (2") = |[¢n(2™)| log2 for all z™ € X™.
We are interested in the asymptotic behavior(bfn)log Ep, , [exp{Al,(X™)}].

A value E is said to bes-achievable if there exists a sequeree, }52 ; of codes satisfying

limsup Po(®,,) < ¢ a7

n—o0
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and

lim sup 1 logEp,., [exp{\M,(X")}] < E. (18)
n

n—oo

The infimum ofe-achievable values is denoted B (X).

To characterizéZ5 (X)), we introduce the following notation.

1
HE(X) & 151?1 limsup — HE® (Pxn). (19)
n

n—oo

It is worth to note that (X)) is non-negative for alk € (0,1) ande € [0, 1). Indeed, we can prove the stronger

fact that
lim inf lHZ(PXn) >0, ac(0,1),e€]0,1). (20)
n

n—oo

We will prove [20) in AppendixD.

Now, we state our general formula, which will be proved in Apgix[E.
Theorem 3. For anyA > 0 ande € [0,1),
EX(X) = AH{ (140 (X). (21)

In the following, we consider a mixture of i.i.d. sourcest lus considern distributionsPx, (i = 1,2,...,m)

on X. A general sourceX is said to be a mixture oPx, , Px,, ..., Px,, if there exists(a1,as ..., a.,) satisfying
Y,oi=1,0>0(=1,...,m),and for alln =1,2,... and allz" = (z1,x2,...,2,) € X"
Pxa(a") = o Pxr(z") (22)
=1
:ZaiHPXi(xt)' (23)
=1 t=1

For the later use, letl; £ Zé;ll a; (i=1,2,...,m) and A,,,1 £ 1. Further, to simplify the analysis, we assume

that
H(X1) > H(X3) > > H(X.) (24)
where H(X;) is the entropy determined b¥x;:

H(X;) £ Z Px, (x)log %@) (25)
reX ¢

Then, HE (X)) of the mixtureX is characterized as in the following theorem.

Theorem 4. Let X be a mixture of i.i.d. sources satisfying {24). Fixe (0,1), 7, ande € [A;, A;41). Then, we

have

HE

(X) = H(X;). (26)
Theoren{# will be proved in AppendiX F.
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Remark 4. Lettingm = 1 ande | 0, Theorem[(¥) derives Lemma 1.2 df|[1].

Remark 5. Although Theorenil4 assumes that components are i.i.d.,agggmption is not crucial. Indeed, the

property of i.i.d. sources used in the proof of the theoremnly that the AEP[[23] holds, i.e.,

1
lim Pr< |=log ——— — H(X; =0 27
i f{\nogpxy(xm < >>7} @)
foralli =1,2,...,m and anyy > 0. Hence, it is straightforward to extend the theorem so theam be applied

for the mixture of stationary and ergodic sources. Moreosirce we use only the AEP, it can be seen that the
assumption[(24) is also not crucial. Assume that there £simtne componenfs # j» such ast (X;,) = H(X,,).

Then, let us consider the modified mixture such thatlt component is substituted hyth component”: i.e.,

i#j2
wherea; = q; for i # j; anda); = a;, + aj,. Then H5(X) the modified mixture is identical with the original

one.
Combining Theoremis] 3 arid 4, we have the coding theorem fomikure of i.i.d. sources.

Corollary 1. Let X be a mixture of i.i.d. sources satisfyilg{(24). Then, for any 0 ande € [0,1),
E{(X) = AH(X;) (29)

wherei is determined so that € [A;, A;41).

V. CONCLUDING REMARKS

In this paper, we investigated the the exponential mometiieotodeword length of variable-length source coding
allowing decoding errors. Roughly speaking, our resulthalestrate that the logarithiog Ep [exp{\(X)}] of
the optimal exponential momefily [exp{\{(X)}] is characterized by the smooth Rényi entrdpy, , . ,,.

Now, let us consider to také — co. When X is sufficiently large, the valubgEp [exp{A¢(X)}] is dominated
by the longest codeword lengtihax,cx ¢(z). In other words, to minimizdogEp [exp{\/(X)}], we need to
minimize the longest codeword lengtimx.c » ¢(x). Therefore, roughly speaking, the difference betweerabiet
length coding and fixed-length coding becomes smallek &sincreased. On the other hand, we know tHgt=
limy o0 Hf/(lﬂ) characterizes the optimal coding rate of fixed-length cddlg48]. The above argument implies
that we can unify our result and results of [1]] [8] in the limf A — oo or equivalentlya — 0.

On the other hand, sinck > 0 and thus0 < 1/(1 + A) < 1, only the smooth Rényi entrop}{: of the order
a € (0,1) plays an important role in our coding theorems. It remaina &gure work to investigate the operational

meaning of the smooth Rényi entropis, of the ordera: > 1.
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APPENDIXA

PROOF OFTHEOREMI[I]

Fix 6 > 0 arbitrarily and choos&) € B¢(P) so that

)\ €
log > (@)Y < T HE (14 (P) + 6. (30)
TEX

Let A2 {ze€X:Q(z) >0} and

(@) +Y

(N —
S R 31
Since
Z 9—{-1og: QM (@)} < 1 (32)
z€A
holds, we can construct, ¢, C) such that (i) £ {@(x) : = € A} is prefix free, (ii)¢: A — C satisfies
I¢(2)]| = [ log, QM ()], (33)

and, (iii) ¢ and¢: ¢ — A satisfyz = ¢(p(x)) for all z € A.
For eachr € X, letv(z) = Q(z)/P(z). Note thatd < v(z) < 1 and~(z) = 0 for all = ¢ A. SinceQ € B°(P),

we have

> Pl)y(z) =1-e. (34)

reX

Now, we construct a stochastic encoder as follows:

0o @(z) with probability v(x)
p(x) = (35)
1 with probability 1 — v(z)

whereo denotes the concatenation. That:sjs encoded to “0” followingg(x) with probability v(z), and “1”
with probability 1 — ~v(x). We can construct the corresponding decadeso thatz = (¢ (z)) for all z € X. The
length functionl(z) = ||¢(x)] log 2 satisfies that, ifr is encoded to “0” followingp(z),

((x) < —log QW (z) + 21og 2 (36)
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and otherwis€(x) = log 2. Hence, we have

Ep [exp{\(X)}]

< > P@)(w) exp { A~ log @(2) + 210g2] |

zeX
+ > P(x)(1 - y(x)) exp{Alog 2} (37)
reX
(%) 22X Z Q(z) exp {—/\ log QW) (:v)} +e2* (38)
zeA
) (1+X)
— 92X {Z [Q(I)]l/(lJr)\)} + €2>\ (39)
zeA
(gb) 22X exp {AH;(M) (P)+(1+ )\)5} +e2* (40)

where the inequality (a) follows froni (B4) and (b) followsfn (30). Since we can chooge> 0 arbitrarily small,
we have[(I1). O

APPENDIXB

PROOF OFTHEOREMI[Z

Fix a code® = (¢, 1,C) such thatP.(®) <1 —e.
Recall that we allowy to be stochastic. LelV,(c|x) be the probability such that € X" is mapped ta: € C.

Let
[(z) 2 {ceC:Wy(dz)> 0,2 =1(c)} (41)
and
Yw) & D We(cl). (42)
T o)

Note that, sincé.(®P) < ¢, we have

Z P(z)y(z) > 1—=e. (43)

reX

Further, we have

Ep [exp{M(X)}]

= Pla)Y_ We(clz)exp{A|c|log2} (44)
TEX ceC

>y Px) Y Wlclz)exp{A |l log2}. (45)
TEX cel'(z)
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From Jensen’s inequality, it is not hard to see that

Y Welclz) exp{A|c] log2}
cel(z)

x) exp {/\ } (46)
cel(z)

x) exp { } 47
cel'(z)

= v(x)exp {/\E(x)} (48)

where
{(z) £ min ||c[|log?2. (49)
cel(z)
Substituting [(4B) into[{45), we have

Ep [exp{M(X Z P(z)y(z)exp {M(z)} . (50)

zeX
Let Q(z) = P(x)y(x). Then, from[(4B), we havé) € B(P). Let A = {z : Q(x) > 0}. Then, [GD) can be written
as

Ep [exp{M(X Z Q(z)exp {\(z)} . (51)

zeA
On the other hand, from the definition of the $&t), we can see thdt(z) NT'(z') = 0 for all z,2’ € A such

thatx # 2/, and thus we have

> exp{—l(x)} < 1. (52)

zeA
Now, let us consider the problem of minimizig . , Q(x) exp {)\é } subject to[(BR). As shown in Example

1 in Section 3 of[[18], the minimum is achieved by

7 @)/

(z) = —log S Q@ z e A (53)
In other words,[(5]1) can be rewritten as
Ep [exp{A(X)}]
Q)Y
> %Q(x) exp {—/\log Zm’eA[Q(xl)]l/(l-M) } (54)
(142
= lZ[Q(:ﬂ)}”(l“)] (55)
z€A
(1+2)

2 [Tf/(u,\)(P)} o (56)

where the last inequality follows from the fagt € 5°(P). By the definition of the smooth Rényi entropy, we have

12. O
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APPENDIXC

PROOF oFPROPOSITIONT

Let
A P@), i=1,2,...,k*(e) — 1,
Q* (i) £ (57)
0, i > k*(e).
Then, from Theorem 1 (A) of 7], we have
AHT /T (P) = (1+A)log (Z[Q*(z’)}” <1“>> : (58)
icX

Now, let us substitute (resp.Q) in the proof of Theorerfil1 with + . (resp.Q*). Note thaty(z) = Q*(z)/P(x)

satisfies

1, i=1,2,... k") — 1,
v(z) = (59)
0, ©>k*(e).

Thus, the encoder constructed in the proof of Theofém 1 besodeterministic. Hence, we can obtain the

proposition. O

APPENDIXD
ProoF oF(20)

Fix o € (0,1) ande € [0,1), and then, choos€ > 0 so thate + ¢’ < 1. From Lemma 2 of[[2], we have

1 ) | ,
SHEPs) 2 S (e = LS (60)

On the other hand, it is known thﬂé“l (Px~) can be written as

HG* (Pxn) = min  log|Al, (61)
P(A)>1—c—¢’

where|.A4| is the cardinality of4, and thus,HS*El (Px«) > 0. So, taking the inferior limit of both sides df (60),
we have[(2D). O

APPENDIXE

PROOF OFTHEOREM[3|

Direct Part: At first, we consider the case where
Hi145(X) > 0. (62)
In this case, for all sufficiently small > 0 and sufficiently large:, we have

22 exp {AHFf3, ) (Pxn) b > €2, (63)
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Hence, from Theorer] 1, there exidt®,,}°° ; such that

Pe(®,)<e+6, n=12,..., (64)
and, for sufficiently large,
Ep [exp{Ma(X™)}] < 2 x 22X exp {/\H S (PXn)} . (65)
Eq. (63) gives
hm_}sup 1og Ep [exp{\,(X™)}]
< Alimsup - H1 iy (Pxn). (66)

By using thediagonal line argumengsee [6]), we can conclude thalHl/(lH) (X) is e-achievable.

If HS (X) = 0 then [65) is replaced with

1/(14X)
Ep [exp{An(X")}]
< max {2 x 22 exp (AT (Pxn) | 2 x 224 67)
In this case, we can also prove tltais e-achievable in the same way as the C&5® (1 ) (X)>0. O

Converse Part: Suppose thaE is e-achievable and fiX > 0 arbitrarily. Then there exist§®,,}5° ; such that,

for sufficiently largen,
Peo(®,) <e+44 (68)
and
lim sup — 1og Ep [exp{ M, (X™)}] < E. (69)

n—r oo

On the other hand, from Theordm 2, for sufficiently largsuch that[{€8) holds,

Ep [exp{Mn(X")}] = exp { AHTSG ) (Pxo) } (70)

Combining [69) with [[7D), we have

E > )\hmsup Hl/(1+)\) (Pxn). (71)
Sinced > 0 is arbitrary, lettings | 0, we haveE' > AHy | ) (X). a
APPENDIXF

PROOF OFTHEOREM[4]
A. Lemmas

Before proving the theorem, we introduce some lemmas.
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Lemma 1. Fix « > 0 arbitrarily. Then, there exists an integey so that for alln > ng and alli = 1,2,...,m,

1 1
Zlog —— > D=y > A — .
Pr{n log P (X7 = H(X;) 7} > Aiy1 — (72)
Proof: For eachk = 1,2,...,m, let
n A a1 1 ¥
£ 2 log—— > — L.
s 2 {an: Loy Py 2 H0%) a9 (73)
Since i.i.d. sources satisfy the AEP [23], we can chooessuch that
3y PXg(x")zl—g, Vn>n,Vk=1,2....m. (74)
zneSY
Moreover, we can choose, > n; so that
“Liogr <2, Wn > (75)
n 2
Then, for alln > ng, anyi=1,2,...,m, and anyk = 1,2,...,1,
Sh A n 1 1
n = D — — i) —
S] {x - log Po(am) = H(X;) 7} (76)
and
satisfy that
G g
STUT2<a": —log—— > H(X;) — 78
= :v"'llo #>H(X»)— —llo (79)
Sdan i Lig—t > H(x) -2 (80)
T — —_— i) — =
- n gpxg(l'n) - 2
o Sp (81)
Thus, we have
Y Pxa(a") =) ax Y Pxp(a") (82)
I"ES" k=1 I"ES”
Z Qe PXI?(SCn) —Zak Z PXI?(,T") (83)
k=1  anesp k=1 ameTy
> A (L=7/2) =Y o Y 2Pxn(a”) (84)
k=1  aneTy
5
> Ay (1—~/2) - 5 (85)
> A1 — . (86)
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Lemma 2. Fix « > 0 arbitrarily. Then, there exists an integey so that for alln > ng and alli = 1,2,...,m,

1 1
Pri{=log—— < H(X; >1—A; — 7. 87
r{n 08 B X = ( )+7} > v (87)

Proof: For eachk = 1,2,...,m, let

1 1 ¥
SPAE": —log——— < HXp)+ = p. 88
{I n % P =1 ’“>+2} %)
Since i.i.d. sources satisfy the AEP [23], we can chooessuch that
Z Pxpyn(2™,y") > 1—7, Vn2>n,Vk=1,2,...,m. (89)
(zm,ym)eSE
Moreover, we can choose, > n; so that
1 gl
——logakgi, Vn > ng,Vk=1,2,...,m. (90)
n
Hence, for alln > ny and anyi,
ol Ligg L x4+ (91)
=X — —_—
! n ngn((En) - S
satisfies that
5‘”3{” Lo ! < H(X;)+ } (92)
i 2 (% o lg——0m = S i
n 08 o Pxp (2m) 7
—{x" l10 ! < H(X;)+ —l—llo a} (93)
2 Sy (94)
Thus, we have
D Pxa(a™) =D ax Y. Pxp(a") (95)
anesr k=i gnedp
> Zak Z Pxp(z") (96)
k=i  aneSp
> (1= A4;)(1-9) (97)
>1-A;—n. (98)

O

Lemma 3. Fix v > 0 so thatH (X;) —v > H(X;41)+ forall j =1,2,...,m — 1. Then, for sufficiently large

nand anyi =1,2,...,m,

o —27§Pr{\ilog - H(X,) m} <o ton (99)
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Proof: From Lemmag]l and 2, we have

1 1
Pri|-log ———— — H(X;)| <
r{nogpxn(Xn) (X:) _7}
—prlly ¥<H(X-)+ _prddy ¥<H(X-)— (100)
- n OgPXn(Xn) - ! v 8 n OgPXn(Xn) ! i
>{1-4i =} —{1-(Ais1 =)} (101)
=ao; — 2y (102)
and
prd|Lli L~ H(X;)| <
Un " P (x7) V=7
—pedlio #<H(X-)+ —pellio ¥<H(X-)— (103)
TR B Py (xS T T 508 By () 9=
1 1 1 1
< Pr<¢-—1 H(X;—1)— —Prq—log——~ < H(X; 104
<pr{tios e < HOG) — o f - Pr{Lhos s <HOG +a) 00)
<{1-(Ai—-—{1-4i1 -7} (105)
= q; + 2. (106)
]
B. Proof of Theorerhl4
To prove the theorem, it is sufficient to show that, fosatisfyingA; < e < A;11,
lim sup ng(PXn) < H(X;) (107)
n—oo N
and
liminf ~ HE (Pyn) > H(X)). (108)
n—oo N

Proof of (107} Fix v > 0 sufficiently small so that{ (X;) — v > H(X;41)+~ forall j=1,2,....m—1

and thatA; + 2my <e. Forj =1,2,...,m, let
5\ A n . i 1 —
Note that7,,(j) N 7,(j) = 0 (j # 7). Further, from Lemma&l3, we have

H(X;)| < 7} : (109)

Pr{X"e Un(j)} =) Pr{X"eT.()} (110)
j=i j=i

= i (aj —27) (111)

>1—A; —2mry (112)

>1—c. (113)
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From [1IB), we can see that

Pyn(a™), it 2" € UM, T(h)

Qn(z") 2 (114)
0, otherwise
satisfies,, € B*(Px~). Thus, from the definition ofZ (Px~),
ra(Pxn) < ) [Qu(a™)” (115)
rreXxn
=Y D [Pxa(@m)” (116)
J=t zn€Tn(4)
< ITali)lexp{—an(H(X;) =)} (117)
Jj=t
<Y exp{n(H(X;) +7)} exp{—an(H(X;) — )} (118)
j=i
=Y exp{n[(1 - a)H(X;) + (1 + a)} (119)
j=i
< mexp{n[(1 -~ a)H(X;) + (1 + a)]}. (120)
Hence, we have
LHe(Pea) < HX) + % 1 L1ogm (121)
n 11—« n
and thus
lim sup ~ HZ (Pyn) < H(X;) + %, (122)
n—oo N 1-
Since we can chooseg > 0 arbitrarily small, we have (107). O

Proof of (I08) If H(X;) = 0 then [108) is apparent, sinde {20) holds. So, we assHIf1E;) > 0.
Fix v > 0 sufficiently small so that{ (X;) —v > H(X,11)+~ forall j =1,2,...,m—1 and that4; + 6my <
e < A;jy1 — 6m~y. We assume that is sufficiently large so thatxp{—n[H (X;) — 7]} < m~. Let us defineT, (j)
as in [109). Note that

Pxn(a") < Pxn(3"), 2" € To(j), 2" € Tu(4):4 < J. (123)
Let S, = U~ Tn(j) andS,, = X"\ S,. Then, from Lemma&l3, we have
Pxn(Sp) < 2my. (124)

Let us sort the sequences &i* so that

Pxn (@) > Pxn(23) = Pxn(23) > .. (125)
Then, letA, £ {z7, 2%, ..., 2%} and A} £ A, U {2} wherek* is the integer satisfying
o
> Pxn(@p)>1-¢ (126)
k=1
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and

k*—1

> Pxn(ap) <1-ce. (127)
k=1
We first show that
ap. € Sy oor . € | T(h). (128)
j=1
From Lemmd[, we have

ProXx"e |J Tu()p < D (5 +2v) (129)

j=it1 j=it1
<1— A1 +2my (130)
<1-—¢e—4my. (131)

Since P(A,}) > 1 — ¢ holds, from [(I124) and{131), we have

Al n # 0. (132)

U Tn(J)

From [123) and[{132), we can obtaln (128).
We next notice that, froni (I23) and the assumptionthiatsufficiently large, we hav€xn (z™) < exp{—n[H(X;)—
~]} < mry for all z™ € U;Zl T.(j). Combining this fact with[(124) and {128), we can see that

Pxn(A,NS,) >1—¢—my— Pxn(Sy) (133)

>1—¢e—3my. (134)

Thus, from [I3L) and_(134), we have

Pr{X”eAnﬂ O%(g) }Zm'y. (135)
=1

Moreover, since[{123) holdd, (1135) implies that

Pxn(Ap N To(i)) 2 B = min{my, a;} (136)
and thus

[An N To(i)] = Bexp{n[H(X;) — 7]} (137)
Hence, we have

> [Pxn(@M)™ 2 Bexp{n[(1 — a)H(X;) — (1+ )]} (138)

" eAn ﬂﬁl (1)
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Now we use the result of Kogal[7]. Theorem 1 (A) bf [7] tells batt

k1
g 1 n o
H(Pxn) > v——log ; [Pxcn ()] (139)
1 nyjo
= ——log > [Pxn(@™)]* . (140)
zneA,
By combining this with [(I3B), we have
Laspey> —1 10 S [P (141)
n ¢ xn) = n(l — CY) & €A, NT, (i) X
> (=) log (Bexp{n[(1 — a)H(X;) — (1 + a)y]}) (142)
B . 1+« log 3
Thus, we have
liminf & HE (Pxn) > H(X)) — %, (144)
n—oo n 1—«
Since we can chooseg > 0 arbitrarily small, we have (108). O
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