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On the Smooth Ŕenyi Entropy and
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Abstract

In this paper, we consider the problem of variable-length source coding allowing errors. The exponential moment

of the codeword length is analyzed in the non-asymptotic regime and in the asymptotic regime. Our results show that

the smooth Rényi entropy characterizes the optimal exponential moment of the codeword length.

Index Terms

ε source coding, exponential moment, the smooth Rényi entropy, variable-length source coding

I. I NTRODUCTION

Renato Renner and Stefan Wolf [1], [2] introduced a new information measure called thesmooth Ŕenyi entropy,

which is a generalization of the Rényi entropy [3]. They showed that two special cases of the smooth Rényi entropy

have clear operational meaning in the fixed-length source coding problem and the intrinsic randomness problem:

(i) the smooth max Rényi entropyHε
0 characterizes the minimum number of bits needed for with decoding error

probability at mostε, and (ii) the smooth min Rényi entropyHε
∞ characterizes the amount of uniform randomness

that can be extracted from a random variable.

As the notations indicate, the smooth max/min Rényi entropiesHε
0 andHε

∞ are defined as limits of the smooth

Rényi entropyHε
α of orderα; see Section II for details. Hence it is natural to ask

Does the smooth Ŕenyi entropyHε
α of orderα have operational meaning?

In this study, we answer this question by demonstrating thatthe smooth Rényi entropy characterizes the optimal

exponential moment of the codeword length of variable-length source code allowing errors. Our contributions in

this paper are summarized as follows.
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A. Contributions

We considerε-variable-length source coding problem, that is, a variable-length source coding problem where

decoding error is allowed as long as it is smaller than or equal to the given valueε ≥ 0. Usually, in this setting,

the average codeword lengthE[ℓ(X)] is investigated; see, e.g., [4]. In this study, however, we adopt the criterion

of minimizing the exponential moment of the codeword lengthℓ(X), i.e., E[exp{λℓ(X)}] for a given parameter

λ > 0.

Our first contribution is to give non-asymptotic upper and lower bounds on the exponential momentE[exp{λℓ(X)}]

of the codeword length ofε-source codes. Our one-shot coding theorems (Theorems 1 and2) demonstrate that the

optimal exponential moment of the codeword length is characterized by the smooth Rényi entropy.

Our second contribution is ageneral formula(in the sense of Verdú-Han [5], [6]) for the asymptotic exponential

rate of the exponential moment of the codeword length (Theorem 3). Moreover, to apply our general formula to

the mixture of i.i.d. sources, we analyze the asymptotic behavior of the smooth Rényi entropy of the mixture of

i.i.d. sources (Theorem 4).

B. Related Work

The smooth Rényi entropy was first introduced by Renner and Wolf [1], [2]. In our analysis, we use the result of

Koga [7], where the smooth Rényi entropy is investigated byusing majorization theory. As mentioned above, the

smooth max and min Rényi entropies have clear operational meaning respectively in the fixed-length source coding

[1], [2], [8] and the intrinsic randomness problem [1], [2],[9]. Recently it was shown that the smooth max Rényi

entropy has an application also in variable-length lossless source coding [10], where it is shown that the smooth

max Rényi entropy characterizes the threshold of codewordlength under the condition that the overflow probability

is at mostε. Similarly, thesmooth Ŕenyi divergencealso finds applications in several coding problems; see, e.g.,

[11]–[13].

On the other hand, conventional Rényi entropy [3] also plays an important role in analyses of variable-length

source coding [14], [15] and fixed-length coding [16]. In particular, Campbell [14] proposed the exponential moment

of the codeword length as an alternative to the average codeword length as a criterion for variable-length lossless

source coding, and gave upper and lower bounds on the exponential moment in terms of conventional Rényi entropy.

Our one-shot coding theorems (Theorems 1 and 2) can be considered as a generalization of Campbell’s result to the

case where the decoding error is allowed. It should be mentioned here that a general problem for the optimization

of the exponential moment of a given cost function was investigated by Merhav [17], [18].

Although we consider variable-length codes subject to prefix constraints in this paper, studies on variable-length

codeswithout prefix constraints are also important [19], [20]. In particular, Courtade and Verdú [20] gave non-

asymptotic upper and lower bounds on the distribution of codeword length by bounding the cumulant generating

function of the optimum codeword lengths. It should be notedthat in [19] and [20] codes are required to be injective

so that the decoder can losslessly recover the source outputfrom the codeword. The problem of variable-length
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source codingallowing errors was investigated under the criterion of the average codeword length by Koga and

Yamamoto [4] and Kostinaet al. [21], [22].

C. Paper Organization

The rest of the paper is organized as follows. At first, we review the definition of the smooth Rényi entropy

in Section II. Then, in Section III, non-asymptotic coding theorems forε-variable-length source coding is given.

The general formula for the optimal exponential moment of the codeword length achievable byε-variable-length

source codes is given in Section IV. Section V concludes the paper. To ensure that the main ideas are seamlessly

communicated in the main text, we relegate all proofs to the appendices.

II. SMOOTH RÉNYI ENTROPY

Renner and Wolf [2] defined the smooth Rényi entropy as follows. Fix ε ∈ [0, 1). Given a distributionP on

a finite or countably infinite setX , let Bε(P ) be the set of non-negative functionsQ with domainX such that

Q(x) ≤ P (x), for all x ∈ X , and
∑

x∈X Q(x) ≥ 1− ε. Then, forα ∈ (0, 1)∪ (1,∞), theε-smooth Ŕenyi entropy

of orderα is defined as1

Hε
α(P ) ,

1

1− α
log rεα(P ) (1)

where

rεα(P ) , inf
Q∈Bε(P )

∑

x∈X

[Q(x)]α. (2)

For basic properties ofHε
α(P ), see [2] and [7].

Remark 1. The definition ofHε
α(P ) above is slightly different from the original definition given in [1]. However,

in [2], it is pointed out that this version is more appropriate for generalization to conditional smooth Rényi entropy.

Our result in this paper demonstrates that this version is appropriate also for describing the variable-length source

coding theorem allowing errors.

Remark 2. The max and min smooth Rényi entropies are defined respectively as

Hε
0 (P ) , lim

α↓0
Hε
α(P ), (3)

Hε
∞(P ) , lim

α→∞
Hε
α(P ). (4)

As shown in [1],Hε
α(P ) for α ∈ (0, 1) is, up to an additive constant, equal toHε

0(P ). This fact may be one of

the reasons thatHε
α(P ) has received less attentions. However, as shown in Theorems1 and 2 below,Hε

α(P ) itself

plays an important role in the evaluation of the exponentialmoment of the length function.

1Throughout this paper, log denotes the natural logarithm.
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III. O NE-SHOT CODING THEOREM

Let X be a finite or countably infinite set andX be a random variable onX with the distributionP . Without

loss of generality, we assumeP (X) > 0 for all x ∈ X .

A variable-length source codeΦ = (ϕ, ψ, C) is determined a triplet of a setC ⊂ {0, 1}∗ of finite-length binary

strings, an encoder mappingϕ : X → C, and a decoder mappingψ : C → X . Without loss of generality, we assume

thatC = {ϕ(x) : x ∈ X}. Further, we assume thatC satisfies the prefix condition. The error probability of the code

Φ is defined as

Pe(Φ) , Pr {X 6= ψ(ϕ(X))} . (5)

The length of the codewordϕ(x) of x (in bits) is denoted by‖ϕ(x)‖. Let ℓ be the length function (in nats):

ℓ(x) , ‖ϕ(x)‖ log 2. (6)

In this study, we focus on the exponential moment of the length function. For a givenλ > 0, let us consider the

problem of minimizing

EP [exp{λℓ(X)}] (7)

subject toPe(Φ) ≤ ε, whereEP denotes the expectation with respect to the distributionP .

Remark 3. In Theorems 1 and 2 below, we allow the encoder mappingϕ to be stochastic. LetWϕ(c|x) be the

probability thatx ∈ X is encoded inc ∈ C. Then,Pe(Φ) andEP [exp{λℓ(X)}] are precisely written as

Pe(Φ) =
∑

x∈X

P (x)
∑

c:x 6=ψ(c)

Wϕ(c|x) (8)

and

EP [exp{λℓ(X)}]

=
∑

x∈X

P (x)
∑

c∈C

Wϕ(c|x) exp{λ ‖c‖ log 2} (9)

where‖c‖ is the length (in bits) ofc ∈ C. Note that, without loss of optimality we can assume that thedecoder

mappingψ is deterministic. Indeed, for a givenWϕ, we can chooseψ so that

ψ(c) = argmaxWϕ(c|x)P (x). (10)

The following theorems demonstrate that the exponential moment EP [exp{λℓ(X)}] is characterized by the

smooth Rényi entropyHε
1/(1+λ)(P ).

Theorem 1. For anyλ > 0 andε ∈ [0, 1), there exists a codeΦ (with a stochastic encoder) such thatPe(Φ) ≤ ε

and

EP [exp{λℓ(X)}] ≤ 22λ exp
{

λHε
1/(1+λ)(P )

}

+ ε2λ. (11)
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Theorem 2. Fix λ > 0 andε ∈ [0, 1). Then, for any codeΦ such thatPe(Φ) ≤ ε, we have

EP [exp{λℓ(X)}] ≥ exp
{

λHε
1/(1+λ)(P )

}

. (12)

Theorem 1 and Theorem 2 will be proved in respectively Appendix A and Appendix B.

In Theorem 1, we allow the encoder mappingϕ to be stochastic. However, it is not hard to modify the theorem

for the case where only deterministic encoder mappings are allowed. To see this, letX = {1, 2, 3, . . .} and assume

thatP (1) ≥ P (2) ≥ · · · . Then, letk∗ = k∗(ε) be the minimum integer such that
∑k∗

i=1 P (i) ≥ 1− ε and let

Q∗(i) ,























P (i), i = 1, 2, . . . , k∗ − 1,

1− ε−
∑k∗−1

i=1 P (i), i = k∗,

0, i > k∗.

(13)

Since0 < 1/(1 + λ) < 1 for all λ > 0, we can use (A) of Theorem 1 of [7] and obtain

λHε
1/(1+λ)(P ) = (1 + λ) log

(

∑

i∈X

[Q∗(i)]1/(1+λ)

)

. (14)

Based on this fact, we can modify the proof of Theorem 1 and obtain the following result (See Appendix C for

details).

Proposition 1. For anyλ > 0 andε ∈ [0, 1), there exists a codeΦ with a deterministic encoder mappingϕ such

thatPe(Φ) ≤ ε+ γε and

EP [exp{λℓ(X)}]

≤ 22λ exp
{

λHε+γε
1/(1+λ)(P )

}

+ (ε+ γε)2
λ (15)

whereγε , 1− ε−
∑k∗(ε)−1

i=1 P (i).

IV. GENERAL FORMULA

In this section, we consider coding problem for general sources. Ageneral source

X = {Xn = (X
(n)
1 , X

(n)
2 , . . . , X(n)

n )}∞n=1 (16)

is defined as a sequence of random variablesXn on then-th Cartesian productXn of X [6]. The distribution of

Xn is denoted byPXn , which is not required to satisfy the consistency condition.

We consider a sequence of coding problems indexed by the blocklengthn. A code of block lengthn is denoted

by Φn = (ϕn, ψn, Cn). The length function ofΦn is denoted byℓn, i.e.,ℓn(xn) , ‖ϕn(xn)‖ log 2 for all xn ∈ Xn.

We are interested in the asymptotic behavior of(1/n) logEPXn [exp{λℓn(Xn)}].

A valueE is said to beε-achievable if there exists a sequence{Φn}∞n=1 of codes satisfying

lim sup
n→∞

Pe(Φn) ≤ ε (17)
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and

lim sup
n→∞

1

n
logEPXn [exp{λℓn(X

n)}] ≤ E. (18)

The infimum ofε-achievable values is denoted byEελ(X).

To characterizeEελ(X), we introduce the following notation.

Hε
α(X) , lim

δ↓0
lim sup
n→∞

1

n
Hε+δ
α (PXn). (19)

It is worth to note thatHε
α(X) is non-negative for allα ∈ (0, 1) andε ∈ [0, 1). Indeed, we can prove the stronger

fact that

lim inf
n→∞

1

n
Hε
α(PXn) ≥ 0, α ∈ (0, 1), ε ∈ [0, 1). (20)

We will prove (20) in Appendix D.

Now, we state our general formula, which will be proved in Appendix E.

Theorem 3. For anyλ > 0 andε ∈ [0, 1),

Eελ(X) = λHε
1/(1+λ)(X). (21)

In the following, we consider a mixture of i.i.d. sources. Let us considerm distributionsPXi
(i = 1, 2, . . . ,m)

onX . A general sourceX is said to be a mixture ofPX1 , PX2 , . . . , PXm
if there exists(α1, α2 . . . , αm) satisfying

∑

i αi = 1, αi > 0 (i = 1, . . . ,m), and for alln = 1, 2, . . . and allxn = (x1, x2, . . . , xn) ∈ Xn

PXn(xn) =

m
∑

i=1

αiPXn

i
(xn) (22)

=

m
∑

i=1

αi

n
∏

t=1

PXi
(xt). (23)

For the later use, letAi ,
∑i−1
j=1 αi (i = 1, 2, . . . ,m) andAm+1 , 1. Further, to simplify the analysis, we assume

that

H(X1) > H(X2) > · · · > H(Xm) (24)

whereH(Xi) is the entropy determined byPXi
:

H(Xi) ,
∑

x∈X

PXi
(x) log

1

PXi
(x)

. (25)

Then,Hε
α(X) of the mixtureX is characterized as in the following theorem.

Theorem 4. Let X be a mixture of i.i.d. sources satisfying (24). Fixα ∈ (0, 1), i, andε ∈ [Ai, Ai+1). Then, we

have

Hε
α(X) = H(Xi). (26)

Theorem 4 will be proved in Appendix F.
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Remark 4. Lettingm = 1 andε ↓ 0, Theorem (4) derives Lemma I.2 of [1].

Remark 5. Although Theorem 4 assumes that components are i.i.d., thisassumption is not crucial. Indeed, the

property of i.i.d. sources used in the proof of the theorem isonly that the AEP [23] holds, i.e.,

lim
n→∞

Pr

{∣

∣

∣

∣

1

n
log

1

PXn

i
(Xn

i )
−H(Xi)

∣

∣

∣

∣

> γ

}

= 0 (27)

for all i = 1, 2, . . . ,m and anyγ > 0. Hence, it is straightforward to extend the theorem so that it can be applied

for the mixture of stationary and ergodic sources. Moreover, since we use only the AEP, it can be seen that the

assumption (24) is also not crucial. Assume that there exists some componentsj1 6= j2 such asH(Xj1) = H(Xj2).

Then, let us consider the modified mixture such that “j2th component is substituted byj1th component”: i.e.,

PXn(xn) =
∑

i6=j2

α′
iPXn

i
(xn) (28)

whereα′
i = αi for i 6= j1 andα′

j1 = αj1 + αj2 . ThenHε
α(X) the modified mixture is identical with the original

one.

Combining Theorems 3 and 4, we have the coding theorem for themixture of i.i.d. sources.

Corollary 1. Let X be a mixture of i.i.d. sources satisfying (24). Then, for anyλ > 0 andε ∈ [0, 1),

Eελ(X) = λH(Xi) (29)

wherei is determined so thatε ∈ [Ai, Ai+1).

V. CONCLUDING REMARKS

In this paper, we investigated the the exponential moment ofthe codeword length of variable-length source coding

allowing decoding errors. Roughly speaking, our results demonstrate that the logarithmlogEP [exp{λℓ(X)}] of

the optimal exponential momentEP [exp{λℓ(X)}] is characterized by the smooth Rényi entropyHε
1/(1+λ).

Now, let us consider to takeλ→ ∞. Whenλ is sufficiently large, the valuelogEP [exp{λℓ(X)}] is dominated

by the longest codeword lengthmaxx∈X ℓ(x). In other words, to minimizelogEP [exp{λℓ(X)}], we need to

minimize the longest codeword lengthmaxx∈X ℓ(x). Therefore, roughly speaking, the difference between variable-

length coding and fixed-length coding becomes smaller asλ is increased. On the other hand, we know thatHε
0 =

limλ→∞Hε
1/(1+λ) characterizes the optimal coding rate of fixed-length codes[1], [8]. The above argument implies

that we can unify our result and results of [1], [8] in the limit of λ→ ∞ or equivalentlyα → 0.

On the other hand, sinceλ > 0 and thus0 < 1/(1 + λ) < 1, only the smooth Rényi entropyHε
α of the order

α ∈ (0, 1) plays an important role in our coding theorems. It remains asa future work to investigate the operational

meaning of the smooth Rényi entropyHε
α of the orderα > 1.
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APPENDIX A

PROOF OFTHEOREM 1

Fix δ > 0 arbitrarily and chooseQ ∈ Bε(P ) so that

log
∑

x∈X

[Q(x)]1/(1+λ) ≤
λ

1 + λ
Hε

1/(1+λ)(P ) + δ. (30)

Let A , {x ∈ X : Q(x) > 0} and

Q̃(λ)(x) =
[Q(x)]1/(1+λ)

∑

x′∈A[Q(x′)]1/(1+λ)
. (31)

Since

∑

x∈A

2−{− log2 Q̃
(λ)(x)} ≤ 1 (32)

holds, we can construct(ϕ̂, ψ̂, Ĉ) such that (i)Ĉ , {ϕ̂(x) : x ∈ A} is prefix free, (ii)ϕ̂ : A → Ĉ satisfies

‖ϕ̂(x)‖ = ⌈− log2 Q̃
(λ)(x)⌉, (33)

and, (iii) ϕ̂ and ψ̂ : Ĉ → A satisfyx = ψ(ϕ(x)) for all x ∈ A.

For eachx ∈ X , let γ(x) = Q(x)/P (x). Note that0 ≤ γ(x) ≤ 1 andγ(x) = 0 for all x /∈ A. SinceQ ∈ Bε(P ),

we have

∑

x∈X

P (x)γ(x) ≥ 1− ε. (34)

Now, we construct a stochastic encoder as follows:

ϕ(x) =











0 ◦ ϕ̂(x) with probability γ(x)

1 with probability 1− γ(x)

(35)

where◦ denotes the concatenation. That is,x is encoded to “0” followingϕ̂(x) with probability γ(x), and “1”

with probability1− γ(x). We can construct the corresponding decoderψ so thatx = ψ(ϕ(x)) for all x ∈ X . The

length functionℓ(x) = ‖ϕ(x)‖ log 2 satisfies that, ifx is encoded to “0” followingϕ̂(x),

ℓ(x) ≤ − log Q̃(λ)(x) + 2 log 2 (36)

October 23, 2018 DRAFT
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and otherwiseℓ(x) = log 2. Hence, we have

EP [exp{λℓ(X)}]

≤
∑

x∈X

P (x)γ(x) exp
{

λ[− log Q̃(λ)(x) + 2 log 2]
}

+
∑

x∈X

P (x)(1 − γ(x)) exp{λ log 2} (37)

(a)
≤ 22λ

∑

x∈A

Q(x) exp
{

−λ log Q̃(λ)(x)
}

+ ε2λ (38)

= 22λ

{

∑

x∈A

[Q(x)]1/(1+λ)

}(1+λ)

+ ε2λ (39)

(b)
≤ 22λ exp

{

λHε
1/(1+λ)(P ) + (1 + λ)δ

}

+ ε2λ (40)

where the inequality (a) follows from (34) and (b) follows from (30). Since we can chooseδ > 0 arbitrarily small,

we have (11).

APPENDIX B

PROOF OFTHEOREM 2

Fix a codeΦ = (ϕ, ψ, C) such thatPe(Φ) ≤ 1− ε.

Recall that we allowϕ to be stochastic. LetWϕ(c|x) be the probability such thatx ∈ X is mapped toc ∈ C.

Let

Γ(x) , {c ∈ C :Wϕ(c|x) > 0, x = ψ(c)} (41)

and

γ(x) ,
∑

c∈Γ(x)

Wϕ(c|x). (42)

Note that, sincePe(Φ) ≤ ε, we have

∑

x∈X

P (x)γ(x) ≥ 1− ε. (43)

Further, we have

EP [exp{λℓ(X)}]

=
∑

x∈X

P (x)
∑

c∈C

Wϕ(c|x) exp{λ ‖c‖ log 2} (44)

≥
∑

x∈X

P (x)
∑

c∈Γ(x)

Wϕ(c|x) exp{λ ‖c‖ log 2}. (45)
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From Jensen’s inequality, it is not hard to see that

∑

c∈Γ(x)

Wϕ(c|x) exp{λ ‖c‖ log 2}

≥ γ(x) exp







λ
∑

c∈Γ(x)

Wϕ(c|x)

γ(x)
‖c‖ log 2







(46)

≥ γ(x) exp







λ
∑

c∈Γ(x)

Wϕ(c|x)

γ(x)
ℓ̄(x)







(47)

= γ(x) exp
{

λℓ̄(x)
}

(48)

where

ℓ̄(x) , min
c∈Γ(x)

‖c‖ log 2. (49)

Substituting (48) into (45), we have

EP [exp{λℓ(X)}] ≥
∑

x∈X

P (x)γ(x) exp
{

λℓ̄(x)
}

. (50)

Let Q(x) = P (x)γ(x). Then, from (43), we haveQ ∈ Bε(P ). Let A = {x : Q(x) > 0}. Then, (50) can be written

as

EP [exp{λℓ(X)}] ≥
∑

x∈A

Q(x) exp
{

λℓ̄(x)
}

. (51)

On the other hand, from the definition of the setΓ(x), we can see thatΓ(x) ∩ Γ(x′) = ∅ for all x, x′ ∈ A such

that x 6= x′, and thus we have

∑

x∈A

exp{−ℓ̄(x)} ≤ 1. (52)

Now, let us consider the problem of minimizing
∑

x∈AQ(x) exp
{

λℓ̄(x)
}

subject to (52). As shown in Example

1 in Section 3 of [18], the minimum is achieved by

ℓ̄(x) = − log
[Q(x)]1/(1+λ)

∑

x′∈A[Q(x′)]1/(1+λ)
, x ∈ A. (53)

In other words, (51) can be rewritten as

EP [exp{λℓ(X)}]

≥
∑

x∈A

Q(x) exp

{

−λ log
[Q(x)]1/(1+λ)

∑

x′∈A[Q(x′)]1/(1+λ)

}

(54)

=

[

∑

x∈A

[Q(x)]1/(1+λ)

](1+λ)

(55)

≥
[

rε1/(1+λ)(P )
](1+λ)

(56)

where the last inequality follows from the factQ ∈ Bε(P ). By the definition of the smooth Rényi entropy, we have

(12).
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APPENDIX C

PROOF OFPROPOSITION1

Let

Q̂∗(i) ,











P (i), i = 1, 2, . . . , k∗(ε)− 1,

0, i > k∗(ε).

(57)

Then, from Theorem 1 (A) of [7], we have

λHε+γε
1/(1+λ)(P ) = (1 + λ) log

(

∑

i∈X

[Q∗(i)]1/(1+λ)

)

. (58)

Now, let us substituteε (resp.Q) in the proof of Theorem 1 withε+ γε (resp.Q̂∗). Note thatγ(x) = Q̂∗(x)/P (x)

satisfies

γ(x) =











1, i = 1, 2, . . . , k∗(ε)− 1,

0, i > k∗(ε).

(59)

Thus, the encoder constructed in the proof of Theorem 1 becomes deterministic. Hence, we can obtain the

proposition.

APPENDIX D

PROOF OF(20)

Fix α ∈ (0, 1) andε ∈ [0, 1), and then, chooseε′ > 0 so thatε+ ε′ < 1. From Lemma 2 of [2], we have

1

n
Hε
α(PXn) ≥

1

n
Hε+ε′

0 (PXn)−
log(1/ε′)

n(1− α)
. (60)

On the other hand, it is known thatHε+ε′

0 (PXn) can be written as

Hε+ε′

0 (PXn) = min
A⊆X

P (A)≥1−ε−ε′

log |A| , (61)

where|A| is the cardinality ofA, and thus,Hε+ε′

0 (PXn) ≥ 0. So, taking the inferior limit of both sides of (60),

we have (20).

APPENDIX E

PROOF OFTHEOREM 3

Direct Part: At first, we consider the case where

Hε
1/(1+λ)(X) > 0. (62)

In this case, for all sufficiently smallδ > 0 and sufficiently largen, we have

22λ exp
{

λHε+δ
1/(1+λ)(PXn)

}

> ε2λ. (63)
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Hence, from Theorem 1, there exists{Φn}∞n=1 such that

Pe(Φn) ≤ ε+ δ, n = 1, 2, . . . , (64)

and, for sufficiently largen,

EP [exp{λℓn(X
n)}] ≤ 2× 22λ exp

{

λHε+δ
1/(1+λ)(PXn)

}

. (65)

Eq. (65) gives

lim sup
n→∞

1

n
logEP [exp{λℓn(X

n)}]

≤ λ lim sup
n→∞

1

n
Hε+δ

1/(1+λ)(PXn). (66)

By using thediagonal line argument(see [6]), we can conclude thatλHε
1/(1+λ)(X) is ε-achievable.

If Hε
1/(1+λ)(X) = 0 then (65) is replaced with

EP [exp{λℓn(X
n)}]

≤ max
{

2× 22λ exp
{

λHε+δ
1/(1+λ)(PXn)

}

, 2× ε2λ
}

(67)

In this case, we can also prove that0 is ε-achievable in the same way as the caseHε
1/(1+λ)(X) > 0.

Converse Part:Suppose thatE is ε-achievable and fixδ > 0 arbitrarily. Then there exists{Φn}∞n=1 such that,

for sufficiently largen,

Pe(Φn) ≤ ε+ δ (68)

and

lim sup
n→∞

1

n
logEP [exp{λℓn(X

n)}] ≤ E. (69)

On the other hand, from Theorem 2, for sufficiently largen such that (68) holds,

EP [exp{λℓn(X
n)}] ≥ exp

{

λHε+δ
1/(1+λ)(PXn)

}

. (70)

Combining (69) with (70), we have

E ≥ λ lim sup
n→∞

1

n
Hε+δ

1/(1+λ)(PXn). (71)

Sinceδ > 0 is arbitrary, lettingδ ↓ 0, we haveE ≥ λHε
1/(1+λ)(X).

APPENDIX F

PROOF OFTHEOREM 4

A. Lemmas

Before proving the theorem, we introduce some lemmas.
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Lemma 1. Fix γ > 0 arbitrarily. Then, there exists an integern0 so that for alln ≥ n0 and all i = 1, 2, . . . ,m,

Pr

{

1

n
log

1

PXn(Xn)
≥ H(Xi)− γ

}

≥ Ai+1 − γ. (72)

Proof: For eachk = 1, 2, . . . ,m, let

Snk ,

{

xn :
1

n
log

1

PXn

k
(xn)

≥ H(Xk)−
γ

2

}

. (73)

Since i.i.d. sources satisfy the AEP [23], we can choosen1 such that

∑

xn∈Sn

k

PXn

k
(xn) ≥ 1−

γ

2
, ∀n ≥ n1, ∀k = 1, 2, . . . ,m. (74)

Moreover, we can choosen0 ≥ n1 so that

−
1

n
log γ ≤

γ

2
, ∀n ≥ n0. (75)

Then, for alln ≥ n0, any i = 1, 2, . . . ,m, and anyk = 1, 2, . . . , i,

S̃ni ,

{

xn :
1

n
log

1

PXn(xn)
≥ H(Xi)− γ

}

(76)

and

T n
k ,

{

xn : PXn

k
(xn) ≤ γPXn(xn)

}

(77)

satisfy that

S̃ni ∪ T n
k ⊇

{

xn :
1

n
log

γ

PXn

k
(xn)

≥ H(Xi)− γ

}

(78)

=

{

xn :
1

n
log

1

PXn

k
(xn)

≥ H(Xi)− γ −
1

n
log γ

}

(79)

⊇

{

xn :
1

n
log

1

PXn

k
(xn)

≥ H(Xi)−
γ

2

}

(80)

⊇ Snk . (81)

Thus, we have

∑

xn∈S̃n

i

PXn(xn) ≥
i
∑

k=1

αk
∑

xn∈S̃n

i

PXn

k
(xn) (82)

≥
i
∑

k=1

αk
∑

xn∈Sn

k

PXn

k
(xn)−

i
∑

k=1

αk
∑

xn∈T n

k

PXn

k
(xn) (83)

≥ Ai+1(1− γ/2)−
i
∑

k=1

αk
∑

xn∈T n

k

γ

2
PXn(xn) (84)

≥ Ai+1(1− γ/2)−
γ

2
(85)

≥ Ai+1 − γ. (86)

October 23, 2018 DRAFT



14

Lemma 2. Fix γ > 0 arbitrarily. Then, there exists an integern0 so that for alln ≥ n0 and all i = 1, 2, . . . ,m,

Pr

{

1

n
log

1

PXn(Xn)
≤ H(Xi) + γ

}

≥ 1−Ai − γ. (87)

Proof: For eachk = 1, 2, . . . ,m, let

Snk ,

{

xn :
1

n
log

1

PXn

k
(xn)

≤ H(Xk) +
γ

2

}

. (88)

Since i.i.d. sources satisfy the AEP [23], we can choosen1 such that

∑

(xn,yn)∈Sn

k

PXn

k
Y n

k
(xn, yn) ≥ 1− γ, ∀n ≥ n1, ∀k = 1, 2, . . . ,m. (89)

Moreover, we can choosen0 ≥ n1 so that

−
1

n
logαk ≤

γ

2
, ∀n ≥ n0, ∀k = 1, 2, . . . ,m. (90)

Hence, for alln ≥ n0 and anyi,

S̃ni ,

{

xn :
1

n
log

1

PXn(xn)
≤ H(Xk) + γ

}

(91)

satisfies that

S̃ni ⊇

{

xn :
1

n
log

1

αkPXn

k
(xn)

≤ H(Xi) + γ

}

(92)

=

{

xn :
1

n
log

1

PXn

k
(xn)

≤ H(Xi) + γ +
1

n
logαk

}

(93)

⊇ Snk . (94)

Thus, we have

∑

xn∈S̃n

i

PXn(xn) ≥
m
∑

k=i

αk
∑

xn∈S̃n

i

PXn

k
(xn) (95)

≥
m
∑

k=i

αk
∑

xn∈Sn

k

PXn

k
(xn) (96)

≥ (1−Ai)(1− γ) (97)

≥ 1−Ai − γ. (98)

Lemma 3. Fix γ > 0 so thatH(Xj)− γ > H(Xj+1) + γ for all j = 1, 2, . . . ,m− 1. Then, for sufficiently large

n and anyi = 1, 2, . . . ,m,

αi − 2γ ≤ Pr

{∣

∣

∣

∣

1

n
log

1

PXn(Xn)
−H(Xi)

∣

∣

∣

∣

≤ γ

}

≤ αi + 2γ. (99)
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Proof: From Lemmas 1 and 2, we have

Pr

{∣

∣

∣

∣

1

n
log

1

PXn(Xn)
−H(Xi)

∣

∣

∣

∣

≤ γ

}

= Pr

{

1

n
log

1

PXn(Xn)
≤ H(Xi) + γ

}

− Pr

{

1

n
log

1

PXn(Xn)
< H(Xi)− γ

}

(100)

≥ {1−Ai − γ} − {1− (Ai+1 − γ)} (101)

= αi − 2γ (102)

and

Pr

{∣

∣

∣

∣

1

n
log

1

PXn(Xn)
−H(Xi)

∣

∣

∣

∣

≤ γ

}

= Pr

{

1

n
log

1

PXn(Xn)
≤ H(Xi) + γ

}

− Pr

{

1

n
log

1

PXn(Xn)
< H(Xi)− γ

}

(103)

≤ Pr

{

1

n
log

1

PXn(Xn)
< H(Xi−1)− γ

}

− Pr

{

1

n
log

1

PXn(Xn)
≤ H(Xi+1) + γ

}

(104)

≤ {1− (Ai − γ)} − {1−Ai+1 − γ} (105)

= αi + 2γ. (106)

B. Proof of Theorem 4

To prove the theorem, it is sufficient to show that, forε satisfyingAi < ε < Ai+1,

lim sup
n→∞

1

n
Hε
α(PXn) ≤ H(Xi) (107)

and

lim inf
n→∞

1

n
Hε
α(PXn) ≥ H(Xi). (108)

Proof of (107): Fix γ > 0 sufficiently small so thatH(Xj)− γ > H(Xj+1) + γ for all j = 1, 2, . . . ,m− 1

and thatAi + 2mγ < ε. For j = 1, 2, . . . ,m, let

Tn(j) ,

{

xn :

∣

∣

∣

∣

1

n
log

1

PXn(xn)
−H(Xj)

∣

∣

∣

∣

≤ γ

}

. (109)

Note thatTn(j) ∩ Tn(ĵ) = ∅ (j 6= ĵ). Further, from Lemma 3, we have

Pr







Xn ∈
m
⋃

j=i

Tn(j)







=

m
∑

j=i

Pr {Xn ∈ Tn(j)} (110)

≥
m
∑

j=i

(αj − 2γ) (111)

≥ 1−Ai − 2mγ (112)

≥ 1− ε. (113)
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From (113), we can see that

Qn(x
n) ,











PXn(xn), if xn ∈
⋃m
j=i Tn(j)

0, otherwise
(114)

satisfiesQn ∈ Bε(PXn). Thus, from the definition ofrεα(PXn),

rεα(PXn) ≤
∑

xn∈Xn

[Qn(x
n)]α (115)

=

m
∑

j=i

∑

xn∈Tn(j)

[PXn(xn)]α (116)

≤
m
∑

j=i

|Tn(j)| exp{−αn(H(Xj)− γ)} (117)

≤
m
∑

j=i

exp{n(H(Xj) + γ)} exp{−αn(H(Xj)− γ)} (118)

=

m
∑

j=i

exp{n[(1− α)H(Xj) + (1 + α)γ]} (119)

≤ m exp{n[(1− α)H(Xi) + (1 + α)γ]}. (120)

Hence, we have

1

n
Hε
α(PXn) ≤ H(Xi) +

1 + α

1− α
γ +

1

n
logm (121)

and thus

lim sup
n→∞

1

n
Hε
α(PXn) ≤ H(Xi) +

1 + α

1− α
γ. (122)

Since we can chooseγ > 0 arbitrarily small, we have (107).

Proof of (108): If H(Xi) = 0 then (108) is apparent, since (20) holds. So, we assumeH(Xi) > 0.

Fix γ > 0 sufficiently small so thatH(Xj)−γ > H(Xj+1)+γ for all j = 1, 2, . . . ,m−1 and thatAi+6mγ <

ε < Ai+1 − 6mγ. We assume thatn is sufficiently large so thatexp{−n[H(Xi)− γ]} ≤ mγ. Let us defineTn(j)

as in (109). Note that

PXn(xn) < PXn(x̂n), xn ∈ Tn(j), x̂
n ∈ Tn(ĵ), j < ĵ. (123)

Let Sn ,
⋃m
j=1 Tn(j) andSn , Xn \ Sn. Then, from Lemma 3, we have

PXn(Sn) ≤ 2mγ. (124)

Let us sort the sequences inXn so that

PXn(xn1 ) ≥ PXn(xn2 ) ≥ PXn(xn3 ) ≥ . . . . (125)

Then, letAn , {xn1 , x
n
2 , . . . , x

n
k∗−1} andA+

n , An ∪ {xnk∗} wherek∗ is the integer satisfying

k∗
∑

k=1

PXn(xnk ) ≥ 1− ε (126)
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and

k∗−1
∑

k=1

PXn(xnk ) < 1− ε. (127)

We first show that

xnk∗ ∈ Sn or xnk∗ ∈
i
⋃

j=1

Tn(j). (128)

From Lemma 3, we have

Pr







Xn ∈
m
⋃

j=i+1

Tn(j)







≤
m
∑

j=i+1

(αj + 2γ) (129)

≤ 1−Ai+1 + 2mγ (130)

≤ 1− ε− 4mγ. (131)

SinceP (A+
n ) ≥ 1− ε holds, from (124) and (131), we have

A+
n ∩





i
⋃

j=1

Tn(j)



 6= ∅. (132)

From (123) and (132), we can obtain (128).

We next notice that, from (123) and the assumption thatn is sufficiently large, we havePXn(xn) ≤ exp{−n[H(Xi)−

γ]} ≤ mγ for all xn ∈
⋃i
j=1 Tn(j). Combining this fact with (124) and (128), we can see that

PXn(An ∩ Sn) ≥ 1− ε−mγ − PXn(Sn) (133)

≥ 1− ε− 3mγ. (134)

Thus, from (131) and (134), we have

Pr







Xn ∈ An ∩





i
⋃

j=1

Tn(j)











≥ mγ. (135)

Moreover, since (123) holds, (135) implies that

PXn(An ∩ Tn(i)) ≥ β , min{mγ,αi} (136)

and thus

|An ∩ Tn(i)| ≥ β exp{n[H(Xi)− γ]}. (137)

Hence, we have

∑

xn∈An∩Tn(i)

[PXn(xn)]α ≥ β exp{n[(1− α)H(Xi)− (1 + α)γ]}. (138)
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Now we use the result of Koga [7]. Theorem 1 (A) of [7] tells us that

Hε
α(PXn) ≥

1

1− α
log

(

k∗−1
∑

k=1

[PXn(xnk )]
α

)

(139)

=
1

1− α
log

(

∑

xn∈An

[PXn(xn)]α

)

. (140)

By combining this with (138), we have

1

n
Hε
α(PXn) ≥

1

n(1− α)
log





∑

xn∈An∩Tn(i)

[PXn(xn)]α



 (141)

≥
1

n(1− α)
log (β exp{n[(1− α)H(Xi)− (1 + α)γ]}) (142)

= H(Xi)−
1 + α

1− α
γ +

log β

n(1− α)
. (143)

Thus, we have

lim inf
n→∞

1

n
Hε
α(PXn) ≥ H(Xi)−

1 + α

1− α
γ. (144)

Since we can chooseγ > 0 arbitrarily small, we have (108).
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[1] R. Renner and S. Wolf, “Smooth Rényi entropy and applications,” in Proc. IEEE ISIT 2004, 2004, p. 232.

[2] ——, “Simple and tight bounds for information reconciliation and privacy amplification,” inAdvances in cryptology-ASIACRYPT 2005.

Springer, 2005, pp. 199–216.
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[14] L. Campbell, “A coding theorem and Rényi’s entropy,”Information and control, vol. 8, no. 4, pp. 423–429, 1965.

[15] F. Jelinek, “Buffer overflow in variable length coding of fixed rate sources,”IEEE Trans. Inf. Theory, vol. 14, no. 3, pp. 490–501, 1968.
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