
1

Low-Complexity
Stochastic Generalized Belief Propagation

Farzin Haddadpour, Mahdi Jafari Siavoshani, and Morteza Noshad

Abstract

The generalized belief propagation (GBP), introduced by Yedidia et al., is an extension of the belief propagation (BP) algorithm,
which is widely used in different problems involved in calculating exact or approximate marginals of probability distributions. In
many problems, it has been observed that the accuracy of GBP considerably outperforms that of BP. However, because in general
the computational complexity of GBP is higher than BP, its application is limited in practice.

In this paper, we introduce a stochastic version of GBP called stochastic generalized belief propagation (SGBP) that can
be considered as an extension to the stochastic BP (SBP) algorithm introduced by Noorshams et al. They have shown that SBP
reduces the complexity per iteration of BP by an order of magnitude in alphabet size. In contrast to SBP, SGBP can reduce the
computation complexity if certain topological conditions are met by the region graph associated to a graphical model. However,
this reduction can be larger than only one order of magnitude in alphabet size. In this paper, we characterize these conditions
and the amount of computation gain that we can obtain by using SGBP. Finally, using similar proof techniques employed by
Noorshams et al., for general graphical models satisfy contraction conditions, we prove the asymptotic convergence of SGBP
to the unique GBP fixed point, as well as providing non-asymptotic upper bounds on the mean square error and on the high
probability error.

I. INTRODUCTION

Graphical models and corresponding message-passing algorithms have attracted a great amount of attention due to their
wide-spreading application in many fields, including signal processing, machine learning, channel and source coding, computer
vision, decision making, and game theory (e.g., see [1], [2]).

Finding marginal and mode of a probability distribution are two basic problems encountered in the field of graphical
models. Taking the rudimentary approach, the marginalization problem has exponentially growing complexity in alphabet size.
However, using BP algorithm (firstly introduced in [3]) to solve this problem either exactly or approximately, we can reduce
the computational complexity to a significant degree. It has been proved that applying BP on graphical models without cycles
provides exact solution to the marginalization problem. Furthermore, it has been observed that for general graphs, BP can find
good approximations for marginalization (or finding mode) problems, [1], [2].

Although BP has many favourable properties, it suffers from some limiting drawbacks. First, in complex and densely
interconnected graphs, BP may not be able to produce accurate results; and even worse, it may not converge at all. Second,
since in many applications (e.g., decoding of error-correcting codes) messages are of high dimensions, the computational
complexity of BP algorithm will highly increase which leads to slow convergence rates.

To deal with the first drawback, some works have been done to propose alternative algorithms (e.g., see [4], [5], [6], [7]).
Specifically, to improve the accuracy of estimated marginal distribution, a generalization algorithm to BP has been introduced by
Yedidia et al. [8], known as Generalized Belief Propagation (GBP) algorithm. In their proposed algorithm, local computation is
performed by a group of nodes instead of a single node as in BP. According to many empirical observations, GBP outperforms
BP in many situations; [9], [10], [11], [12]. However, although GBP algorithm provides accurate results in terms of marginal
distribution, it suffers from high order of computation complexity, specially in case of large alphabet size.

To overcome the second aforementioned deficiency of BP, lots of research have been conducted to reduce BP complexity for
different applications (e.g., refer to [13], [14], [15], [16], [17], [18], [19], [20]). In a recent work by Noorshams et al. [21], to
tackle with the challenge of high complexity in the case of large alphabet size, they introduce an alternative stochastic version
of BP algorithm with lower complexity. The main idea behind their work is that each node sends a randomly sampled message
taken from a properly chosen probability distribution instead of computing the exact message update rule in each iteration.

Motivated by [21] and in order to mitigate the computational complexity of GBP, we extend GBP and propose stochastic
GBP (SGBP) algorithm. SGBP has the advantage of reducing the complexity, while increasing the accuracy of estimation. In
contrast to SBP, SGBP algorithm can reduce the computational complexity only if certain topological conditions are met by the
region graph (defined later) associated to a graphical model. However, the complexity gain can be larger than only one order
of magnitude in alphabet size. In this work, we characterize these conditions and the amount of computational gain that we
can obtain by performing SGBP instead of GBP. Determining these criteria, we hope that they provide some useful guidelines
on how to choose the regions and construct the region graph in a way that results to a lower complexity algorithm with good
accuracy.
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The rest of the paper is organized as follows. First, §II introduces our problem statement. In §III, we present the proposed
stochastic GBP and then derive the topological conditions that guarantee SGBP has lower complexity than GBP. Moreover,
theoretical convergence results have been provided as well. Finally, to validate our theoretical results, considering a specific
graphical model, SGBP is simulated and the results are presented.

II. PROBLEM STATEMENT

A. Notation

In the following, we introduce the notation that will be used in the paper. The random variables are represented by upper
case letters and their values by lower case letters. Vectors and matrices are determined by bold letters. Sometimes, we use
calligraphic letters to denote sets. When we have a set of random variables X1, . . . , Xn, we write XA to denote (Xi, i ∈ A).
An undirected graph G = (V, E) is defined by a set of nodes V = {1, 2, . . . , n} and a set of edges E ⊆ V×V , where (u, v) ∈ E
if and only if nodes u and v are connected. Similarly, we can define a directed graph.

For every function f(x1, x2, . . . , xn) where f : Xn 7→ R, we define the operator L as a map that turns this function to a
vector L(f) ∈ R|X |n×1 by evaluating f at every input point. For instance, considering X{1,2} ∈ {0, 1}, for f(x1, x2) we have

L(f) =


f(0, 0)
f(0, 1)
f(1, 0)
f(1, 1)

 .
B. Graphical Model

Undirected graphical models, also known as Markov random fields (MRF), is a way to represent the probabilistic dependencies
among a set of random variables having Markov properties using an undirected graph. More precisely, we say that a set of
random variables X1, . . . , Xn form an MRF if there exists a graph G = (V, E), where each Xi is associated to the node
i ∈ V = {1, . . . , n}, and edges of the graph G encode Markov properties of the random vector X = (X1, . . . , Xn). These
Markov properties are equivalent to a factorization of the joint distribution of random vector X over the cliques of graph
G [22]. In this paper, we focus on discrete random variables case where for all j ∈ V we have Xj ∈ X , {1, 2, . . . , d}.
Moreover, we assume that the distribution of X is factorized according to

p(x) =
1

Z

∏
a∈F

φa(xa)

where F is a collection of subsets of V and Z is a constant called the partition function. For the factor functions φa, we have
also φa ≥ 0. This factorization can be represented by using a bipartite graph Gf = (V,F , Ef ) called factor graph. In this
representation, the variable nodes V correspond to random variables Xi’s and factor nodes F determine the factor functions
φa’s. Moreover, there exists an edge (i, a) ∈ Ef between a variable node i and a factor node a if the variable xi appears in
the factor φa (for more information on factor graphs refer to [1]).

C. Region Graph

In order to present the Yedidia’s parent-to-child algorithm [8] as well as introducing our stochastic GBP algorithm, we need
to state some definitions as follows.

Definition 1 (see [8]). A region graph Gr = (R, Er) defined over a factor graph Gf = (V,F , Ef ) is a directed graph in which
for each vertex v ∈ R (corresponding to a region) we have v ⊆ V ∪ F . Each region v has this property that if a factor node
a ∈ F belongs to v then all of its neighbouring variable nodes have to also belong to v. A directed edge (vp → vc) ∈ Er may
exist if vc ⊂ vp. If such an edge exists, vp is a parent of vc, or equivalently, vc is a child of vp. If there exists a directed path
from va to vd on Gr, we say that va is an ancestor of vd and vd is a descendant of va.

Now, for each R ∈ R, we let P(R) denotes for the set of all parents of R, A(R) denotes for the set of all ancestors of R
and D(R) denotes for the set of all descendants of R. Moreover, we define E(R) , R ∪ D(R). Finally, for a region R ∈ R,
we use |R| to denote for the number of variable nodes in R.

D. Parent-to-child GBP algorithm

We may derive the BP message-passing equations using the fact that the belief at each variable node is the product of all
the incoming messages received from its neighbouring factor nodes. Additionally, the beliefs over the set of variable nodes
connecting to a factor node a ∈ F is the product of the factor function φa multiplied by the incoming messages to the factor
node a. Now marginalizing the second set of beliefs to find the belief over a variable node and equate it to the belief of that
variable node which is found directly using the first equation, we can recover the BP update rules.
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Fig. 1. Graph region of an arbitrary graph corresponding to the parents-to-child algorithm.

Yedidia et al., generalize this idea in [8], proposing an algorithm called parents-to-child GBP algorithm. As explained in
[8], in the parent-to-child algorithm, we have only one kind of message mP→R(xR) from a parent region P to a child region
R. Then for the belief of region R ∈ R we have

bR(xR) ∝ ΦR(xR)×
∏

P∈P(R)

mP→R(xR)×
∏

D∈D(R)

∏
P ′∈P(D)\E(R)

mP ′→D(xD) (1)

where ΦR(xR) ,
∏
a∈R φa(xa) (with an abuse of notation when we product over a ∈ R we mean to product only over the

factor indexes of R). Then, the message update rule over each edge (P,R) ∈ Er follows by

mP→R(xR) =

∑
xP\R

ΦP\R(xP ′)
∏

(I,J)∈N(P,R)mI→J(xJ)∏
(I,J)∈D(P,R)mI→J(xJ)

(2)

=
∑
xP\R

ΦP\R(xP ′)M̂(xTPR
) (3)

where ΦP\R(xP ′) ,
ΦP

ΦR
(xP ′) and P ′ is the set of all variables appear in ΦP

ΦR
(xP ′). In addition, we have also

N(P,R) ,
{

(I, J)|(I, J) ∈ Er, I /∈ E(P ), J ∈ E(P ) \ E(R)
}

(4)

and
D(P,R) ,

{
(I, J)|(I, J) ∈ Er, I ∈ D(P ) \ E(R), J ∈ E(R)

}
. (5)

Notice that the sets N(P,R) and D(P,R) can be calculated in advance. Moreover, M̂(xTPR
) in (3) is defined as follows

M̂(xTPR
) ,

∏
(I,J)∈N(P,R)mI→J(xJ)∏
(I,J)∈D(P,R)mI→J(xJ)

,

where TPR is the set of all variables that appear in the above ratio.

Remark 1. It can be easily observed that depending on the graph topology and the choice of regions, we may have either
P ′ ⊂ P or P ′ = P in (3). For example, consider two pairwise Markov Random Fields presented in Figures 2 and 4.
Considering P = {1, 2, 4, 5, 7, 8} and R = {2, 5, 8} in Figure 2, we have Φ(124578\258)(xP ′) = φ1φ4φ7ψ12ψ14ψ74ψ78 which
leads to P ′ = {1, 2, 4, 7, 8} ⊂ P . On the other hand, choosing P = {1, 2, 4, 5} and R = {2, 5} in Figure 4, we have
Φ(1245\25)(xP ′) = φ1φ4ψ12ψ14ψ45. Hence, P ′ = {1, 2, 4, 5} = P . �

Remark 2. In the parent-to-child algorithm, the message transmitted over each edge (P,R) ∈ Er can be considered as
a vector by applying the operator L(·). Namely, by concatenating all possible messages, we define mP→R , L(mP→R)

where mP→R ∈ Rd|R| . Moreover, concatenating all the messages over all edges of the region graph, we define m ,
{mP→R}(P,R)∈Er ∈ R∆ where ∆ =

∑
(P,R)∈Er d

|R|. �

Now, we can state the complexity of the parent-to-child GBP algorithm as stated in Lemma 1.

Lemma 1. The computation complexity of the message update rule of the parent-to-child GBP algorithm associated with each
edge, computed according to (3), is O(d|P |).
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Fig. 2. Graph region of a graph with xP ′ ⊂ xP .

124578

258

235689

Fig. 3. Graph region of a graph with xP ′ ⊂ xP .

Proof: For each fixed vector xR, the calculation of mP→R(xR) =
∑

xP\R
ΦP\R(xP ′)M̂(xTPR

) needs d|P\R| operations.
Moreover, to find mP→R(·) completely, one needs to evaluate the above summation O(d|R|) times. Consequently, the overall
complexity of calculating mP−→R(xR) is of the order O(d|R| × d|P\R|) = O(d|P |).

At each round of the parent-to-child algorithm, t = 1, 2, . . ., every parent node P of R in the region graph calculates a
message m(t+1)

P→R and sends it to node R. Mathematically, this can be written as (see [8])

m
(t+1)
P→R(xR) =

[
ΥP→R(m(t))

]
(xR)

=
∑
xP\R

ΦP\R(xP ′)M̂
(t)(xTPR

)

=
∑

x(P\R)\TPR

∑
x(P\R)∩TPR

ΦP\R(xP ′)M̂
(t)(xTPR

)

= k
(t)
PR

(
xTPR\(P\R)

) ∑
x(P\R)\TPR

∑
x(P\R)∩TPR

[
ΦP\R(xP ′)×Q(t)(xTPR∩(P\R)|xTPR\(P\R))

]
, (6)

where

Q(t)(xTPR∩(P\R)|xTPR\(P\R)) ,
M̂ (t)

(
xTPR∩(P\R),xTPR\(P\R)

)∑
x′

TPR∩(P\R)
M̂ (t)

(
x′TPR∩(P\R),xTPR\(P\R)

) (7)

is a conditional distribution. Moreover,

k
(t)
PR

(
xTPR\(P\R)

)
,
∑

x′
TPR∩(P\R)

M̂ (t)
(
x′TPR∩(P\R),xTPR\(P\R)

)
.

Hence, for the update rule we can write

m
(t+1)
P→R(xR) = k

(t)
PR

∑
x(P\R)\TPR

E[X(P\R)∩TPR
∼Q(t)]

[
ΦP\R(XP ′)

]
(8)
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Fig. 4. Basic clusters in 9 nodes grid with xP ′ = xP

Here and in the following, for brevity and clarity of notation, we will omit the dependence of k(t)
PR to the variables xTPR\(P\R).

Now, notice that we can decompose the set P ′ as follows

P ′ = [(P \R) ∩ TPR] ∪ [(P \R) \ TPR] ∪ [P ′ \ (P \R)]

because we always have P \R ⊆ P ′. By using this relation, we can rewrite (8) as follows

m
(t+1)
P→R(xR) = k

(t)
PR

∑
x(P\R)\TPR

E[X(P\R)∩TPR
∼Q(t)]

[
ΦP\R

(
X(P\R)∩TPR

,x(P\R)\TPR
,xP ′\(P\R)

)]
. (9)

In (6), ΥP→R : R∆ 7→ Rd|R| is the local update function of the directed edge (P,R) ∈ Er. By concatenating all the local
update functions over the edges of the region graph, we can define the global update function as

Υ(m) =
[
ΥP→R(m) : (P,R) ∈ Er

]
(10)

where Υ : R∆ 7→ R∆. The goal of the (parent-to-child) GBP algorithm is to find a fixed point m∗ that satisfies Υ(m∗) = m∗.
If a fixed point m∗ is found, then the beliefs of random variables in a region R is computed by applying (1).

III. STOCHASTIC GENERALIZED BELIEF PROPAGATION ALGORITHM

In this section, first we introduce our stochastic extension to the parent-to-child GBP algorithm, and then present a result
on the criteria where this algorithm is able to mitigate the computation complexity of GBP.

Based on (9), we introduce our algorithm as stated in Algorithm 1. The main idea of the algorithm is that under proper
conditions (that will state in Theorem 1), some parts of the message update rule (3) for each edge of the region graph can be
written as an expectation as stated in (9).

Algorithm 1 Stochastic Generalized Belief Propagation (SGBP) algorithm.
1: Initialize the messages.
2: for t ∈ {1, 2, . . .} and each directed edge (P,R) ∈ Er do
3: Choose a random vector J (t+1)

PR ∈ X |TPR∩(P\R)| according to the conditional distribution Q(t)(xTPR∩(P\R)|xTPR\(P\R))
defined in (7).

4: Update the message m(t+1)
P−→R with the appropriately tuned step size α(t) = O( 1

t ) according to

m
(t+1)
P→R(xR) = (1− α(t))m

(t)
P→R(xR) + α(t)k

(t)
PR(xTPR\(P\R))

∑
x(P\R)\TPR

ΦP\R

(
J

(t+1)
PR ,x(P\R)\TPR

,xP ′\(P\R)

)
(11)

5: t = t+ 1
6: end for
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Remark 3. Note that when (P \R) ∩ TPR = ∅, the update rule (11) becomes deterministic as stated in the following

m
(t+1)
P→R = (1− α(t))m

(t)
P→R + α(t)k

(t)
PR(xTPR

)
[ ∑
x(P\R)

ΦP\R
(
x(P\R),xP ′\(P\R)

) ]
.

Later, we will prove in Lemma 2 that this condition can only happen in update rules corresponding to the highest-level ancestors
regions. �

In contrast to SPB studied in [21], the stochastic version of GBP does not always reduce the computational complexity in
each iteration. Theorem 1 describes the topological and regional conditions for which the complexity of SGBP is less than
GBP for a specific edge of the region graph.

Theorem 1. Our proposed algorithm that runs over a region graph Gr reduces the computation complexity of each message
mP→R (compared to GBP) if and only if the following conditions hold
(i) (P \R) ∩ TPR 6= ∅

(ii) (P \R) * TPR

Proof: The main idea of the proof lies in the fact that whether or not (3) can be written in the form of an expected value
of potential functions as stated in (9). If this happens, as presented in Algorithm 1, the complexity of update rules can be
reduced. Now, to be able to have an expectation operation in (9), we should have (P \R) ∩ TPR 6= ∅.

Now, assuming condition (i) holds, we find the complexity of Algorithm 1’s update rule over every edge (P,R) ∈ Er in
each iteration. First, let us fix xR. To find the PMF of the random vector J which is given by (7), we need O(d|{P\R}∩TPR|×
d|TPR\{P\R}|) = O(d|TPR|) operations. Notice that since we have TPR\(P \R) ⊆ R and [(P \R)∩TPR]∩[(P \R)\TPR] = ∅,
for every fixed xR, the PMF of J does not depend on the vector x(P\R)\TPR

. This means that for a fixed xR, to find the
summation in (11), the PMF of J should only computed once.

Hence, the overall complexity of update rule (11) becomes

O
(
d|TPR| + d|R|

[
d|(P\R)∩TPR| + d|(P\R)\TPR| + d|(P\R)∩TPR|

])
where the terms in the brackets count for a fixed xR the computation complexity of k(xTPR\P\R), of the summation in (11),
and of taking a sample vector J from the above PMF, respectively. The above relation can be rewritten as follows

O
(

max
[
d|TPR|, d|R|+|(P\R)\TPR|, d|R|+|(P\R)∩TPR|

])
Now, we can conclude that if TPR 6= ∅ and (P \R) 6⊂ TPR then we have

O
(

max
[
d|TPR|, d|R|+|(P\R)\TPR|, d|R|+|(P\R)∩TPR|

])
< O(d|P |),

where the right hand side is the computation complexity of the parent-to-child GBP algorithm derived in Lemma 1. This
completes the proof of theorem.

Corollary 1. Assuming that the conditions of Theorem 1 hold and denoting

ηPR , max
[
|TPR|, |R|+ |(P \R) \ TPR|, |R|+ |(P \R) ∩ TPR|

]
,

Algorithm 1 reduces the computation complexity of message mP→R of the order O(d|P |−ηPR) = O(dIPR) where IPR ,
|P | − ηPR. Notice that IPR can be larger than 1.

Example 1. In this example, we provide a graph, drawn in Figure 5, in which SGBP reduces the complexity of updating rule
for the edge 123456→ 36 (see Figure 6) with two order of magnitude. The updating rule for m123456→36 is as follows

m123456→36 =
∑

x1x2x4x5

Φ123456(x1, x2, x3, x4, x5, x6)

Φ36(x3, x6)
× m2478→24(x2, x4)

1

=
∑
x2x4

Φ̃(x2, x3, x4, x6)m2478→24(x2, x4)

=k E(X2,X4)∼Q

[
Φ̃(X2, x3, X4, x6)

]
where in this example by applying SGBP we will get I123456→36 = 2. �

Corollary 2. The complexity of the parent-to-child GBP algorithm is dominated by the computation complexity of message
update rule of the highest level edges in the region graph Gr. As a result, if the dominant message update rule that belongs
to the highest-level ancestor regions with the largest size, satisfies the conditions of Theorem 1, then no matter what are the
complexity of other edges, Algorithm 1 will reduce the overall computation complexity of the parent-to-child GBP.
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Fig. 5. A graph in which the SGBP reduces the complexity with two order of magnitude in alphabet size (see Example 1).

2478

3624

123456

Fig. 6. Associated graph region of a graphical model depicted in Figure 5 with I123456→36 = 2 (see Example 1).

A. Convergence Rate of SGBP Algorithm

In this section, we extend the convergence guarantees of [21] to SGBP. Our convergence theorem (Theorem 2) is based on
imposing a sufficient condition similar to [21] that guarantees uniqueness and convergence of the parent-to-child GBP message
updates. More precisely we assume that the global update function Υ(·), defined in (10), is contractive, namely ∃ν, 0 < ν < 2
such that

‖Υ(m)−Υ(m′)‖2 ≤
(

1− ν

2

)
‖m−m′‖2. (12)

Following similar proof technique to [21], with some appropriate modifications, we can obtain the following results.

Theorem 2. Assume that, for a given region graph, the update function Υ is contractive with parameter 1− ν
2 as defined in

(12). Then, parent-to-child GBP has a unique fixed point m∗ and the message sequence {m(t)
P→R}∞t=1 generated by the SGBP

algorithm has the following properties:
i) The result of SGBP is consistent with GBP, namely we have m(t) a.s.−→m∗ as t −→∞.

ii) Bounds on mean-squared error: Let us divide the fixed point message m∗ into two parts, m∗ = (m∗E1 ,m
∗
E∼1

), where
m∗Er1

corresponds to those edges of the region graph that perform deterministic update rule (as stated in Algorithm 1
and Remark 3), while m∗E∼1

corresponds to the edges that run the stochastic algorithm. In other words, E1 and E∼1

represents the edges in region graph in which the message updating rules are deterministic and stochastic respectively.
Choosing step size α(t) = α

ν(t+2) for some fixed 1 < α < 2 and defining δ(t)
i ,

m
(t)
i −m

∗
i

‖m∗i ‖2
for each i ∈ {1,∼ 1}, we have

E[‖δ(t)‖22]

‖m∗‖22
≤
(

3αα2Λ(Φ′, klu)

2α(α− 1)ν2

)
1

t
+

E[‖δ(0)
E∼1
‖

2

2
]

‖m∗E∼1
‖22

(
2

t

)α
for all iteration t = 1, 2, 3, . . . where Λ(Φ′, klu) is a constant which depends on some factor functions (through Φ′) and
some variable nodes (through klu). For more details refer to Appendix.

iii) High probability bounds on error: With step size α(t) = 1
ν(t+1) , for any 1 > ε > 0 and ∀t = 1, 2, . . . , we have

δ(t+1) ≤ Λ(Φ′, klu)

ν2

1 + log(t+ 1)

t+ 1
+

4Q(Φ′, klu)

ν2
√
ε

√
(1 + log(t+ 1))2 + 4

t+ 1
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with at least probability 1− ε.

The proof of Theorem 2 and more discussion about the overall complexity of SGBP versus GBP can be found in Appendix.

B. The Overall Complexity of SGBP vs. GBP

Note that the complexity of ordinary parent-to-child algorithm is dominated by the highest-level ancestor regions with largest
number of variables. Let us assume that we have N highest-level ancestor regions, shown by Ai for 1 ≤ i ≤ N . Therefore,
the complexity of parents-to-child algorithm is of order O(|d|Amax) where Amax = max

[
|A|1, . . . , |A|N

]
.

If the conditions of Theorem 1 hold between region Amax and all of its children (if there is more than one region with size
|Amax| this statement should hold for all of them), then the SGBP algorithm (Algorithm 1) will reduce the overall complexity,
otherwise our algorithm will not affect the dominant computation complexity; though it may reduce the update rule complexity
over some of the other edges which are not dominant in terms of complexity.

Now, under the contractivity assumption of the global update function, it can be inferred that parents-to-child algorithm
associated with each edge (P → R) demands t = O(log( 1

ε )) iteration to achieve ε precision, while according to Theorem 2, to
get the same precision ε in SGBP algorithm, t = O( 1

ε ) iteration is needed. Nonetheless, using the Corollary 1, the computation
complexity of the dominant update rule of SGBP algorithm is of order O(d(|Amax|−η) 1

ε ) in comparison to O(d|Amax| log( 1
ε ))

for GBP algorithm where η = maxC∈R:(Amax,C)∈Er ηAmaxC . In particular, if d > exp
(

log(1/ε)
η

)
=
(

1
ε

)(1/η)
then SGBP leads

to lower complexity than GBP to achieve the same error ε.

C. Simulation Results

Considering a pairwise MRF, in this section we present some simulation results to study the impact of our algorithm along
verifying our theoretical results. We choose the so-called Potts model (which is a generalization to Ising model; see [13]) of
size 3× 3 for our simulation purpose. We have the following potentials assigned to each of the edges (u, v) ∈ E

ψuv(i, j) =

{
1 if i = j,
γ Otherwise.

where 0 < γ < 1. For the nodes’ potential we have

φu(i) =

{
1 if i = 1,
µ+ σY Otherwise.

in which σ and µ meet the conditions 0 < σ ≤ µ and σ + µ < 1 and Y should have the uniform distribution in the span
of (−1, 1) in addition to being independent from other parameters. We take the following steps to run our simulation. First,
setting σ = µ = γ = 0.1, we run parent-to-child algorithm with region size of 4 to get the asymptotic m∗. Second, with the
same parameters and taking α(t) = 2

(1+t) for d ∈ {4, 8, 16, 32}, we perform Algorithm 1 for the same region graph. It is worth

noting that to calculate E[‖δ(t)‖22]

‖m∗‖22
, we run algorithm 20 times and then average over error corresponding to each simulation.

As it illustrated in the simulation result of Figure 7, this result is in consistency with the Theorem 2. Moreover, you can also
observe the running time comparison between SGBP and GBP algorithm in Figure 8.

IV. EXAMPLES

A. A General Example

As mentioned before we would like to emphasize that under assumptions of the Theorem 1, the complexity gain of our
algorithm depends on the graph topology and choice of regions. To further clarity this idea, let’s discuss the following belief
equation update formulas. Moreover, we show that how we can reformulate the parent-to-child algorithm in terms of expectation.
Considering Figure 9, we have the following update rules:

mB→R(xR) = c
∑
xB\R

ΦB\R(xB)
1

mC→H(xH)mF→H(xH)

= c
∑
xB\R

ΦB\R(xB)M̂(xT=H)

= k(xH\(B\R))
∑

x(B\R)\H

ExH∩(B\R)
[ΦB\R(xB),x{B\R}],

mA→R(xR) = c
∑
xA\R

ΦA\R(xA),
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Fig. 7. The normalized mean-squared error of SGBP versus number of iterations for a Potts models of size 3× 3.

Fig. 8. The running time comparison between SGBP and GBP algorithm with d = 4 for a Potts models of size 3× 3.

mB→C(xC) = c
∑
xB\C

ΦB\C(xB)
mA→R(xR)

mR→E(xE)×mD→G(xE)

= c
∑
xB\C

ΦB\C(xB)M̂(xT=R)

= c
∑
xB\C

ΦB\C(xB)M̂(xR∩(B\C),xR\(B\C))

= k(xR\(B\C))
∑

x(B\C)\R

ExR∩(B\C)

[
ΦB\C(x(B\C)∩R,x(B\C)\R,xB\(B\C))

]
,

and

mD→G(xG) = c
∑
xD\G

ΦD\G(xD)
mR→D(xD)

mD→G(xG)

= k(xD∩G)
∑

xD\(D\G)

ExD\G

[
ΦD\G(xD),xD\(D\G)

]
.
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A B

R C

D E F

G H

Fig. 9. Graph region of an arbitrary graph with the assumption xP = xP ′ .

Furthermore we have,

mE→G = c
∑

xE\G(xE)

ΦE\G(xE)

[
mR→E(xE)×mC→E(xE)×mC→H(xH)×mF→H(xH)

mD→G(xG)

]
= c

∑
xE\G(xE)

ΦE\G(xE)M̂(xT=E)

Note that the updating rule equation for mA→R cannot be rewritten in the form of an expected value due to contradicting the
first condition of Theorem 1.

Remark 4. Considering conditions of Theorem 1 for Figure 9, it should be noticed that because these conditions are satisfied
for mB→R and mB→C , SGBP does help reducing complexity. However, since the first and the second condition does not hold
for mD→G and mA→R, respectively, the proposed algorithm does not improve the computation complexity of message updates
over these edges. �

B. An Example in Smaller Regions

In the following, we present some examples in which the impact of our algorithm in reduction of the complexity of ordinary
GBP is shown. Furthermore, we use some Matrix representation for following examples to illustrate our idea clearly.

Example 2.

1

4

7

2

5

8

3

6

9

Fig. 10. Basic clusters in 9 nodes grid

Let’s move on from these definition to consider an example in Parent-to-child generalized belief propagation algorithm and
the feasibility of having low complexity stochastic one. Consider the following figure with basic clusters of four nodes, in which
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1245

25

2356

45

4578

56

5

5689

58

Fig. 11. Graph region of parents to child GBP algorithm

the belief equations for the shown region graph are:

b1245 = k[φ1φ2φ4φ5ψ12ψ14ψ25ψ45][m36→25m78→45m6→5m8→5]

b2356 = k[φ2φ3φ5φ6ψ25ψ56ψ36ψ23][m14→25m89→56m8→5m4→5]

b25 = k[φ2φ5ψ25][m14→25m36→25m4→5m6→5m8→5]

b45 = k[φ4φ5ψ45][m12→45m78→45m2→5m6→5m8→5]

b5 = k[φ5][m2→5m4→5m6→5m8→5] (13)

Then recalling our definitions in previous sections, we can derive message updating rules as follows:

m12→45 = c
∑

x1,x2∈X
φ1(x1)φ2(x2)ψ12(x1, x2)ψ14(x1, x4)ψ25(x2, x5)

m36→25(x2, x5)

m2→5(x5)

= c
∑

x1,x2∈X
Φ1245(x1, x2, x4, x5)M̂T=(2,5)(x2, x5)

= k1(x5)
∑
x1

Ex2∼M̂T
Φ1245(x1, J, x4, x5) (14)

m14→25 = c
∑

x1,x4∈X
φ1(x1)φ4(x4)ψ14(x1, x4)ψ12(x1, x2)ψ45(x4, x5)

m78→45(x4, x5)

m4→5(x5)

= c
∑

x1,x4∈X
φ1(x1)φ4(x4)ψ14(x1, x4)ψ12(x1, x2)ψ45(x4, x5)

m78→45(x4, x5)

m4→5(x5)

= c
∑

x1,x4∈X
Φ1425(x1, x2, x4, x5)M̂T=(4,5)(x4, x5)

= k2(x5)
∑
x1

Ex4∼M̂T
Φ1425(x1, x2, J, x5) (15)

where k1(x5) = c
∑
x2
M̂(x2, x5), k2(x5) = c

∑
x4
M̂(x4, x5),

Φ1245(x1, x2, x4, x5) =φ1(x1)φ2(x2)ψ12(x1, x2)ψ14(x1, x4)ψ25(x2, x5)

Φ1425(x1, x2, x4, x5) =φ1(x1)φ4(x4)ψ14(x1, x4)ψ12(x1, x2)ψ45(x4, x5)

and defining

Φ25(x2, x5) =φ2(x2)ψ25(x2, x5)

Φ45(x4, x5) =φ4(x4)ψ45(x4, x5)

we have

m2→5 = c
∑
x2∈X

[φ2(x2)ψ25(x2, x5)]
[
m14→25(x2, x5)m36→25(x2, x5)

]
(16)

m4→5 = c
∑
x4∈X

[φ4(x4)ψ45(x4, x5)]
[
m12→45(x4, x5)m76→45(x4, x5)

]
(17)

Note that the equations 16, 17 do not meet the requirements of theorem 1, so we use them without any alteration. However,
we cam apply stochastic updating with equations 14, 15.
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Therefore, the distribution of random index generation associated with equations 14 and 15 is

p(j|i) =
M̂(j, i)∑
j′ M̂(j′, i)

(18)

so we can introduce our algorithm now as follows:
• For the message from four-node clusters to two-node-cluster, pick two indexes i and j with probabilities according to

distribution 18. Then, the updating rules for these nodes is:

m
(t+1)
12→45 = (1− α(t))m

(t)
12→45 + α(t)k1(x5)

∑
x1

Φ(x1, J, x4, x5) (19)

m
(t+1)
14→25 = (1− α(t))m

(t)
14→25 + α(t)k2(x5)

∑
x1

Φ(x1, x2, J, x5) (20)

where α(t) = O( 1
t ) is some step size.

• For the message from middle nodes to the node 5, we do the same as following:

m
(t+1)
2→5 = (1− α(t))m

(t)
2→5 + α(t)c Φ(J25, x5) (21)

m
(t+1)
4→5 = (1− α(t))m

(t)
4→5 + α(t)c Φ(J45, x5) (22)

• So it can be seen that the complexity of calculating the distribution and the updating rule is of O(d2) and O(d3)
respectively, which is less than O(d4), the complexity of ordinary GBP.

APPENDIX

In this section, we give a proof of Theorem 2 which is similar to the techniques employed in [21] to show the convergence
of SBP. However, we have to adapt the proof technique properly to work for the SGBP algorithm.

Before stating the proof, we state some general observations in the following that we will be used later in our proof.

Lemma 2. For any region graph Gr and each edge (P → R) ∈ Er, except the ones coming out from highest level ancestor
regions, we must have (P \R) ⊂ TPR, which means TPR ∩ (P \R) 6= ∅.

Proof: Consider an arbitrary edge (P → R) ∈ Er in the region graph Gr. Recalling the update rule (2) over the edge
(P → R)

mP→R(xR) =
∑
xP\R

ΦP\R(xP ′)

∏
(I,J)∈N(P,R)mI→J(xJ)∏
(I,J)∈D(P,R)mI→J(xJ)

=
∑
xP\R

ΦP\R(xP ′)M̂(xTPR
)

we notice that for the non-highest-level-ancestor regions there must be at least one incoming edge from its parents. This means
that in the nominator of M̂(xTPR

) at least one message mI→P must appear that depends on the variables xP , while such a
message does not present in the denominator according to the definition of parent-to-child GBP algorithm, i.e., see (2), (4)
and (5). Therefore, TPR = P and hence P \R ⊂ TPR.

Remark 5. Combining the results of Lemma 2 and Theorem 1, we conclude that for each regions P ∈ R, except for the
highest-level ancestor regions, the update rule (11) of SGBP over the outgoing edges is stochastic (i.e., J (t+1)

PR is not a trivial
random variable). It should be emphasized that since the condition (ii) of Theorem 1 is violated for such regions, we will not
obtain any complexity gain by applying stochastic update rule over such an edge. However, since the overall complexity of
SGBP algorithm is determined by the largest highest-level ancestor regions, it is not harmful to have no complexity gain in
lower-level regions. �

Remark 6. Considering the highest-level ancestor regions, the outgoing message update rule in SGBP can be categorized
into three different groups. Let P ∈ R be a highest-level ancestor region that sends a message to one of its children region
R. Then, the following cases can be recognized.

1) TPR = ∅: In this case the update rule (2) of parent-to-child GBP becomes independent of previous iteration messages.
Hence, the update rule of SGBP (Equation 11) is reduced to the following expression

m
(t+1)
P→R(xR) = (1− α(t))m

(t)
P→R(xR) + α(t)

∑
xP\R

ΦP\R (xP ′) . (23)

Notice that the second term on the right hand side of (23) remains the same for all iterations.
For such edges in the region graph, we assume that the initial messages are the same as update messages. Hence, for
all value of t we have

m
(t+1)
P→R(xR) =

∑
xP\R

ΦP\R (xP ′)
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which does not depend on t.
2) (P \ R) ∩ TPR = ∅ but TPR 6= ∅: Similar to the previous case, in this case, the update rule of SGBP over the edge

(P → R) is also deterministic as stated in the following

m
(t+1)
P→R(xR) = (1− α(t))m

(t)
P→R(xR) + α(t)k

(t)
PR(xTPR

)

∑
xP\R

ΦP\R (xP ′)


= (1− α(t))m

(t)
P→R(xR) + α(t)Φ̃P\RM̂

(t)(xTPR
) (24)

where Φ̃P\R ,
∑
P\R ΦP\R(xP ′) which is a constant.

3) (P \ R) ∩ TPR 6= ∅: In this case, the update rule of SGBP over the edge (P → R) is stochastic (i.e., J (t+1)
PR is not a

trivial random variable) and is stated in (11).
According to the above discussion, the deterministic message update rules can only happen over the outgoing edges of the
highest-level ancestor regions. For further clarification, you can refer to §IV-A where mA→R(xR) illustrates a deterministic
message updating rule. �

Proof of Theorem 2: First, notice that the existence and uniqueness of GBP fixed point under the contractivity assumption
of (12) can be deduced by applying the Banach fixed point theorem [23], [21]. Then, following a similar approach used in
[21], the asymptotic convergence of SGBP algorithm can be proved by applying a version of the Robbins-Monro theorem [23],
discussed in [21, Appendix C] in detail.
• Asymptotic convergence of SGBP (proof of part (i)):

Let us consider the partitioning of messages according to Remark 5 and Remark 6 as1 m = (mE1 ,mE2 ,mE3) where E1,
E2 and E3 are a partition of edges in the region graph in which the message updating rules is independent of messages
(which is also deterministic), deterministic and stochastic, respectively.
Now, to prove the asymptotic convergence of SGBP, we apply the Robbins-Monro theorem. To this end, ∀i ∈ {1, 2, 3},
we define Y iPR(xR) as follows

Y
(t)
1,PR(xR) ,

∑
xP\R

ΦP\R(xP ′)

Y
(t)
2,PR(xR) , Φ̃P\RM̂

(t)(xTPR
)

Y
(t)
3,PR(xR) ,

k(t)
PR

(
xT\(P\R)

) ∑
x(P\R)\T

ΦP\R

(
J

(t+1)
PR ,x(P\R)\T ,xP ′\(P\R)

) ,
where only one of the above rules is applied for each edge (P → R) in the region graph. Next, we need to rewrite the update
function in a form that enables us to use the Robbins-Monro theorem. So, by defining U

(t)
i,PR ,

[
m

(t)
P→R−L(Y

(t)
i,PR(xR))

]
,

we have

m
(t+1)
P→R = m

(t)
P→R − α

(t)
[
m

(t)
P→R − L(Y

(t)
i,PR(xR))

]
= m

(t)
P→R − α

(t)U
(t)
i,PR

(
m

(t)
P→R,J

(t+1)
PR

)
in which for every fixed value of J

(t+1)
PR ∈ X |TPR∩(P\R)|, we consider U

(t)
i,PR as a mapping from Rd|R| to Rd|R| . By

concatenating all of these functions we get the function U(·,J (t+1)) : R∆E 7→ R∆E , where ∆E =
∑

(P,R)∈Er d
|R| and

J (t+1) ∈
∏

(P→R)∈E3 X
|TPR∩(P\R)|. Here the product denotes for the Cartesian product.

Now, we are ready to apply the Robins-Monro theorem. Using above definitions, the global update function can be
rewritten as following

m(t+1) = m(t) − α(t)U(m(t),J (t+1)), (25)

for t = 1, 2, . . .. Defining the mean vector field u(m) , E[U(m,J)|m] = m − U(m), we need only to verify that
the fixed point m∗ satisfies the condition supm〈m−m∗,u(m)〉 > 0, where 〈·, ·〉 denotes the Euclidean inner product.
Using the Cauchy-Schwartz inequality and the fact that Υ(m) is Lipschitz with constant L = 1 − ν

2 , for all m 6= m∗

we have

〈m−m∗,u(m)− u(m∗)〉 = ‖m−m∗‖22 − 〈m−m∗,U(m)−U(m∗)〉

≥ ν

2
‖m−m∗‖22

> 0.

1Here we have removed the time index on messages for simplifying the notation.
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Since m∗ is a fixed point, we must have u(m∗) = m∗ −U(m∗) = 0, which concludes the proof of this part.

• Non-asymptotic bounds on the mean-square error (proof of part (ii)):
Before proceeding to the proof, we first upper bound the normalized mean error as following:

E[δ(t)]

‖m∗‖2
=

E
[
‖m(t) −m∗‖22

]
‖m∗‖2

(a)
=

E
[
‖m(t)
E1 + m

(t)
E∼1
−m∗E1 −m∗E∼1

‖22
]

‖m∗‖2

(b)
=

E
[
‖m(t)
E∼1
−m∗E∼1

‖22
]

‖m∗‖2

(c)

≤
E
[
‖m(t)
E∼1
−m∗E∼1

‖22
]

‖m∗E∼1
‖2

=
E
[
δ

(t)
E∼1

]
‖m∗E∼1

‖2

where in (a) we divide the expectation over the two set of edges, namely, m(t)
E1 and m

(t)
E∼1

= (m
(t)
E2 ,m

(t)
E3 ), (b) follows

by Remark 6, Item 1, which implies m
(t)
E1 = m∗E1 for all t, and (c) is due to the fact that m = (mE1 ,mE∼1

). Hence, to

upper bound E[δ(t)] for all t = 1, 2, . . . , we upper bound
E[δ

(t)
E∼1

]

‖m∗E∼1
‖2 . First, we bound the quantity E[δ

(t+1)
E∼1

]−E[δ
(t)
E∼1

] that
corresponds to the increment in the mean-squared error.
Considering the update equation (25) and by applying basic properties of the expectation, we obtain

E
[
δ

(t+1)
E∼1

]
− E

[
δ

(t)
E∼1

]
=

E
[〈

m
(t+1)
E∼1

−m
(t)
E∼1

,m
(t+1)
E∼1

+ m
(t)
E∼1
− 2m∗E∼1

〉]
‖m∗E∼1

‖22

= (α(t))
2E
[
‖U(m

(t)
E∼1

,J (t+1))‖22
]

‖m∗E∼1
‖22

− 2(α(t))
E
[
E
[〈

U(m
(t)
E∼1

,J(t+1)),m
(t)
E∼1
−m∗E∼1

〉
|F (t)

]]
‖m∗E∼1

‖22

= (α(t))
2E
[
‖U(m

(t)
E∼1

,J (t+1))‖22
]

‖m∗E∼1
‖22

− 2(α(t))
E
[〈
u(m

(t)
E∼1

)− u(m∗E∼1
),m

(t)
E∼1
−m∗E∼1

〉]
‖m∗E∼1

‖22
, (26)

where we have used E
[
U(m

(t)
E∼1

,J (t+1))|F (t)
]

= u(m
(t)
E∼1

) and u(m∗) = 0. Moreover, we define the σ-field F (t) ,
σ(m0,m1, . . . ,mt). From this point, to upper bound (26), we bound each term in (26) separately. We continue the proof
by upper bounding

H1 =

∥∥∥U(m
(t)
E∼1

,J (t+1))
∥∥∥2

2

‖m∗E∼1
‖22

and then lower bounding

H2 =

〈
u(m

(t)
E∼1

)− u(m∗E∼1
),m

(t)
E∼1
−m∗E∼1

〉
‖m∗E∼1

‖22
.

Recall that for (P → R) ∈ E2 we have the following update rule

m
(t+1)
P→R(xR) = Φ̃P\RM̂

(t)(xTPR
)

and for (P → R) ∈ E3 we have

m
(t+1)
P→R(xR) = k

(t)
PR

(
xTPR\(P\R)

) ∑
x(P\R)\TPR

E[X
(P\R)∩TPR∼Q̂(t) ]

[
ΦP\R

(
X(P\R)∩TPR

,x(P\R)\TPR
,xP ′\(P\R)

)]
.
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Hence, we have

LB(P,R)∈E3(xR) , kl
(
xTPR\(P\R)

) ∑
x(P\R)\TPR

min
x(P\R)∩TPR

[
ΦP\R

(
x(P\R)∩TPR

,x(P\R)\TPR
,xP ′\(P\R)

)]
≤m

(t)
PR(xR)

≤ ku
(
xTPR\(P\R)

) ∑
x(P\R)\TPR

max
x(P\R)∩T

[
ΦP\R

(
x(P\R)∩T ,x(P\R)\T ,xP ′\(P\R)

)]
, UB(P,R)∈E3(xR)

for all xR ∈ X |R| due to the convex combination nature of definition of m
(t+1)
P→R. As a result, H1 can be bounded as

follows

H1 =
‖U(m

(t)
E∼1,J

(t+1))‖22
‖m∗E∼1‖22

(27)

≤
2
∑
P→R(‖m(t)

P→R‖22 + ‖L(Y
(t)
PR(xR))‖22)

‖m∗P→R‖22

=
2
[∑

(P,R)∈E2(‖m(t)
P→R‖22 + ‖L(Y

(t)
2,PR(xR))‖22) +

∑
(P,R)∈E3(‖m(t)

P→R‖22 + ‖L(Y
(t)
3,PR(xR))‖22)

]
‖m∗P→R‖22

≤
2 maxxR

∑
(P,R)∈E2(‖m(t)

P→R‖22 + ‖L(Y
(t)
2,PR(xR))‖22) + 4

∑
(P,R)∈E3(maxxR

UPPR(xR))

minxR

∑
(P,R)∈E2(‖m(t)

P→R‖22 + ‖L(Y
(t)
2,PR(xR))‖22) +

∑
(P,R)∈E3(minxR

LPPR(xR))

, Λ(Φ′, klu), (28)

where we used the fact that m(t)
P→R and L(Y (S)) sum to one. Now considering H2, we can write the following lower

bound

H2 ≥
ν

2

‖δE∼1
‖22

‖m∗E∼1
‖22

≥ ν

2

‖m(t)
P→R −m∗P→R‖22
‖m∗P→R‖22

. (29)

Taking expectation from both sides of bounds (28) and (29) and putting them together we obtain

E
[
δ

(t+1)
E∼1

]
≤ Λ(Φ′, klu)(α(t))

2
+ (1− α(t))E

[
δ

(t)
E∼1

]
. (30)

Taking α(t) = α
(ν(t+2)) and unwrapping the recursion (30) we get

E
[
δ

(t+1)
E∼1

]
≤ Λ(Φ′, klu)α2

ν2

t+2∑
i=2

(
1

i2

t+2∏
n=i+1

(1− α

n
)

)
+

t+2∏
n=2

(
1− α

n

)
E
[
δ0
E∼1

]
(31)

adopting the convention that the inside product is equal to one for i = t + 2. The following lemma, provides an upper
bound on the product

∏t+2
n=i+1

(
1− α

n

)
.

Lemma 3 (see [21]). For i ≤ t+ 1 we have
t+2∏

n=i+1

(
1− α

n

)
≤
( i+ 1

i+ 3

)α
.

Then plugging this lemma into (18) and taking the same steps as in [21, § IV-B-2], we get the desired conclusion.

• High probability bounds on the actual error rate (proof of part (iii)):
To prove this part, again, we adapt the approach of [21] to SGBP algorithm. Reminding the definition of normalized error
δ

(t)
E∼1 from the previous part as well as (26), we can write
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δ
(t+1)
E∼1

− δ(t)
E∼1

=
[〈m(t+1)

E∼1
−m

(t)
E∼1

,m
(t+1)
E∼1

+ m
(t)
E∼1
− 2m∗E∼1

〉]
‖m∗E∼1

‖22

= (α(t))
2 [‖U(m

(t)
E∼1

, J
(t+1)
E∼1

)‖22]

‖m∗∼1‖22

− 2(α(t))
[〈u(m

(t)
E∼1

),m
(t)
E∼1
−m∗E∼1

〉]
‖m∗E∼1

‖22
+ 2α(t)〈Z(t+1), δ

(t)
E∼1
〉 (32)

where Z(t+1) is defined as following

Z(t+1) , −

[
U(m

(t)
∼1, J

(t+1))− u(m
(t)
E∼1)

]
‖m∗E∼1‖22

.

Next, plugging (28) and (29) into (32), we obtain

δ
(t+1)
E∼1

≤ Λ(Φ′, klu)(α(t))2 + 2α(t)〈Z(n+1), δnE∼1
〉+ (1− να(t))δ

(t)
E∼1

.

Setting α(t) = 1
ν(t+1) , and doing some algebra with the recursion, yields to

δ
(t+1)
E∼1

≤ Λ(Φ′, klu)

ν2(t+ 1)

t+1∑
n=1

1

n
+

t+1∑
n=1

2〈Z(t+1), δnE∼1
〉

ν(t+ 1)

≤ Λ(Φ′, klu)

ν2(t+ 1)

1 + log(t+ 1)

t+ 1
+

t+1∑
n=1

2〈Z(n+1), δnE∼1
〉

ν(t+ 1)
. (33)

Notice that {Zn}∞n=1 can be interpreted as a martingale difference sequence regarding the filtration Fn = σ(m0
1,m

1
1, . . . ,m

n
1 ).

Therefore, E[Z(n+1)|F (t)] = 0 and correspond to that E[〈Z(n+1), δnE∼1
〉] = 0 for n = 0, 1, 2, . . .. To bound the left hand

side of (33), we need to bound second term’s variance in (33) as following

var

 1

n+ 1

(t+1)∑
n=1

〈Zn+1, δnE∼1
〉

 =
1

(n+ 1)2
E

[
(

n∑
n=0

〈Z(n+1), δnE∼1
〉)2

]

=
1

(n+ 1)2

n∑
n=0

E
[
〈Z(n+1), δnE∼1

〉2
]

+
2

(n+ 1)2

∑
0≤n1<n2≤t

E
[
〈Zn1+1, δn1

E∼1
〉〈Zn2+1, δn2

E∼1
〉
]
.

Because of the fact that

E
[
〈Z(n1+1), δn1

E∼1
〉〈Z(n2+1), δn2

E∼1
〉
]

=E
[
E
[
〈Z(n1+1), δn1

E∼1
〉〈Z(n2+1), δn2

E∼1
〉|Fn1

]]
=E

[
〈Z(n1+1), δn1

E∼1
〉E
[
〈Z(n2+1), δn2

E∼1
〉|Fn1

]]
(34)

=0

∀n1 < n2, the second term in (34) becomes zero. This means that the martingale different sequence is bounded.
Using the concentration inequality provided in [24], we can bound the second term in (33). To this end, first, we need to
upper bound ‖Z(n)‖2 by Cauchy-Schwartz inequality which leads to the following upper bound

‖Z(n+1)‖2 =
[‖U(m

(n)
E∼1, J

n+1)− u(m
(n)
E∼1)]‖2

‖m∗E∼1‖2

≤

(
‖U(m

(n)
E∼1,J

(n+1))‖2
‖m∗E∼1‖2

+
‖u(m

(n)
E∼1)‖2

‖m∗E∼1‖2

)
(a)

≤ 2
√

Λ(Φ′, klu)

where in (a) we used the convexity of the second norm (‖.‖2) to apply the Jensen’s inequality which implies that
‖u(m

(n)
E∼1)‖2

‖m∗E∼1‖2
≤
√

Λ(Φ′, klu). By using (28), we can conclude that |Z(n)| ≤ 2Λ(Φ′, klu), for ∀n = 0, 1, . . .. Now, turning
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to bound the second term, again we use the Cauchy-Schwartz inequality as following

E
[
〈Z(n+1), δnE∼1

〉2
]
≤ E

[
‖Z(n+1)‖22 · ‖δnE∼1

‖22
]

≤ 4Λ(Φ′, klu)‖δnE∼1
‖22.

Next, taking the expectation over the both sides of the inequality (33), we obtain E
[
‖δnE∼1

‖22
]
≤ Λ(Φ′,klu)

ν2

(1+logn)
n . Thus,

we have
E
[
〈Z(n+1), δnE∼1

〉2
]
≤ 4Λ2(Φ′, klu)

ν2

(1 + log n)

n

for all n ≥ 1. Furthermore, noting that the initial term E
[
〈Z(1), δ0〉2

]
≤ 4Λ(Φ′, klu)E

[
‖δ0‖22

]
is upper bounded by

4Λ(Φ′, klu) using the fact that

E‖m(0)
E∼1
−m∗E∼1

‖
‖m∗E∼1

‖
≤ 2

E‖m0
E∼1
‖

‖m∗E∼1
‖

≤ 2

√
Λ(Φ′, klu)

4
.

Now, we have everything to bound the variance as following

var

 1

t+ 1

(t)∑
n=0

〈Zn+1, δn〉

 ≤ 4Λ2(Φ′, klu)

ν2

t∑
n=1

(1 + log n)

n
+

4Λ2(Φ′, klu)

(t+ 1)2

(a)

≤ 4Λ2(Φ′, klu)

ν2

(1 + log(t+ 1))2 + 4

(t+ 1)2

where (a) follows because of the elementary inequality

(t)∑
n=1

(1 + log n)

n
≤ (1 + log t)2

and also µ ≤ 2. As a result, everything is ready to use the Chebyshev’s inequality [24] for upper bounding. Thus we have

Pr

| (t+1)∑
n=1

2〈Zn, δn〉
ν(t+ 1)

| ≥ τ

 ≤ 16Λ2(Φ′, klu)

ν4τ2

(1 + log(t+ 1))2 + 4

(t+ 1)2

for any τ > 0, so we can choose

τ =

(
4Λ(Φ′, klu)√

εν2

) √
(1 + log(t+ 1))2 + 4

(t+ 1)2
,

for a fixed 0 < ε < 1. Finally, putting all together in (33) along some simplifications ends up with

δ
(t+1)
E∼1

≤ Λ(Φ′, klu)

ν2

1 + log(t+ 1)

t+ 1
+

4Λ(Φ′, klu)

ν2
√
ε

√
(1 + log(t+ 1))2 + 4

t+ 1

with the least probability 1− ε.
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