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Abstract

We study the performance of generalized polar (GP) codes ey are used for coding schemes involving
erasure. GP codes are a family of codes which contains, arathrggs, the standard polar codes of Arikan and
Reed-Muller codes. We derive a closed formula for the zerdetected-error capacityf’* (W) of GP codes for a
given binary memoryless symmetric (BMS) chaniélunder the low complexity successive cancellation decoder
with erasure. We show that for eveRy < I§F (W), there exists a generalized polar code of blocklengtand of

rate at leas? where the undetected-error probability is zero and theueeagrobability is less thaa=N2 ", On
the other hand, for any GP code of rdfg” (W) < R < I(W) and blocklengthV, the undetected error probability
cannot be made less tham™ 2" unless the erasure probability is closelto

I. INTRODUCTION

Polar coding, invented by Arikanl[1], is the first low comptgxcoding technique that achieves the
symmetric capacity of binary-input memoryless channelslafPcodes rely on a phenomenon called
polarization which is the process of converting a set of identical copfes given single user binary-input
channel, into a set of “almost extremal channels”, i.ehegitalmost perfect channels”, or “almost useless
channels”.

The invention of polar codes brought attention to Reed-Btuiodes because of their similarity. It
was recently shown that Reed-Muller codes achieve the @gpafcbinary erasure channels under MAP
decoding [[2].

The probability of error of polar codes under successiveelation decoding was shown to be equal
to 0(2—N1/2_5) by Arikan and Telatar [3]. A more refined estimation of thelgability of error (which is

dependent on the transmission ratewas obtained by Hassani et all [4]. They showed that thegimtity
. . : . 2+ (8 ) +o(vm)
of error under successive cancellation decoding of therpolde is equal t@—2"  * (1) where

N = 2" is the blocklength is the transmission rate andlV) is the capacity of the binary memoryless
symmetric (BMS) channélV. They also showed that the probability of error under MAPadirag has
the same asymptotic estimation. This does not show a goddrpemce of polar codes in terms of
the probability of error because the decay is too slow in tleekbength. One attempt to enhance the
performance of polar codes was to apply list decoding wittCGRror detection[[5].

Another possible way to enhance the performance of polaesmithrough decoding with erasure; it is
sometimes desirable to allow the receiver not to decide hvmessage was transmitted, especially when
there is a feedback from the receiver to the transmitter: ¢bafusing string of symbols was received
(in the sense that there is a high probability of a decodimgréo occur, no matter which message the
receiver chooses as the decoded message), the receiveskctredransmitter to retransmit the message,
hoping that the received string will not be confusing in tlextntransmission.

There are two types of error in decoding with erasure:

« If the receiver decides on the transmitted message and naakesror, we say that an undetected
error occurs.
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« If the receiver does not decide, we say that an erasure occurs

In general, there is a trade-off between the probability mdetected errop,. and the erasure probability
Per: Pue CAN be made smaller at the expense of a higherThe trade-off between these parameters was
first studied by Forney [6]. In this paper, we study the trdfdbetween these parameters for generalized
polar (GP) codes, which are a family of codes that contaimyrey others, the standard polar codes of
Arikan and Reed-Muller codes. Moreover, we compute the-madetected-error capacity of GP codes
under the low complexity successive cancellation decodtr evasure. We also derive an estimate of the
erasure probability of GP codes for rates which are less tharzero-undetected-error capacity.

Il. PRELIMINARIES
A. Useful notations

For 0 < e, ¢ <1, define the following:

e e=1—¢

o exe =ed €€,

« m(€) = min{e, €}.

For everyz € FY and everyZ C [N] = {1,...,N}, we write z; € F to denote the subvector
containing the components efwhose indices appear ih.

B. Erasure Schemes

Let W : F, — Y be a binary input channel. A coding scheme with erasure ipket€ = (M, f, g9)
where M is the set of messageg,: M — Y is the encoder mappingy is the blocklength of the code,
g: YN — MU {e} is the decoder mapping ard¢ M represents erasure.

The scheme is used as follows:

« The transmitter chooses a messagainiformly in M and computesX” = (X;,..., Xy) = f(m).
« The transmitter send&, ..., Xy through N independent copies of the chann&l, i.e., he uses the
channel N times. The‘ ra‘teR of the coding scheme is the amount of information that is qemt
log, |M

channel useRR =

. The receiver obtainy}, ..., Yy and computesh = g(Y") = g(Y1,..., Yn).

. If m = e, we say that an erasure has occurred. Thus, the erasurebpitgybaf the scheme is
per(W, C) = P({rn = e}).

. If m # e andm # m, we say that an undetected error has occured. Thereforendetected error
probability of the scheme ig,.(W,C) =P({m ¢ {e,m}}).

In practice, it is desirable to maximize the rafewhile minimizing the blocklengthV, the erasure
probability p..(W, C), the undetected-error probability.(1V, C) as well as the computational complexity
of both the encoder and the decoder. The trade-off betwéénesle performance parameters is one of the
most important problems in information theory. In this pape are interested in studying the trade-off
between these parameters asymptoticallwirunder the following assumptions:

i A BMS channellV is used.
i Only GP codes are considered.
iii Only successive cancellation decoders with erasurecansidered.

C. Binary-input memoryless symmetric channels

Binary-input memoryless symmetric (BMS) channels gemsgddinary symmetric channels (BSC). One
can think of a BMS channel as “a combination of BSCs”: B&C(¢,), ..., BSC(¢;) be a collection of
binary symmetric channels of crossover probabilitigs. ., ¢, respectively. Lep, ..., p, be a probability
distribution over[l] := {1,...,1} and consider the binary input chanrié which operates as follows:



During each use of the channiél, one of the channelBSC(¢;), ..., BSC(¢) is chosen with probability
p1, ..., respectively. The bit at the input 6% is transmitted to the receiver through the chosen BSC.
Moreover, we assume that the receiver knows which BSC was inseach channel use . Formally,

the channelV : F, — [I] x F, can be defined as follows:

, ) pi-(I—«) if v =y,
W (i, ylz) = {pi e it o £y 1)

We denote this channél as

l
W => pi-BSC(e).

i=1

Definition 1. A channellV is said to be binary-input memoryless symmetric (BMS) ifethexist0 <
€1,...,6 < 1 and a probability distribution{p,,...,p;} over[l] = {1,... 1} such thatiW is equivalent
l

to (in the sense that it is both upgraded and downgraded frltbm)channelZpi -BSC(¢;). In this case,
we write =

l
W= Z pi - BSC(g;), (2)

=1
and we say that this is 8SC-decomposition ofV .

Note that one can define general BMS channels by consideriimité collections of BSCs. The binary-
input additive white Gaussian noise channels are examglggmeral BMS channels with continuous
output alphabet. For the sake of simplicity, we will only sater in this paper BMS channels with finite
output alphabets. However, all the main results of this pape also valid for general BMS channels.

Another remark worth mentioning is that there are infinitelany BSC-decompositions of a given
BMS channellV. The reason for this is twofold:

(i) We can decompose or uniBSC-components having the same crossover probability by dposmg

or adding their fractions (i.e., the parameters) respectively.
(i) For everye > 0, we haveBSC(¢) = BSC(€), therefore we can change the crossover probability of
any BSC component to its complement.

This motivates the following definition:

l
Definition 2. If ¢; < % forall 1 < <1, we say thatV = Zpi~BSC(eZ-) is a naturalBSC-decomposition

=1
of . Note that anyBSC-decomposition can be naturalized as follows:

I I
W = Zpi -BSC(¢;) = Zpi -BSC (m(e;)).

l
f0<e <...<g<landp, >0forall 1 <i<I wesaythalV = Zpi-BSC(ei) is the canonical

=1
BSC-decomposition ofl. It can be shown that the canonicBSC-decomposition ofV is unique.

Example 1. For every( < ¢ < 1, the binary erasure chann&EC(¢) is BMS. Moreover, its canonical
BSC-decomposition is

BEC(e) = (1 —€) - BSC(0) + ¢ - BSC <%) :



l
Definition 3. LetW = ) p,-BSC(e;). For every0 < e < 1, define the fractiony (¢) of BSC(e) in W
2

=1
as follows:

l
pw(€) =Y i Lim(e=e}-
i=1

l

pw (€) is well defined because it does not depend orBfi€-decomposition ofl’. I.e., ifz pi-BSC(e;) =
i=1

U l U
Zp; ' BSC(€;> thenzpz ’ ]l{m(ei)zs} = ij ' 1{771(53):5}
j=1 i=1 j=1

As we will see later, the parametgy, (0) will play an important role in our analysis. We introduce
another parameter which is also of interest for our study:

Definition 4. Let W be a BMS channel. We define thest imperfect componenf I/, denotedk;. (1),
as follows:

0 if I(W) =1,
epic(W) =< min e if I(W) <1,

66}0,%]:

pw (€)>0

0 if I(W) =1,

1
= Jnin m(€;) if I(W) <1,
pi>0, 0<e; <1

D. D, decoders for BMS channels

Definition 5. Let W = 3!, p; - BSC(¢;) and let0 < t < 1. Define the decodeb; : [I] x F, — {0,1, e}
of W as follows:

x if e; <t,
Di(i,x) =< 1dx ife; >1—t,
e otherwise

Remark 1. D; decoders are desirable because no other decoder with ezasur provide a strictly better
trade-off betweem,. and p,., for the code of blocklength 1 and rate 1. MoreovBy, decoders are very

easy to implement: we compute the log-likelihood ratidR(y) = log ii:%:z; (where X andY are the

input and output oV respectively) and then compare with= log %:

0 if LLR(y) < -T,
Diy) =41 if LLR(y) > T
e otherwise

E. Generalized polar codes
Definition 6. A codef : M — FY is said to be ageneralized polar (GP) cod# parametergn,r,Z,b)
if it satisfies the following:

« N=2", M =F} andbec F)".

e« ZC[N]=A{1,...,N} and|Z| =r.



e f(u)=F®".q, where
1 1
=l 1]
anda € FY is such thati; = v and tze = b.

n is called thenumber of polarization stepsf the GP code. We denote the cofleas GP(n,r,Z,b).
Moreover, ifb =0 € Fy' ™", we simply writeGP(n,r, ).

Example 2. Here are two examples of GP codes:
. Standard polar codes of Arikan: Taketo be the set of indices of thesynthetic channels having
the lowest Bhattacharyya parameters, and take be the vector of frozen bits.
« Reed-Muller codes: Take to be the set of indices of thecolumns off"®" having the largest number
of ones, and také = 0 ¢ FY".

F. Successive cancellation decoder with erasure of GP codes

Because of the recursive construction B8f", one can implement the encoder of any GP code in
O(N log N) time exactly like polar codes.

On the other hand, for any giveéaP(n,r,Z,b) code, there are various decoders that can be considered.
One attractive choice is what we calliccessive cancellation decoder with erasure (S@kirh operates
similarly like the successive cancellation decoder of potades, but instead of applying the ML decoder
for each bitu;, we apply aD;, decoder for somé < ¢, < % The reason why SCE decoders are desirable
is because they have low computational complexity.

Definition 7. For everyi e Z let 0 < t; < % and lett = (¢;);ez € |0, %]I. TheD, successive cancellation
decoder with erasure (denot&fCE -D; or simplyD;) for a GP(n,r,Z,b) code operates as follows:
. For eachi € Z, computeu; by applying theD,, decoder. The bits are successively decoded exactly
in the same order as in the successive cancellation decddeolar codes.
. If u; = e for anyi € Z, stop decoding immediately and declare erasure.
« If u; # e for everyi € Z, the output isi = (4;);ez-

Two remarks are worth mentioning here:

« The computational complexity of ar§yCE decoder iSO(N log N).
. If t; =0 for everyi € Z, we get a zero-undetected-error scheme.

[Il. ERASURE SCHEMES USINGSP CODES
Definition 8. Let W : F, — ) be a BMS channel and define

IEPW) = > W)= > W(yl). 3)
W?yel%}):zo W?ye|8})::0

It can be easily shown tha{'" (W) = py (0).

The following theorem, which is the main result of this pas@iows thatf§** (17/) is thezero-undetected-
error capacity of GP codes fol/ under SCE decoders

Theorem 1. Let W be a fixed BMS channel. We have the following:

. ForeveryR < I§* (W), everyB < % and everyn large enough, there exists a GP code of blocklength
N = 2" and of rate at leastR for which the low complexityD,- SCE decoder (which induces a
zero-undetected-error scheme) has an erasure probalofityrder 227",

. Foreverya > 0, everyj > 1, everyn large enough, and every GP code of rdfe’ (W) < R < I(W)
and blocklengthV = 27, if p., < 1 — « thenp,, > 2-2"" In other words, the undetected error

1to e
probability cannot be made better than™2""" unless the erasure probability is of ordér o(1).



In order to prove Theoref 1, we need a few lemmas and propositThe next proposition shows the
first point of the Theorem. In fact, it provides a better estienfor the erasure probability:

Proposition 1. Let W : F, — ) be a BMS channel. For everfl < I(?P(W), there exists a GP code

of blocklengthN = 2™ and of rate at leastR for which the low complexityD,- SCE decoder (which

%+Q71 IGPiR(‘/V)) 4-%0(\/%)
0

induces a zero-undetected-error scheme) has an erasuteability of order2—2
whereQ(z) = P({N(0,1) > z}) is the standard Q-function.

Proof: DefineW’ : F, — F, U {e} as follows:

(> W) iy ==,
yeY:
W (ylz®1)=0
W (le)=q > W) ify=e
yey:
W (ylz®1)>0
0 otherwise

\

In other words, for eaclr € F, we contract all the output symbols &F for which we can decide
without error that the input was to one output symbol of/”’ that we also denote by. Moreover, we
contract all the remaining uncontracted symbols to theuseasymbole.

Lete =1 — ISP (W). One can easily check thét’ = BEC(e) < . Now for everyR < I§F (W) =
1 —e = I(W'), there exists a polar code fo¥’ of rate at least? and whose probability of error under

_ _ _ 3+Q71 (7l ) W +o(vi)
successive cancellation decoder is equalt® (see [4]). One can use the same code

for W and apply theD,- SCE decoder. This induces a zero-undetected-error scheme.
It can be easily seen that the erasure probability forheSCE decoder of the GP code fé# is of
the same order as the error probability of the successiveetlation decoder of the polar code far’.
[ |

In order to prove the second point of Theorem 1, we will needahalysis tools of polarization theory.
Let us first recall the basic notations and definitions.

Let W : F, — Y be a binary-input channel. We define the two chanigls : F, — Y x ) and
Wt :Fy — Y x Y x F, as follows:

1
W™ (y1, yolur) = 2 Z W (yi|ur & u2)W (y2|uz), (4)
ug€lfy
1
W (y1, Y2, ur|ug) = §W(y1\u1 © uz) W (y2|uz). (5)

For everys = (s1,...,s,) € {—,+}", we definelV* recursively ag¥’® := ((W*)%2 .. .)%,

l
Proposition 2. If W is BMS, theriV~ and W+ are BMS as well. More precisely, W = Zpi-BSC(ei)
=1

then
l l

W~ = Z Zpl-pj -BSC(e; * €), (6)

i=1 j=1
and

l l _
we=3"3p; - <(ez~ «¢;) - BSC <%) + (e %) - BSC <&) ) 7)

€; ¥ €;
i=1 j=1 i T



Proof: We use Equationg{1)[1(4) and| (5) and we apply the fact Bttt (e) = BSC(€) for every
e €[0,1]. u

Propositior 2 can be used to derive the effect of polarimatio /5 (W) and ey (W) :
Corollary 1. I§¥(W=) = ISP (W)? and ISY (W) = 2I§F (W) — ISF(W)2.
Proof: Let W = Zézlpi-BSC(ei) be aBSC-decomposition of. Using the equations of Proposition
2, one can see that:
o IFF(W™) = pw-(0) @ o 0)% = I§F(W)?, where (a) follows from the fact that(e; x ¢;) = 0 if
and only ifm(e;) = m( ;) =0.
o IFP(WT) = pw+(0 ) = 2p (0) — pw (0)% = 2§ (W) — I$F(W)?, where (b) follows from the fact
that

( €i€; ) & m(e) =0 orm(e) =0,

€ * €
and
€;€
(62 *JEJ) =4 m(ez) =0or m(ej) =0.
[ |
Corollary 2. We have:
. (W_) _ 2€bic(W) . ebic(W) |f pw(O) = 0,
bie epic(W) otherwise
. 2
€bic<W+> = cbic(V)

ebic(W)Q + (1 — ebic(W))Q )
Proof: If I(W) =1 (i.e., epic(W) = 0), thenI(W~) = I(W™) = 1 which implies thate;.(W ™) =

evic(WT) = 0. This shows the corollary fof (W) = 1.
l

Assume now that (W) < 1 so thate,.(1W) > 0. Let W = Zpl- - BSC(¢;) be the canonicaBSC-
decomposition ofiV/. =
Since0 < ¢,¢; < % for everyl < 1,5 </, it is easy to see that:
e 0 < g xe < % This means that the crossover probabilities appearing@)jnd¢ not need to be
complemented.
. EZ'*EJ':O if and 0I’l|y |f€Z:€J = 0.
Now since the functior « ¢’ is increasing in botk ande’ (assuming) < ¢, ¢’ < 1), we conclude that

enic(W7) = 12%21 m(e; * €;)
m(5_1*76]_)>70
20 W) (L= awe(W)) i pw(0) =0,
ebic (W) otherwise

We apply a similar reasoning an ( €iE ) andm ( per: J) We obtain:

Ei*Ej

, €€ €€ €€ o
ebiC(WJr):mm{ R RN [ :1§Z,j§l,€i>0,€j>0}
€ %€ € %€ € % €
Ebic(W)Q

ebic(W)2 4+ (1 — enic(W))?2



Proposition 3. Let W : F, — ) be a BMS channel and &P (n,r,Z,b) be a generalized polar code
of rate R = = and blocklengthV = 2". If [§" (W) < R < I(W) then for every3 > 1, everya > 0 and
everyn large enough, there is n8CE decoder which can make the undetected error probabilityelow
than 2=” unless it makes the erasure probability at least «.

Proof: Let (B,,),>1 be i.i.d. uniform random variables ifi-, +}. Define the channel-valued process
(Wy)n>o as follows:

WO = W,
W, = W5hr vn > 1.

Let 1 < 8/ < 3 and letn be large enough so that we hage 2-V* > 2=V, where N = 2"

Corollaryl] shows that the proceg§® (W) is a martingale process Therefor[cé}P converges
almost surely. Moreover, one can show by standard polasiz#tieory techniques thd™* (W,,) = pw, (0)
converges almost surely to O or 1. Furthermore, for every0 we have:

T}LU;OP({an(O) <e€})=1-pw(0).

Therefore, as: becomes large, the fraction of indicess {—, +}" such thatpys(0) > € is roughly at
most I§T (W) = pw (0).

On the other hand, from Corollafy 2, we can easily see thatWW =) > €,i.(W) and ey (W) >
evic(W)2. By applying the same analysis 6f [3], but ¢g. instead of the Bhattacharyya parameter, one
can show that iff (W) < 1, then the fraction of indices € {—, +}" such thate,;.(1W*) > 272°" goes to
1. Therefore, fom large enough, ifR > I$F (W) = py(0), there exists at least one indexc {—, +}"
whose corresppnding index iA®"™ appears in the generator matrix of the GP code and whichfieatis
epic(W*) > 272" and py+ (0) < 5. Leti € [2"] be the index of the column of"*™ corresponding t
and let0 < t; < 1 be the threshold used fé# in an SCE —D, decoder. Le]pffe) andpgn) be the erasure
probability and undetected error probability of the decoder applied tdV® respectively. We have:

per Z pw (€

e>t;

and
pe=) epw(e)= Y e pwile)
e<t; enic(W*)<e<t;
> Y (V) pw(e)
ebic(W#)<e<t;
= epic(W*) - (1 = pws(0) — p{3))
> 9N (1 - % - péﬁ?) . ®)
Therefore, ifpl) < 1 — a thenpl > 2. 2-¥" > 9-¥ Hencep!?) cannot be made less than ™’
unIeSSp() is at leastl — a. The proposmon now follows from the fact that the erasumbablllty and

the undetected error probability of the whole scheme areeldwounded b)p andpue respectively. m
The proof of Theorem]1 now follows from Propositidds 1 and 3.

IV. DISCUSSION

The tradeoff obtained here between the undetected errdvapildy and erasure probability for rates
R > I§* (W) is very sharp and does not depend on the raté more refined estimation of the tradeoff
betweenp,. andp., which is dependent o® remains an open problem.
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