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Abstract

We propose a new caching scheme where linear combinations of the file segments are cached at the
users, for the cases where the number of files is no greater than the number of users. When a user
requests a certain file in the delivery phase, the other file segments in the cached linear combinations
can be viewed as interferences. The proposed scheme combines rank metric codes and maximum
distance separable codes to facilitate the decoding and elimination of these interferences, and also to
simultaneously deliver useful contents to the intended users. The performance of the proposed scheme
can be explicitly evaluated, and we show that the tradeoff points achieved by this scheme can strictly
improve known tradeoff inner bounds in the literature; for certain special cases, the new tradeoff points
can be shown to be optimal.

1 Introduction

Caching is a natural data management strategy when communication has a bursty characteristic. During
off-peak time, local cache can be filled with data that is anticipated to be useful later to reduce the delay
when the communication resources become scarce during peak time.

In a recent work [7], Maddah-Ali and Niesen provided a formal information theoretic formulation for
the caching problem. In this formulation, there are N files, each of F bits, and K users. Each user has a
local cache memory of capacity M (measured in multiples of F ). In the caching phase, the users can fill
their caches with contents from the central server without the knowledge of the precise requests. In the
delivery phase, each user will request one file from the central server, and the central server must multicast
certain common (and possibly coded) information to all the users in order to accommodate these requests;
an example case is given in Fig 1. Since in the caching phase, the requests at the later phase are unknown,
the cached contents must be strategically prepared at all the users. The goal is to minimize the amount of
multicast information which has rate R (also measured in multiples of F ), under the constraint on cache
memoryM . It was shown in [7] that coding can be rather beneficial in this setting, while uncoded solutions
suffer a significant loss. Subsequent works extended it also to decentralized caching placements [8], caching
with nonuniform demands [6], online caching placements [13], and hierarchical coded caching [10]; the
caching methods have also found their applications in device-to-device communication systems [9].

The scheme given in [7] utilizes uncoded caching and coded transmission. A close inspection of the
performance of the scheme reveals that when N ≤ K, many individual tradeoff points achieved by the
scheme in [7] are not on the lower convex envelope, and thus an effective scheme is lacking for this case,
particularly when the cache capacity is small. Though the scheme in [7] was shown to be within a constant
factor of the optimum, the loss of efficiency can be relatively significant when either N or K is small.
Particularly, for more sophisticated caching scenarios, usually either files or users need to be classified
into smaller groups (see e.g. [6]), and such loss of efficiency may be magnified. Recently Chen et al. [17]
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Figure 1: An example caching system instance, where there are N = 3 files and K = 4 users. In this
instance the users request files (1, 2, 2, 3), respectively, and thus the transmitted common information is
written as X1,2,3,4.

extended a special scheme given in [7] for the case of N = K = 2 to the case N ≤ K, and showed that

the tradeoff pair
(

1
K ,

N(K−1)
K

)
is achievable, which is in fact one of the optimal tradeoff points.

In this work, we propose a new coded caching scheme when N ≤ K that caches linear combinations
of the file segments. When files are not being requested by a user, their segments in the cached linear
combinations can be considered as interferences by this user. Our scheme strategically eliminates these
interferences by utilizing a combination of rank metric codes and maximum distance separable codes;
the transmission also simultaneously serves the role of content delivery to other users. We show that the
proposed scheme provides new tradeoff points outside the known achievable tradeoff inner bound in the
literature. In fact, in certain cases, it can achieve points on the optimal tradeoff function. In contrast
to previous schemes in the literature, the proposed codes are not binary, but in larger finite fields. One
disadvantage of utilizing rank metric codes is the large field size that the codes require, however we show
that by directly considering the underlying rank constraints and utilizing generic linear codes, a smaller
field size is sufficient for such codes to exist.

In the rest of the paper, we shall first give the main theorem in Section 2, then introduce some
preliminaries in Section 3. Before presenting the new codes, we provide three examples to illustrate the
design principles in Section 4. The coding scheme, the corresponding proofs of correctness and analysis
are given in Section 5 and Section 6, respectively. We conclude the paper in Section 7, and relegate some
more technical proofs to the appendix.

2 Main Theorem

The main result of this paper is summarized below, where N used to denote the set of natural numbers.

Theorem 1. For N ∈ N files and K ∈ N users each with a cache of size M , where N ≤ K, the following
(M,R) pair is achievable(

t[(N − 1)t+K −N ]

K(K − 1)
,
N(K − t)

K

)
, t = 0, 1, . . . ,K. (1)

With t = 0 the tradeoff point degenerates to the trivial one (M,R) = (0, N), i.e., no cache; when
t = 1, it gives the same tradeoff pair as given in [17]; when t = K, we obtain another trivial point of
(M,R) = (N, 0), i.e., no delivery transmission. Together with the result in [7], which is replicated in the
next section (see Theorem 2), we have the following corollary.
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Figure 2: Illustration of the tradeoff inner bounds and the outer bounds for (N,K) = (2, 4). The new
inner bound matches the computation-based outer bound when M ∈ [0, 1/4]∪[2/3, 2]. The pair (1/2, 3/2)
can be achieved by the scheme given in [7], but it is not on the convex envelope of the known inner bound.

Corollary 1. For any N ∈ N and K ∈ N where N ≤ K, the lower convex envelope of the points in
Theorem 1 and those in Theorem 2 for 0 ≤M ≤ N is achievable.

The new tradeoff inner bound is illustrated for the case (N,K) = (2, 4) in Fig. 2. It can be seen that
the scheme strictly improves upon the inner bound given in [7]. For reference, the cut-set based outer
bound [7] is also shown, together with a computation-based outer bound established in a separate work
(see [14]) using a method developed in [15]. The new scheme gives the left three corner points on the solid
black line (labeled with diamonds). The first two are previously known, being the trivial case with no
cache, and the point given in [17], respectively. The third point is previously unknown to be achievable,
and it is explained in detail in Section 4. Here all three points given by the new code are in fact on the
optimal tradeoff function.

In the proposed scheme, for demands where not all files are requested, the scheme can be viewed
as degenerate cases of the scheme for certain enhanced demands, where all files are being requested.
Although the scheme for such demands can be viewed as degenerate, this does not imply the tradeoff
points achieved by the proposed scheme is only effective when R ≥ N − 1, for which non-trivial codes
are required only for the demands that all files are requested. An example is given for the case of
(N,K) = (4, 20) to illustrate the different tradeoff points achieved by the proposed scheme and those
achieved by the scheme given in [7]. The lower convex hull specified in Corollary 1 consists of three
regimes: the low memory regime where the proposed scheme dominates, a transition regime (red solid
line) which is achieved by space sharing between the proposed scheme and the scheme in [7], and a high
memory regime where the scheme in [7] dominates. The point (M,R) = (259/380, 13/5) in on the lower
convex hull, and it can be seen that the transmission rate is less than N − 1 = 3 here.

3 Preliminaries

In this section we review some existing results on the caching problem, and then provide some necessary
background information on maximum distance separable (MDS) codes and rank metric codes.
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Figure 3: Illustration of the achievable tradeoffs for (N,K) = (4, 20).

3.1 Known Caching Schemes and Achievable Tradeoffs

Theorem 2 (Maddah-Ali and Niesen). For N ∈ N files and K ∈ N users each with a cache of size
M ∈ {0, N/K, 2N/K, . . . , N},

R = K(1−M/N) ·min

{
1

1 +KM/N
,
N

K

}
(2)

is achievable. For general 0 ≤M ≤ N , the lower convex envelope of these (M,R) points is achievable.

The first term in the minimization is achieved by the scheme of uncoded caching together with coded
transmission [7], while the latter term is by simple uncoded caching and uncoded transmission. Though
this theorem is indeed correct, it can be slightly misleading since it may give the impression that the
simple uncoded caching and uncoded transmission scheme can be effective in certain regime when N < K.
A close examination reveals that this trivial scheme only provides one operating point of (N, 0) in the
convex hull when N ≤ K, as illustrated in Fig. 2. Thus a good caching strategy for the low memory case
is still lacking.

As mentioned early, in a recent work [17], Chen et al. extended a special scheme for the case N =

K = 2 discussed in [7] to the general case N ≤ K, and showed that the tradeoff pair
(

1
K ,

N(K−1)
K

)
is

achievable. It should be noted that the scheme given in [7] uses uncoded caching with coded transmission,
while the scheme in [17] uses coded caching and coded transmission. Both schemes use only binary coding,
in contrast to the codes we propose in this work.

3.2 Maximum Distance Separable Codes

A linear code of length n and dimension k is called an (n, k) code. The Singleton bound (see e.g., [16])
is a well known upper bound on the minimum distance for any (n, k) code, given as

dmin ≤ n− k + 1. (3)

An (n, k) code that satisfies the Singleton bound with equality is called a maximum distance separable
(MDS) code. A key property of an MDS code is that it can correct any (n − k) or fewer erasures [16].
For any (n, k) pairs where n ≥ k, MDS codes exist in any finite field Fq when q ≥ n.
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3.3 Linearized Polynomial and Rank Metric Codes

In order to handle the competing coding requirements in the caching problem, we use rank metric codes
based on linearized polynomials (see [4]), for which the following lemma is particularly relevant; see,
e.g., [5].

Lemma 1. A linearized polynomial in finite field Fqm

f(x) =
P∑
i=1

vix
qi−1

, vi ∈ Fqm (4)

can be uniquely identified from evaluations at any P points x = θi ∈ Fqm, i = 1, 2, . . . , P , that are linearly
independent over Fq.

Another relevant property of linearized polynomials is that they satisfy the following condition

f(ax+ by) = af(x) + bf(y), a, b ∈ Fq, x, y ∈ Fqm , (5)

which is the reason that they are called “linearized”. This property implies the following lemma.

Lemma 2. Let f(x) be a linearized polynomial in Fqm as given in (4), and let θi ∈ Fqm, i = 1, 2, . . . , Po,
be linearly independent over Fq. Let G be a Po × P full rank (rank P ) matrix with entries in Fq, then
f(x) can be uniquely identified from

[f(θ1), f(θ2), . . . , f(θPo)] ·G. (6)

Proof. We slightly abuse the notation by allowing the function f(x) to take vector input in FP0
qm , and

define the output as the vector obtained by concatenating the output of f(x) on each input component.
Then by the linearized property,

[f(θ1), f(θ2), . . . , f(θPo)] ·G =[f(θ1, θ2, . . . , θPo)] ·G
=f [(θ1, θ2, . . . , θPo) ·G].

Recall when each θi is viewed as a vector in Fq, the (θ1, θ2, . . . , θPo) vectors are linearly independent.
Since G has rank P , (θ1, θ2, . . . , θPo) ·G has rank P in Fq, i.e., we have P evaluations of f(x) at P linearly
independent values, and thus by Lemma 1, f(x) can be uniquely identified.

With a fixed set of θi ∈ Fqm , i = 1, 2, . . . , Po, which are linear independent, we can view (v1, v2, . . . , vP )
as information symbols to be encoded, and the evaluations [f(θ1), f(θ2), . . . , f(θPo)] as the coded symbols.
This is a (Po, P ) MDS code in terms of rank metric. More importantly, the above lemma says any full
rank (rank P ) Fq linear combinations of the coded symbols are sufficient to decode all the information
symbols. This linear-transform-invariant property had been utilized previously in other coding problems
such as network coding with errors and erasures [1], locally repairable codes with regeneration [11], and
layered regenerating codes [3].

The codes thus obtained are not systematic, but they can be converted to systematic codes by viewing
the information symbols (w1, w2, . . . , wP ) as the first P evaluations [f(θ1), f(θ2), . . . , f(θP )], which can
be used to find the coefficients of the linearized polynomial (v1, v2, . . . , vP ), and then the additional parity
symbols can be generated by evaluating this linearized polynomial at the remaining points (θP+1, . . . , θPo).
Systematic rank-metric codes are instrumental in our construction.

4 Three Examples

In this section, we provide three examples to illustrate the caching and transmission mechanism and
discuss several critical observations. These observations provide important intuitions, which are used to
design the caching and transmission strategy for the general case.
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Table 1: Caching content for (N,K) = (2, 4)
User 1 A1 +B1 A2 +B2 A3 +B3 A1 +A2 +A3 + 2(B1 +B2 +B3)

User 2 A1 +B1 A4 +B4 A5 +B5 A1 +A4 +A5 + 2(B1 +B4 +B5)

User 3 A2 +B2 A4 +B4 A6 +B6 A2 +A4 +A6 + 2(B2 +B4 +B6)

User 4 A3 +B3 A5 +B5 A6 +B6 A3 +A5 +A6 + 2(B3 +B5 +B6)

4.1 A Code for (N,K) = (2, 4): The Rank Counting Perspective

In this example, the two files are denoted as A and B, each of which is partitioned into 6 segments of
equal size, denoted as Ai and Bi, respectively, i = 1, 2, . . . , 6. The contents in the cache of each user
are given in Table 1. By the symmetry of the cached contents, we only need to consider the demand
(A,A,A,B), i.e., the first three users requesting A and user 4 requesting B, and the demand (A,A,B,B),
i.e., the first two users requesting A and the other two requesting B. Assume the file segments are in
F5, which is the field we operate. This code we present next can achieve (M,R) = (2

3 , 1) which is strictly
outside the known achievable tradeoff, as illustrated in Fig. 2.

• For the demands (A,A,A,B), the transmission is as follows,

Step 1: B1, B2, B4;

Step 2: A3 + 2A5 + 3A6, A3 + 3A5 + 4A6;

Step 3: A1 +A2 +A4.

After step 1, user 1 can recover (A1, A2); furthermore, he has (A3 + B3, A3 + 2B3) by eliminating
known symbols (A1, A2, B1, B2), from which A3 can be recovered. After step 2, he can obtain
(2A5 + 3A6, 3A5 + 4A6) to recover (A5, A6). Using the transmission in step 3, he can obtain A4

since he has (A1, A2). User 2 and user 3 can use a similar strategy to reconstruct all file segments
in A. User 4 only needs B3, B5, B6 after step 1, which he already has in his cache, however they
are contaminated by file segments from A. Nevertheless, he knows A3 +A5 +A6 by recognizing

(A3 +A5 +A6) = 2
∑

i=3,5,6

(Ai +Bi)

− [A3 +A5 +A6 + 2(B3 +B5 +B6)]. (7)

Together with the transmission in step 2, user 4 has three linearly independent combinations of
(A3, A5, A6). After recovering them, he can remove these interferences from the cached content for
(B3, B5, B6).

• For the demand (A,A,B,B), we can send

Step 1: B1, A6;

Step 2: A2 + 2A4, A3 + 2A5, B2 + 2B3, B4 + 2B5.

User 1 has A1, B1, A6 after step 1, and he can also form

B2 +B3 =[A2 +A3 + 2(B2 +B3)]

− (A2 +B2)− (A3 +B3),

and together with B2 + 2B3 in the transmission of step 2, he can recover (B2, B3), and thus
A2, A3. He still needs (A4, A5), which can be recovered straightforwardly from the transmission
(A2 + 2A4, A3 + 2A5) since he already has (A2, A3). Other users can use a similar strategy to
decode their requested files.
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This example may seem rather complicated and arbitrary at first sight, however, we can make a few
observations which should clarify the purpose of each transmission.

The placement of the file segments has certain similarity to the scheme in [7]. Each file is partitioned
into segments, and each segments are given to multiple users, however, they are stored only as linear
combinations with segments from other files. The first several (3 in this example) symbols can be viewed
as semi-systematic, as they are simple summations of the corresponding file segments, while the last
symbol is a local parity symbol. However, it is not necessary to classify the cached contents at a user
into these two categories, but we choose to present the example this way to facilitate presentation. In
the next two examples and the general construction, we present the code in a more general manner.

Step 1 is uncoded which provides certain segments to users that request it, but at the same time
helps to eliminates some interferences at other users. A segment from a file is transmitted uncoded only
when it is not present at any users1 that are requesting this file. Step 2 is coded transmission, and it also
serves the dual role of interference elimination and content delivery. In this step, we only transmit linear
combinations of segments, each of which is formed by linearly combining segments from a single file; in
fact, each such combination is formed with symbols present at a single user that is not requesting this file.
For example, for the case (A,A,A,B), the transmission A3 +2A5 +3A6 has symbols in the cache of user 4,
but user 4 is not requesting file A. The coefficients of the linear combinations in caching and transmission
need to be chosen carefully to guarantee certain full rank property; cf. again, the transmissions by user
4 for the case (A,A,A,B) in the example.

The most important observation is the following alternative view of the transmission and decoding
process. Take for instance the case with demand (A,A,A,B): user 4 receives symbols (A3 + 2A5 +
3A6, A3 + 3A5 + 4A6), together with 4 cached symbols, all of which are linear combinations of basis
(A3, A5, A6, B3, B5, B6). If these linear combinations are linearly independent, then all these symbols
can be solved. A close inspection reveals they are indeed linearly independent, and in fact the decoding
process at any given user can be understood this way. The precise linear combination coefficients are
not important, however, the linear independence (or the coding matrix being full rank) directly leads to
the resolution of all interferences. For this reason, in the next example we do not explicitly specify the
linear combination coefficients, but only the basis of the subspace and the dimension. For this purpose,
we introduce the linear subspace notation of

L[subset of files; index subset; dimension], (8)

which means a subspace of the given dimension with the basis being the segments from the given files
with the given subscript indices. For example, the subspace spanned by (A3 +2A5 +3A6, A3 +3A5 +4A6)
shall be written as L[A; {3, 5, 6}; 2], which means a dimension 2 linear subspace in the subspace with
basis (A3, A5, A6). Further notice that if the dimension is chosen to be the same as the dimension of the
subspace, it is equivalent to an uncoded transmission of this basis. We shall assume in the next example
all necessary full rank properties can be satisfied by properly choosing the coefficients, and in the general
scheme, we show that one particular choice of such coefficients based on linearized polynomials indeed
exists.

4.2 A Code for (N,K) = (3, 6): Efficient Interference Elimination

Given the observations above, we shall from here on adopt the indexing method in [7], and enumerate
the file segments by the subset of users they are present at. For example when (N,K) = (3, 6), file A has
segments A1,2,3, A1,2,4, etc., and A1,2,3 is present at users 1, 2, and 3 in some linear combinations; i.e.,
we choose to place any file segment at t = 3 nodes as a component of some linear combinations. In this
example, we reserve the letter S to enumerate some subset S ⊆ {1, 2, ..., 6} and |S| = 3, where | · | is used

1In the proposed scheme, a file segment is present in a user’s cache only as a component in some linear combinations,
however we shall simply refer to it as “present” at the user.
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Table 2: Interference pattern from file A for (N,K) = (3, 6)
User 4 A1,4,5 A2,4,5 A3,4,5 A1,4,6 A2,4,6 A3,4,6

User 5 A1,4,5 A2,4,5 A3,4,5 A1,5,6 A2,5,6 A3,5,6

User 6 A1,4,6 A2,4,6 A3,4,6 A1,5,6 A2,5,6 A3,5,6

to denote the cardinality of a set. For the case of K = 6, the k-th user caches the following the linear
combinations of files (A,B,C):

L[A,B,C; {S : k ∈ S}; 18], k = 1, 2, . . . , 6,

where the dimension 18 is chosen because the memory usage at this point is 9/10 as in Theorem 1, and
each file is partitioned into

(
6
3

)
= 20 segments, which implies that each node should cache 18 symbols.

We shall not discuss all the cases of file demands for this example because it is rather lengthy, but
will consider one case, since it brings out a very important ingredient in our transmission strategy.

Let us consider the case when the users request (A,A,A,B,B,C). The transmissions in step 1 are
uncoded transmissions similarly as in the previous case, however let us focus our attention on users 4, 5, 6
which are not requesting A, in the subsequent steps. After the transmissions in step 1, these users still
have the file segments in Table 2 as interferences, which need to be eliminated. Though we can transmit
linear combinations of the basis

A1,4,5, A2,4,5, A3,4,5, A1,4,6, A2,4,6, A3,4,6, (9)

directly to eliminate this interferences at user 4, this strategy is not very efficient. Observe the following:
the basis (A1,4,5, A2,4,5, A3,4,5), which are labeled red in the table, are present in both user 4 and user 5;
the basis (A1,4,6, A2,4,6, A3,4,6), which are labeled blue, are at both user 4 and user 6; (A1,5,6, A2,5,6, A3,5,6)
are at user 5 and user 6. We can thus alternatively transmit

L[A; {{1, 4, 5}, {2, 4, 5}, {3, 4, 5}}; 2],

L[A; {{1, 4, 6}, {2, 4, 6}, {3, 4, 6}}; 2],

L[A; {{1, 5, 6}, {2, 5, 6}, {3, 5, 6}}; 2].

Each of these subspaces provides 2 dimensional reduction of the interferences at 2 users simultaneously.
This results in a total of dimension 4 interference reduction at each user with transmission of 6 symbols,
which is difficult to accomplish without taking advantage of these subspace intersections.

4.3 A Code for (N,K) = (3, 4): Degenerate File Requests

In this example, there are three files (A,B,C), and we choose the parameter t = 2, i.e., each file is
partitioned into 6 segments and each segment is placed at two nodes. We wish to show that the tradeoff
pair (5

6 ,
3
2) is achievable by extending the code given in the previous examples, though this tradeoff point

is actually worse than known results in the literature. Note that since R ≤ 2, the types of demands where
only two files are requested cannot be satisfied by simply transmitting these files directly. As it turns
out, these cases can be considered as degenerate from the cases when all files are being requested by the
users.

The three nodes cache the contents as shown in Table. 3. Only the following three types of requests
need to be considered due to symmetry:

• For the case (A,A,B,C), the transmissions are as follows:

Step 1: A3,4, B1,2, B1,4, B2,4, C1,2, C1,3, C2,3;

Step 2: L[A; {{1, 3}, {2, 3}}; 1],L[A; {{1, 4}, {2, 4}}; 1].
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Table 3: Caching content for the example (N,K) = (3, 4)
User 1 L[A,B,C; {{1, 2}, {1, 3}, {1, 4}}; 5]

User 2 L[A,B,C; {{1, 2}, {2, 3}, {2, 4}}; 5]

User 3 L[A,B,C; {{1, 3}, {2, 3}, {3, 4}}; 5]

User 4 L[A,B,C; {{1, 4}, {2, 4}, {3, 4}}; 5]

• For the case (A,A,B,B), the transmissions are as follows:

Step 1: A3,4, B1,2, B1,4, B2,4;

Step 2: L[A; {{1, 3}, {2, 3}}; 1],L[A; {{1, 4}, {2, 4}}; 1];

Step 4: B1,3, B2,3, C1,2.

• For the case (A,A,A,C), the transmissions are as follows:

Step 1: A3,4, C1,2, C1,3, C2,3;

Step 2: L[A; {{1, 3}, {2, 3}}; 1],L[A; {{1, 4}, {2, 4}}; 1];

Step 4: A1,2, A1,4, B2,4.

It can be verified that these transmissions indeed fulfill all the demands by counting the rank reduction
for the purpose of interference elimination, as discussed in the first example. Next let us make a few more
observations in this solution.

The transmission for the first case follows the strategy we have identified in the first example, but the
other two cases require additional attention. For those two cases, the first two steps are still in line with
our previous example for (N,K) = (2, 4), but there is an additional Step 4, where uncoded transmissions
are used. In fact, the transmissions in the first two steps for the latter two cases are precisely those in
the first two steps for the first case, except that the transmissions involving files not being requested
are omitted. In the transmissions of Step 4, instead of transmitting the segments of the file not being
requested, the corresponding file segments from another file are transmitted, with a few exceptions when
those substituted segments have already been transmitted; if this occurs, the corresponding segments
from the file not being requested are in fact transmitted.

We can view the transmissions in the latter two cases as a variation from that in the first case. Let us
focus on the case (A,A,B,B): the only difference from the case (A,A,B,C) is that user 4 is requesting
file B instead of C. A closer examination of the case (A,A,B,C) reveals that all transmissions involving
file C are uncoded. Now to build the transmissions for the case (A,A,B,B) from the transmissions for the
case (A,A,B,C), we replace these uncoded transmissions with the matching transmissions of segments
of file B, however, only when there is no redundancy in such transmissions. For example, the last symbol
to be transmitted should have been B1,2 with such a straightforward substitution, but since we have
already transmitted B1,2, retransmitting it is unnecessary and wasteful; instead the file segment C1,2 is
transmitted. In this case although no user is requesting file C, the last transmission does not cause any
essential loss. In summary, a case when only a subset of files are requested can be viewed as degenerate,
for which the transmission strategy can be deduced from some other case when all files are requested.

5 The General Coding Scheme

Before presenting the general coding scheme, we first clarify the notation that will be used in the sequel.
The set of integers {1, 2, . . . , n} is written as In, and the cardinality of a set A is written as |A|. Denote
the N files as W1,W2, . . . ,WN . Fix an integer parameter t ∈ {1, 2, . . . ,K} in the proposed scheme, then

9



each file in our scheme is partitioned into
(
K
t

)
segments of equal size. Each segment Wn,S , where n ∈ IN

and S ⊆ IK with |S| = t, is assumed to be a symbol in Fqm for some q and m sufficiently large. The
parameters of q and m will be specified later. We reserve the calligraphic letter S for the purpose of
enumerating some of the subsets of IK of cardinality t, without explicitly writing these conditions for
notational simplicity.

To present the general scheme, a few additional coding components are required. We first need a set
of generic systematic linear MDS codes whose generator matrix has entries in Fq with parameters (nc, kc),
for all nc ≥ kc ≥ 1 and nc ≤ q; such codes can be found for any sufficiently large q, for example, using
Cauchy matrix. We also allow the information symbols and coded symbols to be in Fqm , by taking the
natural Fqm finite field operation; this essentially boils down to writing the symbols as vectors length-m
in Fq. Furthermore, fix the parameter

P =

(
K − 1

t− 1

)
N, (10)

in the linearized polynomial and also fix

Po = 2

(
K − 1

t− 1

)
N −

(
K − 2

t− 1

)
(N − 1) (11)

values θi ∈ Fqm , i = 1, 2, . . . , Po, which are linearly independent in Fq. This polynomial can be used to
construct a (Po, P ) systematic rank metric code as discussed in Section 3.3; we shall refer to this code as
C(Po, P ). We are now ready to present the general caching strategy.

5.1 Caching Strategy

The caching strategy of the proposed can be described as follows. For user k, collect the file segment
symbols:

{Wn,S , for all n ∈ IN , and all S such that k ∈ S}

and encode it using the systematic rank metric code C(Po, P ); the parity symbols are then placed in the
cache of user k.

5.2 Transmission Strategy When All Files Are Requested

Fix a parameter t ∈ {1, 2, . . . ,K − 1}, let us first consider the case when all the files are being requested;
the cases t = 0 or t = K are omitted for which the scheme is trivial. For a given set of file requests from
all the users, we define

I [n] , {k ∈ IK : user k requests file Wn},
n = 1, 2, . . . , N, (12)

and mn = |I [n]| ≥ 1, n = 1, 2, . . . , N . Furthermore, define the complementary set Ī [n] , IK \ I [n].
For each file Wn, we classify its segments Wn,S by its intersection with Ī [n], and address them differ-

ently. More precisely, there are three steps of transmissions:

• Step 1: All the file segments in the set {Wn,S : S ⊆ Ī [n]} are transmitted uncoded directly;

• Step 2: For each subset A ⊆ Ī [n], where |A| = max(1, t−mn), . . . ,min(t− 1,K −mn), we encode
the set of file segments

Wn,A , {Wn,S : S ∩ Ī [n] = A} (13)
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using a(
2

(
mn

t− |A|

)
−
(

mn − 1

t− |A| − 1

)
,

(
mn

t− |A|

))
=

((
mn

t− |A|

)
+

(
mn − 1

t− |A|

)
,

(
mn

t− |A|

))
(14)

systematic MDS code (whose coding coefficients are in Fq), and then transmit all the parity symbols;
here we take the convention of

(
n
k

)
= 1 when k = 0.

• Step 3: Encode all the file segments in the set Wn,∅ , {Wn,S : S ⊆ I [n]} using a(
2

(
mn

t

)
−
(
mn − 1

t− 1

)
,

(
mn

t

))
=

((
mn

t

)
+

(
mn − 1

t

)
,

(
mn

t

))
(15)

systematic MDS code (whose coding coefficients are in Fq), and then transmit all the parity symbols.

In fact we can even merge all the three steps by taking certain convention on degenerate MDS codes,
however we keep them separate to facilitate understanding and analysis in the next section. For the
required MDS codes to exist, a trivially sufficient finite field size is q ≥ 2

(
K−N+1

max(b(K−N+1)/2c,t)
)
. For the

required rank metric codes to exist, we can choose any m ≥ Po.
It is clear that each file segment Wn,S either belongs to a singleton set {Wn,S} when S ⊆ Ī [n], or

one of the sets Wn,A for some A ⊆ Ī [n]; in other words, for each n, the transmission strategy provides a
partition of all the subset S for S ⊆ IK and |S| = t (and also induces a partition of all the file segments
Wn,S). For each n, we denote the mapping from a subset S to the corresponding subset that specifics
the partition it belongs to as AI[n](S), i.e., Wn,S ∈ Wn,A

I[n] (S).

5.3 Transmission Strategy When Only Some Files Are Requested

Again fix a parameter t ∈ {1, 2, . . . ,K − 1}, and consider the case when N∗ < N files are requested.
Without loss of generality, let us assume that the first N∗ files are being requested, and I [n], mn and Ī [n]

are defined similarly as in the last subsection, but only for n = 1, 2, . . . , N∗. To describe the transmission
strategy, we first find another set of “enhanced demands”, parametrized by İ [1], İ [2], . . . , İ [N ], where all
files are being requested; i.e., |İ [n]| ≥ 1 for n = 1, 2, . . . , N . Additionally, these enhanced demands must
satisfy the following properties:

• |İ [n]| = 1 for n = N∗ + 1, . . . , N ;

• For any k ∈ {1, 2, . . . ,K}, if k ∈ I [n], then either k ∈ İ [n], or k ∈ İ [n′], for some n′ ∈ {N∗+1, . . . , N};
for the latter case, denote the mapping from n′ to n as f(n′) = n, and denote the mapping from n′

to k as u(n′).

We also write |İ [n]| = ṁn for simplicity. The enhancement replaces some users’ requests with requests
for files that originally are not being requested, and each of these files is now being requested by only
one user in the enhanced version. Note that this enhancement can always be found under the condition
N ≤ K.

A set of counters need to be initialized before presenting the transmission strategy, which is given as

τn,A ,

(
ṁn − 1

t− |A| − 1

)
, n = 1, 2, . . . , N∗ and A ⊆ ¯̇I [n]. (16)

Note that the set A can be ∅, and in fact in the proposed scheme we only need to consider the sets A
where |A| ≤ t− 1, though the definition is still valid for other cases, by taking the convention

(
n
k

)
= 0 if

k < 0.
The transmission strategy is as follows:
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• For each file Wn, n = 1, 2, . . . , N∗, transmit as described Step 1-3 for the enhanced demands;

• Step 4: for each n, n = N∗ + 1, . . . , N , perform the following operations. For each S, where
u(n) /∈ S, reduce the counter τf(n),A

İ[f(n)] (S) by 1, and then transmit{
Wf(n),S , if τf(n),A

İ[f(n)] (S) ≥ 0

Wn,S , otherwise
. (17)

5.4 Revisiting the (N,K) = (2, 4) Example

Let us revisit the example code for the (2, 4) case within the context of the general caching scheme. The
two indexing methods now have the following mapping

A1 →W1,{1,2}, A2 →W1,{1,3}, A3 →W1,{1,4},

A4 →W1,{2,3}, A5 →W1,{2,4}, A6 →W1,{3,4},

and similarly for file segments of file B.
The scheme presented earlier is for t = 2. Though we did not utilize rank metric codes for this

example, we can still derive the parameters P0 = 10 and P = 6, and thus P0 − P = 4 symbols are
generated and cached at each user.

Now consider requests (A,A,A,B), for which m1 = 3 and m2 = 1. It is clear that the uncoded trans-
mission in the general scheme matches exactly what we have presented. Next consider the transmission
in step 2 for W1 = A, A = {4} for which we have

W1,{4} = {W1,{1,4},W1,{2,4},W1,{3,4}} = {A3, A5, A6}, (18)

and the parities of a (2
(

3
1

)
−
(

2
0

)
,
(

3
1

)
) = (5, 3) MDS code are transmitted, which is exactly as that given

previously, i.e., the symbols (A3 + 2A5 + 3A6, A3 + 3A5 + 4A6). In step 3, we have the following segments

W1,∅ = {W1,{1,2},W1,{1,3},W1,{2,3}} = {A1, A2, A4}, (19)

and the parity symbol of a (2
(

3
2

)
−
(

2
1

)
,
(

3
2

)
) = (4, 3) MDS code is transmitted, which is exactly as that

given previously, i.e., the symbol A1 + A2 + A4. For file W2 = B, we can only take |A| = 1 in step 2
since max(1, t−m2) = min(t− 1, 4− 1) = 1, however in this case, a (2

(
1
1

)
−
(

0
0

)
,
(

1
1

)
) = (1, 1) MDS code

does not have any parity symbols, and thus no transmission of file B is required in step 2; there is also
no transmission of file B in step 3.

We can similarly walk through the example for (N,K) = (3, 4) using the general transmission strategy;
this simple exercise is left to interested readers.

6 Proof of the Main Theorem

We establish the correctness and the performance of the caching scheme in three propositions, and
Theorem 1 follows directly from them. Two related issues are then discussed, regarding the format of the
cached linear combinations and the required field size of the code. Recall that we use S to enumerate file
subsets S ⊆ IK and |S| = t.

6.1 Correctness

Proposition 1. For any t ∈ {1, 2, . . . ,K− 1}, the afore-given caching strategy can be used to satisfy any
demands that request all files with the afore-given transmission strategy.
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Proof. To show that any demands that request all N files can be satisfied, we need consider any single
user. Without loss of generality, we can consider the first user and assume it requests file W1. Let us
count the number of linear combinations he receives which consist of interference symbols in his cache in
the first two transmission steps.

In step 1, user 1 can collect all uncoded symbols for file Wn, n = 2, 3, . . . , N, in the form of

{Wn,S : 1 ∈ S ⊆ Ī [n]}, (20)

and there are a total of

T̃ (1) =

N∑
n=2

(
K −mn − 1

t− 1

)
(21)

such symbols, where we have taken the convention
(
n
k

)
= 0 when n < k.

In step 2, user 1 collects linear combinations ofWn, n = 2, 3, . . . , N , however only those in the following
form. For each such n, and each subset A ⊆ Ī [n] such that max(1, t −mn) ≤ |A| ≤ min(t − 1,K −mn)
and moreover 1 ∈ A, user 1 collects the parity symbols of encodingWn,A using the systematic MDS code.
Thus user 1 collects a total of

T̃ (2) =
N∑

n=2

min(t−1,K−mn)∑
j=max(1,t−mn)

(
K −mn − 1

j − 1

)(
mn − 1

t− j

)
(22)

such symbols.
User 1 now has collected T̃ (1) + T̃ (2) useful symbols, and has in his cache Po−P symbols of the same

basis. Observe for the summands in T̃ (1) and T̃ (2), we have

min(t−1,K−mn)∑
j=max(1,t−mn)

(
K −mn − 1

j − 1

)(
mn − 1

t− j

)
+

(
K −mn − 1

t− 1

)
=

(
K − 2

t− 1

)
, (23)

because the left hand side is simply all the possible ways of choosing t− 1 balls in a total of K − 2 balls,
however counted when these balls are partitioned into two groups of size K − 2− (mn − 1) and mn − 1,
respectively. It follows

T̃ (1) + T̃ (2) + Po − P = P. (24)

These P linear combinations, which can be represented as the product of the length-Po output (both
systematic and parity symbols) of the rank metric code C(Po, P ) and a matrix G of size Po × P . Recall
the systematic rank metric code we used to encode the P file segments in user 1’s cache, and by Lemma
2, as long as the matrix G is full rank, all the P segments can be recovered. This fact is proved in the
appendix, but an outline of the proof is given here. We recognize that if the columns and rows of the
matrix G are rearranged to

• Group the file segments W1,S in user 1’s cache together;

• For each n = 2, 3, . . . , N , group the segments of {Wn,S : 1 ∈ S ⊆ Ī [n]} together;

• For each n = 2, 3, . . . , N , and for each subset A ⊆ Ī [n] such that max(1, t −mn) ≤ |A| ≤ min(t −
1,K −mn) and moreover 1 ∈ A, group the segments of Wn,A together,

then the resulting matrix is block diagonal, and each block is either of size 1× 1 with entry 1 or full rank
because they are columns of generator matrices of MDS codes. Thus the matrix G is indeed full rank.
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Thus user 1 can eliminate the interferences in its cached contents, and recover all the file segments
of W1,S that are already present in its cache. It remains to show that all the file segments W1,S that are
not present in his cache can also be recovered.

First, observe that in step 1, user 1 can collect all uncoded W1 file segments that are not in the cache
of any users k ∈ I [1], i.e., {W1,S : 1 /∈ S ⊆ Ī [1]}. As mentioned earlier, in step 2 after eliminating the
interference, user 1 can recover all W1,S for S such that 1 ∈ S. Furthermore, for each subset A ⊆ Ī [1] such
that max(1, t−m1) ≤ |A| ≤ min(t− 1,K −m1), user 1 can collect the parity symbols of encoding W1,A

using the
(

2
(

m1

t−|A|
)
−
(

m1−1
t−|A|−1

)
,
(

m1

t−|A|
))

systematic MDS code. Since user 1 has in its cache
(

m1−1
t−|A|−1

)
of

the total
(

m1

t−|A|
)

symbols of W1,A, together with the collected parity symbols, he can recover all
(

m1

t−|A|
)

symbols in this set. Thus after step 2, user 1 can also recover all file segments W1,S where S has elements
in both I [1] and Ī [1]. The only missing segments are some in the set {W1,S : 1 /∈ S ⊆ I [1]}. However,

step 3 transmits the parities of a
(

2
(
m1

t

)
−
(
m1−1
t−1

)
,
(
m1

t

))
MDS code that encodes all {W1,S : S ⊆ I [1]},

and since user 1 already has
(
m1−1
t−1

)
elements, he can thus also recover the rest of the symbols in this

set. At this point, we can conclude that user 1 can recover all file segments of W1, which completes the
proof.

Proposition 2. For any t ∈ {1, 2, . . . ,K− 1}, the afore-given caching strategy can be used to satisfy any
demands that request a strict subset of all the files with the afore-given transmission strategy.

The proof of this proposition can be intuitively explained as follows. When we replace a file demand
Wi in the enhanced demands with a demand Wj , the effect of the not transmitting the file segments
involving Wi in the first three steps needs to compensated. In order to do so, let us examine the roles
that these Wi transmissions play: firstly, they are used to eliminate the interferences by Wi at certain
other users, and secondly, they are used to provide the missing segments to the single user that was
requesting Wi in the enhanced demands. Our strategy is to transmit the corresponding segments from
Wj instead of sending the segments from Wi. With such substituted transmissions, the first role can
be fulfilled as long as it is not a redundant transmission, and we rely on the counter τn,A to avoid any
such redundancy. The second role can clearly also be fulfilled by any such non redundant transmissions.
When a transmission of the file segment from Wj is indeed redundant, we can safely conclude that the
second role has already been fulfilled by previous transmissions, and thus transmitting this segment of
Wi is now sufficient to serve the first role alone. The proof below makes this intuition more rigorous.

Proof. Without loss of generality, we only need to consider the first user and assume his request is for file
W1. Two cases need to be examined: the first case is when in the enhanced demands, the first user was
also requesting file W1; the second case is when in the enhanced demands, the first user was requesting
n∗, i.e., f(n∗) = 1 and u(n∗) = 1, for some n∗ ∈ {N∗ + 1, . . . , N}.

Let us consider the proof for the first case, which is similar to the proof for the Proposition 1. In step
1, user 1 collects all uncoded symbols for file Wn, n = 2, 3, . . . , N∗, in the form of

{Wn,S : 1 ∈ S ⊆ ¯̇I [n]}, (25)

and there are a total of

˜̇T (1) =
N∗∑
n=2

(
K − ṁn − 1

t− 1

)
(26)

such symbols.
In step 2, user 1 collects linear combinations of Wn, n = 2, 3, . . . , N∗, however only those in the

following form. For each such n, and each subset A ⊆ ¯̇I [n] such that max(1, t − ṁn) ≤ |A| ≤ min(t −
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1,K−ṁn) and moreover 1 ∈ A, user 1 collects the parity symbols of encodingWn,A using the systematic
MDS code. Thus user 1 collects a total of

˜̇T (2) =

N∗∑
n=2

min(t−1,K−ṁn)∑
j=max(1,t−ṁn)

(
K − ṁn − 1

j − 1

)(
ṁn − 1

t− j

)
(27)

such symbols.

In step 4, user 1 collects for each n = N∗ + 1, . . . , N , for any A ⊆ ¯̇I [n] where |A| = t− 1 and 1 ∈ A,
either Wn,A∪{u(n)} or Wf(n),A∪{u(n)}, whichever was transmitted in step 4. Note that in this case u(n) 6= 1
for any n = N∗ + 1, . . . , N , which implies that |A ∪ {u(n)}| = t. Thus user 1 collects another total of

˜̇T (4) = (N −N∗)
(
K − 2

t− 2

)
(28)

uncoded symbols.

User 1 now has collected ˜̇T (1) + ˜̇T (2) + ˜̇T (4) useful symbols, and has in his cache Po − P symbols of
the same basis. It is seen that

T̃ (1) + T̃ (2) + T̃ (4) + Po − P = P. (29)

These P linear combinations, which can again be represented as the product of the length-Po output
(both systematic and parity symbols) of the rank metric code C(Po, P ) and a matrix G∗ of size Po × P .
As long as the matrix G∗ is full rank, user 1 can recover all the file segments W1,S where 1 ∈ S, and the
rest of file segments from W1 can be recovered as in the case of Proposition 1. The fact of the matrix
G∗ being full rank is obvious for the similar reason that the G matrix is full rank under the enhanced
demands; in fact, since the transmissions in step 4 are all uncoded, the full-rank property directly follows
from the full-rank property of the corresponding matrix with the enhanced demands.

Now let us now consider the second case, where user 1 is demanding W1, but in the enhanced demands,
he was requesting file n∗ for some n∗ ∈ {N∗ + 1, . . . , N}. By a similar argument as above, user 1 can
recover all segments W1,S present in his cache, i.e., for W1,S where 1 ∈ S, by eliminating the interferences.
More precisely, in step 1, user 1 collects all uncoded symbols for file Wn, 1, 2, . . . , N∗, in the form of

{Wn,S : 1 ∈ S ⊆ ¯̇I [n]}, (30)

and there are a total of

˜̇T (1′) =
N∗∑
n=1

(
K − ṁn − 1

t− 1

)
(31)

such symbols. In step 2, user 1 collects linear combinations of Wn, n = 1, 2, . . . , N∗, however only those

in the following form. For each such n, and each subset A ⊆ ¯̇I [n] such that max(1, t − ṁn) ≤ |A| ≤
min(t − 1,K − ṁn) and moreover 1 ∈ A, user 1 collects the parity symbols of encoding Wn,A using the
systematic MDS code. Thus user 1 collects a total of

˜̇T (2′) =
N∗∑
n=1

min(t−1,K−ṁn)∑
j=max(1,t−ṁn)

(
K − ṁn − 1

j − 1

)(
ṁn − 1

t− j

)
(32)

such symbols. In step 4, user 1 collects for each n = N∗ + 1, . . . , n∗ − 1, n∗ + 1, . . . , N , for any A ⊆ ¯̇I [n]

where |A| = t− 1 and 1 ∈ A, either Wn,A∪{u(n)} or Wf(n),A∪{u(n)}, whichever was transmitted in step 4.
Thus user 1 collects another total of

˜̇T (4′) = (N −N∗ − 1)

(
K − 2

t− 2

)
(33)
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uncoded symbols. User 1 now has collected ˜̇T (1) + ˜̇T (2) + ˜̇T (4) useful symbols, and has in his cache Po−P
symbols of the same basis. It is seen that

T̃ (1′) + T̃ (2′) + T̃ (4′) + Po − P = P. (34)

It only remains to show that for the second case, the transmissions in Step 4 suffice to provide any
missing segments of W1 in user 1’s cache, possibly jointly with transmissions from W1 in the first three
steps. This is rather straightforward, since all file segments W1,S ’s with 1 6∈ S are transmitted uncoded in
Step 4, unless τ1,A

İ[1]
(S) < 0; when the latter scenario occurs, a total of

(
ṁ1−1

t−|A
İ[1]

(S)|−1

)
uncoded symbols

have already been transmitted in the set W1,A
İ[1]

(S), and together with the
(

ṁn−1
t−|A

İ[1]
(S)|
)

parity symbols

encoding the set W1,A
İ[1]

(S) which were transmitted in the first three steps, user 1 can indeed recover all(
ṁn

t−|A
İ[1]

(S)|
)

symbols in W1,A
İ[1]

(S). Thus user 1 is able to recover all segments of W1, and the proof is

complete.

6.2 Performance

Proposition 3. For any t ∈ {1, 2, . . . , k− 1}, the afore-given caching strategy and transmission strategy
achieve the memory-transmission pair

(M,R) =

(
t[(N − 1)t+K −N ]

K(K − 1)
,
N(K − t)

K

)
. (35)

Proof. Recall each file of unit size is partition into
(
K
t

)
segment symbols, and each user caches Po − P

symbols, and thus the memory usage is straightforwardly to calculate. It remains to calculate the total
number of transmitted symbols.

We only need to consider the first three steps of transmission when all files are being requested, since
for the other cases where only a subset of files are requested, each transmission in step 4 corresponds to
exactly one transmission in step 3 for the enhanced demands, and thus the rate remains the same as for
the case of the enhanced demands.

Clearly, in step 1, the total number of transmitted uncoded symbols of file Wn is

T (1)
n =

(
K −mn

t

)
. (36)

In step 2, the total number of transmitted linear combinations of file Wn is given as

T (2)
n =

min(t−1,K−mn)∑
j=max(1,t−mn)

(
K −mn

j

)(
mn − 1

t− j

)
.

In step 3, the total number of transmitted linear combinations of file Wn is given as

T (3)
n =

(
mn − 1

t

)
.

Note that

T (1)
n + T (2)

n + T (3)
n =

(
K − 1

t

)
,

because it is all the ways of choosing t balls in a total of K−1 balls. Thus the total transmissions amount
to N

(
K−1
t

)
symbols. The proof can now be completed with a simple normalization by the number of

segments in each file.
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6.3 The Semi-Systematic Variant of the Caching Strategy

The general caching strategy we provide does not enforce any special structure on the linear combinations,
unlike the code given in the (2, 4) example. However, even for general parameters (N,K) and the same
range of parameter t, we can indeed choose to use the semi-systematic format. More precisely, the first(
K−1
t−1

)
semi-systematic symbols in the cache of user k are

N∑
n=1

Wn,S , k ∈ S, (37)

where the addition is in finite field Fqm . Moreover, we use the same parameter P , but choose

P ′o =

(
K − 1

t− 1

)
(2N − 1)−

(
K − 2

t− 1

)
(N − 1), (38)

and construct a (P ′o, P ) systematic rank metric code, which is denoted as C(P ′o, P ). The local parity
symbols stored in user k’s cache are the parity symbols when encoding the set of file segment symbols
{Wn,S : n = 1, 2, . . . , N, k ∈ S} using C(P ′o, P ). The transmission strategy remains the same.

In order to prove the correctness of this caching variant, we only need to show that the corresponding
matrix G′, similarly as in the proof of Proposition 1, is also full rank. This is again rather immediate.
Since the only difference is the columns corresponding to the semi-systematic symbols in the cache.
However, it is easily seen that although the matrix G′ is no longer block diagonal after the rearrangement
of columns and rows, the new columns has non-zero entries on rows corresponding to W1,S (in fact it has
an identity matrix if we restrict it to these columns and rows with proper row and column indexing),
while no other columns in G′ have non-zero entries on these rows. Thus indeed this variant of caching
strategy is also valid; a more precise proof is given in the appendix.

We choose to present the general construction in the last section instead of this variant directly
in order to emphasize the fact that the semi-systematic format is not fundamentally important in our
construction. Note that in the semi-systematic variant, the bound on the parameter m can be made
smaller, since the parameters of the rank metric code are reduced: choosing m ≥ P ′o suffices here.

6.4 Reducing the Field Size with Generic Linear Codes

In the proposed code construction, we rely on rank metric codes to guarantee certain full rank properties,
and the overall code design problem essentially reduces to a rank counting problem on the proper basis.
However, one obvious disadvantage of using rank metric codes in the construction is that the size of the
field Fqm needs to be quite large. We can in fact replace the rank metric code with a generic systematic
linear code, and directly require the full rank properties to hold. In this section, we provide such a simple
argument and show that a reduced field size is sufficient.

Let us consider the cache encoding for the k-th user. A total of P symbols are present at this user,
and a total of Po − P parity symbols are generated during the encoding. In this subsection, we shall
assume that the entries of this P × (Po − P ) encoding matrix are from Fq, i.e., the same finite field as
the set of MDS codes. Denote this matrix as Gk, and its entry on the i-th row and j-th column as gk,i,j ,
which are to be determined; note that this code is not necessarily a rank-metric code any longer.

Consider a specific set of demands (d1, d2, . . . , dK), (i.e., the k-th user demands file dk), where all
files are requested. In the delivery phase, the symbols user-k collects during Step 1 and Step 2 are linear
combinations of all the symbols present at this user. This can be represented also by a P × (T̃ (1) +
T̃ (2)) encoding matrix G′k,(d1,d2,...,dK). The full rank condition in the proof of Proposition 1 essentially

requires that the P × P matrix [Gk, G
′
k,(d1,d2,...,dK)] being full rank. The determinant of the matrix

[Gk, G
′
k,(d1,d2,...,dK)] can be expressed as a function of the coefficients gk,i,j ’s, i.e.

det(Gn, G
′
n,(d1,d2,...,dK)) = fn,(d1,d2,...,dK)({gn,i,j}).
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By the proof of Proposition 3, the full rank condition for demands where only a subset of the files are
requested is implied by the full rank condition for the enhanced demands. Thus as long as the following
polynomial has a non-zero solution, then the choice of coefficients {gk,i,j} is valid

K∏
k=1

∏
(d1,d2,...,dK):

all files requested

fk,(d1,d2,...,dK)({gk,i,j}). (39)

We can now invoke the following lemma.

Lemma 3. [2] (Combinatorial Nullstellansatz) Let F be a field, and let f = f(x1, · · · , xn) be a polynomial
in F[x1, · · · , xn]. Suppose the degree deg(f) of f is expressible in the form

∑n
i=1 ti, where each ti is a

non-negative integer and suppose that the coefficient of the monomial term
∏n

i=1 x
ti
i is nonzero. Then

if S1, . . . , Sn are subsets of F with sizes |Si| satisfying |Si| > ti, then there exist elements s1 ∈ S1, s2 ∈
S2 . . . , sn ∈ Sn such that f(s1, s2, · · · , sn) 6= 0.

In this lemma above, the condition that the coefficient of the monomial term
∏n

i=1 x
ti
i is nonzero is

equivalent to requiring f = f(x1, · · · , xn) to be not identically zero. We note that fn,(d1,d2,...,dK)({gn,i,j})
is indeed not identically zero, because the code construction previously given provides a non-zero assign-
ment.

Since the degree of any indeterminate in each of fk,(d1,d2,...,dK)({gn,i,j}) is 1, the maximum among
the degrees of a single indeterminate of the polynomial (39) is upper bounded by the total number of
demands where all files are requested, which is given by S(K,N)N !. Here

S(K,N) =
1

N !

N∑
j=1

(−1)N−j
(
N

j

)
jK , (40)

is the Sterling number of the second kind [12], which counts the number of ways to partition a set of K
objects into N non-empty subsets. Hence by Lemma 3, it is possible to find a suitable assignment for
{gn,i,j}, if the entries are picked from a finite field Fq with q > S(K,N)N !. Alternatively, we can simply
count the total number of demands, instead those where all files are requested, and this leads to a looser
bound NK on the field size.

We suspect that this bound can be further reduced through a more careful analysis of the matrix
structure, though so far our effort toward this goal does not bear much fruit. Moreover, by allowing a
larger number of cached symbols per user, codes in even smaller finite fields may be possible.

7 Conclusion

We proposed a new coding scheme for the caching problem when N ≤ K, based on a combination of
rank metric codes and MDS codes. The performance of the scheme has a particularly simple form, and it
provides new tradeoff points beyond known what are known in the literature. Compared to known coded
caching schemes, the proposed scheme uses coding for both caching and delivery, as well as larger finite
field instead of finite field of cardinality 2.

An immediate variation of the proposed scheme is its decentralized counterpart, motivated by the
investigation of the decentralized caching scheme [8], which is a variation of the centralized caching
scheme in [7]. We suspect that our scheme can also be extended to decentralized scenarios where certain
random linear combinations of the file segments are cached, however it remains to be seen whether the
performance such attained is still competitive.

18



Appendix: Full Rank of Matrix G and G′

The key to the proof is to express the matrix G of size Po × P in a more structured manner. For this
purpose, let us again consider the cache and decoding process at user 1. First rearrange the systematic
and parity symbols of the code C(Po, P ), such that the Po − P cached symbol are indexed in the set
IPo−P ; similarly we arrange the columns the G such that its first Po − P columns correspond to these
cached symbols. The next rows and columns correspond to the symbols that user 1 collected during the
step 1 transmission

{Wn,S : 1 ∈ S ⊆ Ī [n]}, n = 2, 3, . . . , N,

and there are a total of
∑N

n=2 T̃
(1)
n such symbols.

The next rows and columns correspond to a fixed n ∈ {2, 3, . . . , N} and a fixed subset A ⊆ Ī [n] where
max(1, t − mn) ≤ |A| ≤ min(t − 1,K − mn) and moreover 1 ∈ A. Denote the parity check portion

of generator matrix of the
(

2
(

mn

t−|A|
)
−
(

mn−1
t−|A|−1

)
,
(

mn

t−|A|
))

systematic MDS as Qn,A, which has dimension(
mn

t−|A|
)
×
[(

mn

t−|A|
)
−
(

mn−1
t−|A|−1

)]
, and it is full rank since it is part of a generator matrix of an MDS code

and it has less columns than rows.
Now the matrix G can be written in the following form

G =


I

Q2,A2,1

Q2,A2,2

...
QN,AN,LN

 (41)

where the identity matrix at the top-left has dimension (Po−P +
∑N

n=2 T̃
(1)
n )× (Po−P +

∑N
n=2 T̃

(1)
n ), and

we have enumerated the aforementioned matrix A’s for each n by using the subscript as An,`, and LN is
the total number of such subsets A when n = N . It is now clear that the matrix G is block diagonal and
each block is full rank, and thus G indeed has full rank.

For the semi-systematic variant of the caching scheme, the matrix G′ is slightly different. First index
the symbols

{W1,S : 1 ∈ S} (42)

using the set I(K−1
t−1 ), and rearrange the columns and rows of G′ such that they correspond to the top(

K−1
t−1

)
×
(
K−1
t−1

)
submatrix using the same order. Next rearrange the systematic and parity symbols of the

code C(P ′o, P ), such that the P ′o − P cached symbol correspond to the next P ′o − P columns and rows.
The rest of the G′ matrix is arranged exactly as for the case G. It is now clear that the matrix G′ has
the following form

G′ =



Ia
Ib

F2,A2,1 Q2,A2,1

F2,A2,2 Q2,A2,2

...
FN,AN,LN

QN,AN,LN

 (43)

where the identity matrix Ia is of dimension
(
K−1
t−1

)
×
(
K−1
t−1

)
, and the identity matrix Ib is of dimension

(P ′o − P +
∑N

n=2 T̃
(1)
n ) × (P ′o − P +

∑N
n=2 T̃

(1)
n ), and the Fn,An,`

matrices have some nonzero entries but
their exact forms are not important here; the other off block-diagonal entries are all zeros. It is now clear
that the matrix G′ also has full rank.
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