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Abstract—The “writing dirty paper” capacity result crucially
dependents on the perfect channel knowledge at the transmitter
as the presence of even a small uncertainty in the channel
realization gravely hampers the ability of the transmitter to
pre-code its transmission against the channel state. This is
particularly disappointing as it implies that interferenc e pre-
coding in practical systems is effective only when the channel
estimates at the users have very high precision, a conditionwhich
is generally unattainable in wireless environments. In this paper
we show that substantial improvements are possible when the
state sequence is drawn from a discrete distribution, such as
a constrained input constellation, for which state decoding can
be approximatively optimal. We consider the “writing on dir ty
paper” channel in which the state sequence is multiplied by
a fast fading process and derive conditions on the fading and
state distributions for which state decoding closely approaches
capacity. These conditions intuitively relate to the ability of
the receiver to correctly identify both the input and the state
realization despite of the uncertainty introduced by fading.

Index Terms—Gel’fand-Pinsker Problem; Carbon Copying
onto Dirty Paper; Costa Pre-Coding;

INTRODUCTION

Although interference pre-cancellation is well understood
in information theoretical settings, practical implementations
of this coding strategy have yet to find widespread adoption
in practical communication systems. Currently, interference
pre-coding can be found only in a few communication stan-
dards, usually in its incarnation as Tomlinson-Harashima pre-
coding [1], [2].The performance of this implementation is
rather low, as compared to the very elegant solution using
LDPC codes and or trellis-coded quantization [3]. One is then
bound to wonder as of why high-performing interference pre-
cancellation strategies have yet to have a significant impact
on communication systems. The the answer to this question
possibly lays in the intrinsic fragility of this coding technique
which relies on the specific way in which the desired signal
combines with the interference and is thus heavily affectedby
channel uncertainty. Many communication systems, instead,
utilize interference decoding, which is intuitively a morero-
bust interference management strategy when lacking adequate
channel knowledge. This technique also takes full advantage
of the inherent structure of the interference signal, whichis
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often drawn from a finite-rate codebook, as investigated in
[4], and/or transmitted using a fixed constellation. In this
correspondence we focus on the latter case and derive the
conditions under which interference decoding is provably close
to optimal in the presence of fading and partial channel
knowledge.
Literature Review: The Gel’fand-Pinsker (GP) channel [5] is
a very comprehensive model which, generally speaking, can
accommodate for variations of the “Writing on Dirty Paper”
(WDP) channel to include channel uncertainty and partial side-
information. Unfortunately the capacity of the GP channel
is expressed as non-convex maximization and a closed-form
expression of capacity is available only for a handful of mod-
els. For this reason, determining the capacity of variations of
Costa’s original setup is a challenging task. In [6], the authors
study the WDP in which the input and the state sequences are
multiplied by the same fading coefficient. Here in is shown
that the rate loss from full state pre-cancellation is vanishing,
since state and input still combine in a predictable manner.In
[7], we derived the approximate capacity for the WDP channel
in which the state is multiplied by uniform binomial fading
by further develop bounding techniques originally developed
in [8]. The results in [7] are further extended in [9] to include
more general fading distribution, although restricted to the case
of discrete support.
Contributions: We investigate the capacity of the “Writing of
Fast Fading Dirt” (WFFD) channel, a variation of the WDP
channel in which the state sequence is multiplied by a fast
fading process. The state realization is assumed to be drawn
from a discrete set of values and thus the receiver can attempt
to decode both the state and the input realization. For both
models we derive conditions on the support of the fading and
state distribution for which state decoding is approximatively
optimal. The main contribution is the development of an outer
bound which provides sufficient conditions under which state
decoding is close to optimal. We consider both the case of
No Channel Side Information (NCSI) in which fading is not
know at either the transmitter or the receiver and the case of
Receiver Channel Side Information (RCSI) in which fading is
known an the receiver only.
Organization: The remainder of the paper is organized as
follows: Sec. I introduces the channel model while Sec. II
presents relevant results available in the literature. Sec. III
considers the case of no fading knowledge at either the
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Fig. 1: “Writing on Fast Fading Dirt with No Channel Side-
Information” (WFFD-NCSI) and the “Writing on Fast Fading
Dirt with Receiver Channel Side-Information” (WFFD-RCSI).

transmitter or the receiver while Sec. IV focuses on the
case in which only the receiver has knowledge of the fading
realization. Finally, Sec. V concludes the paper.
Only sketches of the proofs are provided in the main text:

the full proofs can be found in appendix.

I. CHANNEL MODEL

The “Writing on Writing on Fast Fading Dirt” (WFFD)
channel is defined as the channel in which the output is
obtained as

Y N = XN + cANSN + ZN , (1)

where the Random Variables (RV)SN , AN and ZN are
obtained through iid draws from the distributionPS , PA and
N (0, 1) and supportS,A andR respectively. The sequence
SN is provided non-causally to the transmitter and the channel
inputXN is subject to the constraint

∑N
i E[X2

i ] ≤ NP . With-
out loss of generality we assume thatVar[A] = Var[S] = 1
andµS = 0 so that the variance of the fading-times-state term
cAiSi is c2µ2

A.
We further classify the WDP channel in (1) with respect to

the available channel side-information:
•WFFD with No Channel Side-Information (WFFD-
NCSI): the fading sequenceAN is not know at either the
transmitter or the receiver.
•WFFD with Receiver Channel Side-Information (WFFD-
RCSI): the fading sequenceAN in know at only at the
receiver.

The WFFD-RCSI is obtained from the WFFD-NCSI by
providing the sequenceAN as an additional channel output,
that is

Y N
RCSI = [Y N

NCSI A
N ], (2)

for Y in (1). A graphical representation of these two channel
models is provided in Fig. 1: the switch on the noiseless chan-
nel betweenAN and the receiver indicates whether the fading
side-information is available to the receiver or not. The dotted
line betweenSN and the transmitter represents the anti-causal
channel knowledge at the transmitter. Standard definitionsof
rate, code, achievable rate, capacity and approximate capacity
are assumed.
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Fig. 2: The mismatch loss forP = 10 andc = 5 and whenS
is an equiprobable PAM signal (2,4 and 6-PAM) or a Gaussian
sequence (N ).

In the following we consider the case in whichS is a
discrete set: a recurring example is the case in whichSN is
uniformly distributed over the PAM input constellation

Sm−PAM =

{
2i∆m, i ∈

[
1−m
2 . . . m−1

2

]
m even

(2i+ 1)∆m, i ∈
[
−m

2 . . . m
2 − 1

]
m odd

(3)

for ∆m =
√
3/(m2 − 1) which guaranteesVar[S] = 1 and

µS = 0 as by assumption.

II. RELATED RESULTS

• “Gelfand-Pinsker” (GP) channel: The capacity of the GP
channel [5] is a classic result and is expressed as

C = max
PU,X|S

(I(Y ;U)− I(U ;S)) . (4)

The capacity of both the WFFD-NCSI and the WFFD-RCSI
can be evaluated through (4). Unfortunately the expression
in (4) is convex inPX|S,U for a fixed PU|S but neither
convex nor concave inPU|S for a fixedPX|S,U : consequently
this expression cannot be easily obtained in a closed-form or
numerically approximated.

• “Writing on Dirty Paper” (WDP) channel: Consider a
WDP channel and assume that, given the imperfect channel
knowledge at the transmitter, the encoder believes the state
sequence to beckSN instead ofcSN . The rate loss due to the
imperfect channel estimation can be readily evaluated as in
Fig. 2. The largest rate loss corresponds to the case in which
S is Gaussian distributed, in which case

C −RDPC N (k) =
1

2
log

(
1 +

Pa2

P + a2 + 1
(k − 1)2

)
, (5)

and is obtained from the expression in (4) by lettingU =
[X S] while the rate loss is increasing withm whenS is an
equiprobable m-PAM.
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Fig. 3: The state amplification performance for transmitP =
100 and state powerc2 ∈ [102 . . . 103] for the case in which
the state has is PAM constellation (2,4 and 6-PAM).

• GP channel with state amplification: The GP channel in
the case in which the transmitter is required to decode both
the transmitted message and the channel state is known as GP
with “state amplification” [10]. The largest transmission rate
R that can be attained in this channel

RIN−SA = max
PX|S

I(Y ;X,S)−H(S), (6)

and corresponds to the expression in (4) for the choiceU =
[X S], that is the decoded message corresponds to both the
channel input and the state. This is the attainable rate in a
point-to-point channel in which two codewords,XN at rateR
andSN at rateH(S), are transmitted over the channel.

III. WFFD-NCSI CHANNEL

In the WFFD-NCSI neither the transmitter nor the receiver
have knowledge of the exact way in which the channel input
collides with the fading-times-state termcANSN . For this
reason, pre-coding as in the WDP channel is effective only
when the overall variance of the termcANSN is small, in
which case the users still incur in a loss similar to the one
in (5). An alternative strategy is for the receiver to decode
both the state realization, along with the transmitted message.
To facilitate this, the transmitter can restrict its input to a
finite constellation such that the receiver can decode both
XN and SN from the channel output, as shown in Fig. 4.
This figure conceptually represent how the fading affects the
channel output: the random effect ofA is to “spread” the value
cAS in an interval around the valuescµAS. By restricting the
channel input to be discrete and sufficiently spaced apart, the
support ofX + cAS is composed of non-overlapping sets for
different X andS, regardless of the realization ofA. When
the minimum distance between these sets is sufficiently large,

Fig. 4: A representation of the output space in the WRDP-
NCSI channel with discrete state.

the receiver can decode bothX and S from Y with high
probability. This intuition is formalized in the next theorem.

Theorem III.1. Outer bound and approximate capacity for
the WFFD-NCSI with discrete state.
Consider the WFFD-NCSI in Fig. 1 with P, c2 > 1 and for S
and A such that

min
s, s̃ ∈ S , s > s̃, a, ã ∈ A
i ∈

[
−2⌈

√
P⌉ . . .+ 2⌈

√
P ⌉

]
|i− cas− ãs̃| > 1

2
, (7)

then capacity C is upper bounded as

C ≤ ROUT = max
PX|S

I(Y ;X,S)−H(S) + 4, (8)

and the exact capacity is to within 15 bpcu from the outer
bound in (8).

Proof: See App. VI.
The conditions in (7) indeed reflect the interpretation in Fig.

4: this term is the smallest distance between two contiguous
regions inX + cAS when X is restricted to be an integer
number in

[
⌈
√
P ⌉ . . .+ ⌈

√
P ⌉

]
. This follows from the fact

that restricting the input to this interval has a small effect on
capacity, both from the inner and the outer bound perspective.

The main challenge in proving Th. III.1 is in the bounding
thorough a closed-form expression of the capacity of WFFD-
NCSI as obtained from the capacity of the GP channel in (4).
Note that

I(U ;Y )− I(U ;S) = I(X,S;Y )−H(S) +H(S|Y, U),
(9)

so that the state amplification lower bound in (6) is close
to capacity whenH(S|Y, U) is close to zero. Determining
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the optimality of state decoding therefore entails showingthat
the entropy ofH(S|Y, U) is small for the optimal choice of
PXU|S in (4). To prove this we build upon an outer bounding
technique originally introduced in [11] which itself stemsfrom
the earlier work of [12] on the deterministic approximationof
AWGN multi-terminal channels.

As an example of the conditions in (7) consider the case
in which S is a m-PAM sequence (assumem even for
convenience) whileA has a continuous uniformly distribution:
by restricting the channel input to an integer constellation, the
termX + cAS has support

⋃
ij Rij for

Rij = [i+ 2j∆mc(µA −
√
3), i+ 2j∆mc∆(µA +

√
3)j],

(10)

with j ∈ [−⌊
√
P ⌋ . . . ⌊

√
P ⌋] and i ∈

[
1−m
2 . . . m−1

2

]
. Any

value of c and µA which guarantees that the above regions
are separated of more than one half, satisfies the condition
in (7). A less general result can obtained by requiring the
specific order in which the subsets in (10). For instance we
could require thatRij < Ri(j+1) < R(i+1)1 or equivalently
i+ cAs ≤ i+ cA(s+2∆m) ≤ (i+1)+ cA(1−m)∆m for all
values ofA. For this ordering of the setsRij , the minimum
distance between two contiguous setsRij is

min
{
2∆mc(µA − (2i− 1)

√
3), 1 − 4∆mc(m− 1)µA

}
,

(11)

and the result in Th. III.1 applies whenD > 1/2.

IV. WFFD-RCSI CHANNEL

In the WFFD-RCSI the receiver fading knowledge reduces
the uncertainty on the way in which the input and state
combine to produce the channel output. Unfortunately state
pre-coding as in the WDP channel appears to still not be
feasible as no known distributed strategy can produce a signal
in which the input and the channel state sum in away which is
predictable for the transmitter [13]. On the other hand, when
the state is drawn from a discrete support, state decoding
remains a natural transmission strategy to be considered.
In this model, given the additional fading knowledge, the
receiver knows which linear combination of the input and
state it observes in the channel output, although both the input
and the channel states remain unknown. This is conceptually
represented in presented in Fig. 5: as for the WFFD-NCSI,
the effect of fading is to spread the valuecµAS in the interval
cAS. While the transmitter has no knowledge of this random
effect, the receiver knows which linear combination of input
and state is present in the output. When the input is restricted
to a finite constellation, the sum of state and input can be
decoded with high probability whenever the support ofX+aS
is composed of sufficiently separated elements for all possible
a ∈ A. The difference between state decoding in the WFFD-
NCSI and WFFD-RCSI can be visualized by comparing Fig.
4 and Fig. 5: since the receiver in the WFFD-RCSI has
knowledge ofA, it does not need to account for the “spread”
of the valuecAS but instead has to know that these values
are distinguishable for all possible realizationsA = a. As for
Th. III.1, the next theorem formalizes this intuition.

Fig. 5: A representation of the output space in the WRDP-
RCSI channel with discrete state.

Theorem IV.1. Outer bound and approximate capacity for
some discrete state distributions.
Consider the WFFD-RCSI in Fig. 1 with P, c2 > 1 and for S
and A such that

min
s,a,i∈[−2⌊

√
P⌋...+2⌊

√
P⌋]

|i− ca(s− s̃)| > 1

2
, (12)

then capacity C is upper bounded as

C ≤ ROUT = max
PX|S

I(Y ;X,S|A)−H(S) + 6, (13)

and the exact capacity is to within 6 bpcu from the outer
bound in (13).

Proof: See App. VII.
Th. IV.1 is the analog of Th. III.1 for the WFFD-RCSI

and again the main contribution is the developing an outer
bound to the capacity expression in (4) which matches the state
decoding inner bound. The difference in the conditions of Th.
IV.1 and those in Th. III.1 also reflects the difference between
Fig. 5 and Fig. 4: since the receiver knows the realization
A = a, the elements that must be distinguished are the terms
in X + caS instead of the intervalX + cAS.

It is interesting to compare the performance of the WFFD-
RCSI with the performance of the same model but where the
transmitter does not have anti-causal knowledge of the state
sequence.

Lemma IV.2. Performance without transmitter state
knowledge.
If the transmitter does not posses state anti-causal knowledge
of SN , then the capacity of the WFFD-RCSI can be outer
bounded as

C = max
PX

I(Y ;X |A). (14)

The result in Lem. IV.2 follows naturally from the point-to-
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Fig. 6: Attainable rates with Gaussian signaling for the case of
no transmitter state information knowledge (plain lines) versus
versus the case of transmitter state knowledge (dotted lines)
for c = 2, A ∼ N (0, 1) andP ∈ [10, 70] .

point capacity result. The RHS of (12) can be rewritten as

I(Y ;X,S|A)−H(S) = I(Y ;X |A)−H(S|X,A, Y ), (15)

and, by comparing (15) to (13), one would be tempted to
conclude that channel knowledge does not provide much rate
advantages. It must be noted that the maximization in (13) and
(14) are performed over two different set of distributions:the
first maximization is overPX|S while the latter is overPX .
In general, it is not easy to determine the rate improvement
provided by this enlarged optimization set, especially because
linear strategies are usually not optimal. To illustrate this point,
we can again return to the example whereS is a 2-PAM
sequence whileA is uniformly distributed with meanµA:
when state knowledge is available at the transmitter, it can
use part of its power to remove the effect of the mean of the
fading realization by choosing

X̃ ∼ N (0, 1) (16a)

X = αX̃ −
√
1− α2K, (16b)

for some RVK with zero mean and unit variance so that

Y |A = αX + SA+K
√
1− α2 + Z. (17)

For example the choice

K =

{
−1 S = +1
+1 S = −1

(18)

can be used to increase the entropy ofY |A whenS is a 2-PAM
sequence. The rate improvements provided by this strategy
with respect to the case of no channel state information and
Gaussian signaling are presented in Fig. 6 for the case in which
the state sequence is an equiprobable m-PAM sequence.

V. CONCLUSIONS

In this paper we have identified cases where interference
decoding aided by an interference cognitive transmitter, which
happens to be the more common practice, is close to capacity
in a number of scenarios which also include fading. More
specifically, we study the capacity of the “writing on fast
fading dirt” channel, a variation of the classical “writingon
dirty paper” channel in which the channel state is multiplied
by a fast fading sequence. The channel state il also assumed
to have a discrete support, modelling an interference signal
from a constrained constellation We consider two scenarios:
(i) the case in which neither the transmitter nor receiver
have side-information and (ii) the case in which only the
receiver has knowledge of the fading process. In both cases
we derive conditions on the support of the fading and state
distribution so that state decoding is to within few bits from
capacity. These conditions intuitively relate to the ability of
the decoder to distinguish both the channel input and the state
realization from the channel output, regardless of the noise
realization. These models are a special case of the Gelfand-
Pinsker channel for which capacity is known but expressed
as the solution of a non-convex optimization problem. For
this reason, our approximate capacity result entails a careful
bounding of the capacity expression to yield a closed-form
outer bound.
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Fig. 7: A conceptual representation of the proof in Th. III.1.

VI. PROOF OFTH. III.1.

The proof is shown by proving the outer bound in (8), since theachievability follows trivially from (6). The this outer bound
follows the derivation in [11] in which a similar procedure is employed to investigate the degrees of freedom of the broadcast
channel with finite precision CSIT. The main difference is inthat we retain the additive noise in the channel with integer,
peak-limited input: this makes it possible to express the outer bound as a maximization over the same class of distribution as
the inner bound in (6).

These steps are conceptually presented in Fig. 7, where
• C is the actual capacity, which can be obtained through the result in (4), this value is to within small gap fromC.
• C is the capacity of the channel in which the input is restricted to integer, peak limited values. The capacity of this channel
is also obtained through the result in (4) but it can be further upper bounded throughROUT.
• ROUT is the upper bound inC obtained through the “aligned message set” approach in [11]and which is expressed only as
maximization over all the distributionsPX|S .
• RIN−SA is the state amplification inner bound in (6) and it has the same expression asROUT but for an additive term.

• Integer, peak-limited channel: The first step in the proof is to show that the capacity of the noiseless channel in which

the inputs are restricted to be integers and peak-limited at
√
P is close in capacity to the channel of the original channel. Let

Y
N

= ⌊XN⌋+ cANSN + Z
N

(19a)

EN = Y N − Y
N

= XN − ⌊XN⌋ − ZN + Z
N
, (19b)

whereZ
N

has the same distribution ofZN but is independent from it. that is,Y
N

is the WFFD-NCSI in which the input is
restricted to be integer-valued and power constrained; we then have

N(R− ǫ) ≤ I(Y N ;W ) (20a)

≤ I(Y N , EN ;W ) (20b)

≤ I(Y
N
, EN ;W ) (20c)

≤ I(Y
N
;W ) + I(EN ;W |Y N

) (20d)

≤ I(Y
N
;W ) +H(EN )−H(EN |W,XN , Y

N
) (20e)

≤ I(Y
N
;W ) +

N

2
log(2πe(Var(XN − ⌊XN⌋) + 2)−H(Z

N − ZN |ZN ) (20f)

≤ I(Y
N
;W ) +

N

2
log(2πe3)− N

2
log (2πe) (20g)

≤ I(Y
N
;W ) +

N

2
log 3 (20h)

where (20c) follows from the fact that the transformation ofvariables has unitary Jacobian and (20f) follows from the fact that
the variance of a random variable bounded in[a b] is upper bounded by the variance of discrete random variablethat takes
valuesa andb with equal probability.

The inequality in establishes that the capacity of the integer-valued channel is at most0.8 bpcu larger than the capacity of
the original channel. Note thatY

N
is equal toY N but for the additive noise butZN is replaced with the identical, independent

noiseZ
N

.
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We now wish to further restrict the channel to have a peak power constraint instead of an average power constraint. To do
so we define

X
N

= ⌊XN⌋ mod ⌈
√
P⌉, (21a)

X̃N = ⌊XN⌋ −X
N
, (21b)

Y
N

= X
N
+ANSN + Z

N
, (21c)

and once again we use Fano’s inequality to write

I(Y
N
;W ) ≤ I(Y

N
, X̃ ;W ) (22a)

≤ I(Y
N
, X̃ ;W ) (22b)

≤ I(Y
N
;W ) + I(X̃N ;W |Y

N
) (22c)

≤ I(Y
N
;W ) +H(X̃N)−H(X̃N |W,Y

N
) (22d)

≤ I(Y
N
;W ) +H(X̃N) (22e)

≤ I(Y
N
;W ) +N max

j
H(X̃j), (22f)

where follows from the fact that this transformation has unitary Jacobian and from the fact that̃X in a discrete random
variable with positive defined entropy. We are now left with the task of bounding the termH(X̃j) which can be done as in
[11, (156)-(158)].

Using the bound in [11, (156)-(158)] and in (22) we can conclude that the capacity of WFFD-NCSI where the inputs are
integer and peak-limited is to within a constant gap from thecapacity of the general WFFD-NCSI. This is because the proof
in [5] is developed from Fano’s inequality which is tight in this model. Next we derive an upper bound to the capacity of the
WFFD-NCSI with integer, peak-limited channel inputs.

• Capacity outer bound: The capacity of the WFFD-NCSI is determined by the result in (4): this expression can be further

manipulated as

I(Y ;U)− I(S;U) = I(Y ;S,X)−H(S) +H(S|Y , U), (23)

where we have used the fact thatX can be taken to be a deterministic function ofS andU and the Markov chainU−S X−Y .
Additionally the termH(S|Y , U) can be rewritten as

H(S|U, Y ) (24a)

≤ H(S, [Z]|U, Y ) (24b)

= H([Z]) +H(S|U,X +AS + Z − [Z]). (24c)

Let’s now boundH(S|U, Y ) as:

H(S|U, Y ) (25a)

≤ H(S, [Z]|U, Y ) (25b)

= H([2Z]/2) +H(S|U,X +AS + Z − [2Z]/2) (25c)

= H([2Z]/2) +H(S|U,X +AS + Ẑ) (25d)

= H([2Z]/2) +H(S|U, Ŷ ), (25e)

where[Z] indicates the integer part ofZ, that is

[Z] =

{
⌊Z⌋ Z ≥ 0
⌈Z⌉ Z < 0

(26)

while Ẑ = Z − [2Z]/2 is noise bounded in the interval[−1/4,+1/4] and Ŷ is the output corresponding to the channel where
the channel noise iŝZ. The RV Z − Ẑ = [2Z]/2 is a discrete random variable with a finite positive entropy which we can
bounded as

H([2Z]/2) = P

[
Z ∈

(
−1

4
,+

1

4

)]
−
∑

i∈N

2ρz log(ρz). (27a)
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for

ρz = P

[
Z ∈

(
i

2
− 1

4
,
i

2
+

1

4

)]
. (28)

For |i| > 1 we have

ρz < 0.1747 ≤ e−1 ≈ 0.3679 (29)

and therefore the terms−ρz log ρz in the RHS of (27a) are decreasing inρz; consequently we can use usual inner and lower
on theQ function to write:

ρz ≤ 1

2
e−

(i/2−1/4)2

2 − 1√
2π(i + 1/2)

(
1− 1

(i/2 + 1/4)2

)
e−

(i/2+1/4)2

2

= e−
(i−1/2)2

8

(
1

2
− 1√

2π(i + 1/2)

(
1− 1

(i + 1/2)2

)
e−

i
4

)

≤ 1

2
e−

(i−1/2)2

8 .

The functionexp{− (i−1/2)2

8 } is monotonically decreasing fori ≥ 4, so that

∞∑

i=4

−ρz log ρz

=
∞∑

i=4

(i− 1/2)2

8
e−

(i−1/2)2

8

≥
∫ ∞

i=4

(i− 3/2)2

8
e−

(i−3/2)2

8

= 1.21,

so that now we can write

H([Z]) ≤ 0.54 +

3∑

i=1

−ρz log ρz + 1.21

= 0.54 + 2.14 + 1.21 ≤ 4. (30)

Using (30), we can further bound (25e) as

H(S|U, Y ) = H(S|U, Ŷ ) + 4

≤ H(S|Ŷ ) + 4

≤ log(QS(Ŷ )) + 4.

And whereQS(Ŷ ) is the set of̃s ∈ S for which there exist̃a ∈ A and ũ ∈ U and ẑ ∈ [−1/4,+1/4] such that

X(s̃, ũ) + cãs̃+ z̃ = ŷ, (31a)

that is, it is the set of all possibleS = s̃ that could have produced the outputŶ = ŷ. We next want to find the conditions
under which the cardinality ofQS(Ŷ is always one. This can be done assured when the images of the output under a noise
bounded by between0 and1 which is granted when

min
u,s̃,s,ũ

|X(s, u) + csa− (X(s̃, ũ) + cãs̃)| > 1

2
, (32)

sinceX only takes values over the integers, we have

min
s̃,s,i∈−

√
P ...+

√
P
|i+ c(sa− ãs̃)| > 1

2
, (33)

Finally we obtain that, when condition (7) we have thatC is to within 14 bpcu from the outer bound

max
P

X|S

I(Y ;U)− I(S;U)

≤ max
P

X|S

I(Y ;S,X)−H(S) + 4.
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On the other hand, by enlarging the class of input distribution for the channel, we have

ROUT = max
PX|S

I(Y ;S,X)−H(S) + 4, (34)

which corresponds to the outer bound is (8).

VII. PROOF OFTH. IV.1.

The state amplification inner bound in (6) for the channel output in (2) yields the attainable rate

RIN−SA = max
PX|S

I(Y ;X,S|A)−H(S) (35a)

and thus, as for the proof of Th. III.1, the theorem is shown byderiving the outer bound in (13).
As for the proof of Th. III.1 in App. VI, we rely on the fact thatthe capacity of the WFFD-RCSI to a deterministic,

integer, peak-limited channel. The derivation is substantially the same as in App. VI, since the WFFD-RCSI differs fromthe
WFFD-NCSI in that it hasA as an extra output. It can be verified that this difference does not affect the derivation in App.
VI.

Given that the capacity of the WFFD-RCSI is to within 5 bits from the capacity of the version with integer, peak-limited
channel, we can now manipulate the capacity expression as

C = max
P

X,U|S

I(Y ;U |A)− I(S;U) (36a)

= max
P

X,U|S

I(Y ;X,S|A)−H(S) +H(S|Ŷ , U,A) (36b)

≤ max
P

X,U|S

I(Y ;X,S|A)−H(S) +H(S|Ŷ , A), (36c)

where (36c) follows from the fact thatX = X(U, S), that isX can be taken to be a deterministic function ofS andU . The
termH(S|Ŷ , U,A) can be bound analogously as in the proof of III.1 in App. VI andit can be easily verified that the condition
for which QS(Ŷ ) has cardinality zero corresponds to the condition in (12).
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