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When is Noisy State Information at the Encoder as
Useless as No Information or as Good as

Noise-Free State?
Rui Xu, Jun Chen, Tsachy Weissman, and Jian-Kang Zhang

Abstract—For any binary-input channel with perfect state
information at the decoder, if the mutual information between
the noisy state observation at the encoder and the true channel
state is below a positive threshold determined solely by thestate
distribution, then the capacity is the same as that with no encoder
side information. A complementary phenomenon is revealed for
the generalized probing capacity. Extensions beyond binary-input
channels are developed.

Index Terms—Binary-input, channel capacity, erasure channel,
probing capacity, state information, stochastically degraded.

I. I NTRODUCTION

Consider a memoryless channelpY |X,S with input X ,
outputY , and stateS. We assume that the channel stateS,
distributed according topS, is provided to the decoder, and a
noisy state observatioñS, generated byS through side channel
pS̃|S , is available causally at the encoder. HereX , Y , S, andS̃

are defined over finite alphabetsX , Y, S, andS̃, respectively.
In this setting (see Fig. 1), Shannon’s remarkable result [1]
(see also [2, Eq. (3)] and [3, Th. 7.2]) implies that the channel
capacity is given by

C(pY |X,S , pS , pS̃|S) , max
pU

I(U ;Y |S). (1)

The auxiliary random variableU is defined over alphabetU
with |U| = |X ||S̃|, whose joint distribution with(X,Y, S, S̃)
factors as

pU,X,Y,S,S̃(u, x, y, s, s̃)

= pU (u)pS(s)pS̃|S(s̃|s)I(x = ψ(u, s̃))pY |X,S(y|x, s),
u ∈ U , x ∈ X , y ∈ Y, s ∈ S, s̃ ∈ S̃, (2)

whereI(·) is the indicator function, andψ(u, ·), u ∈ U , are
|X ||S̃| different mappings from̃S to X . Without loss of gener-
ality, we setX = {0, 1, · · · , |X |−1}, S = {0, 1 · · · , |S|−1},
U = {0, 1, · · · , |X ||S̃| − 1}, and order the mappingsψ(u, ·),
u ∈ U , in such a way that the first|X | mappings1 are

ψ(u, ·) ≡ u, u ∈ X ; (3)

moreover, we assume thatρ , mins∈S pS(s) > 0. The
capacity formula (1) can be simplified in the following two
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special cases. Specifically, when there is no encoder side
information, the channel capacity reduces to [3, Eq. (7.2)]

C(pY |X,S, pS) , max
pX

I(X ;Y |S), (4)

where pX,Y,S(x, y, s) = pX(x)pS(s)pY |X,S(y|x, s); on the
other hand, when perfect state information is available at the
encoder (as well as the decoder), the channel capacity becomes
[3, Eq. (7.3)]

C(pY |X,S, pS) , max
pX|S

I(X ;Y |S), (5)

wherepX,Y,S(x, y, s) = pS(s)pX|S(x|s)pY |X,S(y|x, s).
For comparison, consider the following similarly defined

quantity

C′(pY |X,S , pS , pS̃|S) , max
pU

I(X ;Y |S),

where the joint distribution of(U,X, Y, S, S̃) is also given by
(2). We shall refer toC′(pY |X,S , pS , pS̃|S) as the generalized
probing capacity. By the functional representation lemma [3,
p. 626] (see also [5, Lemma 1]),C′(pY |X,S , pS , pS̃|S) can be
defined equivalently as

C′(pY |X,S , pS , pS̃|S) , max
p
X|S̃

I(X ;Y |S),

where

pX,Y,S,S̃(x, y, s, s̃)

= pS(s)pS̃|S(s̃|s)pX|S̃(x|s̃)pY |X,S(y|x, s),
x ∈ X , y ∈ Y, s ∈ S, s̃ ∈ S̃.

Clearly,

C(pY |X,S , pS) ≤ C(pY |X,S , pS , pS̃|S)

≤ C′(pY |X,S , pS , pS̃|S)

≤ C(pY |X,S , pS). (6)

Moreover, we have

C(pY |X,S , pS , pS̃|S) = C′(pY |X,S, pS , pS̃|S)

= C(pY |X,S , pS) (7)

if S and S̃ are independent (i.e.,I(S; S̃) = 0), and

C(pY |X,S , pS , pS̃|S) = C′(pY |X,S, pS , pS̃|S)

= C(pY |X,S , pS) (8)

if S is a deterministic function of̃S (i.e.,H(S|S̃) = 0).
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Fig. 1. Channel model.
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Fig. 2. Illustration ofpY |X,S andpS given by (9) and (10), respectively.

To elucidate the operational meaning of
C′(pY |X,S , pS , pS̃|S) and its connection with
C(pY |X,S , pS, pS̃|S), it is instructive to consider the
special case wherepS̃|S is a binary erasure channel with
erasure probabilityǫ (denoted by BEC(ǫ)), which corresponds
to the probing channel setup studied in [4]. The probing
channel model is essentially the same as the one in Fig.
1 except that, in Fig. 1, the encoder (which, with high
probability, observes approximatelynǫ state symbols out
of the whole state sequence of lengthn when n is large
enough) has no control of the exact positions of thesenǫ

symbols whereas, in the probing channel model, the encoder
has the freedom to specify the positions of thesenǫ symbols
according to the message to be sent. It is shown in [4] that
this additional freedom increases the achievable rate from
C(pY |X,S , pS,BEC(ǫ)) to C′(pY |X,S , pS ,BEC(ǫ)). Now
consider an example (see also Fig. 2) where

pY |X,S(y|x, s) =















1− θ, (x, y, s) = (0, 0, 0) or (1, 1, 1),
θ, (x, y, s) = (0, 1, 0) or (1, 0, 1),
0, (x, y, s) = (1, 0, 0) or (0, 1, 1),
1, (x, y, s) = (1, 1, 0) or (0, 0, 1),

(9)

pS(0) = pS(1) =
1

2
. (10)

For this example, it can be verified that

C(pY |X,S , pS)

=



















log 2, θ = 0,

1
2

(

(1− θ) log 2 + log 2
1+θ

+ θ log 2θ
1+θ

)

, θ ∈ (0, 1),

0, θ = 1,

C(pY |X,S , pS) =



















log 2, θ = 0,

log

(

1 + (1− θ)θ
θ

1−θ

)

, θ ∈ (0, 1),

0, θ = 1.

Note thatC(pY |X,S , pS) is strictly greater thanC(pY |X,S , pS)
unlessθ = 0 or θ = 1. It follows by (7) and (8) that

C(pY |X,S , pS,BEC(ǫ))
∣

∣

ǫ=1
= C′(pY |X,S , pS ,BEC(ǫ))

∣

∣

ǫ=1

= C(pY |X,S , pS),

C(pY |X,S , pS,BEC(ǫ))
∣

∣

ǫ=0
= C′(pY |X,S , pS ,BEC(ǫ))

∣

∣

ǫ=0

= C(pY |X,S , pS).

To gain a better understanding, we plot
C(pY |X,S , pS ,BEC(ǫ)) and C′(pY |X,S , pS,BEC(ǫ)) against
ǫ for ǫ ∈ [0, 1] in Fig. 3. It turns out that, somewhat
counterintuitively, C(pY |X,S , pS ,BEC(ǫ)) coincides with
C(pY |X,S , pS) way beforeǫ reaches 1. That is to say, when
ǫ is above a certain threshold strictly less than 1, the noisy
state observatioñS is useless and can be ignored (as far as
the channel capacity is concerned). On the the hand, it can be
seen thatC′(pY |X,S , pS ,BEC(ǫ)) is equal toC(pY |X,S , pS)
for a large range ofǫ strictly greater than 0. Hence, in terms
of the probing capacity, the noisy state observation can be
as good as the perfect one. As shown in Fig. 4, the same
phenomena arise if we choosepS̃|S to be a binary symmetric
channel with crossover probabilityq (denoted by BSC(q)).

The contributions of the present work are summarized in
the following theorems, which indicate that the aforedescribed
surprising phenomena can in fact be observed for all binary-
input channels.

Theorem 1: For any binary-input channelpY |X,S , state
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Fig. 3. Plots ofC(pY |X,S , pS ,BEC(ǫ)) andC′(pY |X,S , pS ,BEC(ǫ)) againstǫ for ǫ ∈ [0, 1], wherepY |X,S and pS are given by (9) withθ = 1
2

and
(10), respectively.

distributionpS , and side channelpS̃|S,

C(pY |X,S, pS , pS̃|S) = C(pY |X,S , pS)

if I(S; S̃) ≤ ρ2

2e2 , whereρ , mins∈S pS(s).
Theorem 2: For any binary-input channelpY |X,S , state

distributionpS , and side channelpS̃|S,

C′(pY |X,S , pS , pS̃|S) = C(pY |X,S , pS)

if H(S|S̃) ≤ 2ρ log 2
(|S|−1)(e−1) , whereρ , mins∈S pS(s).

On the surface these two results may look rather similar.
One might even suspect the existence of a certain duality
between them. However, it will be seen that the underlying
reasons are actually quite different. The proof of Theorem
1 hinges upon, among other things, a perturbation analysis.
In contrast, Theorem 2 is essentially a manifestation of an
induced Markov structure.

The conditions in Theorem 1 and Theorem 2 are stated in
terms of bounds onI(S; S̃) andH(S|S̃); as a consequence,
they depend inevitably onpS . As shown by Theorem 3 in
Section II and Theorem 4 in Section III, it is in fact possible
to establish these two results under more general conditions
on pS̃|S that are universal for all binary-input channels and
state distributions.

The rest of this paper is organized as follows. We present
the proofs of Theorems 1 and 2 in Sections II and III,
respectively. The validity of these two results under various
modified conditions is discussed in Section IV. Section V
contains some concluding remarks. Throughout this paper, all
logarithms are base-e.

II. PROOF OFTHEOREM 1

First consider the special case wherepS̃|S is a generalized
erasure channel (with erasure probabilityǫ ∈ [0, 1]) defined as

p
S̃

(ǫ)
GE

|S
(s̃|s) =







1− ǫ, s̃ = s,

ǫ, s̃ = ∗,
0, otherwise,

s ∈ S, s̃ ∈ S ∪ {∗}.

Lemma 1: Given any binary-input channelpY |X,S and state
distributionpS ,

C(pY |X,S , pS, pS̃(ǫ)
GE

|S
) = C(pY |X,S , pS)

for ǫ ∈ [1− e−1, 1].
Remark: Lemma 1 provides a universal upper bound2 on the
erasure probability threshold above which the encoder side
information is useless. The actual threshold, however, depends
on pY |X,S andpS (see Section IV-A for a detailed analysis).

Proof: As indicated by (1), the capacity of the channel
model in Fig. 1 (i.e.,C(pY |X,S , pS , pS̃|S)) is equal to that of
channelpY,S|U , where

pY,S|U(y, s|u) =
∑

s̃∈S̃

pS(s)pS̃|S(s̃|s)pY |X,S(y|ψ(u, s̃), s),

u ∈ U , y ∈ Y, s ∈ S.

According to [6, Th. 4.5.1],pU is a capacity-achieving input
distribution of channelpY,S|U (i.e., pU is a maximizer of the

2Numerical simulations suggest that this universal upper bound is not tight.
Determining the exact universal erasure probability threshold remains an open
problem.
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2
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optimization problem in (1)) if and only if there exists some
numberC such that

D(pY,S|U (·, ·|u)‖pY,S) = C, u ∈ U with pU (u) > 0,

D(pY,S|U (·, ·|u)‖pY,S) ≤ C, u ∈ U with pU (u) = 0;

furthermore, the numberC is equal toC(pY |X,S , pS , pS̃|S).
In view of (3), we have

pY,S|U (y, s|u) = pY,S|X(y, s|u), u ∈ X , y ∈ Y, s ∈ S.
Let p

X̂
be a capacity-achieving input distribution of channel

pY,S|X (i.e, p
X̂

is a maximizer of the optimization problem in
(4)). Define

p
Û
(u) =

{

p
X̂
(u), u ∈ X ,

0, otherwise.
(11)

It is clear thatC(pY |X,S, pS , pS̃|S) = C(pY |X,S , pS) if and
only if p

Û
is a capacity-achieving input distribution of channel

pY,S|U .
Now consider the special case wherepS̃|S is a generalized

erasure channel with erasure probabilityǫ, and define

DGE(pU , ǫ, u) = D(pY,S|U(·, ·|u)‖pY,S) (12)

to stress the dependence ofD(pY,S|U (·, ·|u)‖pY,S) on pU , ǫ,
andu. It can be verified that

pY,S|U (y, s|u)
=

∑

s̃∈S∪{∗}

pS(s)pS̃(ǫ)|S(s̃|s)pY |X,S(y|ψ(u, s̃), s)

= pS(s)ǫpY |X,S(y|ψ(u, ∗), s)
+ pS(s)(1− ǫ)pY |X,S(y|ψ(u, s), s)

= pS(s)(pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)), (13)

where

δ(u, y, s) = pY |X,S(y|ψ(u, ∗), s)− pY |X,S(y|ψ(u, s), s),
u ∈ U , y ∈ Y, s ∈ S. (14)

Since|X | = 2, there is no loss of generality in assuming that
[7, Th. 2]

p
X̂
(x) > e−1, x ∈ X . (15)

To the end of proving Lemma 1, it suffices to show that, for
ǫ ∈ [1− e−1, 1],

DGE(pÛ , ǫ, u) = C(pY |X,S , pS), u ∈ X ,
DGE(pÛ , ǫ, u) ≤ C(pY |X,S , pS), otherwise.

Clearly, p
Û

is a capacity-achieving input distribution of
channelpY,S|U whenǫ = 1. Therefore, we have3

DGE(pÛ , 1, u) = C(pY |X,S , pS), u ∈ X , (16)

DGE(pÛ , 1, u) ≤ C(pY |X,S , pS), otherwise. (17)

3The inequality in (17) is in fact an equality.
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Note that

DGE(pÛ , ǫ, u)

=
∑

y∈Y,s∈S

pY,S|U(y, s|u) log
pY,S|U (y, s|u)

∑

u′∈U pÛ (u
′)pY,S|U(y, s|u′)

=
∑

y∈Y,s∈S

pS(s)(pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s))

× log
pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)

∑

u′∈U pÛ (u
′)(pY |X,S(y|ψ(u′, s), s) + ǫδ(u′, y, s))

(18)

=
∑

y∈Y,s∈S

pS(s)(pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s))

× log
pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)
∑

x∈X pX̂(x)pY |X,S(y|x, s)
,

ǫ ∈ [0, 1], u ∈ U , (19)

where (18) is due to (13), and (19) is due to (3) and (11).
Moreover,

∂

∂ǫ
DGE(pÛ , ǫ, u)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)

×
(

log
pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)
∑

x∈X pX̂(x)pY |X,S(y|x, s)
+ 1

)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)
∑

x∈X pX̂(x)pY |X,S(y|x, s)
+
∑

s∈S

pS(s)
∑

y∈Y

δ(u, y, s)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)
∑

x∈X pX̂(x)pY |X,S(y|x, s)
,

ǫ ∈ [0, 1], u ∈ U . (20)

Define

Gδ = {u ∈ U : δ(u, y, s) = 0 for all y ∈ Y ands ∈ S}.
(21)

In light of (19),

DGE(pÛ , ǫ, u) = DGE(pÛ , 1, u), ǫ ∈ [0, 1], u ∈ Gδ. (22)

For anyu ∈ U\Gδ, there must exist somey ∈ Y and s ∈ S
such thatδ(u, y, s) 6= 0; furthermore, since|X | = 2, we have

δ(u, y, s) > 0 =⇒ pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)

= b(y, s) + ǫ(a(y, s)− b(y, s)), (23)

δ(u, y, s) < 0 =⇒ pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)

= a(y, s) + ǫ(b(y, s)− a(y, s)), (24)

where

a(y, s) = max
x∈X

pY |X,S(y|x, s),

b(y, s) = min
x∈X

pY |X,S(y|x, s).

Continuing from (20),

∂

∂ǫ
DGE(pÛ , ǫ, u)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)
∑

x∈X pX̂(x)pY |X,S(y|x, s)
≥
∑

s∈S

pS(s)
∑

y∈Y:δ(u,y,s)>0

δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)

(1− e−1)a(y, s) + e−1b(y, s)

+
∑

s∈S

pS(s)
∑

y∈Y:δ(u,y,s)<0

δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)

e−1a(y, s) + (1− e−1)b(y, s)
(25)

=
∑

s∈S

pS(s)
∑

y∈Y:δ(u,y,s)>0

δ(u, y, s)

× log
b(y, s) + ǫ(a(y, s)− b(y, s))

(1− e−1)a(y, s) + e−1b(y, s)

+
∑

s∈S

pS(s)
∑

y∈Y:δ(u,y,s)<0

δ(u, y, s)

× log
a(y, s) + ǫ(b(y, s)− a(y, s))

e−1a(y, s) + (1 − e−1)b(y, s)
(26)

≥
∑

s∈S

pS(s)
∑

y∈Y:δ(u,y,s)>0

δ(u, y, s)

× log
(1− e−1)a(y, s) + e−1b(y, s)

(1− e−1)a(y, s) + e−1b(y, s)

+
∑

s∈S

pS(s)
∑

y∈Y:δ(u,y,s)<0

δ(u, y, s)

× log
e−1a(y, s) + (1 − e−1)b(y, s)

e−1a(y, s) + (1 − e−1)b(y, s)

= 0, ǫ ∈ [1− e−1, 1], u ∈ U , (27)

where (25) is due to (15), and (26) is due to (23) and (24).
Combining (16), (17), (22), (27), and the factX ⊆ Gδ yields
the desired result.

Recall [3, p. 112] thatpS̃1|S
(with input alphabetS and

output alphabetS̃1) is said to be a stochastically degraded
version ofpS̃2|S

(with input alphabetS and output alphabet

S̃2) if there existspS̃1|S̃2
satisfying

pS̃1|S
(s̃1|s) =

∑

s̃2∈S̃2

pS̃2|S
(s̃2|s)pS̃1|S̃2

(s̃1|s̃2),

s ∈ S, s̃1 ∈ S̃1. (28)

We can write (28) equivalently as

pS̃1|S
= pS̃2|S

pS̃1|S̃2
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by viewing pS̃1|S
, pS̃2|S

, andpS̃1|S̃2
as probability transition

matrices.
The following result is obvious and its proof is omitted.
Lemma 2: If pS̃1|S

is a stochastically degraded version of
pS̃2|S

, then

C(pY |X,S, pS , pS̃1|S
) ≤ C(pY |X,S, pS , pS̃2|S

).

Next we extend Lemma 1 to the general case by characteriz-
ing the condition under whichpS̃|S is a stochastically degraded
version ofp

S̃
(ǫ)
GE

|S
.

Lemma 3: pS̃|S is a stochastically degraded version of
p
S̃

(ǫ)
GE

|S
if and only if

∑

s̃∈S̃

min
s∈S

pS̃|S(s̃|s) ≥ ǫ. (29)

Proof: The problem boils down to finding a necessary
and sufficient condition for the existence ofp

S̃|S̃
(ǫ)
GE

such that

pS̃|S(s̃|s) =
∑

s̃′∈S∪{∗}

p
S̃

(ǫ)
GE

|S
(s̃′|s)p

S̃|S̃
(ǫ)
GE

(s̃|s̃′),

s ∈ S, s̃ ∈ S̃. (30)

It suffices to consider the caseǫ ∈ [0, 1) since Lemma 3 is
trivially true whenǫ = 1. Note that

∑

s̃′∈S∪{∗}

p
S̃

(ǫ)
GE

|S
(s̃′|s)p

S̃|S̃
(ǫ)
GE

(s̃|s̃′)

= (1− ǫ)p
S̃|S̃

(ǫ)
GE

(s̃|s) + ǫp
S̃|S̃

(ǫ)
GE

(s̃|∗), s ∈ S, s̃ ∈ S̃.
(31)

Combining (30) and (31) gives

p
S̃|S̃

(ǫ)
GE

(s̃|s) =
pS̃|S(s̃|s)− ǫp

S̃|S̃
(ǫ)
GE

(s̃|∗)
1− ǫ

, s ∈ S, s̃ ∈ S̃.
(32)

In light of (32),
∑

s̃∈S̃

p
S̃|S̃

(ǫ)
GE

(s̃|s) = 1, s ∈ S,

⇐⇒
∑

s̃∈S̃

p
S̃|S̃

(ǫ)
GE

(s̃|∗) = 1,

p
S̃|S̃

(ǫ)
GE

(s̃|s) ≥ 0, s ∈ S, s̃ ∈ S̃,
⇐⇒ min

s∈S
pS̃|S(s̃|s) ≥ ǫp

S̃|S̃
(ǫ)
GE

(s̃|∗), s̃ ∈ S̃. (33)

It can be readily seen that the existence of conditional distri-
butionp

S̃|S̃
(ǫ)
GE

satisfying (30) is equivalent to the existence of
probability vector(p

S̃|S̃
(ǫ)
GE

(s̃|∗))s̃∈S̃ satisfying (33). Clearly,
(29) is a necessary and sufficient condition for the existence
of such(p

S̃|S̃
(ǫ)
GE

(s̃|∗))s̃∈S̃ .
Theorem 3: For any binary-input channelpY |X,S , state

distributionpS , and side channelpS̃|S,

C(pY |X,S, pS , pS̃|S) = C(pY |X,S , pS)

if
∑

s̃∈S̃

min
s∈S

pS̃|S(s̃|s) ≥ 1− e−1. (34)

Proof: In view of Lemmas 1, 2, and 3, we have

C(pY |X,S , pS , pS̃|S) ≤ C(pY |X,S , pS) (35)

if (34) is satisfied. Combining (6) and (35) completes the proof
of Theorem 3.

Now we proceed to prove Theorem 1 by translating (34)
(which is a condition onpS̃|S that is universal for all binary
input channels and state distributions) to an upper bound on
I(S; S̃). This upper bound, however, depends inevitably on
the state distribution.

For anypS̃|S violating (34) (i.e,
∑

s̃∈S̃ mins∈S pS̃|S(s̃|s) <
1− e−1), we have

I(S; S̃) ≥ 1

2

(

∑

s∈S,s̃∈S̃

pS(s)
∣

∣

∣pS̃(s̃)− pS̃|S(s̃|s)
∣

∣

∣

)2

(36)

≥ 1

2

(

∑

s̃∈S̃

pS(s(s̃))
∣

∣

∣pS̃(s̃)− pS̃|S(s̃|s(s̃))
∣

∣

∣

)2

≥ 1

2

(

ρ
∑

s̃∈S̃

∣

∣

∣pS̃(s̃)− pS̃|S(s̃|s(s̃))
∣

∣

∣

)2

≥ 1

2

(

ρ

∣

∣

∣

∣

∣

∣

∑

s̃∈S̃

pS̃(s̃)−
∑

s̃∈S̃

pS̃|S(s̃|s(s̃))

∣

∣

∣

∣

∣

∣

)2

>
ρ2

2e2
,

where (36) is due to Pinsker’s inequality [8, p. 44], ands(s̃) is
a minimizer ofmins∈S pS̃|S(s̃|s), s̃ ∈ S̃. As a consequence,

(34) must hold ifI(S; S̃) ≤ ρ2

2e2 . This completes the proof of
Theorem 1.

III. PROOF OFTHEOREM 2

First consider the special case wherepS̃|S is a generalized
symmetric channel (with crossover probabilityq ∈ [0, 1

|S| ])
defined as

p
S̃

(q)
GS

|S
(s̃|s) =

{

1− (|S| − 1)q, s̃ = s,

q, otherwise,
s ∈ S, s̃ ∈ S.

Lemma 4: C′(pY |X,S , pS , pS̃(q)
GS

|S
) = C(pY |X,S , pS) if and

only if

min
x∈X+,s∈S

p
X̂|S(x|s)

∑

s′∈S pX̂|S(x|s′)
≥ q (37)

for somep
X̂|S ∈ P , whereP denotes the set of maximizers

of the optimization problem in (5), andX+ = {x ∈ X :
∑

s∈S pX̂|S(x|s) > 0}.

Proof: Clearly,C′(pY |X,S , pS , pS̃(q)
GS

|S
) = C(pY |X,S , pS)

if and only if there existsp
X̂|S ∈ P that is a stochastically

degraded version ofp
S̃

(q)
GS

|S
. Whenq = 1

|S| , (37) is equivalent

to the desired condition that̂X needs to be independent ofS.
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Whenq ∈ [0, 1
|S| ), pS̃(q)

GS
|S

is invertible and

p−1

S̃
(q)
GS

|S
=















q−1
|S|q−1

q
|S|q−1 · · · q

|S|q−1

q
|S|q−1

. . .
. . .

...
...

. . .
. . . q

|S|q−1
q

|S|q−1 · · · q
|S|q−1

q−1
|S|q−1















. (38)

The problem boils down to finding a necessary and sufficient
condition under whichp−1

S̃
(q)
GS

|S
p
X̂|S is a valid probability

transition matrix (i.e., all entries are non-negative and the sum
of each row vector is equal to 1). Note that

p−1

S̃
(q)
GS

|S
p
X̂|S







1
...
1






= p−1

S̃
(q)
GS

|S











1
1
...
1











= p−1

S̃
(q)
GS

|S
p
S̃

(q)
GS

|S











1
1
...
1











=











1
1
...
1











. (39)

Moreover, all entries ofp−1

S̃
(q)
GS

|S
p
X̂|S are non-negative if and

only if

−p
X̂|S(x|s) + q

∑

s′∈S pX̂|S(x|s′)
|S|q − 1

≥ 0, x ∈ S, s ∈ S,

which is equivalent to (37).
The following result is obvious and its proof is omitted.
Lemma 5: If pS̃1|S

is a stochastically degraded version of
pS̃2|S

, then

C′(pY |X,S, pS , pS̃1|S
) ≤ C′(pY |X,S , pS , pS̃2|S

).

Lemma 6: p
S̃

(q)
GS

|S
is a stochastically degraded version of

pS̃|S if

max
s∈S,ŝ∈S+:s6=ŝ

p
Ŝ|S(ŝ|s)

∑

s′∈S pŜ|S(ŝ|s′)
≤ q, (40)

where Ŝ is the maximum likelihood estimate ofS based on
S̃, andS+ = {ŝ ∈ S :

∑

s∈S pŜ|S(ŝ|s) > 0}.
Proof: The caseq = 1

|S| is trivial. When q ∈ [0, 1
|S|),

p
S̃

(q)
GS

|S
is invertible andp−1

S̃
(q)
GS

|S
is given by (38). It can be

shown (see the derivation of (39)) that the sum of each row of
p−1

S̃
(q)
GS

|S
p
Ŝ|S is equal to 1; moreover, the off-diagonal entries

of p−1

S̃
(q)
GS

|S
p
Ŝ|S are non-positive if and only if

−p
Ŝ|S(ŝ|s) + q

∑

s′∈S pŜ|S(ŝ|s′)
|S|q − 1

≤ 0,

s ∈ S, ŝ ∈ S+ : s 6= ŝ,

which is equivalent to (40). Therefore, (40) ensures that
p−1

S̃
(q)
GS

|S
p
Ŝ|S is a non-singularM -matrix, which in turn ensures

thatp−1

Ŝ|S
p
S̃

(q)
GS

|S
exists and is a non-negative matrix [9]. Hence,

if (40) is satisfied, thenp−1

Ŝ|S
p
S̃

(q)
GS

|S
is a valid probability

transition matrix (the requirement that the entries in eachrow
of p−1

Ŝ|S
p
S̃

(q)
GS

|S
add up to 1 is automatically satisfied), which

implies that p
S̃

(q)
GS

|S
is a stochastically degraded version of

p
Ŝ|S (and consequently a stochastically degraded version of
pS̃|S).

Theorem 4: For any binary-input channelpY |X,S , state
distributionpS , and side channelpS̃|S ,

C′(pY |X,S , pS , pS̃|S) = C(pY |X,S , pS)

if

max
s∈S,ŝ∈S+:s6=ŝ

p
Ŝ|S(ŝ|s)

∑

s′∈S pŜ|S(ŝ|s′)
≤ 1

(|S| − 1)e− |S|+ 2
,

(41)

where Ŝ is the maximum likelihood estimate ofS based on
S̃.

Proof: Since|X | = 2, it follows from [7, Th. 2] that there
existsp

X̂|S ∈ P satisfying

p
X̂|S(x|s) > e−1, x ∈ X , s ∈ S.

For suchp
X̂|S ,

min
x∈X+,s∈S

p
X̂|S(x|s)

∑

s′∈S pX̂|S(x|s′)
≥ e−1

e−1 + (|S| − 1)(1− e−1)

=
1

(|S| − 1)e− |S|+ 2
.

In view of of Lemmas 4, 5, and 6, we have

C′(pY |X,S , pS , pS̃|S) ≥ C(pY |X,S , pS) (42)

if (41) is satisfied. Combining (6) and (42) completes the proof
of Theorem 4.

Now we are in a position to prove Theorem 2. LetŜ andŜ′

denote respectively the maximum likelihood estimate and the
maximuma posteriori estimate ofS based onS̃. According
to [10, Th. 11],

P(S 6= Ŝ′) ≤ H(S|S̃)
2 log 2

. (43)

It can be verified that
∑

s,ŝ∈S:s6=ŝ

p
Ŝ|S(ŝ|s) ≤

∑

s,ŝ∈S:s6=ŝ

p
Ŝ′|S(ŝ|s)

≤ 1

ρ

∑

s,ŝ∈S:s6=ŝ

pS(s)pŜ′|S(ŝ|s)

=
P(S 6= Ŝ′)

ρ
. (44)

Substituting (43) into (44) yields

∑

s,ŝ∈S:s6=ŝ

p
Ŝ|S(ŝ|s) ≤ ~ ,

H(S|S̃)
2ρ log 2

. (45)
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Note that

max
s∈S,ŝ∈S+:s6=ŝ

p
Ŝ|S(ŝ|s)

∑

s′∈S pŜ|S(ŝ|s′)
≤ ~

~+ I(~ ≤ 1)
. (46)

Indeed, (46) is trivially true when~ > 1; moreover, when
~ ≤ 1,

max
s∈S,ŝ∈S+:s6=ŝ

p
Ŝ|S(ŝ|s)

∑

s′∈S pŜ|S(ŝ|s′)

≤ max
s∈S,ŝ∈S+:s6=ŝ

p
Ŝ|S(ŝ|s)

p
Ŝ|S(ŝ|s) + p

Ŝ|S(ŝ|ŝ)

= max
s∈S,ŝ∈S+:s6=ŝ

p
Ŝ|S(ŝ|s)

p
Ŝ|S(ŝ|s) + 1−∑ŝ′∈S:ŝ′ 6=ŝ pŜ|S(ŝ

′|ŝ)

≤ max
s∈S,ŝ∈S+:s6=ŝ

p
Ŝ|S(ŝ|s)

2p
Ŝ|S(ŝ|s) + 1− ~

(47)

≤ ~

~+ 1
, (48)

where (47) and (48) are due to (45). In view of Theorem 4,
It suffices to have

~

~+ I(~ ≤ 1)
≤ 1

(|S| − 1)e− |S|+ 2
. (49)

Note that (49) is not satisfied when~ > 1 since its left-hand
side is equal to 1 whereas its right-hand side is strictly less
than 1 (~ > 1 implies |S| ≥ 2). When~ ≤ 1, we can rewrite
(49) as4

~ ≤ 1

(|S| − 1)(e− 1)
,

which is exactly the desired result. This completes the proof
of Theorem 2.

In Appendix A, we give an alternative proof of Theorem 2
with a different threshold onH(S|S̃).

IV. EXTENSION AND DISCUSSION

A. Extension of Theorem 1

It is interesting to know to what extent Theorem 1 can
be extended beyond the binary-input case. This subsection is
largely devoted to answering this question. For anypY |X,S

andpS , define

ǫ(pY |X,S , pS) = min{ǫ ∈ [0, 1] : C(pY |X,S , pS, pS̃(ǫ)
GE

|S
)

= C(pY |X,S , pS)},

q(pY |X,S, pS) = min{q ∈ [0,
1

|S| ] : C(pY |X,S, pS , pS̃(q)
GS

|S
)

= C(pY |X,S , pS)}.

Proposition 1: 1) There existsα(pY |X,S , pS) > 0 such
that C(pY |X,S, pS , pS̃|S) = C(pY |X,S , pS) for all pS̃|S
satisfying I(S; S̃) ≤ α(pY |X,S , pS) if and only if
ǫ(pY |X,S , pS) < 1.

4Note that~ ≤ 1
(|S|−1)(e−1)

implies ~ ≤ 1 when |S| ≥ 2. The case
|S| = 1 is trivial since~ can only take the value 0.

2) ǫ(pY |X,S , pS) < 1 if and only if
∑

y∈Y,s∈S

pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, ∗), s)

∑

x∈X pX̂(x)pY |X,S(y|x, s)
> 0,

u ∈ U+\Gδ, (50)

where δ(u, y, s) and Gδ are defined in (14) and (21),
respectively,p

X̂
is an arbitrary maximizer of the opti-

mization problem in (4), and

U+ =

{

u ∈ U :
∑

y∈Y,s∈S

pS(s)pY |X,S(y|ψ(u, ∗), s)

× log
pY |X,S(y|ψ(u, ∗), s)

∑

x∈X pX̂(x)pY |X,S(y|x, s)
= C(pY |X,S , pS)

}

.

Remark: All maximizers of the optimization problem in (4)
give rise to the same

∑

x∈X pX̂(x)pY |X,S(y|x, s), y ∈ Y,
s ∈ S [6, p. 96, Cor. 2].

Proof: The first statement can be easily extracted from
the proof of Theorem 1.

Now we proceed to prove the second statement. First recall
the definitions ofDGE(pU , ǫ, u) andp

Û
in (12) and (11), re-

spectively. Sincep
Û

is a capacity-achieving input distribution
of channelpY,S|U whenǫ = 1, we must have

DGE(pÛ , 1, u) = C(pY |X,S , pS), u ∈ U with p
Û
(u) > 0,

DGE(pÛ , 1, u) ≤ C(pY |X,S , pS), u ∈ U with p
Û
(u) = 0,

which, together with the factU+ = {u ∈ U : DGE(pÛ , 1, u) =
C(pY |X,S , pS)}, implies

{u ∈ U : p
Û
(u) > 0} ⊆ U+, (51)

DGE(pÛ , 1, u) = C(pY |X,S , pS), u ∈ U+, (52)

DGE(pÛ , 1, u) < C(pY |X,S , pS), otherwise. (53)

It can be verified that

DGE(pÛ , ǫ, u) = DGE(pÛ , 1, u), ǫ ∈ [0, 1], u ∈ Gδ. (54)

Moreover, in view of (20), we can write (50) equivalently as

∂

∂ǫ
DGE(pÛ , ǫ, u)

∣

∣

∣

∣

ǫ=1

> 0, u ∈ U+\Gδ. (55)

According to (52)–(55), there existsǫ(pY |X,S , pS) ∈ [0, 1)
such that

DGE(pÛ , ǫ, u) = C(pY |X,S, pS), u ∈ U+ ∩ Gδ, (56)

DGE(pÛ , ǫ, u) ≤ C(pY |X,S, pS), otherwise (57)

for ǫ ≥ ǫ(pY |X,S , pS). In light of (51) and the fact{u ∈ U :
p
Û
(u) > 0} ⊆ X ⊆ Gδ, we have

{u ∈ U : p
Û
(u) > 0} ⊆ U+ ∩ Gδ. (58)

Combining (56), (57), and (58) proves the “if” part of the
second statement. Next we turn to the “only if” part of the
second statement. Assuming the existence ofǫ(pY |X,S, pS) ∈
[0, 1) such thatC(pY |X,S , pS, pS̃(ǫ)|S) = C(pY |X,S , pS) for
ǫ ≥ ǫ(pY |X,S , pS) (or equivalentlyp

Û
is a capacity-achieving
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ǫ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.27

0.275

0.28

0.285

0.29

0.295

0.3

0.305

0.31

0.315

0.32

C(pY |X,S , pS)

C(pY |X,S , pS ,BEC(ǫ))

C(pY |X,S , pS)

Fig. 5. Plot ofC(pY |X,S , pS ,BEC(ǫ)) againstǫ for ǫ ∈ [0, 1], wherepY |X,S andpS are given by (62) and (63), respectively.

input distribution of channelpY,S|U for ǫ ≥ ǫ(pY |X,S , pS)),
we must have

DGE(pÛ , ǫ, u) ≤ C(pY |X,S , pS), ǫ ≥ ǫ(pY |X,S , pS), u ∈ U .
(59)

It can be verified that

∂2

∂ǫ2
DGE(pÛ , ǫ, u)

=
∑

y∈Y,s∈S

pS(s)δ
2(u, y, s)

pY |X,S(y|ψ(u, s), s) + ǫδ(u, y, s)

> 0, ǫ ∈ [0, 1], u ∈ U\Gδ. (60)

Moreover, by the definition ofU+,

DGE(pÛ , 1, u) = C(pY |X,S , pS), u ∈ U+. (61)

Note that (59), (60), and (61) hold simultaneously foru ∈
U+\Gδ, from which (50) (or equivalently (55)) can be readily
deduced. This completes the proof of Proposition 1.

As shown by the following example, the necessary and
sufficient condition (50) is not always satisfied when|X | > 2.
Let

pY |X,S(y|x, s) =















































1, (x, y, s) = (0, 0, 0) or (1, 1, 1),
0, (x, y, s) = (0, 1, 0) or (1, 0, 1),
2
5 , (x, y, s) = (1, 0, 0) or (0, 1, 1),
3
5 , (x, y, s) = (1, 1, 0) or (0, 0, 1),
3
10 , (x, y, s) = (2, 0, 0),
1
5 , (x, y, s) = (2, 0, 1),
7
10 , (x, y, s) = (2, 1, 0),
4
5 , (x, y, s) = (2, 1, 1),

(62)

pS(0) = pS(1) =
1

2
. (63)

For this example, it can be verified thatû ∈ U+\Gδ and

∑

y∈Y,s∈S

pS(s)δ(û, y, s) log
pY |X,S(y|ψ(û, ∗), s)

∑

x∈X pX̂(x)pY |X,S(y|x, s)
< 0,

where ψ(û, ·) is given by ψ(û, 0) = 2, ψ(û, 1) =
1, and ψ(û, ∗) = 1; indeed, Fig. 5 shows that
C(pY |X,S , pS ,BEC(ǫ)) > C(pY |X,S , pS) for ǫ ∈ [0, 1).

The proof of Proposition 1 in fact suggests a strategy for
computingǫ(pY |X,S , pS). Let p

X̂
be an arbitrary maximizer

of the optimization problem in (4) and definep
Û

according to
(11). Note that

• DGE(pÛ , 1, u) ≤ C(pY |X,S , pS) for u ∈ U (see (52) and
(53)),

• DGE(pÛ , ǫ, u) does not depend onǫ for u ∈ Gδ (see
(54)),

• DGE(pÛ , ǫ, u) is a strictly convex function ofǫ for u ∈
U\Gδ (see (60)).

Hence, for eachu ∈ U , there are three mutually exclusive
cases.

1) DGE(pÛ , 0, u) ≤ C(pY |X,S , pS): We have
DGE(pÛ , ǫ, u) ≤ C(pY |X,S , pS) for ǫ ∈ [ǫ(u), 1],
whereǫ(u) = 0.

2) DGE(pÛ , 0, u) > DGE(pÛ , 1, u) = C(pY |X,S , pS)
and ∂

∂ǫ
DGE(pÛ , ǫ, u)

∣

∣

ǫ=1
≤ 0 (this case can arise

only when |X | > 2): We haveDGE(pÛ , 0, u) >

C(pY |X,S , pS) for ǫ ∈ [0, ǫ(u)), whereǫ(u) = 1.
3) Otherwise: We haveDGE(pÛ , ǫ, u) > C(pY |X,S , pS)

for ǫ ∈ [0, ǫ(u)) andDGE(pÛ , ǫ, u) ≤ C(pY |X,S , pS)
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for ǫ ∈ [ǫ(u), 1], whereǫ(u) is the unique solution of
DGE(pÛ , ǫ, u) = C(pY |X,S , pS) for ǫ ∈ (0, 1).

It can be readily shown that

ǫ(pY |X,S , pS) = max
u∈U

ǫ(u). (64)

We can computeq(pY |X,S , pS) in a similar way. Define

DGS(pU , q, u) = D(pY,S|U (·, ·|u)‖pY,S),

where

pY,S|U (y, s|u) = pS(s)(pY |X,S(y|ψ(u, s), s) + qω(u, y, s))

with

ω(u, y, s) =
∑

s̃∈S:s̃6=s

pY |X,S(y|ψ(u, s̃), s)

− (|S| − 1)pY |X,S(y|ψ(u, s), s),
u ∈ U , y ∈ Y, s ∈ S.

Again, letp
Û

be defined5 according to (11). It can be verified
that

DGS(pÛ , q, u)

=
∑

y∈Y,s∈S

pS(s)(pY |X,S(y|ψ(u, s), s) + qω(u, y, s))

× log
pY |X,S(y|ψ(u, s), s) + qω(u, y, s)
∑

x∈X pX̂(x)pY |X,S(y|x, s)
,

q ∈ [0,
1

|S| ], u ∈ U ,

∂

∂q
DGS(pÛ , q, u)

=
∑

y∈Y,s∈S

pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + qω(u, y, s)
∑

x∈X pX̂(x)pY |X,S(y|x, s)
,

q ∈ [0,
1

|S| ], u ∈ U ,

∂2

∂q2
DGS(pÛ , q, u)

=
∑

y∈Y,s∈S

pS(s)δ
2(u, y, s)

pY |X,S(y|ψ(u, s), s) + qω(u, y, s)
> 0,

q ∈ [0,
1

|S| ], u ∈ U\Gω,

where

Gω = {u ∈ U : ω(u, y, s) = 0 for all y ∈ Y ands ∈ S}.

Clearly,

• DGS(pÛ ,
1
|S| , u) ≤ C(pY |X,S , pS) for u ∈ U ,

• DGS(pÛ , q, u) does not depend onq for u ∈ Gω,
• DGS(pÛ , q, u) is a strictly convex function ofq for u ∈

U\Gω.

5Note that the underlyingU depends onS̃. In particular, |U| = |X ||S|

when p
S̃|S is a generalized symmetric channel whereas|U| = |X ||S|+1

whenp
S̃|S is a generalized erasure channel.

Hence, for eachu ∈ U , there are also three mutually exclusive
cases.

1) DGS(pÛ , 0, u) ≤ C(pY |X,S , pS): We have
DGS(pÛ , q, u) ≤ C(pY |X,S , pS) for q ∈ [q(u), 1],
whereq(u) = 0.

2) DGS(pÛ , 0, u) > DGS(pÛ ,
1
|S| , u) = C(pY |X,S , pS)

and ∂
∂q
DGS(pÛ , q, u)

∣

∣

∣

q= 1
|S|

≤ 0 (this case can arise

only when |X | > 2): We have DGS(pÛ , 0, u) >

C(pY |X,S , pS) for q ∈ [0, q(u)), whereq(u) = 1
|S| .

3) Otherwise: We haveDGS(pÛ , q, u) > C(pY |X,S , pS)
for q ∈ [0, q(u)) andDGS(pÛ , q, u) ≤ C(pY |X,S , pS)
for q ∈ [q(u), 1

|S| ], whereq(u) is the unique solution of
DGS(pÛ , q, u) = C(pY |X,S , pS) for q ∈ (0, 1

|S|).
It can be readily shown that

q(pY |X,S , pS) = max
u∈U

q(u). (65)

For pY |X,S and pS illustrated in Fig. 2 (see also (9) and
(10)), we show in Appendix B that

ǫ(pY |X,S , pS) =

{

ǫ̂(θ), θ ∈ (0, 1),
0, otherwise,

(66)

q(pY |X,S , pS) =

{

q̂(θ), θ ∈ (0, 1),
0, otherwise,

(67)

whereǫ̂(θ) is the unique solution of

ǫ(1− θ) log 2ǫ+ (1− ǫ(1− θ)) log
2(1− ǫ(1− θ))

1 + θ

= (1− θ) log 2 + θ log
2θ

1 + θ

for ǫ ∈ (0, 1), and q̂(θ) is the unique solution of

q(1− θ) log 2q + (1− q(1− θ)) log
2(1− q(1− θ))

1 + θ

=
1

2

(

(1− θ) log 2 + log
2

1 + θ
+ θ log

2θ

1 + θ

)

for q ∈ (0, 12 ). Settingθ = 1
2 gives ǫ(pY |X,S , pS) ≈ 0.1 (cf.

Fig. 3) andq(pY |X,S , pS) ≈ 0.037 (cf. Fig. 4).

B. Extension of Theorem 2

We shall extend Theorem 2 in a similar fashion. For any
pY |X,S andpS , define

ǫ(pY |X,S , pS) = max{ǫ ∈ [0, 1] : C′(pY |X,S , pS , pS̃(ǫ)
GE

|S
)

= C(pY |X,S , pS)},

q(pY |X,S , pS) = max{q ∈ [0,
1

|S| ] : C
′(pY |X,S , pS, pS̃(q)

GS
|S
)

= C(pY |X,S , pS)}.
Proposition 2: 1) There existsβ(pY |X,S , pS) > 0 such

thatC′(pY |X,S , pS, pS̃|S) = C(pY |X,S, pS) for all pS̃|S

satisfying H(S|S̃) ≤ β(pY |X,S , pS) if and only if
q(pY |X,S , pS) > 0.

2) q(pY |X,S , pS) > 0 if and only if there existsp
X̂|S ∈ P

such that

{x ∈ X : p
X̂|S(x|s) > 0} = X+, s ∈ S. (68)
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Fig. 6. Plot ofC′(pY |X,S , pS ,BSC(q)) againstq for q ∈ [0, 1
2
], wherepY |X,S andpS are given by (69) and (70), respectively.

Proof: The first statement can be easily extracted from the
proof of Theorem 2. The second statement is a consequence
of Lemma 4.

As shown by the following example, the necessary and
sufficient condition (68) is not always satisfied when|X | > 2.
Let

pY |X,S(y|x, s) =































1, (x, y, s) = (0, 0, 0) or (2, 1, 1),
0, (x, y, s) = (0, 1, 0) or (2, 0, 1),
2
5 , (x, y, s) = (1, 0, 0) or (0, 1, 1),
3
5 , (x, y, s) = (1, 1, 0) or (0, 0, 1),
4
5 , (x, y, s) = (2, 0, 0) or (1, 1, 1),
1
5 , (x, y, s) = (2, 1, 0) or (1, 0, 1),

(69)

pS(0) = pS(1) =
1

2
. (70)

For this example, it can be verified that the maximizer of the
optimization problem in (5), denoted byp

X̂|S, is unique and

{x ∈ X : p
X̂|S(x|0) > 0} = {0, 1},

{x ∈ X : p
X̂|S(x|1) > 0} = {0, 2};

indeed, Fig. 6 shows thatC′(pY |X,S , pS,BSC(q)) <

C(pY |X,S , pS) for q ∈ (0, 12 ].
In view of Lemmas 3 and 4, we have

ǫ(pY |X,S , pS) = max
p
X̂|S∈P

∑

x∈X

min
s∈S

p
X̂|S(x|s), (71)

q(pY |X,S , pS) = max
p
X̂|S∈P

min
x∈X+,s∈S

p
X̂|S(x|s)

∑

s′∈S pX̂|S(x|s′)
. (72)

Note thatP does not depend onpS (under the assumption
ρ > 0); as a consequence,ǫ(pY |X,S , pS) and q(pY |X,S , pS)

do not depend onpS either. ForpY |X,S andpS illustrated in
Fig. 2 (see also (9) and (10)), we show in Appendix C that

ǫ(pY |X,S , pS)

=











2

(

1 + (1− θ)θ
θ

1−θ

)−1

θ
θ

1−θ , θ ∈ (0, 1),

1, otherwise,

(73)

q(pY |X,S , pS)

=











(

1 + (1 − θ)θ
θ

1−θ

)−1

θ
θ

1−θ , θ ∈ (0, 1),

1
2 , otherwise.

(74)

Setting θ = 1
2 gives ǫ(pY |X,S , pS) = 4

5 (cf. Fig. 3) and
q(pY |X,S , pS) =

2
5 (cf. Fig. 4).

C. Two Implicit Conditions

In this subsection, we shall examine the following two
implicit conditions in Theorem 1:

1) perfect state information at the decoder,
2) causal noisy state observation at the encoder.
If no state information is available at the decoder, then the

channel capacity is given by

C̃(pY |X,S , pS , pS̃|S) , max
pU

I(U ;Y ),

where the joint distribution of(U,X, Y, S, S̃) is given by (2).
Furthermore, if there is also no state information available at
the encoder, then the channel capacity becomes

C̃(pY |X,S , pS) , max
pX

I(X ;Y ), (75)
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Fig. 7. Plot ofC̃(pY |X,S , pS ,BEC(ǫ)) againstǫ for ǫ ∈ [0, 1], wherepY |X,S andpS are given by (77) withµ = 1
4

and (78), respectively.

wherepX,Y,S(x, y, s) = pX(x)pS(s)pY |X,S(y|x, s). Define

ǫ̃(pY |X,S , pS) = min{ǫ ∈ [0, 1] : C̃(pY |X,S , pS, pS̃(ǫ)
GE

|S
)

= C̃(pY |X,S , pS)}.

The proof of the following result is similar to that of Propo-
sition 1 and is omitted.

Proposition 3: 1) There exists̃α(pY |X,S , pS) > 0 such
that C̃(pY |X,S, pS , pS̃|S) = C̃(pY |X,S , pS) for all pS̃|S
satisfying I(S; S̃) ≤ α̃(pY |X,S , pS) if and only if
ǫ̃(pY |X,S , pS) < 1.

2) ǫ̃(pY |X,S , pS) < 1 if and only if

∑

y∈Y

(

∑

s∈S

pS(s)δ(u, y, s)

)

× log

∑

s∈S pS(s)pY |X,S(y|ψ(u, ∗), s)
∑

x∈X ,s∈S pX̂(x)pS(s)pY |X,S(y|x, s)
> 0,

u ∈ Ũ+\G̃δ, (76)

where δ(u, y, s) is defined in (14),p
X̂

is an arbitrary
maximizer of the optimization problem in (75), and

G̃δ =

{

u ∈ U :
∑

s∈S

pS(s)δ(u, y, s) = 0 for all y ∈ Y
}

,

Ũ+ =

{

u ∈ U :
∑

y∈Y

(

∑

s∈S

pS(s)pY |X,S(y|ψ(u, ∗), s)
)

× log

∑

s∈S pS(s)pY |X,S(y|ψ(u, ∗), s)
∑

x∈X ,s∈S pX̂(x)pS(s)pY |X,S(y|x, s)

= C̃(pY |X,S , pS)

}

.

As shown by the following example, the necessary and
sufficient condition (76) is not always satisfied even when
|X | = 2. Let

Y = X ⊕ S, X = Y = S = {0, 1}, (77)

pS(1) = µ ∈ (0,
1

2
), (78)

where⊕ is the modulo-2 addition. It can be verified that (76)
is not satisfied for this example; indeed, Fig. 7 indicates that

C̃(pY |X,S , pS ,BEC(ǫ)) > C̃(pY |X,S , pS), ǫ ∈ [0, 1). (79)

Here we give an alternative way to prove (79). WriteS =
S̃⊕∆, whereS̃ and∆ are two mutually independent Bernoulli
random variables with

pS̃(1) = ν ∈ [0, µ],

p∆(1) =
µ− ν

1− 2ν
.

It is clear that

C̃(pY |X,S , pS , pS̃|S) = log 2−H(∆)

> log 2−H(S)

= C̃(pY |X,S , pS), ν ∈ (0, µ]. (80)

In light of Lemma 3,pS̃|S is a stochastically degraded version
of BEC(ǫ) and consequently

C̃(pY |X,S , pS ,BEC(ǫ)) ≥ C̃(pY |X,S , pS, pS̃|S) (81)
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Fig. 8. Plot ofCGP (pY |X,S , pS ,BEC(ǫ)) againstǫ for ǫ ∈ [0, 1], wherepY |X,S andpS are given by (9) withθ = 1
2

and (10), respectively.

if H(S)−H(∆) ≤ µ2(1−ǫ)2

2 . Combining (80) and (81) proves
(79).

Now we proceed to examine the second implicit condition.
If the noisy state observation is available non-causally atthe
encoder, the Gelfand-Pinsker theorem [11] (see also [3, Th.
7.3]) indicates that the channel capacity is given by

CGP (pY |X,S , pS , pS̃|S) , max
p
U|S̃

I(U ;Y, S)− I(U ; S̃),

where the joint distribution of(U,X, Y, S, S̃) factors as

pU,X,Y,S,S̃(u, x, y, s, s̃)

= pS(s)pS̃|S(s̃|s)pU|S̃(u|s̃)I(x = ψ(u, s̃))pY |X,S(y|x, s),
u ∈ U , x ∈ X , y ∈ Y, s ∈ S, s̃ ∈ S̃.

It turns out thatCGP (pY |X,S , pS, pS̃|S) is bounded between
C(pY |X,S , pS, pS̃|S) andC′(pY |X,S , pS , pS̃|S), i.e.,

C(pY |X,S , pS, pS̃|S) ≤ CGP (pY |X,S , pS, pS̃|S)

≤ C′(pY |X,S , pS, pS̃|S).

Indeed, the first inequality is obvious, and the second one holds
because

I(U ;Y, S)− I(U ; S̃) ≤ I(U ;Y, S)− I(U ;S)

= I(U ;Y |S)
≤ I(X ;Y |S).

In Fig. 8 we plot CGP (pY |X,S , pS,BEC(ǫ)) against ǫ
for ǫ ∈ [0, 1], where pY |X,S and pS are given by
(9) with θ = 1

2 and (10), respectively; it can be
seen thatCGP (pY |X,S , pS ,BEC(ǫ)) is strictly greater than

C(pY |X,S , pS) except whenǫ = 1. So the causality condition
on the noisy state observation at the encoder is not superfluous
for Theorem 1.

V. CONCLUSION

We have shown that the capacity of binary-input6 chan-
nels is very “sensitive” to the quality of the encoder side
information whereas the generalized probing capacity is very
“robust”. Here the words “sensitive” and “robust” should not
be understood in a quantitative sense. Indeed, it is known
[7] that, when |X | = 2, the ratio of C(pY |X,S , pS) to
C(pY |X,S , pS) is at least 0.942 and the difference between
these two quantities is at most∼0.011 bit; in other words,
the gain that can be obtained by exploiting the encoder side
information (or the loss that can be incurred by ignoring the
encoder side information) is very limited anyway.

Binary signalling is widely used, especially in wideband
communications. So our work might have some practical
relevance. However, great caution should be exercised in in-
terpreting Theorems 1 and 2. Specifically, both results relyon
the assumption that the channel state takes values from a finite
set7, which is not necessarily satisfied in reality; moreover, the
freedom of power control in real communication systems is
not captured by our results. Nevertheless, our work can be
viewed as an initial step towards a better understanding of
the fundamental performance limits of communication systems
where the transmitter side information and the receiver side
information are not deterministically related.

6In fact, both numerical simulation and theoretical analysis suggest that
similar results hold for many (but not all) non-binary inputchannels.

7In contrast, the assumption|Y| < ∞ and |S̃| < ∞ is not essential
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Finally, it is worth mentioning that our results might have
their counterparts in source coding.

APPENDIX A
AN ALTERNATIVE PROOF OFTHEOREM 2

We shall show that, for any binary-input channelpY |X,S ,
state distributionpS, and side channelpS̃|S ,

C′(pY |X,S , pS , pS̃|S) = C(pY |X,S , pS)

if

H(S|S̃) ≤ 4ρ log 2

3 + 2(e− 1)
√

2|S|
. (82)

Lemma 7: p
X̂|S is a stochastically degraded version ofpS̃|S

if

H(S|S̃) ≤ 4τρ log 2

3τ + 2
√

2|S|
, (83)

where

τ = min
x∈X+

mins∈S pX̂|S(x|s)
maxs∈S pX̂|S(x|s)

.

Proof: Let Ŝ denote the maximum likelihood estimate
of S based onS̃. It suffices to show thatp

Ŝ|S is invertible
andp−1

Ŝ|S
p
X̂|S is a valid probability transition matrix if (83) is

satisfied.
Let σmin(pŜ|S) denote the smallest singular value ofp

Ŝ|S.
It follows from [12, Th. 3] that

σmin(pŜ|S) ≥ min
s∈S

1

2

(

2p
Ŝ|S(s|s)−

∑

ŝ∈S:ŝ6=s

p
Ŝ|S(ŝ|s)

−
∑

ŝ∈S:ŝ6=s

p
Ŝ|S(s|ŝ)

)

. (84)

Clearly,

min
s∈S

1

2

(

2p
Ŝ|S(s|s)−

∑

ŝ∈S:ŝ6=s

p
Ŝ|S(ŝ|s)−

∑

ŝ∈S:ŝ6=s

p
Ŝ|S(s|ŝ)

)

= min
s∈S

1

2

(

2− 3
∑

ŝ∈S:ŝ6=s

p
Ŝ|S(ŝ|s)−

∑

ŝ∈S:ŝ6=s

p
Ŝ|S(s|ŝ)

)

≥ 1− 3

2

∑

s,ŝ∈S:s6=ŝ

p
Ŝ|S(ŝ|s). (85)

Substituting (85) into (84) and invoking (45) gives

σmin(pŜ|S) ≥ 1− 3H(S|S̃)
4ρ log 2

. (86)

Therefore,p
Ŝ|S is invertible ifH(S|S̃) < 4ρ log 2

3 . Let ‖ · ‖∞,
‖ · ‖2, and‖ · ‖F denote the maximum row sum matrix norm,
the spectral norm, and the Frobenius norm, respectively [13].
Note that

‖p−1

Ŝ|S
− diag(1, · · · , 1)‖∞

≤
√

|S|‖p−1

Ŝ|S
− diag(1, · · · , 1)‖2

≤
√

|S|‖p−1

Ŝ|S
‖2‖pŜ|S − diag(1, · · · , 1)‖2 (87)

≤
√

|S|‖p−1

Ŝ|S
‖2‖pŜ|S − diag(1, · · · , 1)‖F , (88)

where (87) follows by the sub-multiplicative property of the
spectral norm. We have

‖p−1

Ŝ|S
‖2 =

1

σmin(pŜ|S)

≤
(

1− 3H(S|S̃)
4ρ log 2

)−1

, (89)

where (89) is due to (86). Forp
Ŝ|S − diag(1, · · · , 1), it is

clear that the diagonal entries are non-positive, the off-diagonal
entries are non-negative, and the sum of all entries is equal
to 0; moreover, the sum of its off-diagonal entries is bounded
above byH(S|S̃)

2ρ log 2 (see (45)). Therefore,

‖p
Ŝ|S − diag(1, · · · , 1)‖F

=

√

∑

s∈S

(p
Ŝ|S(s|s)− 1)2 +

∑

s,ŝ∈S:s6=ŝ

(p
Ŝ|S(ŝ|s))2

≤

√

√

√

√

(

∑

s∈S

(p
Ŝ|S(s|s)− 1)

)2

+

(

∑

s,ŝ∈S:s6=ŝ

p
Ŝ|S(ŝ|s)

)2

=

√

√

√

√2

(

∑

s,ŝ∈S:s6=ŝ

p
Ŝ|S(ŝ|s)

)2

≤ H(S|S̃)√
2ρ log 2

. (90)

Substituting (89) and (90) into (88) yields

‖p−1

Ŝ|S
− diag(1, · · · , 1)‖∞

≤
√

|S|H(S|S̃)√
2ρ log 2

(

1− 3H(S|S̃)
4ρ log 2

)−1

. (91)

To ensure that all entries ofp−1

Ŝ|S
p
X̂|S are non-negative (or

equivalently(diag(1, · · · , 1) − p−1

Ŝ|S
)p

X̂|S is component-wise
dominated byp

X̂|S), it suffices to have

‖p−1

Ŝ|S
− diag(1, · · · , 1)‖∞ ≤ τ. (92)

Combining (91) and (92) shows thatp−1

Ŝ|S
p
X̂|S is a valid

probability transition matrix8 if (83) is satisfied9.
Since |X | = 2, it follows from [7, Th. 2] that there exists

p
X̂|S ∈ P satisfying

p
X̂|S(x|s) > e−1, x ∈ X , s ∈ S.

For suchp
X̂|S , we have

τ ≥ 1

e− 1
.

Invoking Lemma 7 shows thatp
X̂|S is a stochastically

degraded version of pS̃|S (and consequently
C′(pY |X,S , pS, pS̃|S) = C(pY |X,S , pS)) if (82) is satisfied.

8The requirement that the entries in each row ofp−1

Ŝ|S
p
X̂|S add up to 1 is

automatically satisfied.
9Note that (83) impliesH(S|S̃) < 4ρ log 2

3
, which further implies the

existence ofp−1

Ŝ|S
.
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TABLE I
SPECIFICATION OFψ(·, ·) FORU = {0, 1, · · · , 7} AND S̃ = {0, 1, ∗}

ψ(u, s̃) s̃ = 0 s̃ = 1 s̃ = ∗
u = 0 0 0 0
u = 1 1 1 1
u = 2 1 1 0
u = 3 0 0 1
u = 4 0 1 0
u = 5 0 1 1
u = 6 1 0 0
u = 7 1 0 1

TABLE II
SPECIFICATION OFψ(·, ·) FORU = {0, 1, · · · , 3} AND S̃ = {0, 1, ∗}

ψ(u, s̃) s̃ = 0 s̃ = 1
u = 0 0 0
u = 1 1 1
u = 2 0 1
u = 3 1 0

APPENDIX B
PROOF OF(66) AND (67)

Lemma 8: For θ ∈ (0, 1),

η(θ) , (1− θ) log(1 + θ) + θ log θ < 0.

Proof: We have

d2η(θ)

dθ2
=

d

dθ

(

− log(1 + θ) +
1− θ

1 + θ
+ log θ + 1

)

= − 1

1 + θ
− 2

(1 + θ)2
+

1

θ

=
1− θ

θ(1 + θ)2

> 0, θ ∈ (0, 1),

which, together with the factη(0) = η(1) = 0, implies the
desired result.

When θ = 0 or θ = 1, we haveC(pY |X,S , pS) =
C(pY |X,S , pS), which implies ǫ(pY |X,S , pS) =
q(pY |X,S , pS) = 0. When θ ∈ (0, 1), the maximizer of
the optimization problem in (4), denoted byp

X̂
, is unique

and is given by

p
X̂
(0) = p

X̂
(1) =

1

2
.

Now considerψ(·, ·) specified by Table I. It can be verified
that

DGE(pÛ , ǫ, u)

=
1

2

(

(1 − θ) log 2 + log
2

1 + θ
+ θ log

2θ

1 + θ

)

, u = 0, 1,

DGE(pÛ , ǫ, u)

=
1

2

(

ǫ(1− θ) log 2ǫ+ (θ + ǫ(1− θ)) log
2(θ + ǫ(1− θ))

1 + θ

+ (1− ǫ(1− θ)) log
2(1− ǫ(1− θ))

1 + θ

+ (1− ǫ)(1 − θ) log 2(1− ǫ)

)

, u = 2, 3,

DGE(pÛ , ǫ, u)

=
1

2

(

(1− θ) log 2 + (θ + ǫ(1− θ)) log
2(θ + ǫ(1− θ))

1 + θ

+ θ log
2θ

1 + θ
+ (1− ǫ)(1− θ) log 2(1− ǫ)

)

, u = 4, 5,

DGE(pÛ , ǫ, u)

=
1

2

(

ǫ(1− θ) log 2ǫ+ log
2

1 + θ

+ (1− ǫ(1− θ)) log
2(1− ǫ(1− θ))

1 + θ

)

, u = 6, 7.

Moreover,

DGE(pÛ , 0, u) =
1

2

(

(1− θ) log 2 + log
2

1 + θ

+ θ log
2θ

1 + θ

)

= C(pY |X,S , pS), u = 0, 1, 2, 3,

DGE(pÛ , 0, u) = (1− θ) log 2 + θ log
2θ

1 + θ

< C(pY |X,S , pS), u = 4, 5, (93)

DGE(pÛ , 0, u) = log
2

1 + θ

> C(pY |X,S , pS), u = 6, 7, (94)

where (93) and (94) follow from Lemma 8. Therefore, we
have

ǫ(u) = 0, u = 0, 1, 2, 3, 4, 5,

ǫ(u) = ǫ̂(θ), u = 6, 7,

which, together with (64), proves (66) forθ ∈ (0, 1). Next
considerψ(·, ·) specified by Table II. It can be verified that

DGS(pÛ , q, u)

=
1

2

(

(1 − θ) log 2 + log
2

1 + θ
+ θ log

2θ

1 + θ

)

, u = 0, 1,
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DGS(pÛ , q, 2)

= (1 − q)(1− θ) log 2(1− q)

+ (θ + q(1 − θ)) log
2(θ + q(1− θ))

1 + θ
,

DGS(pÛ , q, 3)

= q(1 − θ) log 2q + (1 − q(1− θ)) log
2(1− q(1 − θ))

1 + θ
.

Moreover,

DGS(pÛ , 0, u) =
1

2

(

(1− θ) log 2 + log
2

1 + θ

+ θ log
2θ

1 + θ

)

= C(pY |X,S , pS), u = 0, 1,

DGS(pÛ , 0, 2) = (1− θ) log 2 + θ log
2θ

1 + θ

< C(pY |X,S , pS), (95)

DGS(pÛ , 0, 3) = log
2

1 + θ

> C(pY |X,S , pS), (96)

where (95) and (96) follow from Lemma 8. Therefore, we
have

q(u) = 0, u = 0, 1, 2,

q(3) = q̂(θ),

which, together with (65), proves (67) forθ ∈ (0, 1).

APPENDIX C
PROOF OF(73) AND (74)

When θ = 0 or θ = 1, we haveC(pY |X,S , pS) =
C(pY |X,S , pS), which implies ǫ(pY |X,S , pS) = 1 and
q(pY |X,S , pS) = 1

2 . When θ ∈ (0, 1), the maximizer of the
optimization problem in (5), denoted byp

X̂|S , is unique and
is given by

p
X̂|S(x|s)

=























(

1 + (1− θ)θ
θ

1−θ

)−1

θ
θ

1−θ , x = s,

(

1 + (1− θ)θ
θ

1−θ

)−1(

1− θ
1

1−θ

)

, otherwise.

In view of (71) and (72), it suffices to show that

θ
θ

1−θ < 1− θ
1

1−θ , θ ∈ (0, 1).

Indeed, forθ ∈ (0, 1),

θ
θ

1−θ < 1− θ
1

1−θ

⇔ 1 < θ−
θ

1−θ − θ

⇔ (1− θ) log(1 + θ) + θ log θ < 0,

and the last inequality is true according to Lemma 8.
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