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When is Noisy State Information at the Encoder as
Useless as No Information or as Good as
Noise-Free State?

Rui Xu, Jun Chen, Tsachy Weissman, and Jian-Kang Zhang

Abstract—For any binary-input channel with perfect state special cases. Specifically, when there is no encoder side
information at the decoder, if the mutual information between information, the channel capacity reduces(to [3, Eq. (7.2)]
the noisy state observation at the encoder and the true chamh
state is below a positive threshold determined solely by thstate C(py|x,s,ps) £ maxI(X;Y]S), 4)
distribution, then the capacity is the same as that with no enoder px
side information. A complementary phenomenon is revealedof
the generalized probing capacity. Extensions beyond bingrinput
channels are developed.

where px v,s(2,y,s) = px(2)ps(s)py|x,s(ylz,s); on the
other hand, when perfect state information is availabléhat t

encoder (as well as the decoder), the channel capacity @com
Index Terms—Binary-input, channel capacity, erasure channel, B, Eq. (7.3)]

probing capacity, state information, stochastically degaded.

6(Z’Y|X,S,PS) = I;;{%;(I(X§ Y|S), (%)
I. INTRODUCTION
Consid | H T wherepx y,s(z,y, s) = ps(s)px|s(®|s)py|x,s(ylz, 5).

onsider a memoryless channgj-|x s with input X, For comparison, consider the following similarly defined
outputY’, and stateS. We assume that the channel state quantity

distributed according t@g, is provided to the decoder, and a

noisy state observatio$, generated by through side channel C'(py|x,5,Ps,P5|s) = maxI(X;Y]S),

pg|s» Is available causally at the encoder. Hé&feY’, S, andS pU -

are defined over finite alphabets Y, S, andS, respectively. Where the joint distribution ofU, X, Y, S, 5) is also given by
In this setting (see Figl1), Shannon’s remarkable resjlt [§2)- We shall refer ta”’ (py x5, ps, g 5) as the generalized
(see also[[2, Eq. (3)] and[3, Th. 7.2]) implies that the creinnProbing capacity. By the functional representation lem@a [
capacity is given by p. 626] (see alsd [5, Lemma 11 (py|x,s,Ps: Pg|s) can be

R defined equivalently as
O(pY\X,Sap57pS’ S) :maXI(U3Y|S) (1)
| pu C/(pY|X,S7PS,P§|s) £ glaxI(X;Y|S),

The auxiliary random variablé’ is defined over alphabét i
with 1| = |X|'S!, whose joint distribution with X,Y, S, S) where
factors as -
pX,Y,S,S(xv Y, s, S)
Py x,v,5,5(U T Y, 5, 8) = ps(5)pg)s(8ls)px)5(=[3)py x5 (yl2, 5),
= pu(u)ps(s)pg s(8ls)l(@ = ¥(u, 5))py|x,s(ylz, 5), TEX,ye),s€S,5€8.
ueld,x e X,ycV,s€8,5¢S, (2 Clearly
wherel(-) is the indicator function, and(u,-), v € U, are C <C N
|x|!S! different mappings fron$ to X'. Without loss of gener- Clpvixs:ps) < /(py\x,s,ps,ps‘s)
ality, we sett = {0,1,---,|X|—1}, 8 ={0,1---,|S|—1}, < Cpy|x.5:P5:P5)s)
U =1{0,1,---,]x|'°l — 1}, and order the mappings(u, -), < C(py|x,5:P3)- (6)
u € U, in such a way that the firgtt’| mappings are Moreover. we have
’L/J(U, ) =u, uc X; (3)

C(pY|X,SvaapS"S) = C/(pY|X,Sap57p§|S)
moreover, we assume that £ mingcs ps(s) > 0. The = C(py|x.9:Ps) @)
capacity formula[{fl) can be simplified in the following two - "

if S andS are independent (i.el,(S; S) = 0), and
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Fig. 2. lllustration ofpy| x s andps given by [@) and[{10), respectively.

To  elucidate the  operational meaning  of log 2, =0,
C/(py|X,5,p5,p§|S) and its connection with — _ i
C(py|x,s:Ps,Pg|g)s It instructive to consider the Cloyixsps) = § log {1+ {1 =007 |, 6<(0,1),
special case whergg ¢ is a binary erasure channel with 0, =1

erasure probability (denoted by BE()), which corresponds

to the probing channel setup studied [0 [4]. The probmlqote thatC'(

Py|x,s,Ps) IS strictly greater tha (py | x,s, Ps)

channel model is essentially the same as the one in Figyasso — 0 or 6 = 1. It follows by (2) and [8) that
@ except that, in Fig[]1l, the encoder (which, with high '

probability, observes approximatelye state symbols out
of the whole state sequence of lengthwhen n is large
enough) has no control of the exact positions of these
symbols whereas, in the probing channel model, the encoder(py| v s, ps, BEC(e ))\ = C'(py|x,s: D5, BEC(e))]E:0
has the freedom to specify the positions of thesesymbols

according to the message to be sent. It is shown lin [4] that

this additional freedom increases the achievable rate fr

C(pY\X,SapSaBEC(E)) to Cl(pY\X,SapS7BEC(€))'

Now

consider an example (see also Hijj. 2) where

%%

C(pY\X,SapSa BEC(E))‘ = (pY\X,SapSa BEC(G))Lzl
= C(py|x,s:Ps);

= C(py|x,s,Ps)-

gain a better understanding, we plot
C(pY|X,Svp57BEC(E)) and O/(pY\X,SapSaBEC(E)) againSt
e for e € [0,1] in Fig. [3. It turns out that, somewhat
counterintuitively, C(py|x,s,ps,BEC(¢)) coincides with

é_ 0 Ei’Z’g 58’(1)78; g: 8’(1)’ B’ Q_(py|X75,ps) way _beforee reache_s 1. That is to say, when
py|x,s(ylz,s) = 0’ (z, y’s) _ (1’0’0) or (0’ 1’ 1)’ € is above a certain threshold strictly less than 1, the noisy
1’ (@ y’s) _ (1’ 1’0) or (0’0’ 1)’ state observatiory _is _useless and can be ignored (as_ far as
’ 7 o T ) the channel capacity is concerngd). On the the hand, it can be
1 seen thatC’(pyx,s,ps, BEC(¢)) is equal toC(py|x,s,Ps)
ps(0) =ps(1) = <. (10) for a large range of strictly greater than 0. Hence, in terms
2 of the probing capacity, the noisy state observation can be
For this example, it can be verified that as good as the perfect one. As shown in Fiy. 4, the same
’ phenomena arise if we choogagls to be a binary symmetric
o channel with crossover probability (denoted by BSG))).
_(py‘)f’s’;s) P The contributions of the present work are summarized in
0g 2, =Y,

= %(( 9)10g2+10g1+9+910g1+9> 6 (0,1),

0,

=1

)

the following theorems, which indicate that the aforedibsat
surprising phenomena can in fact be observed for all binary-
input channels.

Theorem 1. For any binary-input channepy x s, state
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Fig. 3. Plots ofC(py|x,s,Ps, BEC(¢)) and C/(py‘X,S,ps, BEC(e)) againste for € € [0, 1], wherepy | x, s andpg are given by[(B) withd = % and
(@0), respectively.

distributionpg, and side channelyq, Il. PROOF OFTHEOREMII]

First consider the special case wherg is a generalized

O 3 ) S = Q ) . e .
(Prx.s: s pS|S) (Prx.s:ps) erasure channel (with erasure probabitity [0, 1]) defined as

2

if I(S;S’) < £, wherep £ minges ps(s).

2e21

_Th_eorgm 2: For any binary-input channepy|x s, state Paco |s(§|5) =< e § = x, s€8,5€SU{x}.
distributionps, and side channelg g, GB 0, otherwise
C/(py\x,sapSapé\S) = C(py|x,5:Ps) Lemma 1. Given any binary-input channgl x s and state

~ distributionpg,
if H(S|S) < sy, wherep £ minges ps(s)-
On the sur}ace these two results may look rather similar. C(pY\X,SaPSapgg;ﬂs) = C(py|x.s,Ps)
One might even suspect the existence of a certain duality
between them. However, it will be seen that the underlyir‘fgﬁrnf‘aE [1—eh 1. ) )
reasons are actually quite different. The proof of Theore rk: Lemmall provides a universal upper bolfirah the _
[ hinges upon, among other things, a perturbation analy§&asure _pro_bablhty threshold above which the encoder side
In contrast, Theorerl 2 is essentially a manifestation of diformation is useless. The actual threshold, howeveredép
induced Markov structure. on py|x,s andps (see Section IV-A for a detailed analysis).

The conditions in Theoreil 1 and TheorE 2 are stated in Proof: As indicated by[(), the capacity of the channel
terms of bounds o (S; S) and H(S|S); as a consequence,Model in Figl1 (i.e.C(py|x.s:ps,pg)s)) is equal to that of
they depend inevitably ops. As shown by Theorerfi] 3 in channelpy s, where
Section 1] and Theorefml 4 in Sectiénllll, it is in fact possible _ ~
to establish these two results under more general consitioRY.SU (¥ 5/t) = ZpS(S)pS\S(S|S)pY|X>S(yw’(“’S)’S)’
on pg ¢ that are universal for all binary-input channels and s€s
state distributions. ueU,yeY,ses.

The rest of this paper is organized as follows. We prese
the proofs of TheoremEl1l arid 2 in Sectidns Il dnd I
respectively. The validity of these two results under vasio
modified conditions is discussed in Sectionl IV. Sectioh V

. ludi ks. Th h hi °Numerical simulations suggest that this universal uppendds not tight.
contains some concluding remarks. roughout this paﬂer, Igetermining the exact universal erasure probability thoés remains an open

logarithms are base- problem.

<t:cording to [6, Th. 4.5.1]py is a capacity-achieving input
distribution of channepy g7 (i.e., pr is @ maximizer of the
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Fig. 4. Plots ofC(py|x,s,ps,BSC(g)) and C/(py‘X,S,ps, BSC(q)) againstq for ¢ € [0, %}, wherepy | x s andpg are given by[(®) withd = % and
(T0), respectively.

optimization problem in[{1)) if and only if there exists some = ps(s)(py|x,s(y[Y(u, s),8) +€d(u,y, s)), (13)
numberC' such that

D(py,sjv (- -|u)llpy,s) = C, u €U with py(u) >0, where
D(py,sjv (-, -|u)llpy,s) < C, w €U with py(u) = 0;

furthermore, the numbe€' is equal toC (py|x.s, s, Pg)s)- §(u,y,s) = py|x,sylv(u, *),8) — py|x,s (YU (y, s), s),
In view of (3), we have veld,ycY,scS. (14)

py,siu(y, slu) = py,six(y,slu), uveX,yeV,seS. _ _ o _
) S o Since|X| = 2, there is no loss of generality in assuming that
Let p; be a capacity-achieving input distribution of channeﬁ Th. 2]
Py,s|x (i.e,p¢ is a maximizer of the optimization problem in

(@)). Define
Py () > el rzex. (15)

R _ Px (U), u € Xv
py(u) = { 0, otherwise (11)

To the end of proving Lemmnid 1, it suffices to show that, for

It is clear thatC(py|x,s,Ps,pg5) = C(py|x,s,ps) if and _ !
) . ) O ES|S/ el—et1]

only if p;, is a capacity-achieving input distribution of channel
Py,s|u-

Now consider the special case Wh@;réqs is a generalized Dgr(pg,¢,u) = C(py|x,s:Ps), u€ X,
erasure channel with erasure probabilityand define Dci(pg.e.u) < Cpy|x,s,ps), otherwise

DgE(pu, e u) = D(py,siv(;-|w)lpy,s) (12)

to stress the dependence Blpy /(- -|[u)||py,s) on po, €, Clearly, p; is a capacity-achieving input_distribution of
andu. It can be verified that channelpy, s;- whene = 1. Therefore, we hatfe

py,sw(% s|u)

= > ps(9)psesBGlo)pyix, sl (u, ), )
5€5U{*}

= PS(S)EPY|X,S(y|¢(Ua *)7 8)
+ps(s)(1 = e)py|x,s(ylv(u, s),s) 3The inequality in[(Il7) is in fact an equality.

DGE(prl;u) :Q(pY\X,SapS)v u € X? (16)
DGE(p[ja 17 ’LL) < Q(pY\X,SupS)7 otherwise (17)



Note that where

DGE(pU7 €, u) a<y7 S) - rglea%(py\xys(ykv, 8)7
= Y pysuly slu)log Dy sy W, ) by, s) = minpyixs(yle, 5)-
’ 7 > weuPo(W)py.sju(y, slw’)

yeY,seS Uy | Continuing from [2D),
=Y s sl s).s) + ey, ) )

yeY,seS EDGE(]?Q@U)

x log pyix,sWlY(u, s), ) + 3wy, 5) = Z ps(s)d(u,y,s)

Zu’EZ/IpU(u/)(pY|X,S(y|w(u/a8)58) + 65(u/7y5(8))) yEY,5€S e
18 ’

P yl(u, s),s) + ed(u,y, s
= Y psls) oy (héu ), 8) + ebuy.5) o PRSI ) 2) 4 2B )
€yaes ’ ZzGXpX(x)pY\X,S(y|‘T7S)

Yy yS
g Py x.s(yle(u, 5), s) + ed(u,y, s) > %PS(S) i 5(2 ) 05(u7y, s)
s cyY:i(u,y,s)>
ec0,1uctd, (19) x log ST T A

(1 - e_l)a(y7 S) + e_lb(yv S)
where [I8) is due to[(13), and (19) is due & (3) ahd (11). + Zps(s) Z o(u,y,s)

Moreover, s€S yEY:6(u,y,s)<0
S 9 9 + 66(”7 y7 S)
9 ] pY|X,S(y|¢(U 5),8) 25
2 Darlvg e T e+ (e ol
= Z p5(3)5(u,y,s) = ZPS(S) Z 5(U7y,5)
yEY,s€S seS yeY:6(u,y,s)>0
Pyix,s (Wl (u, 5),5) + €d(u,y, 5) s log 28:3) + c(aly, 5) = bly, )
x | log +1 (1—eYa(y,s) +e1b(y,s)
erX Px (‘T)pY|X,S(y|x7 S)
+ZPS(S) Z 5(u7y78)
= yz Sp5(8)5(uay75) sES yEY:6(u,y,s)<0
veIee a(y, s) + e(by, s) — aly, s))
x log Pyix.sIY (U, 5),5) + 0.y, 5) xlog e ta(y,s)+ (1 —e1)b(y, s) (26)

Y wex Px(@)py x,5(ylT, 5)

> s o(u,y, s
+ 3 ps(s) 3 o(u.y.s) >3 psls) D d(uy,s)

SES yeY:6(u,y,s)>0
ses yey ‘1 (1—eYaly,s) +e by, s)
= Z ps(s)d(u,y, s) & (1—eYaly,s) +e1b(y,s)
ye)Y,seS
+ s o(u,y,s
Pyix,s (Yl (u, s), s) + €d(u,y, 5) 2_rs() ‘ 2 (432)
% log SES yeY:8(u,y,s)<0
Ywcx Px(@)py|x,s(ylz, 5) e ta(y,s)+ (1 —e 1b(y,s)
ec[0,1],ucU. (20) x log

e ta(y,s) + (1 — e 1)b(y, s)
Define =0, ec[l—e 1 uel, (27)

where [25) is due td(15), an@{26) is due [ol(23) and (24).
Gs ={ueU:0(uy,5)=0foralycyands S}  combining [I6),[[T7),[22)[127), and the fatt < Gs yields
(21)  the desired result. ]
In light of (19), Recall [3, p. %12] tha';vglls (with input alphabetS and
output alphabetS;) is said to be a stochastically degraded
DeEe(pg.e,u) = Darp(pg,1u), e€[0,1],u€ Gs. (22) version Ofp§2|s (with input alphabetS and output alphabet

Sy) if there existspg, |5, satisfying
For anyu € U\Gs, there must exist somg € Y ands € S

such that(u, y, s) # 0; furthermore, sincéX| =2, we have  pg, s(31]s) = D pg, s(520)ps, 5, (51152),

5268,
5(“’5 Y, S) >0= pY|X,S(y|U)(u7 S)v S) + 65(“’3 Y, S)

= by, 5) +elaly, o) ~bly. ), - (23) We can write[(ZB) equivalently as
5(u,y,5) < 0 = py x5 (U, 5), 5) + e (u,y, 5) q Y

= a(yu 8) + E(b(yv S) - a(yu 8))7 (24) pgl\S = p52|3p5'1\§2

s€8,5€8. (28



by viewing pg, s, P, s @ndpg, 5, as probability transition Proof: In view of Lemmagl[ 2, andl 3, we have
matrices.

The following result is obvious and its proof is omitted. C(py|x,s,Ps:Pgs) < C(py|x,5:Ps) (35)
Lemma 2: If pg, s is a stochastically degraded version of
P3,g then if (B4) is satisfied. Combinindg{6) and (35) completes theopro
of Theoren{B. [ |
C(py|x,5,P5:P5,5) < C(Py|x,5,P5,D3,(5)- Now we proceed to prove Theordm 1 by translating (34)

Next we extend Lemnid 1 to the general case by charactefihich is a condition orpg ¢ that is universal for all binary
ing the condition UndefWthh5|5 is a stochastically degraded'npUt channels and state distributions) to an upper bound on
version Ofps(s)‘ I(S;S). This upper bound, however, depends inevitably on

Lemma 3: pg ¢ is a stochastically degraded version ofhe state distribution. _ . i
P3| if and only if For anypg ¢ violating (39) (i.e,>°;cgminges pgs(3ls) <
Gr 1 —e1), we have

errélgpsw ) >e. (29) , )
ses & ~ ~
1(8;8) = 5 ps(s) |pg(5) — pgs(Sls) (36)
Proof: The problem boils down to finding a necessary 2 <seS¥eS ’ 5 il ‘
and sufficient condition for the existencegmg‘g&) such that ' 9
GE 1
. > ps(s(3)) [pg(5) — pgs(3ls(s
pas = S g 10 G, 2(2 (5)) ps(5) — pys Gl <>>\)
5'eSU{x} 2
- 1 -
se8,5e8. (30 2§<PZ’PS — pgs(3ls (S))D
It suffices to consider the casec [0,1) since Lemmd13 is ses
trivially true whene = 1. Note that 1 2
) > 52D ps(3) = Y pss(als(a))
Z ps(é) ‘S ps‘s(‘) ( |S ) SES‘ 565
§'eSU{*} 2
:(1_6)p§|§2”)5( | )+Eps‘5()( | )a s€S,5€8. >2 27
(31)
. ) where [36) is due to Pinsker’s inequality [8, p. 44], a4 is
Combining [30) and(31) gives a minimizer ofmin,es pg5(3]s), 5 € S. As a consequence,
. pgis(8ls) — P55 (%) .= (34) must hold ifI(S; 5) < 2 This completes the proof of
pS\SS}E(S 5) = . GE , SESFES. Tneorenfl. Ze
(32)
In light of (32), [1l. PROOF OFTHEOREM[Z
& ae (S|s , seS§,
2%5& First consider the special case Wh@@s is a generallzed
N symmetric channel (with crossover probabiligye [0, 3 )
= g5 Gl =1, defined as "
5eS
3 e S - 1-—- -1 § = ~
Pg5e) (3ls) >0, s€8,5€8, Pgia 5(31s) = { . (IS] = 1)g, (S)thesr\’/vise seS.5es,
= gleigpé\s(§|3) > 6p5|§§;}5(§|*)’ 5€8. (33)

. / N — i
It can be readily seen that the existence of conditionalidist Lemma 4. C (PY\x,s,pS,psg%IS) Clpyix.s,ps) if and

butIOI”IpS‘S( y satisfying [30) is equivalent to the existence opnly if
probability vector(pSIS( o (3]%));c5 satisfying [38). Clearly, Py s(ls)
(29) is a necessary and sufficient condition for the existenc u min s =4q (37)
f h TEX,S€ ZS ESpX\S(:dS)
of suc (ps‘s(f)( | ))568 u
Theorem 3: For any binary-input channepy|x s, state for somep s € P, whereP denotes the set of maximizers
distributionps, and side channel g, of the optimization problem in[{5), and’; = {z € X :

>ses Px|s(xls) > 0}.
Proof: Clearly, C' (py|x, S,pS,pSm‘S) C(py|x,s:Ps)
if and only if there eX|st39X‘S e P tﬂat is a stochastically

ernelélps‘s >1—e L. (34) degraded version qfs(q) 5" Wheng = \SI (31) is equivalent
€8 to the desired cond|t|on that needs to be independent §f

C(PY|X,S,]?57P§|5) = Q(pY\X,SapS)



Wheng € [0, 47), Psw) ¢ is invertible and
|S] Sgsls
g—1 q q
[Slg—1  [S]g—1 [Slg—1
1 |3\q 1
_ B pr
Dot o = (38)
S(c?;‘s . q
) [Slg—1
q q g—1
[Slg—1 [Slg—1  [S|g—1

which is equivalent to[{40). Therefore_{40) ensures that
s<1q) |spSIS is a non-singulai/-matrix, which in turn ensures
thatpslsps(q) s exists and is a non-negative matiix [9]. Hence,
if (BQ) is satisfied, therp s1sP5) s is a valid probability
transmon matrix (the requwement that the entries in eash
of pS‘SpS@)'S add up to 1 is automatically satisfied), which

implies thatpsm‘s is a stochastically degraded version of

The problem boils down to finding a necessary and sufficien s (and consequently a stochastically degraded version of
condition under whichp_ (q)‘SpX‘S is a valid probability Pgs)- .

transition matrix (i.e., all entries are non- negative ame gum
of each row vector is equal to 1). Note that

1
1 1
= - C | =pad
PsasPxis | 0 | T Psmis |
1
1
—1 1
~ PatsPsgus |
1
1
1
= (39)
1
Moreover, all entries ofos(q)lstIS are non-negative if and
only if
—Px1s(@l8) + 42 s esPxs(@]8)
X|s s'esSPx|s >0, reS.seS,
|Slg —1
which is equivalent to[(37). [ |

The following result is obvious and its proof is omitted.

Lemma 5: If P35 is a stochastically degraded version o

Pg,s then

C'(py|x,5:P5:P5,15) < C'(Dy|x,5: P51 P3,)5)-

Lemma 6: P3ta) s is a stochastically degraded version oﬂ]

Theorem 4. For any binary-input channepy | x s, state
distributionpg, and side channelgq,

CI(PY\X,S,]?&PQS) = U(I?Y\X,s,ps)

max Pss (8ls) !
s€8.5€8 11578 3o es Pgs(818) T (IS —1e— S| +2
(41)

vyhereS’ is the maximum likelihood estimate &f based on
S.

Proof: Since|X| = 2, it follows from [, Th. 2] that there
eXiStSpX‘S € P satisfying

pXIS(a:|s)>efl, reX,seS.
For sucth‘S,
Pxs(ls) et
T€X1S€S Y s Py s(als’) T e+ (IS —1)(1—e7)
1

TS = De—[S[+2
In view of of Lemmag 4[5, and 6, we have

. C'(py|x,5:Ps:P5)s) = C(py|x,5:P5) (42)

if (A1) is satisfied. Combinind{6) and (42) completes theppro
of Theoren{ 4. [
Now we are in a position to prove Theoréin 2. l%and S’
enote respectively the maximum likelihood estimate armd th
aximuma posteriori estimate ofS based onS. According

Pgs If to [10, Th. 11],
G A H(S|S
max pS\S( | )A / §q7 (40) P(S#S/) < ( | ) (43)
SES.SE8:5#8 ) e s Py 5(Sl8) 2log2
vyhereS’ is the maximum likelihood estimate ¢f based on It can be verified that
S.andS; = {3 €815, c5pgs(sls) > 0} > pasGl < > pasle)
Proof: The caseg = ‘% is trivial. Wheng € [0, r57), 5,3€S:545 5,3€S:545
P3| is invertible andp @ is given by [[38). It can be < 1 Z pS(S)pg/|s(§|S)
shown (see the derlvatlon 39)) that the sum of each row of 5,5€8:545
—1 H H ~
pf(q)‘fpsls is equal to 1; Tore-(:ver(,j theI oj-dlagonal entries _ P(S # S’)' "
o ps(q) sPsis are non-positive if and only i P)
. . Substituting [(4B) into[{44) yields
—p§|5(5|5) 4D yes p§|5(8|5/) _
Slg 1 =" S pgs(sls) < na Z5) (@5)
S8 - 2plog2’

s€8,5€ 84 15 # 8,

5,8€S:5#3



Note that 2) elpy|x,s,ps) < 1if and only if

max p5|5(S|S)A < h . (46) > ps(9)d(u,y, 5)
5€S5,3€8 1573 ZS/ES pS|S(S|S/) A+I(Rh<1) yEYV,s€S
Indeed, [(4B) is trivially true wher > 1; moreover, when x lo Py x.sWH(, #). 5) ,
h<1, ZmGXpX('r)pY\X,S(y|IaS)
R u € U \Gs, (50
pers(alo) \Gs, (50)
Seség?i:#gm where é(u,y,s) and Gs are defined in[(14) and(R1),
e ! . respectivelyp ¢ is an arbitrary maximizer of the opti-
pgys(3ls) mization problem i d
< max - _ problem in[(#), an
$€8,5€5 11573 g 5(8ls) + pg 5(5]3)
pgs(8ls) Uy = {u ceu: D ps(s)pyix.syli(u, ), s)
= max N ~71 ~
SES,5€S 1 :5#5 pSlS(S|S) + 1-— Z§/68:5’7ﬁ§p:§\5(5/|5) yeY,s€S
. (3 Py x,s (Y (u, %), s)
< ax p5\5(5|5) (47) X log | - :Q(pY\X,SapS) .
T S€8,3€S 41578 2p§‘5(§|8) +1-nh > wex Px @)y x,5(ylT, 5)
h Remark: All maximizers of the optimization problem if](4)
B+ 1 give rise to the samé&__ . px(z)py|x,s(Wlz,5), ¥y € Y,

h d(4s d 45). In vi f Theoigm 4,€ S [6. p. 96, Cor. 2]. _
\I,;Isi;feic%s?{oaﬂa\% ) are due (0.45). In view of Theofdm Proof: The first statement can be easily extracted from

the proof of Theorer]1.

h < 1 ) (49) Now we proceed to prove the second statement. First recall
h+I(h<1) = (IS| = 1e—[S] +2 the definitions ofDgx (pu, €, u) andpy, in (I2) and [(IL), re-
Note that [4D) is not satisfied when> 1 since its left-hand spectively. Since; is a capacity-achieving input distribution
side is equal to 1 whereas its right-hand side is strictlg le§f channelpy.si; whene = 1, we must have

than 1@@ > 1 implies |S| > 2). Whenh < 1, we can rewrite Dear(py,1,u) = C(py|x.5,ps), €U With pg(u) > 0,
49) a P 7 -
-) DGE(pU711u) SQ(pY\X,SapS)7 uel Wlth pf](u) :Oa

1
m’ which, together with the faét;, = {u € U : Dgr(py,1,u) =

ioh i . . C(py|x,s:Ps)}, implies
which is exactly the desired result. This completes the foroo

h <

of Theoren{ 2. {uel:py(u) >0} CUy, (51)
In Appendix(A, we give an alternative proof of Theoréin 2 Dgr(pg, 1.u) = C(py|x,s:ps), u € Uy, (52)
with a different threshold o (S|S). Dae(pg.1,u) < C(py|x,s,ps), otherwise (53)

It can be verified that
A. Extension of Theorem[T] DGE(pU,E,U) :DGE(pUalvu)a €€ [Oal]aue Gs- (54)

It is interesting to know to what extent Theordth 1 calfloreover, in view of [(2D), we can writ¢ (50) equivalently as

IV. EXTENSION AND DISCUSSION

be extended beyond the binary-input case. This subsedion i 0
largely devoted to answering this question. For anyx s EDGE(I’U’@“) _1 >0, uweli\Gs. (55)
andpg, define . = .
According to [5R)-(55), there exisigpy | x g,ps) € [0,1)
e(py|x.s,ps) = minfe € [0, 1] : Cpy x5, Ps:Pge) |5) such that
= C(py|x.5:Ps)}s DgEe(pp,e,u) = C(py|x,s,ps), uw€UyNGs, (56)
. 1 . .
q4(py|x.5,ps) = min{q € [0, E] ; C(pY\X,SaPSapgg;|s) Dar(py,e,u) < Clpy|x,s,ps), Otherwise (57)

for € > e(py|x,s,ps). In light of (51) and the fac{u € U :
p(u) >0} C X C Gs, we have

{fuel :py(u) >0} CULNGs. (58)

= C(py|x,s,Ps)}-

Proposition 1. 1) There existsy(py|x,s,ps) > 0 such
that C(py |x,s,Ps,Pg)s) = C(py|x,s,ps) for all pg g N _
satisfying 1(S;S) < a(py|x,s,ps) if and only if Combining [56), [(57), and_($8) proves the “if" part of the
e(py|x,s:ps) < L. second statement. Next we turn to the “only if” part of the

’ second statement. Assuming the existence(pf | x s,ps) €

“Note thath < WM implies 7 < 1 when |S| > 2. The case [0,1) such thatc(PY|x,s,ps,pg(e>‘S) = C(py|x,s;ps) for

|S| = 1 is trivial since’: can only take the value 0. € > e(py|x,s,ps) (or equivalentlyp,, is a capacity-achieving
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Fig. 5. Plot of C(py|x,s,ps,BEC(e)) againste for ¢ € [0, 1], wherepy | x, ¢ andps are given by[(62) and(83), respectively.

input distribution of channepy, s for € > €(py|x.5,ps)),  ps(0) = ps(1) = l, (63)

we must have 2

For this example, it can be verified thate /. \Gs and
DgEe(pp,e,u) < C(py|x,s,ps), €= e(py|x,s:ps),u €U.

B9 pstin g, tog RSV,
It can be verified that yEYV . 5ES 2sex Px (@)pyix,s(yle, )
2 ~ . . ~ A
Dan(pg € u) where (4,-) is given by_ ¥(a,0) = 2 P(a,1) =
Oe 1, and ¥(4,*) = 1; indeed, Fig.[b shows that
_ Z ps(s)0%(u, y, ) C(py)x,s,ps,BEC(¢)) > C(py|x,s,ps) for e € [0,1).
yeyzes Pyixs(Wl¥(u, s), ) + ed(u, y, s) The proof of Propositiofil1 in fact suggests a strategy for
o computinge(py | x,s,ps)- Let p; be an arbitrary maximizer
>0, e€[0,1],u €U\Gs. (60) of the optimization problem ir{{4) and defipg according to
Moreover, by the definition off, , (L1). Note that
e D ~1Lu)<C , foru € U (see and
DcEe(pg,1,u) = C(py|x,s,ps), we€Uy.  (61) @q;@)(p[] w (Prix.s,ps) foru (seelER)

Note that [(5D), [(60), and_(61) hold simultaneously fore » D¢e(pg.€,u) does not depend on for u € Gs (see

U, \Gs, from which [50) (or equivalentlyi(55)) can be readily — (64)),

deduced. This completes the proof of Proposifibn 1. m ¢ Dcr(py, ¢, u) is a strictly convex function o for u €
As shown by the following example, the necessary and U\Gs (see[(6D)).

sufficient condition[(50) is not always satisfied whef| > 2. Hence, for each: € U, there are three mutually exclusive

Let cases.

1, (x,y,s)=(0,0,0)0r (1,1,1), 1) Dge(py,0,u) < C(py|x,s,ps): We have
0, (z,9,8)=1(0,1,0) or(1,0,1), Der(pg,e,u) < Clpy|x,s,ps) for e € [e(u),1],
%, (z,y,s) = (1,0,0) or (0,1,1), wheree(u) = 0.

N 5 (l‘,y, 8) = (1, 1,0) or (0,0, 1), 2) DGE(pU,O,’U,) > DGE(pU; l,u) = Q(pY|X,Sva)

py|x.5(ylz, 5) = 2. (2,9,8) = (2,0,0), and ZDcp(py.e,u)|_, < 0 (this case can arise

i, (x,y,8) =(2,0,1), only when [X| > 2). We have Dge(py,0,u) >
;—0, (x,y,8) =(2,1,0), C(py|x,s,ps) for e € [0,e(u)), wheree(u) = 1.
z,  (zy,8)=(2,1,1), 3) Otherwise: We havéDg g (py,e,u) > C(py|x,s,Ps)

(62) for € € [0,e(u)) and Dgr(py, e u) < C(py|x,s:Ps)
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for € € [e(u), 1], wheree(u) is the unique solution of Hence, for eacl € U, there are also three mutually exclusive
Dge(pg. €, u) = C(py|x,s,ps) for e € (0,1). cases.
It can be readily shown that 1) Dgs(pg,0,u) < C(py|x,s,ps): We have
Das(py,q,u) < Clpyix,s,ps) for ¢ € [q(u),1],
&(py|x.s,ps) = maxe(u). (64) whereq(u) = 0.
2) DGS(pUaO u) > Das(pp, Fll u) = C(py|x,s,Ps)
and DGS(pU,q, u) L < 0 (this case can arise

D = D B 7‘
as(pu,q,u) (pY,S|U(a |U)||pY,s)7 only when [X| > 2): We have DGs(pU,O u) >

We can computg(py|x,s,ps) in a similar way. Define

where C(pyix,s:ps) for g € [0,q(u)), whereq(u) = 5.

3) Otherwise: We haveDgs(py,q,u) > C(py|x,s:Ps)
pY,S|U(y75|u) :pS(S)(pY\X,S(ylw(uvs)vs) +qw(uayvs)) for q € [0 q( )) and Dgs(pU,q,U) < Q(pyp(_rs,ps)
with for g € [q(u), \3|] whereq(u) is the uniquelsolution of

) Des(pg,a:u) = C(py|x,s,ps) for q € (0, rg7)-
wluwy,s) = Y pyixslv(u5),s) It can be readily shown that
5€8:5#s
_ (|8| _ 1)pY|X,S(y|¢(U7 8)7 s), Q(PY\X,saps) = rggaiq(u) (65)
ueld,yeY,seS. For py|x,s andpg illustrated in Fig[2 (see als®](9) and

Again, letp,, be definel according to[(I11). It can be verified (1)), we show in AppendikiB that

that é0), 6€(0,1),
g(pY|X,Sva) = { 07 Otherwise (66)
Des(pg g, u) ( - { q(6), 0¢€(0,1), 67)
= > ps()pyix.sWl(u,s), s) + q(u,y, s)) LPVIXs:PSI= 10, otherwise
veY.s€s whereé(6) is the unique solution of
Py ix,s WY (u, s), s) + qu(u,y, s)
x log , 2(1 —¢(1-0))
Ywex Px @)y x,s(ylz, 8) e(1—0)log2e+ (1 — (1 —0))log ——————
¢€0, |S|]u€U =(1—9)10g2+6‘log1+9
0 . . .
8—qDGS(pﬁ,q,u) for e € (0,1), and§(f) is the unique solution of
2(1—q(1 -9
=Y ps(s)(uy) a1 6)log 29 + (1 - (1 - ) log 2L =40 =7)
1+0
ye)Y,seS
1 2 20
% long\X,S(yh/}(ua 8)58)+qw(u7y38) e 5((1 —9)10g2—|—10g 0 +910g1+9>
> rex Px(@)py|x s(ylz, 3)
g€ o, ] wel, for ¢ € (0, 1). Settingd = gives(py|x,s,ps) ~ 0.1 (cf.
TSI Fig.[3) andg(pyx,s,ps) ~ 0.037 (cf. Fig.[3).
0? B
a—q2DGS(pU’ a: ) B. Extension of Theorem[@
_ ps(s)02(u,y, s) <0 We shall extend Theorefd 2 in a similar fashion. For any
yevaes pY|X,S(yW)(U7 5),s) + qu(u,y,s) ’ Py|x,s andpg, define
qe [ |S|] = Z/{\gw7 E(pYLX,Sva) = ma’X{E € [07 1] : O/(pY\Xfap57p§g)E|S)
= C(pY|X.,S7pS)}7
where

4(py|x.s,ps) = max{q € [0, |S|] (pY\X,SapSupgg;w)
Go={uel :w(u,y,s)=0forally e ands € S}. _
= C(py|x,s:Ps)}-
Proposition 2: 1) There eXiS_tSﬁ'(py‘Xﬁ,ps) > 0 such
that C/(PY|X,S7P~S7P§|5) = C(py|x,s,ps) for all P3|s
satisfying H(S[S) < B(py|x,s,ps) if and only if
q(py|x,s,Ps) > 0.
2) q(py|x,s,ps) > 0 if and only if there existy g5 € P

S5Note that the underlying/ depends onS. In particular, |i/| = |X|IS] such that

when pg, ¢ is a generalized symmetric channel wherdas = |x|ISI+1 o .
whenps“s is a generalized erasure channel. {frex 'pX\S(I|S) >0} =X, seS8. (68)

Clearly,

b DGS(p[]W ﬁau) < Q(pY|X,Sva) foru e l,

e Dgs(pp,q,u) does not depend omfor v € G,

o Das(pp,q,u) is a strictly convex function of for u €
U\G,.
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Fig. 6. Plot of C'(py|x,s,Ps, BSC(q)) againstg for q € [0, %}, wherepy | x g andps are given by[(89) and(70), respectively.

Proof: The first statement can be easily extracted from th® not depend ops either. Forpy | x,s andps illustrated in
proof of TheoreniR. The second statement is a consequeRag [2 (see alsd {9) and (110)), we show in Apperidix C that
of Lemmal%.

N _
As shown by the following example, the necessary and €(py|x.5:Ps)

—1

sufficient condition[(68) is not always satisfied wherj > 2. e e

Let _) 210 ) 67T 0 (0.1), (g5
1, (z,y,5)=(0,0,0) or (2,1,1), 1, otherwise
Oa (xvyas) = (07150) or (27051)7 q(p S pS)

pyixs(yles) =4 5 @vs)= (10,0 0r (0.1,1), P 5
Yix.s , §7 ('rvyas) = (17150) or (07051)7 0 0

L (o) = (2.0.0) o (11,1), S oL LA L N ¢
57 (x, Y, S) = (27 1, 0) or (17 0, 1)(769) %, otherwise

1 Setting & = 3 gives €(py|x.s,ps) = = (cf. Fig.[3) and
ps(0) = ps(1) = 5. (70) 2oy xs.ps) = 2 (cf. Fig. ). ’
For this example, it can be verified that the maximizer of the o o
optimization problem in[{5), denoted by, is unique and C. Two Implicit Conditions
In this subsection, we shall examine the following two
{z e X :pgs(z|0) >0} ={0,1}, implicit conditions in Theorerf]1:
{reXx :pX‘S(xH) > 0} = {0,2}; 1) perfect state information at the decoder,

indeed, Fig.[B shows thalC’(py|x.s.ps.BSCg) < 2) causal h0|sy stqte Qbserv_atlon at the encoder.
If no state information is available at the decoder, then the
C(?Y\X s,ps) for g € (0, ]

In view of LemmasgB anﬂ]4 we have channel capacity is given by

> NN .
€(py|x,s,Ps) maxp Z mlan‘S (z|s) (71) Clpy|x,s:Ps:Pg15) = H;é;x](U, Y),
Px|s€ ~
peia(z]s) where the joint distribution ofU, X, Y, S, S) is given by [2).
4(py|x,s,Ps) = max min X|s (72) Furthermore, if there is also no state information avadadd
Px|s€P we?ﬂﬁes dlses PX\S($|S ) the encoder, then the channel capacity becomes
Note thatP does not depend opg (under tbe assumption Q(pwxs,ps) 2 maxI(X;Y), (75)
p > 0); as a consequence(py|x,s,ps) andq(py|x,s,ps) Px
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Fig. 7. Plot Ofé(py‘xys,ps, BEC(¢)) againste for € € [0, 1], wherepy | x s andps are given by[(@l7) withu = i and [78), respectively.

here = . Define ~
wherepx y.s(@.v.5) = px (@)ps(s)pyx,s (e, ). Def :Q(p”ys,ps)}

E(pY|X,Sva) = min{e € [07 1] : CN'(pY|X,S7pSvps«(é) \S) .
GE As shown by the following example, the necessary and

=Cl(py|x,s,Ps)}-  sufficient condition [[76) is not always satisfied even when
X|=2. Let
The proof of the following result is similar to that of Propo-| |
sition[d and is omitted. Y=XaS XxX=Y=8={01}, (77)
Proposition 3: 1) There existsi(py|x,s,ps) > 0 such 1

that C(py|x.s:Ps: Pg)s) = Cpyix.s:ps) for all pgq ps(1) = p €0, 5)’ (78)
satisfying 1(5;5) < a(py|x.s,ps) if and only if \herew is the modulo-2 addition. It can be verified thatl(76)
é(py|x,s.ps) < 1. is not satisfied for this example; indeed, Hif. 7 indicated th

2) épy|x.5,ps) < 1 if and only if ) )
C(py|x,s,ps,BEC(€)) > C(py|x,s,Ps), €€[0,1). (79)

Z (Zpg(s)é(u,y,s)> Here we give an alternative way to proNe(79). Wrike=
yeY \ ses SHA, whereS andA are two mutually independent Bernoulli
< log > ses Ps(8)py x.5 (Yl (u, %), s) 0. random variables with
EIEX,SESPX(I)ps(s)pY‘X,S(ny’ S>~ pg(l) =vE [07M]7
u € U\Gs, (76) w—v
1) = .
rall) =15,

whered(u,y, s) is defined in [(IW)py is an arbitrary

maximizer of the optimization problem ifi{l75), and Itis clear that

> log2 — H(S)

= Q(pY\X,SapS)a ve (Oa ,U] (80)

U, = {u eu:dy. <ZPS(8)PY|X,S(3/|¢(u, *), S)> In light of Lemma3,p5 ¢ is a stochastically degraded version
yey \ses of BEC(¢) and consequently

ZsGSpS(S)pY\X,S(ylw(uu*)78) ~ -
> vex.sesPx(@)ps(s)py|x,s(ylz, s) C(py|x,s:ps, BEC(€)) = C(py|x,s:Ps,Pg|5) (81)

C(py|x,s:Ps,P5)5) = log2 — H(A)
g~5 = {u eU: Zps(S)(S(u,y,s) =0 for all Yy € y},

seS

X log



13

0.224 T T T T T T T T T

0.223 b

C(Z’Y\X,s,ps)
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Fig. 8. Plot ofCap(py|x,s,Ps, BEC(¢)) againste for € € [0, 1], wherepy | x s andps are given by[(B) withd = % and [I0), respectively.

if H(S)—H(A) < M Combining [80) and (81) provesC(py|x,s,ps) except where = 1. So the causality condition
(9). on the noisy state observation at the encoder is not supesfluo
Now we proceed to examine the second implicit conditiofior Theorent1L.
If the noisy state observation is available non-causallihat
encoder, the Gelfand-Pinsker theorem|[11] (see also [3, Th. V. CONCLUSION
7.3]) indicates that the channel capacity is given by We have shown that the capacity of binary-ifpehan-
A . s nels is very “sensitive” to the quality of the encoder side
CGP(pY|X,Svaap§|S) = glU??I(U’ Y, 8) - 1(U; 9), information whereas the generalized probing capacity iy ve
S - “robust”. Here the words “sensitive” and “robust” shouldtno
where the joint distribution ofU, X, Y, S, 5) factors as be understood in a quantitative sense. Indeed, it is known
. = [7] that, when |X| = 2, the ratio of C(py|x.s,ps) tO
pU.,X,Y,S,S(uvxvyu 5,5) ol ) Py|x,
~ ~ ~ (py|x,s,ps) is at least 0.942 and the difference between
= ps(8)pg)5(818)py 5 (ul3)L(z = P(u, §))py x5z, 5),  these two guantities is at most0.011 bit; in other words,
wed,zeX,yeY,seS,5€8. the gain that can be obtained by exploiting the encoder side
. information (or the loss that can be incurred by ignoring the
It tumns out thatCor(py|x.s,Ps, Pg)s) 18 bounded between gncoder side information) is very limited anyway.
C(pY\X,Svava\S) andcl(pY\Xysvavpé\s)’ 1.€., Binary signalling is widely used, especially in wideband
communications. So our work might have some practical
relevance. However, great caution should be exercised-in in
< C'(py|x,5:Ps:P3|s)- terpreting Theorenis 1 and 2. Specifically, both results oely
the assumption that the channel state takes values fromte fini
seffl, which is not necessarily satisfied in reality; moreoveg, th

O(pY|X,Svp57p§|S) < OGP(pY\X,SaPSapS"S)

Indeed, the first inequality is obvious, and the second otasho

because . C )
freedom of power control in real communication systems is
I(U;Y,8) - I(U;S) < I(U;Y,8) — I(U; S) not captured by our results. Nevertheless, our work can be
= I(U;Y]S) viewed as an initial step towr_;\rd_s a better ur!der_standing of
< 1(X:Y]$) the fundamental p_erform_anc_e limits qf communication syste
= ’ : where the transmitter side information and the receivee sid

In Fig. @ we plot Cep(py|x.s,ps, BEC(e)) against e information are not deterministically related.

for e € [O’ 1]’ \{Vhere Py|X,s and ps are given by 6In fact, both numerical simulation and theoretical analysiiggest that

@ with & = 5 and [10), respectively; it can besimilar results hold for many (but not all) non-binary inpitannels.
seen thatCop(py|x,s,ps, BEC(¢)) is strictly greater than  7in contrast, the assumptidy’| < co and|S| < oo is not essential
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Finally, it is worth mentioning that our results might havevhere [87) follows by the sub-multiplicative property ofth

their counterparts in source coding. spectral norm. We have
APPENDIXA loalllz = _
AN ALTERNATIVE PROOF OFTHEOREM[2 SIS Umin(p§|s)
We shall show that, for any binary-input channgl x s, 3H(S|S) !
istributi i ) ’ <|l1l-—— 89
state distributiorps, and side channelg,g, < Iolog2 | (89)
, A

C'(pyix.s:Ps:P3)5) = Cpyix,5,Ps) where [89) is due to[(86). Fag; — diag(l,--- 1), it is
if clear that the diagonal entries are non-positive, the @ifrohal

Lemma 7: py ¢ is a stochastically degraded versionpgf

entries are non-negative, and the sum of all entries is equal
to 0; moreover, the sum of its off-diagonal entries is bowhde

above by4 (8 ‘gsz (see [(4b)). Therefore,

H(S|§) < —1plos?

T 3+2(e—1)/2[S]

(82)

i - lpg s — diag(1, -, 1)
H(S|S) < ———, (83) R
31+ 24/2|S| Z p5|s -1)2+ Z (p5'|s(3|5))2
where seES 5,5€S:5#5
. mingespygs(zfs) 2 A 2
T znelzl'a maxges pX|S(x| s) < Z(p§|s(5|5) -1 + Z p§‘5(8|8)
. seES 5,5€S:5#5
Proof: Let S denote the maximum likelihood estimate 2
of S based onS. It suffices to show thaps‘s is invertible — |9 Z e
andPS\stIS is a valid probability transition matrix if (83) is i S|s
satisfied. H(S|S
Let omin(pg g) denote the smallest singular valueef HS15) (90)
min SIS |S* — \/§p10g2
It follows from [12, Th. 3] that
) Substituting [(8R) and_(90) int¢_(88) yields
Imin(Pg)s) = Min 5 <2P5|s( )= D pgs(dls) lpzl — diag(l, -, 1)
3€8:5#s S|S
~ ~ —1
VISIH(S]S) 3H(S|S)
_ . 3) ). (84 < 1-— . 91
Clearly, To ensure that all entries Qj_‘SpX\S are non-negative (or
1 equivalently(diag(1,--- ,1) — Pg p is component-wise
o . _ . ~ _ . ~ |S X8
min <2p5|s(5|5) > P35 (3ls) > psls(s|s)> dominated bprIS) it sufﬂces to have
5€8:5#s 3€8:54#s
K ozl —diag(l, -, 1)]je < T. (92)
- rsrélg (2 3 Z ps\s Z p55(3|s)> S1s
3€8:8%s 3€8:a£s Combining [91) and[{92) shows th@t sPX|s is a valid
>1— 3 Z P (3l9)- (85) probability transition matrf if (B3) is satlsflel [ |
2 5,868 548 Since|X| = 2, it follows from [7, Th. 2] that there exists
Substituting [(8b) into[{84) and invoking_(45) gives Pxis €P satisfying
_3H(S|5’) Pxs(@ls) >el, reX,scS.

Thereforepg, 5 is invertible if H(S|S) < 4”1%"2. Let || - [|oos
I -1l2, and]| - || » denote the maximum row sum matrix norm, T >

Tmin(Pg|s) = : (86)
\ 4plog?2 For SUCth‘S, we have

1

the spectral norm, and the Frobenius norm, respectivelly [13 e—l
Note that Invoking Lemmal¥ shows thaleS is a stochastically

degraded  version  of P3|s (and  consequently

diag1, -+ ,1)|le — ) . e
Hp5|5 q )l C/(PY|X,S7PS7P§|5) = C(py|x,s,ps)) if (B2) is satisfied.

. The requirement that the entries in each rowof px|s adduptolis
SV |S| ”p§|5H2”pS|S —diag(1,---, 1)l (87)  automatically satisfied. fs

9 4plog 2 f f :
1 . Note that [BB) impliesH (S|S) < 222982 which further implies the
< VISTIng llalpsis — diagl oo Dlles 89 gigones oyt ;
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TABLE |

SPECIFICATION OF%(+, ) FORU = {0, 1, - -

-, 7} anD S = {0, 1, %}

P(w,3) [5=0]5=1] 5=x
u=0 0 0 0
u=1 1 1 1
w=2 1 1 0
u=3 0 0 1
u=14 0 1 0
u=5 0 1 1
u=6 1 0 0
u=7 1 0 1
TABLE Il }
SPECIFICATION OF%(+, -) FORU = {0,1,--- ,3} AND S = {0, 1, %}
P(w,3) [5=0]5=1
u=20 0 0
u=1 1 1
u=2 0 1
u=3 1 0
APPENDIXB DgE(pg, € u)
PROOF OF(68) AND (67)
! 2(0+¢(1-0))
Lemma 8: For 6 e (0,1), =3 ((1 — 0)log2 + (0 + ¢(1 - 6))log —————
n(0) = (1 —0)log(1+6) +logh < 0. 5
Proof: We have - 0log 7775 (1=€)(1 = 0)log2(1 - €)>’ u=45
d2n(®) d 1-6 Der(py, € u)
=—| —log(l1+0)+—— +logf+1 AR
agz ~ap| e T O T Ty st )
:_L_L_i_l =3 6(1—9)10g26+log1+9
1460 (1462 0 o1 L
__1-0 +(1—e(1—9))logw>, w="6T.
6(1+ 6)? 1+46
>0, 6€(0,1), Moreover,
which, together with the fact(0) = 7(1) = 0, implies the ) _1 _
desired result. n Der(pg, 0,u) = 2 (1 —0)log2 +log 1+6
~When§ = 0 or6 = 1, we have C(py|x,s,ps) = ;
C(py|x,s,ps), which implies e(py|x,s,ps) = + 0log 2
q(py|x,s,ps) = 0. When 6§ € (0,1), the maximizer of 1+6
the 9ptir_nization problem in[{4), denoted by, is unique = Clpy|x.s,ps)s u=0,1,2,3,
and is given by 20
1 DGE(pU,O,u):(1—9)10g2+910g—
pX(O)sz(l):i 1+6
< Q(pY|X,SapS)a U = 4-1 57 (93)
Now considery (-, -) specified by TablélI. It can be verified
that Dee(pg,0,u) = log
1+46
DGE(p[}a E,U) > Q(pY|X,Sva)7 u = 67 77 (94)
1 1 — Bloed 41 ol 20 o1 where [9B) and[(34) follow from Lemma 8. Therefore, we
_5 (_)Og +Og1+9+ Ogm ’ — Y have
DGE(pf]aeau) E(U) :O? U:O,1,2,374,57
=), u=6,7
1 200 + €(1 — ) e(u) = &), s
—9 (6(1 — 0)log2e + (6 + (1~ 0))log 110 which, together with[{84), prove§ (66) f@r € (0,1). Next
considery (-, -) specified by Tabl&]l. It can be verified that
. L— o1 2(1 —e(1-6))
+( _6( - )) 08 1+6 DGS(pUW(Lu)

+(1-¢€)(1-0)log2(1 —6)), u=2,3,

1 2 20
=1 =6)1og2+1 01 -0,1
2(( ) log +log 7 + 0g1+9>, u=0,1,



16

Deas(pp»q,2) ACKNOWLEDGMENT
=(1-¢)(1—-0)log2(1—q) The authors wish to thank the associate editor and the
200 + q(1 — 0)) anonymous reviewer for their valuable comments and sugges-
+ (0 +q(1—0))log —1i5 tions.
DGS(pU7 q, 3)
21 — ¢(1 - 8)) REFERENCES
=q(1—0)log2q+ (1 —q(1—0))log 1+6 : [1] C. E. Shannon, “Channels with side information at thedraitter,” IBM
J. Res. Devel., vol. 2, no. 4, pp. 289-293, Oct. 1958.

Moreover, [2] G. Caire and S. Shamai (Shitz), “On the capacity of somanokls

with channel state information/EEE Trans. Inf. Theory, vol. 45, no.
6, pp. 2007-2019, Sep. 1999.
[3] A. El Gamal and Y.-H. Kim,Network Information Theory. Cambridge,
1+6 U.K.: Cambridge University Press, 2011.
[4] H. Asnani, H. Permuter, and T. Weissman, “Probing cagdciEEE
) Trans. Inf. Theory, vol. 57, no. 11, pp. 7317-7332, Nov. 2011.

1
DGS(pljaOvu) - 5((1 — 9)10g2—|—10g

+ 60 log [5] J. Wang, J. Chen, L. Zhao, P. Cuff, and H. Permuter, “On rihie of
the refinement layer in multiple description coding and aola coding,”

C( —-0.1 IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1443-1456, Mar. 2011.

- = leX-S’pS)’ u="Y,1 [6] R. Gallager,nformation Theory and Reliable Communication. New York:

260 Wiley, 1968.

= (1 - 9) log2 + flog 140 [7] N. Shulman and M. Feder, “The uniform distribution as aarsal prior,”

+ IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 1356-1362, Jun. 2004.
< Q(pypg,s,ps), (95) [8] I. Csiszar and J. Korner|nformation Theory: Coding Theorems for
Discrete Memoryless Systems, 2nd edn. Cambridge, U.K.: Cambridge
DGS(pUa 07 3) = 1Og

University Press, 2011.
1+46 [9] R. J. Plemmons, M-matrices characterizations.l—non-signulad -
> C(pY|X S PS) (96) matrices,’Linear Algebra Appl., vol. 18, no. 2, pp. 175-188, 1977.
= wrER [10] S.-W. Ho and S. Verd(, “On the interplay between cdndal entropy
and error probability,1EEE Trans. Inf. Theory, vol. 56, no. 12, pp. 5930—
where [9b) and[(36) follow from Lemma 8. Therefore, we 5942, Dec. 2010.

1+6

Das(pg,0,2)

have [11] S. I. Gelfand and M. S. Pinsker, “Coding for channel lwitandom
parameters,Probl. Control Inf. Theory, vol. 9, no. 1, pp. 19-31, 1980.
q(u) =0, u=0,1,2, [12] C. R. Johnson, “A Gersgorin-type lower bound for the Besa singular
R value,” Linear Algebra Appl., vol. 112, no. 1, pp. 1-7, 1989.
q(3) = q(9), [13] R. A. Horn and C. R. Johnson, Matrix Analysis. CambridGambridge

University Press, 1985.
which, together with[(85), proveb(67) fére (0,1).

APPENDIXC
PrRoOF OF(Z3) AND ([74)
_When¢ = 0 ord = 1, we haveC(py|x,s,ps) =
C(py|x,s,ps), Which implies &(py|x,s,ps) = 1 and

7(py|x,s,ps) = 3. When# € (0,1), the maximizer of the
optimization problem in[{5), denoted k}yX|S, is unique and
is given by

P s(als)

-1
<1+(1—9)9ﬁ> = z=s,

-1
<1 +(1- 9)9ﬁ> <1 - 9ﬁ>, otherwise

In view of (Z1) and[(7R), it suffices to show that
077 <1-6077, 0e(0,1).
Indeed, ford € (0,1),
977 < 1— 9T

1< 7 -9
& (1—0)log(1+6)+6logh <0,

and the last inequality is true according to Lemnha 8.
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