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Abstract

We study the communication efficient secret sharing (CESS) problem. A classical threshold
secret sharing scheme encodes a secret inton shares given ton parties, such that any set of at least
t, t < n, parties can reconstruct the secret, and any set of at mostz, z < t, colluding parties
cannot obtain any information about the secret. A CESS scheme satisfies the previous properties
of threshold secret sharing. Moreover, it allows to reconstruct the secret from any set ofd, d ≥ t,
parties by reading and communicating the minimum amount of information. In this paper, we
introduce two explicit constructions of CESS codes calledStaircase Codes. The first construction
achieves optimal communication and read costs for a fixedd, d ≥ t. The second construction
achieves optimal costs universally for all possible valuesof d, t ≤ d ≤ n. Both constructions
are designed over a small finite fieldGF (q), for any prime powerq > n. We also describe how
Staircase codes can also be used to construct threshold changeable secret sharing with minimum
storage cost, i.e., minimum share size.

1 Introduction

Consider the threshold secret sharing (SS) problem [1, 2] inwhich a dealer encodes a secret using
random keys inton shares and distributes them ton parties. The threshold SS allows a legitimate user
contacting any set of at leastt, t < n, parties to reconstruct the secret by downloading their shares.
In addition, the scheme ensures that any set of at mostz, z < t, colluding parties cannot obtain any
information, in an information theoretic sense, about the secret. The following example illustrates the
construction of a threshold SS onn = 4 shares.

Example 1(Threshold SS). Letn = 4, t = 2 andz = 1 and lets be a secret uniformly distributed over
GF (5). Then, the following4 shares(s + r, s + 2r, s + 3r, s + 4r) form a threshold SS scheme, with
r being a random symbol, called key, chosen uniformly at random fromGF (5) and independently ofs.
A user can decode the secret by contacting anyt = 2 parties, downloading their shares and decodings
andr. Secrecy is ensured, because the secret is padded with the key in each share.

Threshold secret sharing code constructions have been extensively studied in the literature, e.g.,
[1–7]. The literature on secret sharing predominantly studies non-threshold secret sharing schemes,
with so-called general access structures, e.g., [8–10]. Werefer the interested reader to the following
survey works [11–13] and references within. In this paper, we focus on the problem of communication
(and read) efficient secret sharing (CESS). A CESS scheme satisfies the properties of threshold secret
sharing described in the previous paragraph. In addition, it achieves minimum communication and read
overheads when the user contactsd, d ≥ t, parties. The communication overhead (CO) is defined as the
extra amount of information (beyond the secret size) downloaded by a user contactingd parties in order
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to decode the secret. The read overheadRO is defined similarly. Next, we give an example of a CESS
code that minimizesCO andRO. The CESS code in this example belongs to the family of Staircase
codes which we introduce in Section 3.1.

Example 2. Consider again the SS problem of Example 1 withn = 4, t = 2, z = 1. We assume now
that the secrets is formed of 2 symbolss1, s2 uniformly distributed overGF (5) and we use two keys
r1, r2 drawn independently and uniformly at random fromGF (5). To construct the Staircase code, the
secret symbols and keys are arranged in a matrixM as shown in(1). The matrixM is multiplied by
a 4 × 3 Vandermonde matrixV to obtain the matrixC = VM . The4 rows ofC form the4 different
shares and give the Staircase1 code shown in Table 1.





s1 r1
s2 r2
r1 0



 .









1 1 1
1 2 4
1 3 4
1 4 1









V
M

C = VM = (1)

Party 1 Party 2 Party 3 Party 4
s1 + s2 + r1 s1 + 2s2 + 4r1 s1 + 3s2 + 4r1 s1 + 4s2 + r1

r1 + r2 r1 + 2r2 r1 + 3r2 r1 + 4r2

Table 1: An example of a CESS code based on the Staircase code construction overGF (5) for n = 4
parties, thresholdt = 2, z = 1 colluding parties and anyd = 3 parties can efficiently reconstruct the
secret. A user contacting anyt = 2 parties downloads all their shares, i.e.,4 symbols in total, in order to
decode the secret. The resulting overheads areCO = RO = 2 symbols. However, a user contacting any
d = 3 parties decodes the secret by downloading the first symbol (in blue) of each share, i.e.,3 symbols
in total. Hence,CO = RO = 1 symbol. For instance, a user contacting parties1, 2 and3 downloads
s1 + s2 + r1, s1 + 2s2 + 4r1, ands1 + 3s2 + 4r1 and can decode the secret andr1. Notice that a user
contactingd = 3 parties can only decoder1, whereas a user contactingt = 2 parties has to decoder1
andr2.

The CESS scheme enjoys the following properties. First, a user decodes the secret either by con-
tacting anyt = 2 parties and downloading all their shares, i.e., 4 symbols, or by contacting anyd = 3
parties and downloading the first symbol (in blue) of each share, i.e.,3 symbols in total. The key idea
here is that the user is only interested in decoding the secret and not necessarily the keys. Whend = 3,
the user decodes the secret and only the keyr1, whereas whend = t = 2, the user has to decode the
secret and both of the keys. This code actually achieves the minimumCO andRO equal to1 symbol for
d = 3 (and 2 symbols ford = t = 2) given later in(4) and (5). Second, secrecy is achieved because
the secrets1, s2 is padded by random keysr1, r2 and eachz = 1 party cannot obtain any information
abouts1 ands2.

Related work:The CESS problem was introduced by Wang and Wong in [14] wherethey focused on
perfect CESS, i.e., the case in whichz = t− 1. The authors showed that there exists a tradeoff between
the number of contacted partiesd and the amount of information downloaded by a user in order to
decode the secret. They derived a lower bound onCO and constructed codes for the special case of

1The nomenclature of Staircase codes comes from the positionof the zero block matrices in the general structure of the
matrixM (see the general construction in Table 3).
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z = t − 1 using polynomial evaluation overGF (q), whereq > n + v, that achieve minimumCO and
RO universally for alld, t ≤ d ≤ t+ v − 1, for some positive integerv. Zhang et al. [15] constructed
CESS codes for the special case ofz = t− 1 overGF (q), whereq > n, that achieve minimumCO and
RO for any fixedd, t ≤ d ≤ n. Recently, Huang et al. [16] studied the CESS problem for allz < t and
generalized the lower bound onCO. The authors constructed explicit CESS codes for anyz achieving
the minimumCO andRO for d = n overGF (q), q > n(n−z). Moreover, they proved the achievability
of the lower bound onCO andRO universally for all possible values ofd, t ≤ d ≤ n using random linear
code constructions2. In our setting, we assume that the dealer has direct access to all the parties. In the
case where the dealer can access the parties through a network, Shah et al. [19] studied the problem of
minimizing the communication cost of securely delivering the shares to the parties.
Contributions: In this paper, we introduce two new classes of explicit constructions of linear CESS
codes that achieve minimumCO andRO. More specifically, we make the following contributions:

1. We describe a construction, which we callStaircase Code, that achieves minimumCO andRO for
any givenz and any givend. This construction generalizes the construction in Example 2.

2. We describe a universal construction, which we callUniversal Staircase Code, that achieves min-
imumCO andRO simultaneously for all possible values ofd, t ≤ d ≤ n and any given value of
z.

Moreover, we describe how to construct a class of secret sharing codes, called threshold changeable
secret sharing (TCSS) codes [20], based on the introduced Staircase codes.
The Staircase codes require a small finite fieldGF (q) of sizeq > n, which is the same requirement for
Reed Solomon based SS codes3 [3].

Organization:The paper is organized as follows. In section 2, we formulatethe CESS problem, intro-
duce the necessary notations and summarize our results. We describe the Staircase code constructions in
section 3. In section 4, we prove that the Staircase codes fora fixedd achieve secrecy and minimumCO
andRO. In section 5, we prove that Universal Staircase codes achieve secrecy and minimumCO andRO.
In Section 6 we show how to use the Staircase codes to construct threshold changeable secret sharing.
We conclude in section 7.

2 Problem formulation and main results

We consider the CESS problem and follow the majority of the notations in [16]. A secrets of size
k units is formed ofkα symbols (1 unit =α symbols). The secret symbols are drawn independently
and uniformly at random from a finite alphabet, typically a finite field. A CESS code is a scheme that
encodes the secret, using random keys, inton sharesw1, . . . , wn, of unit size each, and distributes them
to n distinct parties. LetWi denote the random variable representing the share of partyi, let S denote
the random variable representing the secrets, let [n] = {1, . . . , n}, and for any subsetB ⊆ [n] denote
by WB the set of random variables representing the shares indexedby B, i.e.,WB = {Wi; i ∈ B}.
Then, a CESS code must satisfy the following properties:

1. Perfect secrecy:Any subset ofz or less parties should not be able to get any information about
the secret. The perfect secrecy condition can be expressed as

H(S | WZ) = H(S), ∀Z ⊂ [n] s.t.|Z| = z. (2)
2After the appearance of the original version of this work on Arxiv [17], an equivalent CESS code construction for all

parameters was given independently in [18].
3However, the constructions requires to divide the secret into a certain number of symbols, which may not be necessary for

SS codes.

3



2. MDS:A user downloading anyt shares is able to recover the secret, i.e.,

H(S | WA) = 0, ∀A ⊆ [n] s.t.|A| = t. (3)

Equations (2) and (3) imply that the secret can be of at mostt− z units (see [16, Proposition 1]).
We will take the secret to be of maximum size, i.e.,k = t− z units.

3. MinimumCO andRO: a user contacting anyd parties,t ≤ d ≤ n, is able to decode the secret by
reading and downloading exactlyk + CO(d) units of information in total from all the contacted
shares, where

CO(d) =
kz

d− z
. (4)

Equation (4) represents the achievable information theoretic lower bound [14, Theorem 3.1], [16, The-
orem 1] on the communication overhead,CO(d), needed to satisfy the constraints in (2) and (3), when
the user contactsd parties4. Since the amount of information read cannot be less than thedownloaded
amount, the following lower bound onRO holds,

RO(d) ≥ CO(d). (5)

We will refer to a CESS code described above as an(n, k, z, d) CESS code, where the threshold is
t = k + z. For instance, the code in Example 2 is an(4, 1, 1, 3) CESS code. We define a universal
(n, k, z) CESS code that achieves minimumCO(d) andRO(d) simultaneously for all possible values
of d. Note that the MDS constraint can be omitted since it is subsumed by the minimumCO andRO
constraint since it corresponds to the case ofd = t andCO(t) = z. However, we will make this
distinction for clarity of exposition.

Given the model described above, we are ready to state our twomain results.

Theorem 1. The(n, k, z, d) Staircase CESS code defined in Section 3.1 overGF (q), q > n, satisfies the
required MDS and perfect secrecy constraints given in(2) and(3), and achieves optimal communication
and read overheadsCO(d) andRO(d) given in(4) and (5) for any givend, d ∈ {k + z, . . . , n}.

Theorem 2. The(n, k, z) Universal Staircase CESS code defined in Section 3.2 overGF (q), q > n,
satisfies the required MDS and perfect secrecy constraints given in (2) and (3), and achieves optimal
communication and read overheadsCO(d) and RO(d) given in (4) and (5) simultaneously for alld,
k + z ≤ d ≤ n.

3 Staircase code constructions

3.1 Staircase code construction for fixedd

We describe the(n, k, z, d) Staircase code construction that achieves optimal communication and read
overheadsCO(d) andRO(d) for any givend, k + z ≤ d ≤ n. In this construction, we takeα = d − z.
Hence, the secrets of sizek units is formed ofk(d − z) symbolss1, . . . , skα, wheresi ∈ GF (q) and
q > n. The symbolssi are arranged in anα × k matrixS. The construction useszα iid random keys
drawn uniformly at random fromGF (q) and independently of the secret. The keys are partitioned into
two matricesR1 andR2 of dimensionsz × k andz × (α − k) respectively. LetD be the transpose

4Note that a user contactingd parties and achieving (4) for a threshold secret sharing with thresholdt downloads the same
amount of information as a user contactingd parties in a threshold secret sharing with thresholdd.
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of the last(α − k) rows of the matrix

[

S
R1

]

5 and let0 be the all zero square matrix of dimensions

(α − k) × (α − k), note thatα − k ≥ 0 sinced ≥ z + k. The key ingredient of the construction
is to arrange the secret and the keys in ad × α matrix M defined in Table 2. The inspiration behind
this construction is the class of Product Matrix codes that minimizes the repair bandwidth in distributed
storage systems6 [22].

M =









S
D

R2

R1
0









d×α

α−kk

α

z

k

z

α−k

Table 2: The structure of the matrixM that contains the secret and keys in the Staircase code construc-
tion for fixedd.

Encoding: Let V be ann × d Vandermonde7 matrix defined overGF (q). The matrixM , defined in
Table 2, is multiplied byV to obtain the matrixC = VM . Then rows ofC form then different shares.

Decoding: A user contacting anyt = k+ z parties downloads all the shares of the contacted parties. A
user contactingd parties, indexed byI ⊆ [n], downloads the firstk symbols from each contacted party
corresponding tovi

[

S R1

]t
, i ∈ I (the superscriptt denotes the transpose of a matrix). Theorem 1

guaranties that the user will be able to decode the secret in both cases.

Example 2 (Continued). We give the details of the construction of the(n, k, z, d) = (4, 1, 1, 3) CESS
code of Example 2. We takeα = d − z = 2, thus the secrets is formed ofkα = 2 symbolss1, s2
uniformly distributed overGF (q), q = 5 > n = 4. The construction useszα = 2 iid random keys
r1, r2 drawn uniformly at random overGF (5) and independently of the secret. The keys are partitioned
into two matricesR1 andR2 of dimensionsz × k = 1× 1 andz × (α− k) = 1× 1, respectively. The
matrixD is the transpose of the lastα − k = 1 row ofR1. Hence, we have,R1 = D = r1, R2 = r2,

andS =

[

s1
s2

]

. The secret and the keys are arranged in ad × α = 3 × 2 matrix M . Let V be an

n× d = 4× 3 Vandermonde matrix.M andV are given again in(6).

M =





s1 r1
s2 r2
r1 0



 andV =









1 1 1
1 2 4
1 3 4
1 4 1









. (6)

The shares are the rows of the matrixC = VM as given in Table 1. We want to check that this code
satisfies the following properties:

1) MinimumCO andRO for d = 3: We check that a user contactingd = 3 parties can reconstruct the
secret with minimumCO andRO. For instance, if a user contacts the first 3 parties and downloads the

5If α− k ≤ z, i.e.,d ≤ 2z + k, thenD consists of the transpose of the lastα− k rows ofR1.
6After the appearance of the original version of this work on Arxiv [17], a connection between the family of regenerating

codes and CESS codes was explored in more details in [21].
7We require all square sub-matrices formed by consecutive columns ofV to be invertible. Vandermonde and Cauchy

matrices satisfy this property.
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first symbol of each contacted share, then the downloaded data is given by,




1 1 1
1 2 4
1 3 4









s1
s2
r1



 . (7)

The matrix on the left is a3 × 3 square Vandermonde matrix, hence invertible. Therefore, the user can
decode the secret (andr1). This remains true irrespective of which3 parties are contacted. The user
reads and downloads3 symbols of size3/α = 3/2 units resulting in minimum overheads,CO(3) =
RO(3) = 3/2 − k = 1/2, as given in(4) and (5).

2) MDS:We check that a user contactingt = k+ z = 2 parties can reconstruct the secret. Suppose the
user contacts parties1 and2 and downloads all their shares given by

[

1 1 1
1 2 4

]





s1 r1
s2 r2
r1 0



 . (8)

The system in(8) is equivalent to the two following systems

[

1 1 1
1 2 4

]





s1
s2
r1



 and

[

1 1
1 2

] [

r1
r2

]

. The

decoder uses the latter system to decoder1 and r2. This is possible because the matrix on the left is
a square Vandermonde matrix, hence invertible. Then, the decoder subtracts the obtained value ofr1

from the former system to obtain again the following invertible system

[

1 1
1 2

] [

s1
s2

]

. The decoder then

decodess1 ands2. Again, this procedure is possible for any 2 contacted parties .

3) Perfect secrecy:At a high level, perfect secrecy is achieved here because each symbol in a share is
“padded” with at least one distinct key statistically independent of the secret, making the shares of any
party independent of the secret.

3.2 Universal Staircase code construction

We describe the(n, k, z) Universal Staircase code construction that achieves optimal communication
and read overheadsCO(d) andRO(d) simultaneously for all possible values ofd, i.e.,k + z ≤ d ≤ n.
Let d1 = n, d2 = n − 1, . . . , dh = k + z, with h = n − k − z + 1, andαi = di − z, i = 1, . . . , h.
Chooseα = LCM(α1, α2, . . . , αh−1), that is the least common multiple of all theαi’s except for the
lastαh = k. The secrets consists ofkα symbolss1, . . . , skα, uniformly distributed overGF (q), q > n,
arranged in anα1 × kα/α1 matrixS.
The construction useszα iid random keys, drawn uniformly at random fromGF (q) and independently
of the secret. The keys are partitioned intoh matricesRi, i = 1, . . . , h, of respective dimensions
z × kα/αiαi−1 (takeα0 = 1). The matricesR1, . . . ,Ri consist of the overhead of keys decoded by a
user contactingdi parties. We formh matricesMi, i = 1, . . . , h, as follows,

M1 =





S

R1



 , M2 =





D1

R2

0



 , . . . , Mj =





Dj−1

Rj

0



 , . . . , Mh =





Dh−1

Rh

0



 .

kα/α1 kα/α1α2 kα/αj−1αj α/αh−1

n
z

α1

n z

α2

1

n z

αj

n − dj

n z

k

h − 1

(9)

Each matrixDj is formed of the(n− j + 1)th row of
[

M1 M2 . . .Mj

]

wrapped around to make a
matrix of dimensionsαj+1 × kα/αjαj+1 for j = 1, . . . , h − 1. The0’s are the all zero matrices used
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M =

















D2

. . . Dh−1

D1 Rh

S R3

. . .

R2
0

R1 0
. . .

0

















.
staircase
structure

n× α

M1 M2 M3
. . . Mh

Table 3: The structure of the matrixM that contains the secret and keys in the universal Staircasecode
construction.

to complete theMi’s to n rows. The secret and the keys are arranged in the matrixM =
[

M1 . . .Mh

]

defined in Table 3.
The matrixM is characterized by a special structure resulting from carefully choosing the entries

of theDj ’s and placing the all zero sub-blocks in a staircase shape, giving these codes their name. This
staircase shape allows to achieve optimal communication and read overheadsCO andRO for all possible
d.
Encoding:The encoding is similar to the Staircase code construction.Let V be ann× n Vandermonde
matrix defined overGF (q). The matrixM , defined in Table 3, is multiplied byV to obtain the matrix
C = VM . Then rows ofC form then different shares.

Decoding:To reconstruct the secret, a user contacting anydj parties indexed byI ⊆ [n] downloads the
first kα/αj symbols from each contacted party corresponding tovi

[

M1 . . .Mj

]

, for all i ∈ I.
We postpone the example of a Universal Staircase code to section 5.1 to have it next to the proof of

Theorem 2.

4 Staircase Code for fixedd

Proof of Theorem 1.Consider the(n, k, z, d) Staircase code defined in Section 3.1. We prove Theo-
rem 1 by establishing the following properties of the code:

1) MinimumCO(d) andRO(d): We prove that a user contacting anyd parties can reconstruct the secret
while incurring minimumCO andRO. A user contacting anyd parties downloads the firstk symbols of
each party. LetI ⊂ [n], |I| = d, be the set of indices of the contacted parties, then the downloaded
data is given byVI

[

S R1

]t
, whereVI is a d × d square Vandermonde matrix formed of the rows

of V indexed byI, hence invertible. The user can always decode the secret (and the keys inR1) by
invertingVI . The code is optimal on communication and read overheadsCO(d) andRO(d), because the
user only reads and downloadskd symbols of sizekd/α = kd/(d − z) units resulting in an overhead
of kd/α − k = kz/α = kz/(d − z) achieving the optimalCO(d) andRO(d) given in (4) and (5).

2) MDS property:We prove that a user contacting anyt = k + z parties and downloading all their
shares can reconstruct the secret. LetI ⊂ [n], |I| = t, be the set of indices of the contacted parties. The
information downloaded by the user isVIM and is given by,

VI





S D

R1

R2

0



 .
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First, we show that the user can decode the entries ofD andR2. The decoder considers the system,

VI

[

D R2 0
]t

= V ′
I

[

D R2

]t
. (10)

Recall that the dimensions of the all zero matrix in (10) are(α−k)×(α−k), thenV ′
I is a(k+z)×(k+z)

square Vandermonde matrix formed by the first(k + z) columns ofVI . Therefore, the user can always
decode the entries ofD andR2 becauseV ′

I is invertible. Second, we prove that the user can always
decode the entries ofS and hence reconstruct the secret. Recall thatD is the transpose of the lastα− k

rows ofM1 ,
[

S R1

]t
. By subtracting the previously decoded entries ofD from VI

[

S R1

]t
, the

user obtainsV ′
IM

′
1, whereV ′

I is defined above andM ′
1 is a (k + z) × k matrix formed by the first

k + z rows ofM1. Therefore, the user can always decode the entries ofM ′
1 becauseV ′

I is invertible. If
k + z ≥ α, thenS is directly obtained since it is contained inM ′

1. Otherwise,M ′
1 consists of the first

k + z rows ofS. The remaining rows ofS are contained inD and were previously decoded. In both
cases, the user can decode all the secret symbolss1, . . . , skα.

3) Perfect secrecy:We prove that for any subsetZ ⊂ [n], |Z| = z, the collection of shares indexed
by z, denoted byWZ = {wi, i ∈ Z}, does not reveal any information about the secret as given in
equation (2), i.e.,H(S | WZ) = H(S). Let R denote the random variable representing all the random
keys, then it suffices to prove thatH(R | WZ ,S) = 0 as detailed in the Appendix. Therefore, we need
to show that given the secrets as side information, any collection ofz shares can decode all the random
keys. A collection ofWZ shares can be written as

VZ





S D

R1

R2

0



 , (11)

whereVZ is az × d matrix corresponding to the rows ofVZ indexed byZ. The linear system in (11)
can be divided into two systems as follows,

VZ

[

S R1

]t
, (12)

VZ

[

D R2 0
]t
. (13)

Given the secret as side information, it can be subtracted from (12), which becomes

VZ

[

0 R1

]t
= V ′′

ZR1,

where,V ′′
Z is az × z square Vandermonde matrix consisting of the lastz columns ofVZ . The entries

of R1 can always be decoded becauseV ′′
Z is invertible. Now thatR1 is decoded and we haveS as side

information, we can obtainD as the lastα− k rows of
[

S R1

]t
. Then, the entries ofD are subtracted

from the second system to obtainV ∗
ZR2, whereV ∗

Z is az × z square Vandermonde matrix consisting of
the(k + 1)th to the(k + z)th columns ofVZ . Hence, the entries ofR2 can always be decoded because
V ∗
Z is invertible. Therefore,H(R | WZ ,S) = 0, ∀ Z, Z ⊂ [n], |Z| = z and perfect secrecy is achieved.

5 Universal staircase codes

5.1 Example

We describe here the construction of an(n, k, z) = (4, 1, 1) Universal Staircase code overGF (q), q =
5 > n = 4, by following the construction in Section 3.2. We haved1 = 4, d2 = 3, d3 = 2 andα1 = 3,
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α2 = 2, α3 = 1 andα = LCM(α1, α2) = LCM(3, 2) = 6. The secrets is formed ofkα = 6 symbols
uniformly distributed overGF (5). The construction useszα = 6 iid random keys drawn uniformly
at random fromGF (5) and independently of the secret. The secret symbols and the random keys are
arranged in the following matrices,

S =





s1 s4
s2 s5
s3 s6



 , R1 =
[

r1 r2
]

, R2 =
[

r3
]

and R3 =
[

r4 r5 r6
]

.

To build the matrixM which will be used for encoding the secret, we start with

M1 =









S

R1









=









s1 s4
s2 s5
s3 s6
r1 r2









.

Then,D1 is theα2 × kα/α1α2 = 2 × 1 matrix that contains the symbols of thenth row of M1,
i.e., D1 =

[

r1 r2
]t

. Therefore,M2 =
[

D1 R2 0
]t

=
[

r1 r2 r3 0
]t

. Similarly, we have

D2 =
[

s3 s6 r3
]

andM3 =









s3 s6 r3
r4 r5 r6
0 0 0
0 0 0









. We obtainM by concatenatingM1, M2 andM3,

M =









s1 s4 r1 s3 s6 r3
s2 s5 r2 r4 r5 r6
s3 s6 r3 0 0 0
r1 r2 0 0 0 0









.

M1 M2 M3

(14)

Here,V is then× n = 4× 4 Vandermonde matrix overGF (5) given in (15). The shares are given by
the rows of the matrixC = VM and shown in Table 4.

V =









1 1 1 1
1 2 4 3
1 3 4 2
1 4 1 4









. (15)

Party 1 Party 2 Party 3 Party 4
s1 + s2 + s3 + r1 s1 + 2s2 + 4s3 + 3r1 s1 + 3s2 + 4s3 + 2r1 s1 + 4s2 + s3 + 4r1
s4 + s5 + s6 + r2 s4 + 2s5 + 4s6 + 3r2 s4 + 3s5 + 4s6 + 2r2 s4 + 4s5 + s6 + 4r2

r1 + r2 + r3 r1 + 2r2 + 4r3 r1 + 3r2 + 4r3 r1 + 4r2 + r3
s3 + r4 s3 + 2r4 s3 + 3r4 s3 + 4r4
s6 + r5 s6 + 2r5 s6 + 3r5 s6 + 4r5
r3 + r6 r3 + 2r6 r3 + 3r6 r3 + 4r6

Table 4: An example of a universal Staircase code for(n, k, z) = (4, 1, 1) overGF (5).

The constructed Universal Staircase code satisfies the following properties:
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1) MDS:We check that a user contactingd3 = k + z = 2 parties can decode the secret. Suppose that
the user contacts parties1 and2. The data downloaded by the user isV{1,2}M and is given by,

[

1 1 1 1
1 2 4 3

]









s1 s4 r1 s3 s6 r3
s2 s5 r2 r4 r5 r6
s3 s6 r3 0 0 0
r1 r2 0 0 0 0









.

M1 M2 M3

V{1,2}

(16)

We will show that the user can decode the secret by successively solving the linear systemsV{1,2}M3,
V{1,2}M2 andV{1,2}M1. The decoder starts by consideringV{1,2}M3 which gives,

[

1 1
1 2

] [

s3 s6 r3
r4 r5 r6

]

. (17)

The matrix on the left is invertible, and the user can decode the secret symbols and keys in (17). Then,
the decoder considers the systemV{1,2}M2 after subtracting from it the value ofr3 decoded in the pre-
vious step. The obtained system is again invertible and the decoder can decoder1 andr2. The decoder
then considersV{1,2}M1, after canceling outr1, r2, s3, s6 decoded so far, to obtain the following
system,

[

1 1
1 2

] [

s1 s4
s2 s5

]

.

The matrix on the left is again invertible and the decoder canreconstruct the secret. This remains true
irrespective of which 2 parties are contacted.

2) MinimumCO andRO for d2 = 3 and d1 = 4: We check that a user contacting anyd, d = 3, 4,
parties can decode the secret while achieving the minimum communication and read overheads given
in (4) and (5). Suppose a user contactsd2 = 3 parties indexed byI ⊂ [n]. The user reads and downloads
the firstkα/α2 = 3 symbols of each contacted share corresponding toVI

[

M1 M2

]

(in black and red),
whereVI is the matrix formed by the rows ofV indexed byI. The user will be able to reconstruct the
secret by implementing a decoding procedure similar to the one above. The resultingCO andRO are
equal to3/2− k = 1/2 units achieving the optimalCO(d2) andRO(d2) given in (4) and (5). In the case
when a user contactsd1 = 4 parties, the user reads and downloads the firstkα/α1 = 2 symbols of each
contacted share corresponding toVIM1 (in black). The user can always decode the secret becauseVI

here is a4× 4 square Vandermonde matrix, hence invertible. The resulting CO andRO are equal to1/3
achieving the optimalCO(d1) andRO(d1) given in (4) and (5).

3) Perfect secrecy:At a high level, perfect secrecy is achieved here because each symbol in a share is
“padded” with at least one distinct key statistically independent of the secret, making the shares of any
party independent of the secret.

5.2 Proof of Theorem 2

Consider the(n, k, z) Universal Staircase code construction defined in Section 3.2. We prove Theorem 2
by establishing the following properties.

1) Encoding is well defined:We prove that the(n− j + 1)th row of
[

M1 . . .Mj

]

has the same number
of entries asDj , j = 1, . . . , h − 1. Therefore, we can always construct the matrixDj . In fact, the

10



number of entries of one row of
[

M1 . . .Mj

]

is equal to the sum of the number of columns of theMi’s,
i = 1, . . . , j. Notice thatαi−1 = αi + 1, then we can write,

kα

αiαi−1

= kα

(

1

αi
−

1

αi−1

)

.

Hence, the number of columns of
[

M1 . . .Mj

]

is given by,

kα

α1

+ kα

(

1

α2

−
1

α1

)

+ · · ·+ kα

(

1

αj
−

1

αj−1

)

=
kα

αj
, (18)

which is equal to the number of entries ofDj.

2) MDS and minimumCO(d) andRO(d) for all d, k + z ≤ d ≤ n: We prove that a user contacting any
d, k+ z ≤ d ≤ n, parties can decode the secret while achieving the minimum communication and read
overheads given in (4) and (5). Notice that the MDS property follows directly from the fact that a user
contactingdh = k + z parties can reconstruct the secret by reading and downloading all the contacted
shares.

A user contacting anydj , j = 1, . . . , h, parties downloads the firstkα/αj symbols of each party.
Let I ⊆ [n], |I| = dj , be the set of indices of the contacted parties and letVI be the matrix formed of
the rows ofV indexed byI. The total downloaded data is given byVI

[

M1 . . .Mj

]

and can be divided
into j linear systems given as follows,

VIM1 = VI

[

S R1

]t
(19)

VIM2 = VI

[

D1 R2 0
]t

(20)
...

VIMj−1 = VI

[

Dj−2 Rj−1 0
]t

(21)

VIMj = VI

[

Dj−1 Rj 0
]t
. (22)

We prove by induction that the user can always reconstruct the secret by iteratively decodingMi,
i = j, . . . , 1, in each linear systemVIMi. To that end, we verify the induction hypothesis fori = j.
Given the system in (22), we show that the user can always decodeMj . The zero block matrix in (22) is
of dimensions(n− dj)× (kα/αjαj−1). Therefore, (22) can be rewritten asV ′

I

[

Dj−1 Rj

]

, whereV ′
I

is the square Vandermonde matrix of dimensionsdj × dj formed by the firstdj columns ofVI . Hence,
the user can always decode the entries ofMj by invertingV ′

I .
Next, suppose that the user can decode all theMi’s, i = j, . . . , l + 1, we prove that the user can

always decodeMl. The lth system is given byVIMl. By constructionMl containsdl non-zero rows,
because the0 block matrix is of dimensions(n− dl)× (kα/αlαl−1). In addition, the entries of the last
l− 1 non-zero rows ofMj are present inDf for f = j − 1, . . . , l − 1, which were previously decoded.
It can be checked thatdj = dl − (l − 1) for all l < j. Therefore, after subtracting the lastl − 1 rows
of Ml, the system becomesV ′

IM
′
l , whereV ′

I is again thedj × dj square Vandermonde matrix defined
above andM ′

l is the matrix formed of the firstdj = dl − (l − 1) rows ofMl. Henceforth, the user can
always decodeM ′

l by invertingV ′
I . Finally, the user can decode all the entires ofMl that consist of the

entries ofM ′
l and the entries of the lastl − 1 rows ofMl, which were previously decoded.

Next, we show that minimumCO andRO are achieved. The number of symbols read and downloaded
by a user contactingdj parties is equal todj(kα/αj) symbols which corresponds todjk/αj units. Then,
the communication and read overheads are given bydjk/αj−k = kz/αj = kz/(dj−z), which matches
the optimalCO(dj) andRO(dj) for all dj = k + z, . . . , n, given in (4) and (5).
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3) Perfect secrecy:Similarly to the proof of perfect secrecy in Theorem 1, we need to show thatH(R |
WZ ,S) = 0 for all Z ⊂ [n], |Z| = z (see Appendix). This is equivalent to showing that given thesecret
s as side information, any collectionWZ of z shares can decode all the random keys. A collection of
WZ of z shares can be written asVZ

[

M1 . . .Mh

]

, which can be divided intoh = n− k − z + 1 linear
systems as follows,

VZM1 = VZ

[

S R1

]t
(23)

VZM2 = VZ

[

D1 R2 0
]t

(24)
...

VZMh = VZ

[

Dh−1 Rh 0
]t
. (25)

We will prove by induction that given the secrets as side information, any collectionWZ of z shares
can always iteratively decodeRi, i = 1, . . . , h, in each linear systemVZMi. To that end, we verify the
induction hypothesis fori = 1 by showing that a collection ofWZ shares can always decodeR1 in (23).
Recall that the dimensions ofR1 arez × kα/α1. Given the secrets, (23) becomes,

VZ

[

0 R1

]t
= V ′′

ZR1,

whereV ′′
Z is az × z square Vandermonde matrix formed by the lastz columns ofVZ . Therefore,R1

can be decoded by invertingV ′′
Z .

Next, we suppose that any collection ofWZ shares can decode all theRi’s for i = 1, . . . , l− 1, and
show that any collection ofWZ can decodeRl. Thelth system is given byVIMl = VI

[

Dl−1 Rl 0
]t

.
By construction,Dl−1 consists of the entries of the last row ofMl−1 which were previously decoded.
Given the previously decoded information, any collection of WZ shares can cancel out the entries of
Dl−1 to obtainV ∗

ZRl. Since the dimensions ofRl arez × kα/αlαl−1, the matrixV ∗
Z is az × z square

Vandermonde matrix formed by the(αl+1)th to (αl+z)th rows ofVZ . Thus,Rl can be always decoded
becauseV ∗

Z is invertible. Therefore, all the keys can always be decoded. Hence,H(R | WZ ,S) = 0.
This concludes the proof of Theorem 2.

∆-Universal Staircase codes:Note that the construction of Universal Staircase codes canbe modified
to construct Staircase codes that achieve minimumCO andRO only for a desired subset∆ of all possible
d’s, i.e.,∆ ⊆ {k + z, . . . , n}. We refer to these codes as(n, k, z,∆) ∆-universal Staircase codes. The
advantage of these codes over universal codes is that they may require smaller number of symbols per
shareα.
Encoding: Let ∆′ , ∆ \ {k + z} and order thed’s in ∆′ in decreasing order. We write∆′ =
{di1 , . . . , di|∆′|

} ⊆ {d1, . . . , dh−1}, wheredi1 > di2 > · · · > di|∆′|
. Letαij = dij − z for all dij ∈ ∆′

and letα = LCM(α1, . . . , α|∆′|). Definedi|∆′|+1
, k+ z andαi|∆′|+1

, k. The secret symbols are ar-
ranged in a matrixS of dimensionsαdi1

×kα/αdi1
and the random keys are partitioned into the matrices

Ri1 , . . . ,Ri|∆′|+1
, of dimensionsz × kα/αi1 for Ri1 andz × kα(αij − αij−1

)/(αijαij−1
) for all other

Rij , j = 2, . . . , |∆′| + 1. ConstructMi1 as thedi1 × kα/αi1 matrix structured asM1 in (9). And, for
eachdij , j = 2, . . . , |∆′|+1, constructMij as thedi1 × kα(αij −αij−1

)/(αijαij−1) structured asMij

in (9). The matrixDij , j = 1, . . . , |∆′|, is the matrix of dimensionsαij+1
×kα(αij+1

−αij )/(αij+1
αij )

containing the lastdij − dij+1
rows of

[

Mi1 . . .Mij

]

, from rowdij to rowdij+1
+1. Then, concatenate

the constructed matrices,Mi1 , . . . ,Mi|∆′|+1
, to obtain the matrixM of dimensionsdi1 ×α. The matrix

M is multiplied by a Vandermonde matrix of dimensionsn× di1 to obtain the shares.

Decoding:To reconstruct the secret, a user contacting anydij parties, indexed byI ⊆ [n], downloads
the firstkα/αij symbols from each contacted party corresponding tovi

[

Mi1 . . .Mij

]

, for all i ∈ I.
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Corollary 1. Let ∆ ⊆ {k + z, . . . , n}. The(n, k, z,∆) ∆-universal Staircase codes defined above
overGF (q), q > n, satisfies the required MDS and perfect secrecy constraintsgiven in (2) and (3)
and achieves optimal communication overheadCO(d) and read overheadRO(d) given in (4) and (5)
simultaneously for alld, d ∈ ∆.

We omit the proof of Corollary 1 since it follows the same steps of the proof of Theorem 2.

6 Threshold changeable secret sharing

An (n, k, z; t′) threshold changeable secret sharing (TCSS) code, defined in[20], is an(n, k, z) secret
sharing scheme (satisfying (2) and (3)), where the threshold t = k + z can be changed tot′ > t in a
decentralized way without the dealer. The parties are allowed to communicate as long as the security
constraint is not violated. The efficiency of a TCSS is measured by the new share size for the new
thresholdt′, which we refer to as the storage cost (SC) of the scheme8. Different variants of threshold
changeable secret sharing schemes have been studied in the literature, see e.g., [23–25]. A connection
between TCSS and CESS is shown in [14]. Code constructions are provided in [14,15,20] for the case
whenz = t− 1 and the thresholdt′ is given a priori.

In this section, we show how to construct an(n, k, z; t′) TCSS code for a givent′ > t using an
(n, k, z, d = t′) Staircase code. However, different values oft′ for the same(n, k, z) may require
different Staircase codes. We show that this can be avoided by constructing what we call an(n, k, z; [t+
1 : n]) Universal TCSS code using an(n, k, z) Universal Staircase code. Both constructions involve the
parties deleting parts of their shares and do not require communication among the parties. Moreover,
this construction achieves the optimal storage cost (SC)

SC =
k

t′ − z
, (26)

which is the minimum share size required if the dealer were present. The next example shows how to
construct an(n, k, z; [t + 1 : n]) Universal TCSS code with optimalSC from an (n, k, z) Universal
Staircase code by deleting parts of each share.

Example 3. Consider the problem of constructing an(n, k, z; [t + 1 : n]) = (4, 1, 1; [3 : 4]) Universal
TCSS code for all possiblet′, i.e., t′ = 3 and4. To this end, we use an(n, k, z) = (4, 1, 1) Universal
Staircase code constructed in Section 5.1. The shares givento each party are depicted in Table 5.

In our construction, to change the threshold fromt = k + z to anyt′, t′ ∈ {t + 1, . . . , n}, each

party deletes the last
t′ − z − k

t′ − z
α symbols of its share. Recall that in CESS, each share is of unit size

and consists ofα symbols (α symbols =1 unit). In this example, to change the threshold fromt = 2 to
t′ = 3, each party deletes the last3 symbols (in shaded blue) of its share. The obtained code achieves
the minimum Storage Cost (SC) given in(26), because each new share is of size3 symbols equal to1/2
unit. One can verify that a user contacting anyt′ = 3 parties and downloading their new shares can
decode the secret.

Similarly, the same code can be used to change the threshold from t = 2 to t′ = 4. Each party
deletes the last4 symbols (in red and shaded blue) of its original share (or deletes the last symbol, in
red, if the threshold was already changed to 3). Each new share consists of2 symbols equal to1/3 unit.
Hence, the obtained code achieves minimum Storage Cost (SC) given in(26). One can verify that a user
downloading all the shares can decode the secret. In both cases, secrecy is inherited from the Staircase
code, because the parties do not exchange any information when changing the threshold.

8Any secret sharing scheme is trivially threshold changeable, because a user contactingt
′
> t parties can decode the secret

by downloading anyt shares. However, it does not achieve minimum storage cost for the new threshold.
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Party 1 Party 2 Party 3 Party 4
s1 + s2 + s3 + r1 s1 + 2s2 + 4s3 + 3r1 s1 + 3s2 + 4s3 + 2r1 s1 + 4s2 + s3 + 4r1
s4 + s5 + s6 + r2 s4 + 2s5 + 4s6 + 3r2 s4 + 3s5 + 4s6 + 2r2 s4 + 4s5 + s6 + 4r2

r1 + r2 + r3 r1 + 2r2 + 4r3 r1 + 3r2 + 4r3 r1 + 4r2 + r3
s3 + r4 s3 + 2r4 s3 + 3r4 s3 + 4r4
s6 + r5 s6 + 2r5 s6 + 3r5 s6 + 4r5
r3 + r6 r3 + 2r6 r3 + 3r6 r3 + 4r6

N
ew

sh
a
re

fo
r
t
′
=

3
D

e
le

te
d

Table 5: A(4, 1, 1; [3 : 4]) Universal TCSS code obtained from an(4, 1, 1) Universal Staircase code
overGF (5). The original code has thresholdt = k + z = 2 and can be changed to eithert′ = 3 or
4. The threshold change fromt = 2 to t′ = 3 is depicted. Each party deletes the last3 symbols of its
share. Similarly, the threshold can be changed tot′ = 4 by keeping the first two symbols of each share.
In both cases, the obtained code achieves minimum storage cost (SC) (share size) given by (26).

Corollary 2. An (n, k, z; t′) TCSS code, respectively an(n, k, z; [t + 1 : n]) Universal TCSS code,
can be constructed using an(n, k, z, d) Staircase code defined in Section 3.1, respectively an(n, k, z)
Universal Staircase code defined in Section 3.2. To change the threshold fromt = k+z to t′, each party

deletes the last
t′ − k − z

t′ − z
α symbols of its share. Both constructions achieve optimal storage cost (SC)

given in(26).

Proof. We prove that an(n, k, z; [t+1 : n]) Universal TCSS code can be constructed using an(n, k, z)
Universal Staircase code and omit the proof for(n, k, z; t′) TCSS code, since it follows the same steps.

Starting with an(n, k, z) Universal Staircase code, the threshold ist = k + z. Assume that the

threshold is to be changed tot′ for any t′ ∈ {t + 1, . . . , n}. Each party deletes the last
t′ − z − k

t′ − z
α

symbols of its share (original share size isα symbols).
We establish the following properties.

1. Minimum Storage Cost (SC): By construction, the new share size isα− (t′ − z− k)α/(t′ − z) =
kα/(t′ − z) symbols. Recall that eachα symbols are equal to 1 unit, hence each share is of size
k/(t′ − z) units and (26) is achieved.

2. MDS in t′: By construction, after changing the threshold tot′, each party keeps exactly the
symbols that are sent to a user contacting anyt′ parties in the original CESS code. Therefore, the
user can decode the secret.

3. Perfect secrecy:Since the parties do not exchange any information when changing the threshold,
perfect secrecy follows from the properties of the originalUniversal Staircase code.

Remark 1. Note that the Universal TCSS code obtained from our construction also minimizes the
communication and read overheads (CO andRO) in addition to minimizing the storage cost (SC). In
other words, the newn shares stored after the threshold update, allow a user contacting anyd parties,
d ∈ {t′, . . . , n}, to decode the secret while achieving the minimum communication and read overheads
given in(4) and (5).

For instance, in Example 3 for the new thresholdt′ = 3, a user contacting anyd = 4 parties and
downloading the first two symbols (in black) of each new sharecan decode the secret. The incurredCO
(andRO) is equal to2 symbols equal to1/3 unit and is minimum, i.e., achieves(4) and (5).
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7 Conclusion

We considered the communication efficient secret sharing (CESS) problem. The goal is to minimize the
read and download overheads for a user interested in decoding the secret. To that end, we introduced
a new class of deterministic linear CESS codes, calledStaircase Codes. We described two explicit
constructions of Staircase codes. The first construction achieves minimum overhead for any given num-
ber of partiesd contacted by the user. The second is a universal construction that achieves minimum
overheads simultaneously for all possible values ofd. The introduced codes require a small finite field
GF (q) of sizeq > n, which is the same requirement for Reed Solomon based SS codes [3]. Finally,
we described how Staircase codes can be used to construct threshold changeable secret sharing (TCSS)
codes.

In conclusion, we point out some problems that remain open. The model we considered here and
the proposed Staircase codes can provide security against parties corrupted by a passive Eavesdropper.
However, the problem of constructing communication and read efficient codes that provide security
against an active (malicious) adversary remains open. Moreover, constructing threshold changeable
secret sharing codes where the security level can be increased by increasing the number of possibly
colluding parties also remains open in general (only special cases were solved in [24]).

Let Wi denote the random variable representing sharewi, and for any subsetB ⊆ {1, . . . , n}
denote byWB the set of shares indexed byB, i.e., WB = {Wi; i ∈ B}. We prove that, for all
Z ⊂ {1, . . . , n}, |Z| = z, the perfect secrecy constraintH(S | WZ) = H(S), given in (2), is equivalent
to H(R | WZ ,S) = 0. The proof is standard [26, 27] but we reproduce it here for completeness. In
what follows, the logarithms in the entropy function are taken baseq. We can write,

H(S | WZ) = H(S)−H(WZ) +H(WZ | S) (27)

= H(S)−H(WZ) +H(WZ | S)−H(WZ | S,R) (28)

= H(S)−H(WZ) + I(WZ ; R | S) (29)

= H(S)−H(WZ) +H(R | S)−H(R | WZ ,S) (30)

= H(S)−H(WZ) +H(R | S) (31)

= H(S)−H(WZ) +H(R) (32)

= H(S)− zα+ zα (33)

= H(S). (34)

Equation (28) follows from the fact that given the secrets and the keysR any share can be decoded,
equation (31) follows becauseH(R | S,WZ) = 0 and equation (33) follows because the Staircase code
constructions usezα independent random keys.
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