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Abstract

We study the communication efficient secret sharing (CES8hlpm. A classical threshold
secret sharing scheme encodes a secretistoares given ta parties, such that any set of at least
t, t < n, parties can reconstruct the secret, and any set of at mast< ¢, colluding parties
cannot obtain any information about the secret. A CESS selsatisfies the previous properties
of threshold secret sharing. Moreover, it allows to recatstthe secret from any set df d > t,
parties by reading and communicating the minimum amountfafrination. In this paper, we
introduce two explicit constructions of CESS codes caitaircase CodesThe first construction
achieves optimal communication and read costs for a fiked > ¢. The second construction
achieves optimal costs universally for all possible valokg,¢ < d < n. Both constructions
are designed over a small finite fiedeF'(¢), for any prime power > n. We also describe how
Staircase codes can also be used to construct thresholdeddaa secret sharing with minimum
storage cost, i.e., minimum share size.

1 Introduction

Consider the threshold secret sharing (SS) problem! [1, 2}hich a dealer encodes a secret using
random keys intax shares and distributes themrigarties. The threshold SS allows a legitimate user
contacting any set of at leastt < n, parties to reconstruct the secret by downloading theiresha
In addition, the scheme ensures that any set of at maost< ¢, colluding parties cannot obtain any
information, in an information theoretic sense, about #n@et. The following example illustrates the
construction of a threshold SS an= 4 shares.

Example 1(Threshold SS)Letn = 4,t = 2 andz = 1 and lets be a secret uniformly distributed over
GF(5). Then, the followingt shares(s + r, s + 2r, s 4+ 3r, s + 4r) form a threshold SS scheme, with
r being a random symbol, called key, chosen uniformly at renffomGF'(5) and independently of.

A user can decode the secret by contacting aay?2 parties, downloading their shares and decoding
andr. Secrecy is ensured, because the secret is padded withytlre d&ch share.

Threshold secret sharing code constructions have beensidly studied in the literature, e.g.,
[1H7]. The literature on secret sharing predominantly is&ighon-threshold secret sharing schemes,
with so-called general access structures, €.gl, [8—10].rafés the interested reader to the following
survey works[[11—=13] and references within. In this paperfecus on the problem of communication
(and read) efficient secret sharing (CESS). A CESS schensiemthe properties of threshold secret
sharing described in the previous paragraph. In additt@ghieves minimum communication and read
overheads when the user contagts! > ¢, parties. The communication overheawj is defined as the
extra amount of information (beyond the secret size) doadal by a user contactingparties in order
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to decode the secret. The read overhrads defined similarly. Next, we give an example of a CESS
code that minimizego andRO. The CESS code in this example belongs to the family of Staec
codes which we introduce in Sectibn13.1.

Example 2. Consider again the SS problem of Exarigle 1 with- 4, t = 2, z = 1. We assume now
that the secres is formed of 2 symbols, , s uniformly distributed ovelGF'(5) and we use two keys
r1, 72 drawn independently and uniformly at random fré##'(5). To construct the Staircase code, the
secret symbols and keys are arranged in a mattixas shown infd). The matrix)/ is multiplied by
a4 x 3 Vandermonde matri¥” to obtain the matrix_’ = V M. The4 rows of C form the4 different
shares and give the Stairc#seode shown in Tabl@ 1.

1 1 1
12 4] |0 ™
C=VM = 13 4 S2 To| - 1)
|4 1) L0
~— '\/’*"/ \ [
V
Partyl | Party2 | Party3 | Party 4
sitsp+r | s1+2s+4r | s1+3so 4 | s Fdsot
r1+ 7o r1+ 2719 r1+ 312 1+ 4ro

Table 1: An example of a CESS code based on the Staircase opduction ovelGF(5) for n = 4
parties, threshold = 2, z = 1 colluding parties and any = 3 parties can efficiently reconstruct the
secret. A user contacting any= 2 parties downloads all their shares, i&symbols in total, in order to
decode the secret. The resulting overheadsare- RO = 2 symbols. However, a user contacting any
d = 3 parties decodes the secret by downloading the first symbbliie) of each share, i.& symbols

in total. Henceco = RO = 1 symbol. For instance, a user contacting partigs and 3 downloads
$1+ s9 + 11, 81 + 2s9 + 411, ands; + 3so + 4r1 and can decode the secret andNotice that a user
contactingd = 3 parties can only decodg, whereas a user contactimg= 2 parties has to decodeg
andrs.

The CESS scheme enjoys the following properties. Firsteadmscodes the secret either by con-
tacting anyt = 2 parties and downloading all their shares, i.e., 4 symboid)yocontacting anyl = 3
parties and downloading the first symbol (in blue) of eachrshige.,3 symbols in total. The key idea
here is that the user is only interested in decoding the $@cré not necessarily the keys. Whes: 3,
the user decodes the secret and only therkewhereas whed = ¢ = 2, the user has to decode the
secret and both of the keys. This code actually achievesithismam co and RO equal tol symbol for
d = 3 (and 2 symbols fod = ¢t = 2) given later in(4) and (5). Second, secrecy is achieved because
the secretsy, s, is padded by random keys, r» and eachz = 1 party cannot obtain any information
abouts; and ss.

Related work:The CESS problem was introduced by Wang and Wong@_in [14] wthexe focused on

perfect CESS, i.e., the case in which= ¢ — 1. The authors showed that there exists a tradeoff between
the number of contacted partidsand the amount of information downloaded by a user in order to
decode the secret. They derived a lower boundzcorand constructed codes for the special case of

1The nomenclature of Staircase codes comes from the posititite zero block matrices in the general structure of the
matrix M (see the general construction in Table 3).



z = t — 1 using polynomial evaluation ov&¥F'(q), whereq > n + v, that achieve minimunto and
RO universally for alld, ¢t < d <t + v — 1, for some positive integer. Zhang et al.[[15] constructed
CESS codes for the special case:cf ¢t — 1 overGF(q), whereg > n, that achieve minimunao and
RO for any fixedd, t < d < n. Recently, Huang et al. [16] studied the CESS problem fot atl ¢t and
generalized the lower bound @m. The authors constructed explicit CESS codes for aaghieving
the minimumco andro for d = n overGF(q), ¢ > n(n— z). Moreover, they proved the achievability
of the lower bound oo andro universally for all possible values dft < d < n using random linear
code constructiofs In our setting, we assume that the dealer has direct accedisiie parties. In the
case where the dealer can access the parties through a keB8hah et al[[19] studied the problem of
minimizing the communication cost of securely deliverihg shares to the parties.

Contributions: In this paper, we introduce two new classes of explicit amesions of linear CESS
codes that achieve minimuao andrRo. More specifically, we make the following contributions:

1. We describe a construction, which we &Gtlhircase Codehat achieves minimurao andro for
any givenz and any giveni. This construction generalizes the construction in Exaf@pl

2. We describe a universal construction, which we daliversal Staircase Codgé¢hat achieves min-
imum co andRO simultaneously for all possible valuesaéft < d < n and any given value of
Z.

Moreover, we describe how to construct a class of secretnghaodes, called threshold changeable
secret sharing (TCSS) codés [20], based on the introdueaat&te codes.

The Staircase codes require a small finite fi@lel(¢) of sizeq > n, which is the same requirement for
Reed Solomon based SS cc@{&j.

Organization: The paper is organized as follows. In secfidon 2, we formulaeeCESS problem, intro-
duce the necessary notations and summarize our resultse$tglik the Staircase code constructions in
sectior 8. In sectionl 4, we prove that the Staircase codesffeedd achieve secrecy and minimuno
andro. In sectiorl b, we prove that Universal Staircase codes @eliecrecy and minimu@o andro.

In Sectior{ 6 we show how to use the Staircase codes to con#itreshold changeable secret sharing.
We conclude in sectidd 7.

2 Problem formulation and main results

We consider the CESS problem and follow the majority of theathens in [16]. A secret of size
k units is formed ofka symbols (1 unit =« symbols). The secret symbols are drawn independently
and uniformly at random from a finite alphabet, typically atérfield. A CESS code is a scheme that

encodes the secret, using random keys, insharesw, . . . , w,, of unit size each, and distributes them
to n distinct parties. LetV,; denote the random variable representing the share of pdeS denote
the random variable representing the sesrégt [n] = {1,...,n}, and for any subseB C [n]| denote

by W5 the set of random variables representing the shares indexét] i.e., Wp = {W;;i € B}.
Then, a CESS code must satisfy the following properties:

1. Perfect secrecyAny subset ofz or less parties should not be able to get any information abou
the secret. The perfect secrecy condition can be expressed a

H(S | W) = H(S),VZ C [n] s.t]Z] = =. @)

2After the appearance of the original version of this work axiA[L7], an equivalent CESS code construction for all
parameters was given independentlylin/ [18].

SHowever, the constructions requires to divide the sectetdrcertain number of symbols, which may not be necessary for
SS codes.



2. MDS: A user downloading anyshares is able to recover the secret, i.e.,
H(S|W4)=0,VAC[n]st]A| =t 3

Equations[(R) and {3) imply that the secret can be of at mest units (seel[16, Proposition 1]).
We will take the secret to be of maximum size, ile= ¢t — z units.

3. Minimumco and RO: a user contacting any parties,t < d < n, is able to decode the secret by
reading and downloading exactty+ co(d) units of information in total from all the contacted

shares, where
co(d) = bz (4)
Cd—z

Equation [(4) represents the achievable information thiedi@ver bound[[14, Theorem 3.1], [16, The-
orem 1] on the communication overheam(d), needed to satisfy the constraints[ih (2) dnd (3), when
the user contactg partie. Since the amount of information read cannot be less thaddivaloaded
amount, the following lower bound axo holds,

RO(d) > co(d). (5)

We will refer to a CESS code described above agrark, z,d) CESS code, where the threshold is
t = k + z. For instance, the code in Example 2 is(@n1,1,3) CESS code. We define a universal
(n,k,z) CESS code that achieves minimwo(d) andRo(d) simultaneously for all possible values
of d. Note that the MDS constraint can be omitted since it is soesliby the minimunto andro
constraint since it corresponds to the caselof ¢t andco(t) = z. However, we will make this
distinction for clarity of exposition.

Given the model described above, we are ready to state ounaiworesults.

Theorem 1. The(n, k, z, d) Staircase CESS code defined in Sedtioh 3.16Ve(q), ¢ > n, satisfies the
required MDS and perfect secrecy constraints givefZ)rand (3), and achieves optimal communication
and read overheadso(d) and Ro(d) given in(d) and (B) for any giverd, d € {k + z,...,n}.

Theorem 2. The(n, k, z) Universal Staircase CESS code defined in Se€tidn 3.2@¥&y), ¢ > n,
satisfies the required MDS and perfect secrecy constrainengn (2) and (3), and achieves optimal
communication and read overhead®(d) and Ro(d) given in @) and (B) simultaneously for alll,
k+z<d<n.

3 Staircase code constructions

3.1 Staircase code construction for fixed

We describe thén, k, z, d) Staircase code construction that achieves optimal congation and read
overheads0(d) andro(d) for any givend, k + z < d < n. In this construction, we take = d — z.
Hence, the secratof sizek units is formed oft(d — z) symbolss;, ..., sk., Wheres; € GF(q) and

g > n. The symbolss; are arranged in an x k£ matrix S. The construction usesy iid random keys
drawn uniformly at random front F'(¢) and independently of the secret. The keys are partitionied in
two matricesR; and R, of dimensionsz x k andz x (a — k) respectively. LetD be the transpose

“Note that a user contactingparties and achieving@l(4) for a threshold secret sharini thiiesholdt downloads the same
amount of information as a user contactihgarties in a threshold secret sharing with threslbld
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R1
(a — k) x (o — k), note thata — k > 0 sinced > z + k. The key ingredient of the construction
is to arrange the secret and the keys i & o matrix M defined in Tabl€2. The inspiration behind
this construction is the class of Product Matrix codes thatmizes the repair bandwidth in distributed
storage systerﬁs{ZZ].

of the last(«w — k) rows of the matrix[ ]E and let0 be the all zero square matrix of dimensions

I< v—k

Table 2: The structure of the matri that contains the secret and keys in the Staircase code@onst
tion for fixedd.

Encoding: Let V be ann x d vandermondé matrix defined ovelGF(q). The matrix)/, defined in
Table[2, is multiplied by to obtain the matrixXC = V M. Then rows of C form then different shares.

Decoding: A user contacting any= k + z parties downloads all the shares of the contacted parties. A
user contactingl parties, indexed by C [n], downloads the first symbols from each contacted party
corresponding te; [S Rl]t ,i € I (the superscript denotes the transpose of a matrix). Theorém 1
guaranties that the user will be able to decode the secreitindases.

Example 2 (Continued) We give the details of the construction of thek, z,d) = (4,1,1,3) CESS
code of Examplg]l2. We take= d — » = 2, thus the secret is formed ofka = 2 symbolss;, s,
uniformly distributed oveGF(q), ¢ = 5 > n = 4. The construction usesy = 2 iid random keys

r1, 9 drawn uniformly at random ove® F'(5) and independently of the secret. The keys are partitioned
into two matricesk; and R, of dimensions x k=1 x landz x (o — k) = 1 x 1, respectively. The
matrix D is the transpose of the last— & = 1 row of Ry. Hence, we haveR, = D = ry, Ry = 19,

2
n X d = 4 x 3 Vandermonde matrix}/ and V" are given again ir(g).

andS = {Sl . The secret and the keys are arranged id & o« = 3 x 2 matrix M. LetV be an

S1 T
M= |sy 19| andV =
1 0

(6)

—
=W N =
[l SN SN

The shares are the rows of the matéix= V' M as given in Tabl€ll. We want to check that this code
satisfies the following properties:

1) Minimum co andRro for d = 3: We check that a user contacting= 3 parties can reconstruct the
secret with minimunto and RoO. For instance, if a user contacts the first 3 parties and doads the

Sfa—k <z i.e.,d < 2z + k, thenD consists of the transpose of the last- k rows of R;.

SAfter the appearance of the original version of this work awiA[L7], a connection between the family of regenerating
codes and CESS codes was explored in more detallsin [21].

"We require all square sub-matrices formed by consecutienues of V' to be invertible. Vandermonde and Cauchy
matrices satisfy this property.



first symbol of each contacted share, then the downloadeigigiven by,

1 1 1| [s1
1 2 4 S92 - (7)
1 3 4| |rm
The matrix on the left is & x 3 square Vandermonde matrix, hence invertible. Thereforepser can
decode the secret (and). This remains true irrespective of whighparties are contacted. The user

reads and download8 symbols of siz8/a = 3/2 units resulting in minimum overheadsp(3) =
RO(3) = 3/2 — k = 1/2, as given in) and (5).

2) MDS: We check that a user contacting= k + z = 2 parties can reconstruct the secret. Suppose the
user contacts parties and2 and downloads all their shares given by

s1 T1
1 1 1
Rt ®
1 0
11 1] |% 1 1] [r
The system irf8) is equivalent to the two following syster{xf 9 4] so| and [1 2] Lf].The
2
,

decoder uses the latter system to decedand r,. This is possible because the matrix on the left is
a square Vandermonde matrix, hence invertible. Then, teedir subtracts the obtained valuergf

1 1} [31] . The decoder then
1 2 S92

decodess; and s,. Again, this procedure is possible for any 2 contacted parti

from the former system to obtain again the following in\lcée:isysterr{

3) Perfect secrecyAt a high level, perfect secrecy is achieved here becaude ®anbol in a share is
“padded” with at least one distinct key statistically indamlent of the secret, making the shares of any
party independent of the secret.

3.2 Universal Staircase code construction

We describe thén, k, z) Universal Staircase code construction that achieves apttammunication
and read overheadso(d) andRo(d) simultaneously for all possible values dfi.e.,k + z < d < n.
Letdy =n,do=n—-1,....dp =k+z,withh=n—k—z2+4+1,andey =d; — 2z, i = 1,...,h.
Choosen = LCM (a1, o, ..., an—1), that is the least common multiple of all the’s except for the
lasta, = k. The secre$ consists ok« symbolssy, . . ., sgq, uniformly distributed oveGF'(q), ¢ > n,
arranged in amv; X ka/a; matrix S.

The construction usesy iid random keys, drawn uniformly at random fra&¥'(¢) and independently

of the secret. The keys are partitioned ittanatricesR;,i = 1,...,h, of respective dimensions
z X ka/a;oi—q (takeay = 1). The matricesk 4, ..., R, consist of the overhead of keys decoded by a
user contactingl; parties. We fornh matricesM;, i = 1, ..., h, as follows,
s ™1 [P r !
]V[lif/ I M2:” RQ\/‘— g eee ]\/fj:// Rj ISR ]Wh: n Rh | (9)
(LN Lo o] o]

—5 — s
ka/aq ka/agasz ko/aj 10 /a1

Each matrixD; is formed of the(n — j + 1) row of [My M, ... M;] wrapped around to make a
matrix of dimensionsy;;; x ka/aja; 41 for j =1,...,h — 1. TheO's are the all zero matrices used
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— 1 1 1 ) ID B -
L Dy T
Doy 0 Ra
M=\ S I Rg 1 ' .
n X a : Ro ! | | s%airctase
0 structure
Rif5= 00771
My My Mj M,

Table 3: The structure of the matri¥ that contains the secret and keys in the universal Staiczate
construction.

to complete thel/;'s to n rows. The secret and the keys are arranged in the mifrix [A; ... M|
defined in Tabl€l3.

The matrix M is characterized by a special structure resulting fromfalyechoosing the entries
of theD;’s and placing the all zero sub-blocks in a staircase shayiegghese codes their name. This
staircase shape allows to achieve optimal communicatidread overheadso andro for all possible
d.

Encoding: The encoding is similar to the Staircase code constructienl” be am x n Vandermonde
matrix defined ovet7F'(q). The matrixM, defined in Tabl€l3, is multiplied by to obtain the matrix
C =V M. Then rows of C form then different shares.

Decoding: To reconstruct the secret, a user contactinggryarties indexed by C [n] downloads the
first ka/or; symbols from each contacted party corresponding {d/ ... M;], forall i € I.

We postpone the example of a Universal Staircase code toisEcil to have it next to the proof of
Theoreni 2.

4 Staircase Code for fixed{

Proof of Theorerhl1Consider then, k, z, d) Staircase code defined in Sectlon|3.1. We prove Theo-
rem[1 by establishing the following properties of the code:

1) Minimumco(d) and Ro(d): We prove that a user contacting adparties can reconstruct the secret
while incurring minimumco andRrRo. A user contacting any parties downloads the firétsymbols of
each party. Lef C [n], |I| = d, be the set of indices of the contacted parties, then the dawled
data is given by; [S Rl]t, where V7 is ad x d square Vandermonde matrix formed of the rows
of V indexed byI, hence invertible. The user can always decode the secrmttliankeys inRk,) by
inverting V7. The code is optimal on communication and read overheadd) andro(d), because the
user only reads and downloa&lg symbols of sizekd/a = kd/(d — z) units resulting in an overhead
of kd/a — k = kz/a = kz/(d — z) achieving the optimato(d) andro(d) given in (4) and[(b).

2) MDS property: We prove that a user contacting ahy= k + z parties and downloading all their
shares can reconstruct the secret. Let [n], |I| = t, be the set of indices of the contacted parties. The
information downloaded by the userliM and is given by,

S D
Vi Ra
R 0



First, we show that the user can decode the entrig3 ahd’R,. The decoder considers the system,
Vi[D Ry 0]'=V/[D Ry (10)

Recall that the dimensions of the all zero matrixinl (10)(@re k) x («—k), thenV/ is a(k+z) x (k+z)
square Vandermonde matrix formed by the figst+ z) columns ofV;. Therefore, the user can always
decode the entries @ and R, becauséd/] is invertible. Second, we prove that the user can always
decode the entries ¢f and hence reconstruct the secret. RecallThat the transpose of the last— &
rows of M; £ [S Ry’ By subtracting the previously decoded entrieofrom V; [S R4, the
user obtaing/; M7, whereV; is defined above and/; is a (k + z) x k matrix formed by the first

k + = rows of M. Therefore, the user can always decode the entridgjdbecausd/; is invertible. If

k+ z > «, thenS is directly obtained since it is contained M. Otherwise, M/ consists of the first

k + z rows of S. The remaining rows of are contained irD and were previously decoded. In both

cases, the user can decode all the secret symbals. , s,.

3) Perfect secrecyWe prove that for any subset C [n], |Z| = z, the collection of shares indexed
by z, denoted by, = {w;,i € Z}, does not reveal any information about the secret as given in
equation[(R), i.e.H(S | Wz) = H(S). LetR denote the random variable representing all the random
keys, then it suffices to prove that(R | Wz, S) = 0 as detailed in the Appendix. Therefore, we need
to show that given the secrefs side information, any collection efshares can decode all the random
keys. A collection oV, shares can be written as

S D
%4 Ry 732 , (11)

whereV is az x d matrix corresponding to the rows &f; indexed byZ. The linear system iri(11)
can be divided into two systems as follows,

vz [S R, (12)

Vz[D Ry 0] (13)

Given the secret as side information, it can be subtracted {f2), which becomes
Vz[0 Ri]'=ViRy,

where,V/ is az x z square Vandermonde matrix consisting of the lasblumns ofV;. The entries

of R can always be decoded becaggis invertible. Now thatR, is decoded and we havas side
information, we can obtaif® as the lastv — k rows of [S Rl]t. Then, the entries dP are subtracted
from the second system to obtdif} R,, whereV; is az x z square Vandermonde matrix consisting of
the (k + 1)t to the (k + 2)** columns ofl’z. Hence, the entries 62, can always be decoded because
V7 isinvertible. Therefore (R | Wz,S) =0,V Z, Z C [n], |Z| = z and perfect secrecy is achieved.

O

5 Universal staircase codes

5.1 Example

We describe here the construction of(@ank, z) = (4, 1, 1) Universal Staircase code ov@F'(q), g =
5 > n = 4, by following the construction in Sectign 3.2. We halte= 4, ds = 3, d3 = 2 anda; = 3,
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az =2,a3 =landa = LCM (o, ) = LCM(3,2) = 6. The secres is formed ofka. = 6 symbols
uniformly distributed oveiGF'(5). The construction usesy = 6 iid random keys drawn uniformly
at random fromG F'(5) and independently of the secret. The secret symbols anatidem keys are
arranged in the following matrices,

S1 S4
S=1s2 s5|, Ri1= [Tl 7“2] , Ro= [7“3] and R3= [T4 5 7“6] .
53 56

To build the matrix)/ which will be used for encoding the secret, we start with

S1 84

S S9 S

M = = |2
83 S6

R reoro

Then, Dy is the s x ka/ajas = 2 x 1 matrix that contains the symbols of thé"” row of M,
ie, Dy = [r Tg]t. Therefore,My; = [D; R O]t =[r rp 13 O]t. Similarly, we have
S3 S¢ T3
Ty Ts5 T6
0 0 O
0 0 0

Do = [s3 sg r3) andMsz = . We obtainM by concatenatind/;, M, andMs,

S1 S84 T1 S3 S¢ T3
S S5 T2 T4 Ts5 Te

s3 s¢ r3| 0 0 0 |° (14)
L7 72 0 0 0 0
N NN _ _/
~N ~

My M, Ms

Here,V is then x n = 4 x 4 Vandermonde matrix ove® F'(5) given in [15). The shares are given by
the rows of the matrixZ = V M and shown in Tablgl4.

(15)

<

Il
o=
W N
[
=N W

Party 1 Party 2 Party 3 Party 4
S1+so4+83+71r1 | s1+2s0+4s3+3r1 | s1+ 350 +4s3+2r1 | s1 +4s9+ s3+4r;
Sq4+ S5+ S¢+ 1o | S4+ 285 +4sg+ 310 | sS4+ 355 + 4sg + 219 | sS4 + 4S5 + sg + 4ro

r1t+re+r3 r1+ 2rg +4rg r1+ 3rg + 4r3 r1+drg + 13
S3 + 14 83+2’I“4 83+3T4 83+4T’4
S6+T5 s6 + 215 S6 + 315 s + 4rs
r3 + 76 r3 + 2rg r3 + 3rg rg + 4rg

Table 4: An example of a universal Staircase codd ok, z) = (4,1,1) overGF'(5).

The constructed Universal Staircase code satisfies thenioldy properties:



1) MDS:We check that a user contactidg = k + »z = 2 parties can decode the secret. Suppose that
the user contacts partiesand2. The data downloaded by the uselig 5, M and is given by,

S1 84 | 1 | 83 S6 T3
[1 1 1 1:| S92 S5 : T2 : rqy T5 T
1 2 4 3 s3 sgir3,; 0 0 0O [|° (16)
\'7'\/’7”/ rL T9 0 "0 0 0
‘{ 1.9} \,,7,,\/,/,/'\—V—/'\,,777 7

M, M, Ms;

We will show that the user can decode the secret by succgssmeing the linear systemg; 5, M3,
Vi1,2y M2 andVy, 5y M;. The decoder starts by considering o, M3 which gives,

1 1 §3 S¢ T3

[1 2] [m s 7“6] ’ (17)
The matrix on the left is invertible, and the user can decbdesecret symbols and keys [n{17). Then,
the decoder considers the systém ,, M- after subtracting from it the value of decoded in the pre-

vious step. The obtained system is again invertible and ¢cedkr can decodg andr,. The decoder
then considerd’;; », M, after canceling outy, ra, s3, s¢ decoded so far, to obtain the following

system,

1 1 S1 S4

1 2 S2  Sj '
The matrix on the left is again invertible and the decoderremonstruct the secret. This remains true
irrespective of which 2 parties are contacted.

2) Minimumco and RO for ds = 3 andd; = 4: We check that a user contacting aftyd = 3,4,
parties can decode the secret while achieving the minimummuanication and read overheads given
in (@) and[[5). Suppose a user contatts= 3 parties indexed by C [n]. The user reads and downloads
the firstka/a; = 3 symbols of each contacted share correspondirig td/; M| (in black and red),
whereV7; is the matrix formed by the rows df indexed byl. The user will be able to reconstruct the
secret by implementing a decoding procedure similar to tleeabove. The resultingo andRo are
equal to3/2 — k = 1/2 units achieving the optimalo(ds) andrRO(d2) given in [4) and[(b). In the case
when a user contact§ = 4 parties, the user reads and downloads thefiigty; = 2 symbols of each
contacted share correspondingifa\/; (in black). The user can always decode the secret bedguse
here is al x 4 square Vandermonde matrix, hence invertible. The reguftmandro are equal td /3
achieving the optimato(d;) andro(d; ) given in [4) and((b).

3) Perfect secrecyAt a high level, perfect secrecy is achieved here becaude sawbol in a share is
“padded” with at least one distinct key statistically indagent of the secret, making the shares of any
party independent of the secret.

5.2 Proof of Theorem2

Consider thén, k, z) Universal Staircase code construction defined in Sect@r\V8e prove Theorefd 2
by establishing the following properties.

1) Encoding is well definediVe prove that thén — j + 1) row of [Af; ... M;] has the same number
of entries asD;,j = 1,...,h — 1. Therefore, we can always construct the mafx In fact, the
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number of entries of one row df\/; ... M;] is equal to the sum of the number of columns of igs,
i =1,...,7. Notice thato; 1 = a; + 1, then we can write,

ko < 1 1 >
=ka| — — .
(671078 (673 (67|

Hence, the number of columns pf/ ... M;] is given by,

k 1 1 1 1 k
—a+ka<———>+---+ka<—— ):—O‘, (18)
Oéj Oéj_l Oéj

which is equal to the number of entriesDf.

2) MDS and minimunco(d) and Ro(d) for all d, k + =z < d < n: We prove that a user contacting any
d, k+ z < d < n, parties can decode the secret while achieving the minimurmmanication and read
overheads given i {4) and] (5). Notice that the MDS propeatipivs directly from the fact that a user
contactingd, = k + z parties can reconstruct the secret by reading and dowmigaddii the contacted
shares.

A user contacting anyi;, j = 1,...,h, parties downloads the firgiv/o; symbols of each party.
LetI C [n], |I| = d;, be the set of indices of the contacted parties and/’jdie the matrix formed of
the rows ofl” indexed byI. The total downloaded data is given By [M/; ... M| and can be divided
into j linear systems given as follows,

ViMy = Vi [S Ri)' (19)
ViMy =V, [D1 Ry 0] (20)
ViM;_1 =V; [Dj_s Rj_1 0] (21)
ViM; = Vi [D;o1 R; 0] (22)

We prove by induction that the user can always reconstricsétret by iteratively decodinty;,

i =j,...,1,in each linear systerir; M;. To that end, we verify the induction hypothesis foe j.
Given the system in_(22), we show that the user can alwaysigedg. The zero block matrix il (22) is
of dimensiongn — d;) x (ka/ajaj—1). Therefore,[(22) can be rewritten 88 [D;_1 R;|, whereV}/
is the square Vandermonde matrix of dimensidns< d; formed by the first/; columns ofV;. Hence,
the user can always decode the entriedffby invertingV;.

Next, suppose that the user can decode allMhis, i = j,...,1 4+ 1, we prove that the user can
always decodé\/;. Thel*" system is given by/;M;. By construction)M; containsd; non-zero rows,
because th® block matrix is of dimensionsn — d;) x (ka/ayay—1). In addition, the entries of the last
[ — 1 non-zero rows of\/; are present i, for f = j —1,...,1 — 1, which were previously decoded.
It can be checked that; = d; — (I — 1) for all I < j. Therefore, after subtracting the ldst 1 rows
of M, the system becomdd/ 1/, whereV/ is again thel; x d; square Vandermonde matrix defined
above andV/] is the matrix formed of the first; = d; — (I — 1) rows of M;. Henceforth, the user can
always decodé/] by invertingV;. Finally, the user can decode all the entires\fifthat consist of the
entries ofM/] and the entries of the last- 1 rows of M;, which were previously decoded.

Next, we show that minimurao andro are achieved. The number of symbols read and downloaded
by a user contacting; parties is equal td; (ka/c;) symbols which corresponds @k /«; units. Then,
the communication and read overheads are givelybyo,;, —k = kz/a; = kz/(d;—z), which matches
the optimalco(d;) andro(d;) for all d; = k + z, ..., n, given in [4) and[(b).
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3) Perfect secrecySimilarly to the proof of perfect secrecy in Theorem 1, wecheshow that (R |
Wz,S) =0forall Z C [n],|Z| = z (see Appendix). This is equivalent to showing that givensibheret

s as side information, any collection; of z shares can decode all the random keys. A collection of
Wy of z shares can be written &5; [Ml . Mh], which can be divided inth =n — k — 2z + 1 linear
systems as follows,

VM =V [S Ry (23)
VzMy =V [D1 Ry 0] (24)
VzMy =Vy [Dhoy Ry 0], (25)

We will prove by induction that given the seceetis side information, any collectiory; of = shares
can always iteratively decod®;, i = 1, ..., h, in each linear systei; M;. To that end, we verify the
induction hypothesis far= 1 by showing that a collection dfV, shares can always decofig in (23).
Recall that the dimensions &, arez x ka/a;. Given the secret, (23) becomes,

Vy [0 Rl]tz é/Rl,

whereV/ is az x z square Vandermonde matrix formed by the lasblumns ofV;. Therefore,R;
can be decoded by invertifg).

Next, we suppose that any collection)df; shares can decode all tig'sfori =1,...,1—1,and
show that any collection df/; can decod&®,. Thel’" system is given by M; = V; [D,-; R; 0] ’
By construction,D;_; consists of the entries of the last row &f;_; which were previously decoded.
Given the previously decoded information, any collectidnd, shares can cancel out the entries of
D;_; to obtainV;R;. Since the dimensions @&, arez x ka/ajoq_1, the matrixV; is az x z square
Vandermonde matrix formed by tfie; + 1) to (oy + 2)** rows of V7. Thus,R; can be always decoded
becausé’; is invertible. Therefore, all the keys can always be decoditehce,H(R | Wz, S) = 0.

This concludes the proof of Theorém 2.

A-Universal Staircase codedyote that the construction of Universal Staircase codeseamodified
to construct Staircase codes that achieve minintgrandRo only for a desired subsek of all possible
ds,i.e, A C{k+z,...,n}. We refer to these codes as, k, z, A) A-universal Staircase codes. The
advantage of these codes over universal codes is that theyegaire smaller number of symbols per
sharex.

Encoding: Let A’ & A\ {k + 2z} and order thed’s in A’ in decreasing order. We writd’ =
{dm---,diw‘} C{dy,...,dp_1}, whered;, > d;, > -+ > diw\' Leta;, = d;; —zforalld;, € A’
and leta = LCM (..., o ar)). Defined; ,, | L2k4z ande; £ k. The secret symbols are ar-
ranged in a matrix§ of dimensionmdi1 X ka/adil and the random keys are partitioned into the matrices
Riys--. ’Rim’m’ of dimensions: x ka/a;, for R;; andz x ka(a;; — ay;_,)/(i; ;) for all other
Ri;j =2,...,|A’l + 1. ConstructM;, as thed;, x ka/a;, matrix structured ad/; in (9). And, for
eachd;;,j =2,..., |A"|+1, construct)/;; as thed;, x ka(a;; — ai;_,)/(ci; ;1) structured ag/;,

in @). The matrixD;;, j = 1,...,|A'], is the matrix of dimensions;,,, x ka(a;,,, — i)/ (i, ai;)
containing the last;, — d;,,, rows of [M;, ... M; ], from rowd;, torowd;, ., + 1. Then, concatenate
the constructed matrices/;, , ..., M, to obtain the matrix\/ of dimensions/;, x «. The matrix

: -~ faren . :
M is multiplied by a Vandermonde matrix of dimensions d;, to obtain the shares.

Decoding: To reconstruct the secret, a user contacting &nyarties, indexed by C [n], downloads
the firstka/a;; symbols from each contacted party corresponding {(Mil .o M; ] ,foralli e .

J
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Corollary 1. LetA C {k + z,...,n}. The(n,k,z, A) A-universal Staircase codes defined above
over GF(q), ¢ > n, satisfies the required MDS and perfect secrecy constrgivesn in (2) and (3)
and achieves optimal communication overheze(d) and read overheadko(d) given in(4) and (5)
simultaneously for alil, d € A.

We omit the proof of Corollari]1 since it follows the same stepthe proof of Theorermnl 2.

6 Threshold changeable secret sharing

An (n, k, z;t') threshold changeable secret sharing (TCSS) code, defirfé@]ins an(n, k, z) secret
sharing scheme (satisfyingl (2) arid (3)), where the threishet & + > can be changed t§ > ¢ in a
decentralized way without the dealer. The parties are alibt® communicate as long as the security
constraint is not violated. The efficiency of a TCSS is meady the new share size for the new
thresholdt’, which we refer to as the storage costj of the sche Different variants of threshold
changeable secret sharing schemes have been studied itethrite, see e.gl, [23-25]. A connection
between TCSS and CESS is shownlin/[14]. Code constructiengravided inl[14, 1%, 20] for the case
whenz = ¢t — 1 and the threshold is given a priori.

In this section, we show how to construct @n k, z;t') TCSS code for a givet/ > ¢ using an
(n,k,z,d = t') Staircase code. However, different valuest'ofor the same(n, k, z) may require
different Staircase codes. We show that this can be avoigledristructing what we call am, &, z; [t +
1 : n]) Universal TCSS code using &n, k, z) Universal Staircase code. Both constructions involve the
parties deleting parts of their shares and do not requirenugmication among the parties. Moreover,
this construction achieves the optimal storage c&s) (

k
SC = T (26)
which is the minimum share size required if the dealer weesgmt. The next example shows how to
construct ann, k, z; [t + 1 : n]) Universal TCSS code with optimac from an (n, k, z) Universal
Staircase code by deleting parts of each share.

Example 3. Consider the problem of constructing ém, &, z; [t + 1 : n]) = (4,1, 1;[3 : 4]) Universal
TCSS code for all possibk, i.e.,t’ = 3 and4. To this end, we use am, k,z) = (4,1,1) Universal
Staircase code constructed in Secfion 5.1. The shares gpveach party are depicted in Taljle 5.

In our construction, to change the threshold freme= & + z to anyt/, t' € {t + 1,...,n}, each

/
—z—k . : , -
party deletes the Ias%a symbols of its share. Recall that in CESS, each share is bbin

and consists oft symbols & symbols =1 unit). In this example, to change the threshold from 2 to

t' = 3, each party deletes the la3tsymbols (in shaded blue) of its share. The obtained codeaehi
the minimum Storage Cost€) given in(26), because each new share is of slz/mbols equal td /2
unit. One can verify that a user contacting atly= 3 parties and downloading their new shares can
decode the secret.

Similarly, the same code can be used to change the threstwidif= 2 to ¢’ = 4. Each party
deletes the last symbols (in red and shaded blue) of its original share (oetks the last symbol, in
red, if the threshold was already changed to 3). Each newesbansists o2 symbols equal taé/3 unit.
Hence, the obtained code achieves minimum Storage €aosgiven in(26). One can verify that a user
downloading all the shares can decode the secret. In botes;aecrecy is inherited from the Staircase
code, because the parties do not exchange any informatiem wianging the threshold.

8Any secret sharing scheme is trivially threshold changsai#cause a user contactirfig> ¢ parties can decode the secret
by downloading any shares. However, it does not achieve minimum storage cogttéanew threshold.
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Party 1 \ Party 2 \ Party 3 \ Party 4
((81+ 89+ 83+71 | s1+ 280+ 4s3+3r1 | 1+ 38y +4sg+2r1 | s1+ 4S9 + s3+ 4rq
{ S4+ 85+ 86+ 12 | Sq4+ 285 +4sg+ 3ro | sS4+ 385+ 4sg + 2r9 | sS4+ 4S5 + sg + 4ro
‘\ ri+rytrs r1+ 2rg + 4rs3 r1+ 3rg +4r3 r1 +4ro + 13

Table 5: A(4,1,1;[3 : 4]) Universal TCSS code obtained from &h 1, 1) Universal Staircase code
over GF'(5). The original code has threshold= k£ + z = 2 and can be changed to eithér= 3 or

4. The threshold change from= 2 to ¢’ = 3 is depicted. Each party deletes the lastymbols of its
share. Similarly, the threshold can be changed te 4 by keeping the first two symbols of each share.
In both cases, the obtained code achieves minimum storagéscy (share size) given by (26).

Corollary 2. An (n,k, z;t') TCSS code, respectively én, k, z; [t + 1 : n]) Universal TCSS code,
can be constructed using dn, k, z, d) Staircase code defined in Sectionl 3.1, respectivelynhah, z)
Universal Staircase code defined in Secfion 3.2. To charegthteshold front = k+ 2 tot/, each party

t'—k— . : . .
deletes the Iastt/iza symbols of its share. Both constructions achieve optinmahge cost §C)
—z
given in(26).

Proof. We prove that arin, k, z; [t + 1 : n]) Universal TCSS code can be constructed usingmar, z)
Universal Staircase code and omit the proof(fierk, z;t') TCSS code, since it follows the same steps.

Starting with an(n, k, z) Universal Staircase code, the threshold is k£ + z. Assume that the

, f— [e—
threshold is to be changed tofor anyt’ € {t + 1,...,n}. Each party deletes the Iatstzik

[0
t—z
symbols of its share (original share sizexisymbols).
We establish the following properties.

1. Minimum Storage Costs(C): By construction, the new share sizevis- (t' — 2z — k)a/(t' — 2z) =
ka/(t' — z) symbols. Recall that each symbols are equal to 1 unit, hence each share is of size
k/(t' — z) units and[(2B) is achieved.

2. MDS int’: By construction, after changing the thresholdttpeach party keeps exactly the
symbols that are sent to a user contacting @marties in the original CESS code. Therefore, the
user can decode the secret.

3. Perfect secrecySince the parties do not exchange any information when ch@nige threshold,
perfect secrecy follows from the properties of the origidaiversal Staircase code.

O

Remark 1. Note that the Universal TCSS code obtained from our conibru@lso minimizes the
communication and read overheadso(and RO) in addition to minimizing the storage costq). In
other words, the new shares stored after the threshold update, allow a user atimg anyd parties,
d e {t',...,n}, to decode the secret while achieving the minimum commumicand read overheads
given in(4) and (5).

For instance, in Examplel 3 for the new threshdld= 3, a user contacting any = 4 parties and
downloading the first two symbols (in black) of each new sharedecode the secret. The incurred
(and RrO) is equal to2 symbols equal td/3 unit and is minimum, i.e., achievé$) and (5).
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7 Conclusion

We considered the communication efficient secret shariit5&) problem. The goal is to minimize the
read and download overheads for a user interested in deptitinsecret. To that end, we introduced
a new class of deterministic linear CESS codes, cafitalrcase CodesWe described two explicit
constructions of Staircase codes. The first constructibieaes minimum overhead for any given num-
ber of partiesd contacted by the user. The second is a universal constnuttad achieves minimum
overheads simultaneously for all possible valued.ofhe introduced codes require a small finite field
GF(q) of sizeq > n, which is the same requirement for Reed Solomon based SS ¢@de~inally,

we described how Staircase codes can be used to constreshotat changeable secret sharing (TCSS)
codes.

In conclusion, we point out some problems that remain opdre model we considered here and
the proposed Staircase codes can provide security agairigspcorrupted by a passive Eavesdropper.
However, the problem of constructing communication andl refficient codes that provide security
against an active (malicious) adversary remains open. dere constructing threshold changeable
secret sharing codes where the security level can be iredas increasing the number of possibly
colluding parties also remains open in general (only speaises were solved ih [24]).

Let W; denote the random variable representing shareand for any subseB C {1,...,n}
denote byWp the set of shares indexed Wy, i.e., Wy = {W;;i € B}. We prove that, for all
Z CA{l,...,n}, |Z| = z, the perfect secrecy constralit(S | Wz) = H(S), given in [2), is equivalent
to H(R | Wg,S) = 0. The proof is standard [26, 27] but we reproduce it here fongleteness. In
what follows, the logarithms in the entropy function aregialbase;. We can write,

H(S|Wyz)=H(S)—H(Wz)+H(Wz|S) (27)
=H(S)-H(Wz)+H(Wz|S)—H(Wz|[S,R) (28)
=H(S) - H(Wz)+I(WzR|S) (29)
=H(S) - HWz)+HR|S)-HR|Wg,S) (30)
=H(S)—HWz)+HR|S) (31)
=H(S)—- HWyz)+ HR) (32)
= H(S) — za+ z« (33)
= H(S). (34)

Equation [(28) follows from the fact that given the secareind the keyskR any share can be decoded,
equation[(3[L) follows becaudé(R | S, W) = 0 and equatior(33) follows because the Staircase code
constructions usea independent random keys.
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