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Abstract—We analyze the exact exponential decay rate of the
expected amount of information leaked to the wiretapper in
Wyner’s wiretap channel setting using wiretap channel codes
constructed from both i.i.d. and constant-composition random
codes. Our analysis for those sampled from i.i.d. random coding
ensemble shows that the previously-known achievable secrecy
exponent using this ensemble is indeed the exact exponent for
an average code in the ensemble. Furthermore, our analysis on
wiretap channel codes constructed from the ensemble of constant-
composition random codes leads to an exponent which, in
addition to being the exact exponent for an average code, is larger
than the achievable secrecy exponent that has been established so
far in the literature for this ensemble (which in turn was known
to be smaller than that achievable by wiretap channel codes
sampled from i.i.d. random coding ensemble). We show examples
where the exact secrecy exponent for the wiretap channel codes
constructed from random constant-composition codes is larger
than that of those constructed from i.i.d. random codes and
examples where the exact secrecy exponent for the wiretap
channel codes constructed from i.i.d. random codes is larger
than that of those constructed from constant-composition random
codes. We, hence, conclude that, unlike the error correction
problem, there is no general ordering between the two random
coding ensembles in terms of their secrecy exponent.

Index Terms—Wiretap channel, Channel resolvability, Secrecy
exponent, Resolvability exponent

I. I NTRODUCTION

T HE problem of communication in presence of an eaves-
dropper wiretapping the signals sent to the legitimate

receiver (see Figure 1) was first studied by Wyner [1] and
later, in a broader context, by Csiszár and Körner [2], where
it was shown (among other results) that as long as the
eavesdropper’s channel is weaker than legitimate receiver’s
channel, reliable andsecurecommunication at positive rates
is feasible. More precisely, it was shown that, given any
distribution on the common input alphabet of the channels,
PX , for which the mutual information developed across the
legitimate receiver’s channel is higher than that developed
across the wiretapper’s channel, that is,I(X ;Y ) > I(X ;Z),
with (X,Y, Z) ∼ PX(x)WM(y|x)WE(z|x) (where X , Y ,
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and Z represent the common input, legitimate receiver’s
channel output, and wiretapper’s channel output, respectively),
as long as the secret message rateRs , 1

n log |Sn| is below
I(X ;Y )−I(X ;Z) there exists a sequence of coding schemes
(indexed by the block-lengthn) using which

lim
n→∞

max
s∈Sn

Pr{ŝML(Y
n) 6= S|S = s} = 0, (1a)

lim
n→∞

1

n
I(S;Zn) = 0. (1b)

In the above,S represents the secret message taking values
in the message setSn, ŝML(Y

n) is the maximum-likelihood
(ML) estimation of the sent message given the output sequence
of the legitimate receiver’s channel andZn represents the
output sequence of the wiretapper’s channel (see Figure 1).

Classical codes for the wiretap channel are constructed by
associating each message with a code that operates at a rateR
just belowthe mutual information developed across the eaves-
dropper’s channel. To communicate a message, the stochastic
encoder of Alice picks a codeword uniformly at random
from the code associated to that message and transmits it via
consecutive uses of the channel [1]–[3]. Such constructions,
known ascapacity-based constructions(with a slight abuse of
terminology) [4], will guarantee that the normalized amount
of information that Eve learns about the secret message by
observing her channel output signal,1

nI(S;Z
n), will be arbi-

trarily small, provided that the block-lengthn is sufficiently
large. Recently,resolvability-basedconstructions for wiretap
channel codes, namely, those associating each message witha
code operating at a ratejust abovethe mutual information of
the wiretapper’s channel was shown to be more powerful than
the capacity-based constructions to prove achievability results.
Indeed, in [5] it was shown that such constructions can be used
to easily show that theunnormalizedamount of information
Eve learns about the secret message,I(S;Zn), vanishes as the
block-length increases, namely to establishstrong secrecy(a
notion first introduced by Maurer and Wolf [6]). In particular,
when resolvability-based wiretap channel codes are employed
over stationary memoryless wiretap channels the amount of
information Eve learns about the secret message vanishes
exponentially fastin the block-length. Thus, it is natural to
study the rate of this exponential decay.

Definition 1. Given the rate pair(Rs, R) and a pair of
stationary memoryless channels(WM,WE), a numberη is
an achievablesecrecy exponentif there exists a sequence of
coding schemes of block-lengthn and secret message rateRs,
each message associated with a sub-code of rateR (i.e., the
encoder needs access to a random number generator of rateR)
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Fig. 1. Wiretap Channel

that are reliable for communication overWM and guarantee

lim inf
n→∞

−
1

n
log I(S;Zn) ≥ η. (2)

Hayashi [7] was the first to derive a lower bound to the
achievable secrecy exponents using the resolvability-based
construction of wiretap channel codes from i.i.d. random
codes. He, later on, showed that this lower bound can be
improved if, on top of a random code sampled from i.i.d. ran-
dom coding ensemble, a random hash function is used in the
construction of the encoder–decoder pair [8]. This technique is
known asprivacy amplification. More recently, it was shown
(see special cases of [9, Theorem 2], [10, Theorem 3.1], or the
proof given in [11]) that privacy amplification is unnecessary
and the exponent derived in [8] lower-bounds the exponential
decay rate of the ensemble average of the information leaked
to Eve when a wiretap channel code constructed from the
ensemble of i.i.d. random codes is used for communication.

To study theuniversally achievable(in the sense defined
in [12]) secrecy exponents, constructing codes for wiretap
channel from the ensemble of random constant-composition
codes is investigated in [13]. A lower bound to the achievable
secrecy exponent when this class of wiretap channel codes
are used in conjunction with privacy amplification is derived
in [13] which is smaller than the lower bound of [8] on the
achievable secrecy exponent using i.i.d. random codes.

A. Contribution and Paper Outline

In this paper we first show that the exponent derived via the
method of [11] (which was first established in [8]) is indeed
theexactsecrecy exponent for an average code in the ensemble
and secondly extend the analysis of [11] to the ensemble
of constant-composition random codes (see Theorem 4 and
its corollary). This, in particular, implies that the previously-
known lower bound to the achievable secrecy exponent using
wiretap channel codes constructed from i.i.d. random coding
ensemble characterizes the exact exponential decay rate ofthe
average amount of information leaked to the eavesdropper.
Moreover, it turns out that the exact secrecy exponent for the
wiretap channel codes constructed from constant-composition
random codes is larger than the lower bound derived in [13]
and there are examples where this dominance is strict. Further,
examples show that in general there is no ordering between
the secrecy exponents of the ensembles of i.i.d. and constant-
composition codes. In other words, for some channels the
i.i.d. ensemble yields a better secrecy exponent, whereas in
the others, the constant-composition ensemble prevails (see
Section IV-B).

The analysis of [11] is based on pure random coding
arguments (no privacy amplification is used) and is carried

out by lower-bounding the achievableresolvability exponents
(see Definition 5) using random codes. We will show, in this
work, that this method not only proves the achievability of
the exponent, but also, using very similar steps, establishes its
exactness (see Definition 6). Moreover, a simple observation
shows that the exact resolvability exponent equals the exact
secrecy exponent for an ensemble (see Theorem 1), which in
turn, allows us to conclude that the exponent derived through
this method is the exact secrecy exponent as well.

The remainder of this paper is organized as follows. After
setting our notation conventions in Section II, we prove the
equivalence of secrecy and resolvability exponents in Sec-
tion III and reduce the analysis of the exact secrecy exponent
for an ensemble to that of the exact resolvability exponent.
We present our main result on exact secrecy exponents in
Section IV, argue that the exact secrecy exponent for the
ensemble of constant-composition random codes is larger
than the lower bound derived in [13], and give numerical
examples comparing the exponents for two ensembles of
i.i.d. and constant-composition random codes. Our main result
is proved in Section V. To streamline the presentation, we
relegate the straightforward but tedious parts of the proofto
the appendices.

B. Related Work

In addition to those cited above, [14] also presents a simple
achievability proof for channel resolvability. Based on this
proof the authors, in their subsequent work [15], establish
strong secrecy for wiretap channel using resolvability-based
constructions for wiretap channel codes. The performance of
a code for the wiretap channel is measured via two figures of
merit, namely, the error probability and information leakage,
both of which decay exponentially in block-length when a
wiretap channel code sampled from the ensemble of random
codes is employed on stationary memoryless channels (as we
will also discuss in Theorem 2). The trade-off between secrecy
and error exponents (as well as other generalizations of the
model) is studied in [16].

Another important problem, in the realm of information-
theoretic secrecy, issecret key agreement[17], [18]. The
secrecy exponents related to this model are studied in [8],
[16], [19], [20] and, in particular, in [19], [20] shown to be
exact.

II. N OTATION

We use uppercase letters (likeX) to denote a random
variable and the corresponding lowercase version (x) for a
realization of that random variable. The same convention
applies to vectors, i.e.,xn = (x1, . . . , xn) denotes a realization
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of the random vectorXn = (X1, . . . , Xn). We denote finite
sets by script-style uppercase letters likeA. The cardinality of
the setA is denoted by|A|.

We write f(n) ≤̇ g(n) if there exists a functionp(n) such
that lim supn→∞

1
n log(p(n)) = 0 and f(n) ≤ p(n)g(n). As

noted in [21, p. 2507], whenf(n) andg(n) depend on other
variables thann it is understood thatp(n) can only depend on
thefixed parametersof the problem such as channel transition
probabilities, the cardinality of its input and output alphabet,
and its input distribution and not the other parametersf and
g may depend on.1 f(n)

.
= g(n) meansf(n) ≤̇ g(n) and

g(n) ≤̇ f(n). For a ∈ R, [a]+ , max{a, 0} denotes positive
clipping.

We denote the set of distributions on alphabetX as
P(X ). If P ∈ P(X ), Pn ∈ P(Xn) denotes the prod-
uct distributionPn(xn) ,

∏n
i=1 P (xi) (where xn denotes

the n-dimensional vector(x1, . . . , xn) ∈ Xn). Likewise, if
V : X → Y is a conditional distribution (that is,∀x ∈ X ,
V (·|x) ∈ P(Y)), V n : Xn → Yn denotes the conditional
distribution V n(yn|xn) =

∏n
i=1 V (yi|xi). For a joint distri-

butionQ ∈ P(X × Y), QX (respectivelyQY ) denotes itsx-
(respectivelyy-) marginal. ForP ∈ P(X ) and a stochastic
matrix V : X → Y, P × V ∈ P(X × Y) denotes the joint
distributionP (x)V (y|x) andP ◦ V ∈ P(Y) denotes they-
marginal of the joint distributionP × V , that is(P ◦ V)(y) =
(P × V)Y (y) =

∑

x P (x)V (y|x).
We denote thetype of a sequencexn ∈ Xn by Q̂xn ∈
P(X ). A distribution P ∈ P(X ) is an n-type if ∀x ∈
X : nP (x) ∈ Z. We denote the set ofn-types onX as
Pn(X ) ( P(X ) and use the fact that|Pn(X )| ≤ (n + 1)|X |

[22, Lemma 2.2] repeatedly. IfP ∈ Pn(X ), we denote the set
of all sequences of typeP asT n

P ⊂ X
n.

For a distributionP ∈ P(X ), supp(P ) , {x ∈ X : P (x) >
0}. If P,Q ∈ P(X ) are a pair of distributions we sayP is
absolutely continuous with respect toQ, and denote this by
P ≪ Q, if supp(P ) ⊆ supp(Q).

The ℓ1 distance and divergence between two distributions
P,Q ∈ P(X ) are, respectively, defined as

|P −Q| ,
∑

x∈X

|P (x)−Q(x)| (3)

and

D(P‖Q) ,
∑

x∈X

P (x) log
P (x)

Q(x)
(4)

(here and in the sequel the bases oflog andexp are arbitrary
but the same). For two stochastic matricesV : X → Y and
W : X → Y, andP ∈ P(X ), the conditional divergence is
defined as

D(V ‖W |P ) ,
∑

x∈X

P (x)
∑

y∈Y

V (y|x) log
V (y|x)

W (y|x)
(5)

= D(P × V ‖P ×W ). (6)

1Let θ be a parameter thatf and g depend on. Iffθ(n) ≤̇ gθ(n) then,

∀θ, lim supn→∞

1
n
log

(

fθ(n)
gθ(n)

)

≤ 0 but the reverse is not true. In fact

fθ(n) ≤̇ gθ(n) is equivalent tolim supn→∞
supθ

1
n
log

(

fθ(n)
gθ(n)

)

≤ 0

which is a stronger statement than the former.

For P ∈ P(X ),

H(P ) , −
∑

x∈X

P (x) logP (x). (7)

For Q ∈ P(X ×Y), I(Q) , D(Q‖QX ×QY ). If P ∈ P(X )
andV : X → Y is a stochastic matrix,I(P, V ) , I(P × V )
denotes the mutual information developed across the channel
V with input distributionP .

III. SECRECY VIA CHANNEL RESOLVABILITY

As we mentioned earlier,channel resolvabilityis a con-
venient and powerful tool for the analysis of secrecy [4],
[5]. The concept of resolvability dates back to Wyner [23],
where he observed that, given a stationary memoryless channel
W : X → Z and an input distributionPX that induces the
distribution PZ = PX ◦ W at its output, it is possible to
well-approximate the product distributionPn

Z at the output
of Wn (the product channel corresponding ton independent
uses ofW ) by transmitting a uniformly chosen codeword
from a code of rateR > I(X ;Z). Indeed, if the code
is sampled from the i.i.d. random coding ensemble, with
very high probability the normalized divergence between the
channel output distribution andPn

Z can be made arbitrarily
small by choosingn sufficiently large. Han and Verdú [24]
and Hayashi [7] developed this theory further by replacing
the measure of approximation by normalizedℓ1 distance and
unnormalized divergence, respectively, and showed first, that
the same limits on the code size hold in these cases and,
second, that the distance between the output distribution and
the target distributionPn

Z vanishes exponentially fast as the
block-length increases (similar results are derived in [11],
[14], [25] as well). In particular, in [7], [10], [11], [15],the
exponential decay of the informational divergence is leveraged
to establish an exponentially decaying upper bound on the
information leaked to the eavesdropper in wiretap channel’s
model.

We can extend the notion of resolvability and ask for
the approximation of arbitrary target distributions. Given a
code Cn = {xn

1 , . . . , x
n
M} (of block-lengthn and sizeM )

and the channelW : X → Z, denote byPCn
the output

distribution ofWn when a uniformly chosen codeword from
Cn is transmitted, that is,

PCn
(zn) ,

1

M

M
∑

i=1

Wn(zn|xn
i ). (8)

Definition 2. Given a stationary memoryless channel
W : X → Z, a rateR, and a sequence of target distributions
Φ = {Φn ∈ P(Zn)}n∈N, a numberEΦ(W,R) is an achiev-
ableresolvability exponentover the channelW , at rateR, with
respect toΦ if there exists a sequence{Cn}n∈N of codes (Cn
of block-lengthn), such thatlim supn→∞

1
n log |Cn| ≤ R and

lim inf
n→∞

−
1

n
logD(PCn

‖Φn) ≥ EΦ(W,R). (9)

Definition 3. The supremum of all achievable resolvability
exponents overW : X → Z, at rate R, with respect to
Φ = {Φn ∈ P(Zn)}n∈N is the resolvability exponent of the
channelW : X → Z at rateR with respect toΦ.
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Computing “the” resolvability exponent is a difficult task as
it necessitates a search over all possible sequences of codes to
find the best resolvability code. The usual way to circumvent
such a difficulty is to use the probabilistic method and analyze
the achievable exponents for an ensemble of random codes.

Definition 4. GivenΠ = {PXn ∈ P(Xn)}n∈N, a sequence of
probability distributions onXn, anensemble of random codes
of rate (at most)R is a sequence of random codesCn of block-
lengthn and sizeM = ⌊exp(nR)⌋ obtained by sampling the
codewords independently from the distributionPXn . In other
words,

Pr
{

Cn = {xn
1 , . . . , x

n
M}
}

=

M
∏

i=1

PXn(xn
i ). (10)

Definition 5. Given Π = {PXn ∈ P(Xn)}n∈N, a stationary
memoryless channelW : X → Z, and a rateR, a number
Es(Π,W,R) is an achievable resolvability exponent for the
ensemble of random codes of rate (at most)R defined byΠ,
over the channelW , if

lim inf
n→∞

−
1

n
logE[D(PCn

‖P̄Zn)] ≥ Es(Π,W,R), (11)

where Cn is a random code of sizeM = ⌊exp(nR)⌋ dis-
tributed according to (10) and the sequence of target distribu-
tions {P̄Zn ∈ P(Zn)}n∈N is defined as

P̄Zn(zn) , (PXn ◦Wn)(zn) =
∑

xn∈Xn

PXn(xn)Wn(zn|xn).

(12)

Remark. In the passage to the probabilistic method, we re-
stricted the sequence of target measures to those induced by
the code sampling distributionPXn at the output of then-fold
use ofW , (12). Indeed, it is easy to verify that whenCn is a
random code whose codewords are drawn independently from
PXn , for any distributionΦn ∈ P(Zn),

E[D(PCn
‖Φn)] = E[D(PCn

‖P̄Zn)] +D(P̄Zn‖Φn). (13)

Therefore, to show the existence of good resolvability codes
for approximating a sequence of target distributions{Φn ∈
P(Zn)}n∈N via random coding arguments, we can exclusively
consider the ensembles of random codes whose sampling
distribution PXn induces Φn at the output ofWn—any
other ensemble issuboptimaldue to the residual divergence
D(P̄Zn‖Φn).

Definition 6. Theexactresolvability exponent of the ensemble
of random codes of rate (at most)R defined via the sequence
of distributionsΠ = {PXn ∈ P(Xn)}n∈N, over the channel
W : X → Z, is defined as

Es(Π,W,R) , lim
n→∞

−
1

n
logE[D(PCn

‖P̄Zn)] (14)

(whereP̄Zn , PXn ◦Wn) provided that the limit exists.

For the sake of completeness, let us also formally define
the error exponent for an ensemble of random codes.

Definition 7. Given Π = {PXn ∈ P(Xn)}n∈N, a stationary
memoryless channelW : X → Y, and a rateR, a number

Er(Π,W,R) is called an achievableerror exponentof the
ensembleΠ at rateR on channelW , if

lim inf
n→∞

−
1

n
logE[Pr{ŝML(Y

n) 6= S}] ≥ Er(Π,W,R) (15)

whenCn, a random code of sizeM = ⌈exp(nR)⌉ is used to
communicate a uniformly chosen messageS ∈ {1, 2, . . . ,M}
via n independent uses ofW , yn is the output sequence of
Wn, and ŝML(y

n) is the ML estimation ofS given yn.

Remark.For the ensembles of interest in this paper, i.e., the
ensembles of i.i.d. and constant-composition random codes
the exact error exponents are well-known [22], [26], [27].
(The exactness of the random exponent of [22, Theorem 10.2]
follows from exponential tightness of the truncated union
bound [28, Appendix A].)

Definition 8. Given a sequence distributionsΠ = {PXn ∈
P(Xn)}n∈N, and a pair of secret message andrandom binning
rates(Rs, R) a randomwiretap channel codeis obtained by
partitioning a random code of size⌈exp[n(Rs + R)]⌉ in the
ensemble of random codes defined viaΠ into Ms

.
= exp(nRs)

sub-codes (or bins) of size⌊exp(nR)⌋, denoted asCsn, s ∈
{1, 2, . . . ,Ms}, each associated to a message. To communicate
the messages, the encoder transmits a codeword from the sub-
codeCsn uniformly at random (thus it requires an entropy rate
of R).

Theorem 1. Let WM : X → Y andWE : X → Z be the pair
of legitimate receiver’s and wiretapper’s stationary memory-
less channels respectively (see Figure 1). Fix a sequence of
codeword sampling distributionsΠ = {PXn ∈ P(Xn)}n∈N.
Let Er(Π,WM, R) be an achievable error exponent for the
ensembleΠ over the channelWM at rateR (see Definition 7)
and Es(Π,WE, R) be theexactresolvability exponent of the
ensembleΠ over the channelWE at rateR (see Definition 6).
Then for any rate pair(Rs, R) such thatEs(Π,WE, R+Rs) >
Es(Π,WE, R), using the ensemble of random wiretap channel
codes constructed as in Definition 8, when the secret message
S is uniformly distributed,

lim inf
n→∞

−
1

n
logE[Pr{ŝML(Y

n) 6= S}] ≥ Er(Π,WM, R+Rs)

(16)

lim
n→∞

−
1

n
logE[I(S;Zn)] = Es(Π,WE, R),

(17)

whereŝML(y
n) is the ML estimation of the sent message given

yn, the output of legitimate receiver’s channel. In other words,
Es (evaluated at the random binning rateR) is also theexact
secrecy exponentfor the ensembleΠ.

Proof: That Er(Π,WM, R + Rs) is an achievable error
exponent for the legitimate receiver is obvious: probability of
misdecoding the messageS is upper-bounded by probability
of incorrect decoding of the sent codeword. We shall, hence,
only prove (17).

Since, to communicate a particular messages ∈ Sn, the
encoder transmits a codeword from the codeCsn associated
to the messages, conditioned onS = s the output ofWn

E

has distributionPCs
n

and, sinceS is uniformly distributed,
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the unconditionaloutput distribution ofWn
E will be PCn

(cf.
(8)). Therefore, the identityI(A;B) = D(PB|A‖QB|PA) −
D(PB‖QB) (for (A,B) ∼ PAB and any arbitrary distribution
QB) yields:

E[I(S;Zn)] = E[D(PCS
n
‖P̄Zn |PS)]−E[D(PCn

‖P̄Zn)]. (18)

Using the linearity of expectation and the fact that the sub-
codesCsn are identically distributed we get:

E[D(PCS
n
‖P̄Zn |PS)] =

Ms
∑

s=1

PS(s)E[D(PCs
n
‖P̄Zn)]

= E[D(PC1
n
‖P̄Zn)]. (19)

Thus, by (14), we have

lim
n→∞

−
1

n
logE[D(PCs

n
‖P̄Zn |PS)] = Es(Π,WE, R), (20)

lim
n→∞

−
1

n
logE[D(PCn

‖P̄Zn)] = Es(Π,WE, R+Rs)

> Es(Π,WE, R). (21)

where the last inequality follows from the assumption that
Es(Π,WE, R+Rs) > Es(Π,WE, R). Using (20) and (21) in
(18) concludes the proof.

Remark1. That (a lower bound to) the resolvability exponent,
lower-bounds the secrecy exponent is already used in [7], [10],
[11]. Theorem 1 complements this result by showing that the
exact resolvability exponent equals the exact secrecy exponent.

Remark 2. To show the achievability ofEr in the proof
of Theorem 1, we used a decoder that estimates the sent
codeword and then decides to which sub-code it belongs.
In [29] it has been shown that, when the code sampling
distribution PXn depends onxn only through its type, the
error exponent of this decoder is the same as that of theoptimal
decoder (that computes the likelihood score for each message
s by summing up the likelihoods of all codewords inCsn and
then decides on the most likely message) for an average code
in the ensemble.

Remark 3. Equations (16) and (17) suggest a trade-off in
code design in terms of the choice of input distributions,
Π = {PXn ∈ P(Xn)}n∈N. The sequence of input distribu-
tionsΠ that maximizesEs may not coincide with the one that
maximizesEr.

Theorem 1 reduces the problem of computing the exact
secrecy exponent of the ensemble to that of computing the
exact resolvability exponent of the ensemble which is easier
as the former involves the divergence between two random dis-
tributionsPCs

n
andPCn

while the latter depends only onPCs
n
.

The assumption on uniform prior of secret messages is crucial
to establish such a result.2 However, in a practical system,
the user chooses the distribution of the secret messages and
it is desirable to have a worst-case guarantee of performance.
Therefore, before continuing with the main results of the paper,
it is worth mentioning the following result (which is proved
in Appendix A).

2Without such an assumptionI(S;Zn) = 0, namely, the secrecy exponent
is infinity if PS is positive only for a single secret message.

Theorem 2. Let WM : X → Y andWE : X → Z be the pair
of legitimate receiver’s and wiretapper’s stationary memory-
less channels respectively (see Figure 1) andΠ = {PXn ∈
P(Xn)}n∈N be a sequence of code sampling distributions. If
Er(Π,WM, R) is an achievable error exponent for the ensem-
ble Π over the channelWM at rate R that is continuous in
R andEs(Π,WE, R) is an achievable resolvability exponent
of the ensembleΠ over the channelWE, then there exists
a sequence of wiretap channel codes of secret messageRs

and random binning rateR in the ensemble (indexed by their
block-lengthn) using which,

lim inf
n→∞

−
1

n
log Pr{ŝML(Y

n) 6= S} ≥ Er(Π,WM, R+Rs),

(22)

lim inf
n→∞

−
1

n
log I(S;Zn) ≥ Es(Π,WE, R) (23)

for any distribution of the secret messagePS .

IV. EXACT RESOLVABILITY EXPONENTS

In light of Theorem 1, we shall focus on deriving the exact
resolvability exponents for the ensembles of i.i.d. and constant-
composition random codes. Accordingly,Cn will denote the
random resolvability code in this section and not the entire
wiretap channel code.

A. Main Result

Theorem 3. Let Cn be a random code of block-lengthn and
rate R constructed by samplingM = ⌊exp(nR)⌋ codewords
independently from the distributionPXn ∈ P(Xn) (see(10)).
Let W : X → Z be a discrete memoryless channel andPCn

be the (random) output distribution ofWn when a uniformly
chosen codeword fromCn is transmitted vian independent
uses ofW (see(8)). Then,

(i) if PXn = Pn
X for somePX ∈ P(X ),

E[D(PCn
‖P̄Zn)]

.
=

{

exp
(

−nEi.i.d.
s,n (PX ,W,R)

)

if I(PX ,W ) > 0,

0 if I(PX ,W ) = 0,

(24)

where

Ei.i.d.
s,n (PX ,W,R) = min

Q∈Pn(X×Z)

{

D(Q‖PX ×W )

+ [R− f(Q‖PX ×W )]+
}

,
(25a)

with

f(Q‖Q′) ,
∑

(x,z)∈X×Z

Q(x, z) log
Q′(x, z)

Q′
X(x)Q′

Z(z)
,

(25b)
for any two distributionsQ,Q′ ∈ P(X × Z);
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(ii) if PXn(xn) = 1
{

xn ∈ T n
Pn

}

/
∣

∣T n
Pn

∣

∣ for some sequence
of n-types{Pn ∈ Pn(X )}n∈N that converge toPX ∈
P(X ), i.e., limn→∞ |Pn − PX | = 0,

E[D(PCn
‖P̄Zn)]

.
=

{

exp
(

−nEc.c.
s,n (Pn,W,R)

)

if I(PX ,W ) > 0,

0 if I(PX ,W ) = 0,

(26)

where

Ec.c.
s,n (Pn,W,R) = min

V : X→Z:
Pn×V ∈Pn(X×Z)

{

D(V ‖W |Pn)

+ [R− gn(V ‖W |Pn)]
+
}

, (27a)

with

gn(V ‖W |P ) , ω(V ‖W |P ) +H(P ◦ V )

+ min
V ′ : X→Z:

P×V ′∈Pn(X×Z),
P◦V ′=P◦V

D(V ′‖W |P ),

(27b)

and

ω(V ‖W |P ) ,
∑

(x,z)∈X×Z

P (x)V (z|x) logW (z|x),

(27c)
for any distributionP ∈ P(X ) and pair of stochastic
matricesV : X → Z andW : X → Z.

Recall that in the abovēPZn = PXn ◦Wn (see(12)).

Theorem 3 gives exponentially tight bounds on the expected
divergence between the output distribution ofWn, when
its input is a uniformly chosen codeword from a randomly
chosen code and the distribution induced by the code sampling
distribution at any finite (but possibly large) block-length
n. As a consequence, the exact exponential decay rate of
the aforementioned divergence, namely the exact resolvability
exponent for the ensembles of interest, is the limit of the
exponents of (24) and (26) asn goes to infinity. The exact
resolvability exponents have the same forms as (25) and (27)
except that the search space of the minimizations will change
from the grid of empirical distributions to the set of all
distributions.

Theorem 4.
(i) For the sequence of i.i.d. random codes of rateR, i.e.,

those defined via the sequence of sampling distributions
{PXn = Pn

X}n∈N for somePX ∈ P(X ),

lim
n→∞

−
1

n
log(E[D(PCn

‖P̄Zn)])

=

{

Ei.i.d.
s (PX ,W,R) if I(PX ,W ) > 0,

+∞ if I(PX ,W ) = 0,
(28)

where

Ei.i.d.
s (PX ,W,R) = min

Q∈P(X×Z)

{

D(Q‖PX ×W )

+ [R − f(Q‖PX ×W )]+
}

,
(29)

and f is defined in(25b).
(ii) For the sequence of constant-composition random codes

of rateR, i.e., those defined via the sequence of sampling
distributions

{

PXn = 1
{

xn ∈ T n
Pn

}

/
∣

∣T n
Pn

∣

∣

}

n∈N
for

some sequence ofn-types {Pn ∈ Pn(X )}n∈N that
converge toPX , namely,limn→∞ |Pn − PX | = 0,

lim
n→∞

−
1

n
log(E[D(PCn

‖P̄Zn)])

=

{

Ec.c.
s (PX ,W,R) if I(PX ,W ) > 0,

+∞ if I(PX ,W ) = 0,
(30)

where

Ec.c.
s (PX ,W,R) = min

V :X→Z

{

D(V ‖W |PX)

+ [R− g(V ‖W |PX)]+
}

, (31a)

with

g(V ‖W |P ) , ω(V ‖W |P ) +H(P ◦ V )

+ min
V ′:X→Z

P◦V ′=P◦V

D(V ‖W |P ), (31b)

for any distributionP ∈ P(X ) and pair of stochastic
matricesV : X → Z and W : X → Z (and ω defined
as in (27c)).

Both exponentsEi.i.d.
s and Ec.c.

s are positive and strictly
increasing inR for R > I(PX ,W ). Moreover, the value of
Ei.i.d.

s can be computed through

Ei.i.d.
s (PX ,W,R) = max

0≤λ≤1
{λR− F0(PX ,W, λ)} (32a)

with

F0(PX ,W, λ)

, log
∑

(x,z)∈X×Z

PX(x)W (z|x)1+λ(PX ◦W)(z)−λ.

(32b)

Theorem 4 is proved in Appendix B.

Corollary 5. The exponents Ei.i.d.
s (PX ,WE, R) and

Ec.c.
s (PX ,WE, R) of (29) and (31) are the exact secrecy

exponents for the ensembles of random wiretap channel
codes of rate pair(R,Rs) constructed from the ensembles of
random i.i.d. and constant-composition codes, respectively,
provided thatRs > 0 andR > I(PX ,WE).

B. Comparison of Exponents

Corollary 5 states that the exponentEi.i.d.
s , which was

already derived in [8], [10], [11] is, indeed, the exact secrecy
exponent for the ensemble of i.i.d. random codes. (The ex-
ponent is expressed in the form of (32) in [8], [10], [11].) In
contrast, it can be shown thatEc.c.

s , the exact secrecy exponent
for the ensemble of constant-composition random codes, is
larger than the previously-derived lower bound in [13]:

Es(PX ,WE, R) = max
0≤λ≤1

{λR− E0(PX ,WE, λ)}, (33a)
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with

E0(PX ,W, λ)

, log
∑

z∈Z

(

∑

x∈X

PX(x)W (z|x)
1

1−λ

)1−λ

. (33b)

(Note that the functionE0 in (33b) is essentially Gallager’s
E0 [26] up to a minus sign.) For every discrete memoryless
stationary channelW : X → Z,

Ec.c.
s (PX ,W,R) ≥ Es(PX ,W,R). (34)

This follows from the fact thatg(V ‖W |P ) ≤ I(P, V ) using
similar steps as in [22, Problem 10.24] to derive Gallager-style
expressions of error exponents (see Appendix C for a complete
proof).

As for comparing the secrecy exponentsEi.i.d.
s andEc.c.

s ,
numerical examples show that in general, there is no ordering
between them. In particular, as shown in Figures 2 and 3, for
the binary symmetric channel and the binary erasure channel,
the ensemble of constant-composition random codes leads to
a larger exponent than the ensemble of i.i.d. random codes.
The two exponents are equal when the input distribution is
uniform. On the other side, in Figures 4 and 5, we see
that for asymmetric channels (the Z-channel and the binary
asymmetric channel) the ensemble of constant-composition
random codes results in a smaller secrecy exponent compared
to the ensemble of i.i.d. random codes. The reader may find
details on how the exponents are computed in Appendix D.

V. PROOF OFTHEOREM 3

In this section, we fix PX and set PXZ(x, z) =
PX(x)W (z|x). Moreover, we assume, without essential loss
of generality, that (i)supp(PX) = X (and for the constant-
composition codes,∀n, supp(Pn) = X ), and (ii) for every
z ∈ Z, there exists at least onex ∈ X such thatW (z|x) > 0.

Recall that the setting we are considering is as follows:
A random codeCn = {Xn

1 , . . . , X
n
M} of block-length n

and sizeM = ⌊exp(nR)⌋ is constructed by sampling each
codeword independently from distributionPXn . A uniformly
chosen codeword from this code is transmitted through the
product channelWn and the (random) distribution of its output
sequence is as in (8).

Trivial Case (zero-capacity channel):If PX is such that
I(X ;Z) = 0, then∀x ∈ X and ∀z ∈ Z, W (z|x) = PZ(z).
This implies thatfor any codeCn, PCn

= Pn
Z . Moreover,

P̄Zn = PXn ◦Wn = Pn
Z as well, thus,D(PCn

‖P̄Zn) = 0
(with probability1 for a random code) which, in turn, implies
E[D(PCn

‖P̄Zn)] = 0.
Now, we begin the non-trivial part of the proof, namely

when the channel output sequenceZn is correlated with its
input. For any fixedzn ∈ Zn, PCn

(zn) is an average ofM
i.i.d. random variablesWn(zn|Xn

i ), i = 1, . . . ,M and, hence,
is naturally expected to concentrate around its mean, whichis
exactly P̄Zn(zn). However, since the distribution of each of
summands in (8) depends onn, a plain application of law of
large numbers is not possible in this setting. Let

L(zn) ,

{

PCn (zn)

P̄Zn (zn)
if P̄Zn(zn) > 0,

1 otherwise,
(35)

denote the (random) likelihood ratio of each sequencezn ∈
Zn. By construction,

E[L(zn)] = 1, ∀zn ∈ Zn. (36)

Moreover, it follows thatPCn
≪ P̄Zn with probability 1 (see

Lemma 6). Thus, the linearity of expectation yields

E[D(PCn
‖P̄Zn)] = E

[

∑

zn∈Zn

PCn
(zn) log

(

PCn
(zn)

P̄Zn

)

]

(37)

=
∑

zn∈Zn

E

[

PCn
(zn) log

(

PCn
(zn)

P̄Zn(zn)

)]

(38)

=
∑

zn∈Zn

P̄Zn(zn)E[L(zn) logL(zn)] (39)

To prove Theorem 3 we derive exponentially tight bounds
on the value ofE[L(zn) logL(zn)] (for each individualzn ∈
Zn) and eventually combine those bounds in (39) to derive
the exponents of Theorem 3.

A. Preliminaries

Lemma 6. Let P̄Zn be as defined in(12). Then:
(i) PCn

≪ P̄Zn with probability 1.
(ii) For any codeword sampling distributionPXn ∈ P(Xn)

that depends onxn only through its type,̄PZn(zn) will
depend onzn only through its type.

(iii) For both choices of PXn in Theorem 3, ∀zn ∈
supp(P̄Zn), P̄Zn(zn) > (1/α)n where

α ,







1
PminWmin

if PXn = Pn
X ,

|X |
Wmin

if PXn =
1

{

xn∈T n
Pn

}

∣

∣T n
Pn

∣

∣

,
(40)

with Pmin , minx∈X PX(x) and Wmin ,

min(x,z)∈X×Z : W (z|x)>0W (z|x).

Proof: See Appendix E.

Remark. For the i.i.d. random coding ensemble, i.e., when
PXn = Pn

X , the reference measurēPZn equals the product
measurePn

Z and, hence,supp(P̄Zn) = Zn (since we assumed
supp(PX) = X and for everyz ∈ Z there exists at least one
x ∈ X such thatW (z|x) > 0). In contrast, whenPXn is
the uniform distribution over the type-classT n

Pn
(i.e., for the

constant-composition random coding ensemble) the support
of P̄Zn need not necessarily beZn. For instance, consider
a binary erasure channel andPn being uniform distribution
on {0, 1} (for evenn). Then P̄Zn puts no mass on the all-
zero output sequence, and by symmetry, neither on the all-one
sequence.

Lemma 7. Let A be an arbitrary non-negative random vari-
able. Then, for anyθ > 0,

c(θ)
[var(A)

E[A]
− τθ(A)

]

≤ E
[

A ln
( A

E[A]

)]

≤
var(A)

E[A]
(41)

where

τθ(A) , E[A]
[

θ2 Pr{A > (θ + 1)E[A]}

+ 2

∫ +∞

θ

vPr{A > (v + 1)E[A]}dv
]

, (42)
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Fig. 2. Comparison of secrecy exponents for Binary Symmetric Channel with crossover probability0.11
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Fig. 3. Comparison of secrecy exponents for Binary Erasure Channel with erasure probability0.5

and

c(θ) ,
(1 + θ) ln(1 + θ)− θ

θ2
. (43)

Proof: See Appendix F.

Remark. It follows from Jensen’s inequality that
E[A ln(A/E[A])]) ≥ 0. Lemma 7 improves this lower
bound for random variables with sufficiently small tails.

Unfortunately,L(zn) has heavy tails and a direct application
of Lemma 7 toL(zn) will not result in exponentially tight
bounds onE

[

L(zn) logL(zn)
]

. However, it turns out that
L(zn) can be split into light- and heavy-tail components. As
we shall see shortly, the heavy-tail component contributesto
E
[

L(zn) logL(zn)
]

only via its mean and Lemma 7 can be
applied to the light-tail component to obtain exponentially
tight bounds onE

[

L(zn) logL(zn)
]

.
SinceP̄Zn(zn) depends onzn only through its type, we can

use type enumeration method [29], [30] and write

L(zn) =
1

M

M
∑

i=1

Wn(zn|Xn
i )

P̄Zn(zn)
(44)

=
1

M

∑

Q∈Pn(X×Z)

NQ(z
n)ℓ(Q) (45)

where

ℓ(Q) ,
Wn(z̃n|x̃n)

P̄Zn(z̃n)
for some(x̃n, z̃n) ∈ T n

Q , (46)

and

NQ(z
n) ,

∣

∣

{

xn ∈ Cn : (xn, zn) ∈ T n
Q

}
∣

∣ (47)

is the number of codewords inCn that have joint typeQ with
zn. Therefore,{NQ(z

n) : Q ∈ Pn(X × Z)} is a multinomial
collection with cluster sizeM and success probabilities

pQ(z
n) =

|T n
Q |

|T n
QZ
||T n

QX
|
PXn(T n

QX
)1{QZ = Q̂zn} (48)

(where Q̂zn denotes the type ofzn) for any code sampling
distribution PXn(xn) that depends onxn through its type,
including our cases of interest. (The above equality is proved
in Appendix G.)

PartitionPn(X × Z) = Q′
n ∪ Q

′′
n as

Q′
n , {Q ∈ Pn(X × Z) : ℓ(Q) ≤ e2M}, (49)

Q′′
n , {Q ∈ Pn(X × Z) : ℓ(Q) > e2M}, (50)

and, accordingly, splitL(zn) = L1(z
n) + L2(z

n) as

L1(z
n) ,

1

M

∑

Q∈Q′
n

NQ(z
n)ℓ(Q), (51)

L2(z
n) ,

1

M

∑

Q∈Q′′
n

NQ(z
n)ℓ(Q). (52)



9

0.25 0.5 0.75 1

0.25

0.5

R

Es

E
i.i.d.
s

E
c.c.
s

Es

(a) PX(0) = 0.36, PX(1) = 0.64

0.25 0.5 0.75 1

0.25

0.5

R

Es

E
i.i.d.
s

E
c.c.
s

Es

(b) PX(0) = 0.58, PX(1) = 0.42 (capacity-achieving)

Fig. 4. Comparison of secrecy exponents for Z-channel withWE(0|1) = 0.303
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Fig. 5. Comparison of secrecy exponents for binary asymmetric channel withWE(1|0) = 0.01, WE(0|1) = 0.303

Indeed,L1 turns out to be the light-tail component ofL and
L2 its heavy-tail part. Let also,

ν(zn) , var
(

L1(z
n)
)

+
1

M
E[L1(z

n)]2, and (53)

µ(zn) , E[L2(z
n)]. (54)

Using elementary properties of multinomial distribution it can
be verified that

ν(zn) =
1

M

∑

Q∈Q′
n

ℓ(Q)2pQ(z
n) (55a)

µ(zn) =
∑

Q∈Q′′
n

ℓ(Q)pQ(z
n) (55b)

(A proof of the above is given in Appendix H for com-
pleteness.) In the following two subsections we prove that
∀zn ∈ supp(P̄Zn),

E
[

L(zn) lnL(zn)
]

+
1

M

.
= ν(zn) + µ(zn). (56)

Sincezn is fixed in both sides of (56) we drop it in subsec-
tions V-B and V-C to avoid cumbersome notation.

B. Achievability

For non-negativel1 and l2, and l = l1 + l2,

l ln(l) = l1 ln(l) + l2 ln(l) (57)

= l1 ln(l1) + l1 ln(1 + l2/l1) + l2 ln(l) (58)

≤ l1 ln(l1) + l2(1 + ln(l)) (59)

(sinceln(1 + l2/l1) ≤ l2/l1), thus,

E[L lnL] ≤ E[L1 lnL1] + E[L2(1 + lnL)] (60)
(∗)

≤ E[L1 lnL1] + (1 + n lnα)E[L2] (61)

where(∗) follows from (iii) in Lemma 6 (asL = L(zn) ≤
1/P̄Zn(zn)). The upper bound of (41) implies

E[L1 lnL1] ≤ E[L1] ln
(

E[L1]
)

+
var(L1)

E[L1]

(∗)

≤
var(L1)

E[L1]
(62)

where(∗) follows sinceE[L1] ≤ E[L] = 1. Moreover, using
(53) and the fact thatE[L1] + E[L2] = 1 we have

var(L1)

E[L1]
=

ν

E[L1]
−

E[L1]

M
(63)

= ν
(

1 +
E[L2]

E[L1]

)

−
1− E[L2]

M
(64)

= ν + E[L2]
( ν

E[L1]
+

1

M

)

−
1

M
. (65)
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Sinceℓ(Q) ≤Me2 for Q ∈ Q′
n, using (55a) we have

ν ≤
1

M

∑

Q∈Q′
n

e2M · ℓ(Q)pQ = e2 E[L1]. (66)

Using the above in (65) and replacingE[L2] = µ, we get

var(L1)

E[L1]
+

1

M
≤ ν+E[L2]

(

e2+
1

M

)

≤ ν+(1+e2)µ, (67)

(sinceM ≥ 1). Finally, using (67) in (62) yields,

E[L1 lnL1] +
1

M
≤̇ ν + µ. (68)

Using (68) in (61) (and noting thatα ≥ 1 only depends on
|X |, PX , andW ) we conclude that

E[L lnL] +
1

M
≤̇ ν + µ. (69)

C. Ensemble Converse

The choice ofQ′′
n implies

Pr
{

L2 ∈ (0, e2)
}

= 0. (70)

This holds since either∀Q ∈ Q′′
n : NQ = 0 which implies

L2 = 0 or ∃Q0 ∈ Q′′
n such thatNQ0

≥ 1, in which case,

L2 ≥
1

M
ℓ(Q0)NQ0

≥
1

M
ℓ(Q0) ≥ e2, (71)

(because∀Q ∈ Q′′
n, ℓ(Q) > e2M ). Consequently,

E[L2 lnL2] =
∑

l≥e2

l ln(l) Pr{L2 = l} (72)

≥ ln(e2)
∑

l≥e2

lPr{L2 = l} = 2E[L2]. (73)

For positivel1 and l2, and l = l1 + l2 ≥ max{l1, l2},

l ln(l) = l1 ln(l) + l2 ln(l) (74)

≥ l1 ln(l1) + l2 ln(l2). (75)

Therefore,

E[L lnL] ≥ E[L1 lnL1] + E[L2 lnL2]. (76)

Using the lower bound of (41) (withτθ(L1) andc(θ) defined
as in (42) and (43) respectively),∀θ > 0:

E[L1 lnL1] ≥ E[L1] ln(E[L1]) + c(θ)
[var(L1)

E[L1]
− τθ(L1)

]

(77)

(a)
= (1 − E[L2]) ln(1− E[L2]) + c(θ)

[var(L1)

E[L1]
− τθ(L1)

]

(78)
(b)
≥ −E[L2] + c(θ)

[var(L1)

E[L1]
− τθ(L1)

]

. (79)

In the above (a) follows sinceE[L1] = 1−E[L2] and (b) since
(1 − ε) ln(1 − ε) ≥ −ε. Using (73) and (79) in (75) shows
that ∀θ > 0:

E[L lnL] ≥ c(θ)
[var(L1)

E[L1]
− τθ(L1)

]

+ E[L2]. (80)

Now we shall upper-boundτθ(L1). Starting by bounding
the tail ofL1 we have

Pr{L1 ≥ (v + 1)E[L1]}

= Pr







∑

Q∈Q′
n

ℓ(Q)(NQ −MpQ) ≥Mv E[L1]







(81)

≤ Pr







⋃

Q∈Q′
n

{

ℓ(Q)(NQ −MpQ) ≥
MvE[L1]

|Q′
n|

}







(82)
(a)
≤
∑

Q∈Q′
n

Pr

{

ℓ(Q)(NQ −MpQ) ≥
MvE[L1]

|Q′
n|

}

(83)

(b)
≤
∑

Q∈Q′
n

E[ℓ(Q)4(NQ −MpQ)
4]

(Mv E[L1]/|Q′
n|)

4
(84)

=
|Q′

n|
4

v4(E[L1])4
1

M4

∑

Q∈Q′
n

ℓ(Q)4 E[(NQ −MpQ)
4], (85)

where (a) is the union bound and (b) follows by Markov
inequality. ForN ∼ Binomial(M,p),

E[(N −Mp)4] = Mp(1− p)[1 + 3(M − 2)p(1− p)] (86)

≤ var(N) + 3 var(N)2. (87)

Continuing (85) we have

1

M4

∑

Q∈Q′
n

ℓ(Q)4 E[(NQ −MpQ)
4]

≤
1

M4

∑

Q∈Q′
n

ℓ(Q)4
(

var(NQ) + 3 var(NQ)
2
)

(88)

(a)

≤̇
1

M2

∑

Q∈Q′
n

ℓ(Q)2 var(NQ) + 3
1

M4

∑

Q∈Q′
n

ℓ(Q)4 var(NQ)
2

(89)
(b)
≤

1

M2

∑

Q∈Q′
n

ℓ(Q)2 var(NQ)

+ 3
[ 1

M2

∑

Q∈Q′
n

ℓ(Q)2 var(NQ)
]2

(90)

(c)
≤ ν + 3ν2

(d).
= ν, (91)

where (a) follows sinceℓ(Q) ≤ e2M
.
= M for Q ∈ Q′

n, (b)
since for positive summands, the sum of the squares is less
than the square of the sums, (c) sincevar(NQ) ≤MpQ, and
(d) sinceν ≤ e2 E[L1] ≤ e2 (see (66)). Plugging (91) into
(85) we get

Pr{L1 ≥ (v + 1)E[L1]} ≤̇
|Q′

n|
4ν

(E[L1])4
·
1

v4
. (92)

Using the above in (42) we get

τθ(L1) = E[L1]
[

θ2 Pr{L1 > (θ + 1)E[L1]}

+ 2

∫ +∞

θ

vPr{L1 > (v + 1)E[L1]}dv
]

(93)

≤̇ E[L1]
[θ2

θ4
+ 2

∫ +∞

θ

v

v4
dv
] |Q′

n|
4

E[L1]4
ν (94)
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.
=

ν

E[L1]3
·
|Q′

n|
4

θ2
. (95)

Since (95) impliesτθ(L1) ≤ d(n)|Q′
n|

4
ν/
(

θ2 E[L1]
3
)

for
some sub-exponentially increasing sequenced(n) (which only
depends on|X | and |Z|), taking

θn , 2
√

d(n)
|Q′

n|
2

E[L1]
, (96)

we will have
τθn(L1) ≤

1

4
·

ν

E[L1]
. (97)

Using (53) and (97) in (80) we have

E[L(zn) lnL(zn)] ≥ c(θn)
[var(L1)

E[L1]
− τθn(L1)

]

+ E[L2]

(98)

≥ c(θn)
[ ν

E[L1]
−

1

M
E[L1]−

1

4
·

ν

E[L1]

]

+ E[L2] (99)

(∗)

≥ c(θn)
[3

4
·

ν

E[L1]
−

1

M

]

+ E[L2] (100)

(where (∗) follows becauseE[L1] ≤ 1). Since for θ > 0,
c(θ) ≤ c(0) = 1

2 < 1, we can further lower-bound (100) as

E[L lnL] ≥
3

4
c(θn)

ν

E[L1]
+ E[L2]−

1

M
(101)

Moreover,

c(θn) =
1

θn
·
(1 + θn) ln(1 + θn)− θn

θn
(102)

(a)
≥

1

θn
·
(1 + E[L1]θn) ln(1 + E[L1]θn)− E[L1]θn

E[L1]θn
(103)

= E[L1]
(1 + E[L1]θn) ln(1 + E[L1]θn)− E[L1]θn

(E[L1]θn)2

(104)
(b)

≥̇ E[L1], (105)

where (a) follows since(1+θ) ln(1+θ)−θ
θ is increasing inθ and

E[L1] ≤ 1, and (b) since(1+θ) ln(1+θ)−θ
θ2 is decreasing inθ (see

Lemma 10 in Appendix F) andE[L1]θn = 2
√

d(n)|Q′
n|

2 ≤
2
√

d(n)(n + 1)2|X ||Z|. Using this lower bound in (101) we
get

E[L lnL] +
1

M
≥̇ ν + µ (106)

D. Derivation of Exponents for Each Ensemble

Equations (69) and (106) prove (56). Plugging in the values
of ν(zn) andµ(zn) from (55a) and (55b) and continuing (56),
we get

E
[

L(zn) lnL(zn)
]

+
1

M

.
= ν(zn) + µ(zn) (107)

=
∑

Q∈Pn(X×Z)

ℓ(Q)pQ(z
n)κ
(

ℓ(Q)/M
)

(108)

where

κ(λ) =

{

1 λ > e2,

λ λ ≤ e2.
(109)

It is easy to check that

min{1, λ} ≤ κ(λ) ≤ e2 min{1, λ} (110)

Therefore, (108) can be simplified as

E
[

L(zn) lnL(zn)
]

+
1

M
.
=

∑

Q∈Pn(X×Z)

ℓ(Q)pQ(z
n)min

{

1,
ℓ(Q)

M

}

. (111)

Using the above in (39) we get

E[D(PCn
‖P̄Zn)] +

log(e)

M
.
=

∑

zn∈Zn

P̄Zn(zn)
∑

Q∈Pn(X×Z)

ℓ(Q)pQ(z
n)min

{

1,
ℓ(Q)

M

}

(112)

=
∑

Q∈Pn(X×Z)

ℓ(Q)min
{

1,
ℓ(Q)

M

}

∑

zn∈Zn

pQ(z
n)P̄Zn(zn).

(113)

Plugging in the value ofpQ(zn) from (48) we get

∑

zn∈Zn

pQ(z
n)P̄Zn(zn) =

|T n
Q |

|T n
QX
||T n

QZ
|
PXn

(

T n
QX

)

P̄Zn

(

T n
QZ

)

.

(114)
Moreover, defining

ω(Q) =
∑

x,z

Q(x, z) logW (z|x), (115)

and recalling thatP̄Zn depends onzn only through its type,
we deduce that

ℓ(Q) =
exp
(

nω(Q)
)

P̄Zn

(

T n
QZ

)

/|T n
QZ
|

(116)

Combining (114) and (116) yields

ℓ(Q)
∑

zn

pQ(z
n)P̄Zn(zn) = exp

{

nω(Q)
}

|T n
Q |

PXn

(

T n
QX

)

∣

∣T n
QX

∣

∣

(117)
.
= exp

{

−nD(Q‖QX ×W )
}

PXn

(

T n
QX

)

, (118)

where the last equality follows since|T n
Q |

.
= exp{nH(Q)}

(respectively,|T n
QX
|
.
= exp{nH(QX)}). Thus, we have

E[D(PCn
‖P̄Zn)] +

log(e)

M
.
=

∑

Q∈Pn(X×Z)

exp
{

−nD(Q‖QX ×W )
}

× PXn

(

T n
QX

)

min
{

1,
ℓ(Q)

M

}

. (119)

Observe that since

ℓ(PXZ) ≥ exp{nω(PXZ)}
∣

∣T n
PZ

∣

∣ ≥̇ exp{nI(X ;Z)}, (120)

taking Q = PXZ shows that the right-hand-side of (119)
decays at most as fast asexp{−n[R − I(X ;Z)]+} which
is strictly slower than 1

M = exp(−nR) since I(X ;Z) > 0.



12

Consequently we can ignore the termlog(e)M on the left-hand-
side of (119) and conclude that

E[D(PCn
‖P̄Zn)]

.
=

∑

Q∈Pn(X×Z)

exp
{

−nD(Q‖QX ×W )
}

× PXn

(

T n
QX

)

min
{

1,
ℓ(Q)

M

}

. (121)

(The careful reader may argue thatPXZ may not be ann-
type for all n and, hence, find our reasoning for the passage
from (119) to (121) inaccurate. While this concern is valid,
the claim is true regardless as we can always find a sequence
of n-types that converge toPXZ . We give a rigorous and more
detailed proof of (121) in Appendix I.)

1) Ensemble of i.i.d. random codes:WhenPXn = Pn
X ,

PXn(T n
QX

)
.
= exp{−nD(QX‖PX)} (122)

Moreover,P̄Zn(zn) = Pn
Z (z

n) (wherePZ = PX ◦W ). There-
fore, P̄Zn(zn) = exp{n

∑

z QZ(z) logPZ(z)} if zn ∈ T n
QZ

.
Therefore,

ℓ(Q) =
exp{nω(Q)}

Pn
Z (z

n)
= exp

{

n
∑

x,z

Q(x, z) log
W (z|x)

PZ(z)

}

= exp
{

nf(Q‖PXZ)
}

. (123)

wheref is defined in (25b). As a consequence,

min{1, ℓ(Q)/M}
.
= exp

{

−n[R− f(Q‖PXZ)]
+
}

. (124)

Using (122) and (124) in (121) (together with the fact that
|Pn(X × Z)| ≤ (n+ 1)|X ||Z|) conclude that

E[D(PCn
‖P̄Zn)]

.
= exp

{

−n min
Q∈Pn(X×Z)

{

D(Q‖QX ×W )

+D(QX‖PX) + [R− f(Q‖PXZ)]
+
}

}

. (125)

Simplifying the above exponent yields (25).

2) Ensemble of constant-composition random codes:When
the code sampling distribution,PXn , is the uniform dis-
tribution over the type-classT n

Pn
, PXn

(

T n
QX

)

= 0 unless
QX = Pn, i.e.,Q = Pn × V for someV : X → Z such that
Pn×V ∈ Pn(X ×Z). (To keep the notation simple, we omit
this last condition from the following equations.) Therefore
(121) reduces to

E[D(PCn
‖P̄Zn)]

.
=

∑

V : X→Z

exp
{

−nD(V ‖W |Pn)
}

×min{1, ℓ(Pn × V )/M}. (126)

It remains to evaluate

ℓ(Pn × V ) =
Wn(zn|xn)

P̄Zn(zn)
, (127)

for somexn ∈ T n
Pn

and zn ∈ T n
V (xn), whereT n

V (xn) is the
V -shell of xn. To this end, we note that

P̄Zn(zn) =
1

|T n
Pn
|

∑

xn∈T n
Pn

W (zn|xn) (128)

=
1

|T n
Pn
|

∑

xn∈T n
Pn

W (zn|xn)
∑

V ′ : X→Z

1{zn ∈ T n
V ′(xn)}

(129)

=
1

|T n
Pn
|

∑

xn∈T n
Pn

∑

V ′ : X→Z

1{zn ∈ T n
V ′(xn)}W (zn|xn)

(130)

=
1

|T n
Pn
|

∑

xn∈T n
Pn

∑

V ′ : X→Z

1{zn ∈ T n
V ′(xn)}

× exp
[

−n(D(V ′‖W |Pn) +H(V ′|Pn))
]

(131)

=
∑

V ′ : X→Z

1

|T n
Pn
|

∑

xn∈T n
Pn

1{zn ∈ T n
V ′(xn)}

× exp
[

−n(D(V ′‖W |Pn) +H(V ′|Pn))
]

. (132)

(Recall again thatV ′ must also be such thatPn × V ′ is an
n-type but we omit this condition from the equations for the
sake of brevity.) As we have already shown in the proof of
(48) (cf. Appendix G),

1

|T n
Pn
|

∑

xn∈T n
Pn

1{zn ∈ T n
V ′(xn)}

=
|T n

Pn×V ′ |

|T n
Pn
||T n

Pn◦V ′ |
1{Pn ◦ V

′ = Q̂zn} (133)

.
= exp

[

n[H(V ′|Pn)−H(Pn ◦ V
′)]
]

1{Pn ◦ V
′ = Q̂zn}

(134)

(where Q̂zn is the type ofzn). Using (134) in (132) and
recalling thatzn has typePn ◦ V we get

P̄Zn(zn)
.
= exp

[

−n[H(Pn ◦ V )

+ min
V ′ : X→Z

Pn◦V =Pn◦V

D(V ′‖W |Pn)]

]

, (135)

which, in turn, shows

ℓ(Pn × V )
.
= exp

[

−ngn(V ‖W |Pn)
]

(136)

with gn defined as in (27b). Therefore,

min{1, ℓ(Pn × V )/M}
.
= exp

[

−n[R− gn(V ‖W |Pn)]
+
]

.
(137)

Using (137) in (126) proves (27).

VI. CONCLUSION AND DISCUSSION

We studied theexact exponential decay rate of the infor-
mation leaked to the eavesdropper in Wyner’s wiretap channel
setting when an average wiretap channel code in the ensem-
ble of i.i.d. or constant-composition random codes is used
for communication. Our analysis shows that the previously-
derived lower bound on the secrecy exponent of i.i.d. random
codes in [8]–[11] is, indeed, tight. Moreover, our result for
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constant-composition random codes improves upon that of
[13] (see (34) and examples in Section IV-B).

A key step in our analysis (which is applicable to any
ensemble of random codes with independently sampled code-
words) is to observe the equivalence of secrecy and resolvabil-
ity exponents for the ensemble and, as a result, reducing the
problem to the analysis of the resolvability exponent. The latter
is easier as the informational divergence of interest (whose
exponential decay rate is being assessed) involves a single
random distribution (the output distribution) while the former
involves two (the conditional and unconditional output distri-
butions). We should emphasize that establishing secrecy via
channel resolvability is a standard technique which was used
in [5], [7], [10], [11], [15] (also, in combination with privacy
amplification in [8], [13]) whose advantages are discussed in
[4]. Our result (Theorem 1) highlights the usefulness of this
tool by showing that the resolvability exponent is not only
a lower bound to the secrecy exponent but also equals the
secrecy exponent.

Thanks to such a reduction, we extended the method of [11]
to derive the exact resolvability exponent of random codes.
It is noteworthy that, as it was already envisioned in [11],
the method presented there was conveniently applicable to the
ensemble of constant-composition random codes (as well as
the ensemble of i.i.d. random codes already studied in [11]).

It is remarkable that, unlike the channel coding problem
for which constant-composition random codes turn out to
be never worse than i.i.d. random codes in terms of the
exponent [22], for the secrecy problem we have examples (see
Figures 4 and 5) where i.i.d. random codes perform better
than constant-composition codes. The examples presented in
Section IV-B suggest that the superior ensemble (in terms of
the secrecy exponent) depends on the channelWE alone (i.e.,
for a given channel, either of the ensembles yields a better
secrecy exponent for all input distributions). A subject for
future research would be to characterize the set of channelsfor
which the ensemble of i.i.d. random codes results in a better
secrecy exponent (and vice versa).

As shown in [2], for general pairs of channels(WM,WE),
the secrecy capacity is given by

max
PUX :

U−−◦ X−−◦ (Y,Z)

{I(U ;Y )− I(U ;Z)}. (138)

The secrecy capacity equals

max
PX

{I(X ;Y )− I(X ;Z)} (139)

when∀PX , I(X ;Y ) ≥ I(X ;Z). Accordingly, for the general
case and when the secrecy capacity is positive, one can
construct wiretap channel codes by prefixing the channel with
an auxiliary channelPX|U : U → X . Channel prefixing is also
proposed in [10] as a technique to treat the wiretap channels
with cost constraints. (The auxiliary channelPX|U will be cho-
sen such that its output sequence satisfies the cost constraints
for the physical channel.) It is obvious that our results (aswell
as those of others cited) are immediately extensible to such
cases. More precisely, for a given auxiliary channelPX|U , the
exponents of (29) and (31), evaluated for the effective channel

PZ|U (z|u) =
∑

x PX|U (x|u)WE(z|x) (instead ofWE) and
the input distributionPU are the ensemble-optimal secrecy
exponents of both random-coding ensembles. Observe that in
this settingPX|U (in addition to the random-binning rateR)
is also a design parameter which can be exploited to optimize
the secrecy exponent.3 Moreover, it should also be noted that
in the prefixed setting, in addition to the entropy rate ofR bits
per channel use (for random binning), the encoder requires an
entropy rate ofH(X |U) bits per channel use to simulate the
channelPX|U that has to be taken into account in comparison
of the secrecy exponents.

APPENDIX A
PROOF OFTHEOREM 2

Consider the sequence of random wiretap channel codes
of secret message size2Ms, Ms = exp(nRs) and random
binning rateR in the sense of Definition 8. Namely, those
obtained by partitioning a random code of size2 exp[n(R +
Rs)] into 2Ms sub-codes of rateR. (AssumeR andRs are
chosen suchexp[n(R+Rs)], exp(nRs) andexp(nR) are all
integers for notational brevity.) Let

P̄e,n , E[Pr{ŝML(Y
n) 6= S}], (140)

D̄n , E[D(PCS
n
‖P̄Zn |PS)]. (141)

whenS is uniformly distributed on{1, 2, . . . , 2Ms} with Y n

andZn being the output sequences of the legitimate receiver’s
and wiretapper’s channel respectively as in Figure 1,PCs

n

being the distribution of wiretapper’s channel output sequence
when a uniformly chosen codeword from the sub-codeCsn
is transmitted (see (8)) and̄PZn the distribution induced by
codeword sampling distribution at the output of wiretapper’s
channel (see (12)). (The expectation is taken over the choice
of codebookCn =

⋃2Ms

s=1 C
s
n) By the assumptions of Theorem

(in particular, the continuity ofEr in rate) and the linearity of
expectation we have

lim inf
n→∞

−
1

n
log(P̄e,n) ≥ Er(Π,WM, Rs +R), (142)

lim inf
n→∞

−
1

n
log(D̄n) ≥ Es(Π,WE, R). (143)

Markov’s inequality implies that for eachn, with probability
at least23 over the choice of random codes

Pr{ŝML(Y
n) 6= S} =

1

2Ms

2Ms
∑

s=1

Pr{ŝML(Y
n) 6= S|S = s} ≤ 3P̄e,n,

(144)
and, with probability at least23

D(PCS
n
‖P̄Zn |PS) =

1

2Ms

2Ms
∑

s=1

D(PCs
n
‖P̄Zn) ≤ 3P̄e,n. (145)

Therefore, with probability at least13 , the random code is cho-
sen such that both bounds of (144) and (145) simultaneously
hold. Let Csn, s ∈ {1, 2, . . . , 2Ms} be the collection of sub-
codes that define any such good code. Since the summands in

3The authors thank the anonymous reviewer for bringing this point to their
attention.



14

the summation of (144) are all positive, there exists a subset
Sn,e ⊆ {1, 2, . . . , 2Ms} of cardinality|Sn,e| > 3

2Ms such that
∀s ∈ Sn,e,

Pr{ŝML(Y
n) 6= S|S = s} ≤ 12P̄e,n. (146)

Similarly, since the summands in (145) are positive, there
exists a subsetSn,s ⊆ {1, 2, . . . , 2Ms} of cardinality |Sn,s| >
3
2Ms such that∀s ∈ Sn,s

D(PCs‖P̄Zn) ≤ 12D̄n. (147)

Pick anySn ⊆ Sn,e ∩ Sn,s of cardinality |Sn| = Ms (this is
possible since|Sn,e ∩ Sn,s| ≥ Ms) and consider the wiretap
channel code that associates the sub-codeCsn to each message
s ∈ Sn. This is a code of secret message rateRs and, when it
is employed with any priorPS on secret messages, satisfies

Pr{ŝML(Y
n) 6= S} ≤ 12P̄e,n, (148)

due to (146), and

I(S;Zn) ≤ D(PCs
n
‖P̄Zn |PS) ≤ 12D̄n, (149)

due to (147). Using this sequence of expurgated codes we will
have

lim inf
n→∞

−
1

n
log Pr{ŝML(Y

n) 6= S} ≥ lim inf
n→∞

−
1

n
P̄e,n

≥ Er(Π,WM, R+Rs) (150)

by combining (148) and (142), and

lim inf
n→∞

−
1

n
log I(S;Zn) ≥ lim inf

n→∞
−
1

n
D̄n ≥ Es(Π,WE, R)

(151)
by combining (149) and (143), respectively.

Remark. The secrecy part of the proof hinges on finding
exp(nRs) “good” resolvability codes via expurgation: we first
generated twice as many resolvability codes as we needed
and then threw away the “bad” half. Very recently, in [31], it
was shown that the probability of choosing a bad resolvability
code, namely a codeCn (of block-lengthn) for which the
ℓ1 distance between the output distributionPCn

(8) and the
reference measurēPZn is more thanexp(−nγ) for some
exponentγ, is doubly exponentially small inn. This suggests
that even if we drawexp(nRs) codes in a single-shot from
the ensemble, with very high probability they areall good
resolvability codes. Nevertheless, we do not know if the results
of [31] hold for the exponents presented in this work. (Also
in this work we measure the approximation quality by KL
divergence as opposed toℓ1 norm but, at least for the i.i.d.
random coding ensemble the KL divergence has the same
exponential decay rate as theℓ1 distance [25, Equation (30)].)

APPENDIX B
PROOF OFTHEOREM 4

The results whenI(PX ,W ) = 0 are trivial. So we only
proceed with the proofs for the caseI(PX ,W ) > 0.

A. Proof of (i)

Let PXZ = PX ×W for the sake of brevity. We need to
show that

lim
n→∞

Ei.i.d.
s,n (PX ,W,R) = Ei.i.d.

s (PX ,W,R). (152)

Recall thatEi.i.d.
s,n and Ei.i.d.

s are defined in (25) and (29)
respectively. SincePn(X ×Z) ⊂ P(X ×Z) we trivially have

lim
n→∞

Ei.i.d.
s,n (PX ,W,R) ≥ Ei.i.d.

s (PX ,W,R) (153)

Let Q⋆ be the minimizing distribution in the right-hand-side
of (29). Since

⋃

n∈N
Pn(X ×Z) is dense inP(X ×Z), there

exists a sequence ofn-types{Q⋆
n ∈ Pn(X × Z)}n∈N such

that limn→∞ |Q⋆
n −Q⋆| = 0. We, also have,

D(Q⋆
n‖PXZ) + [R− f(Q⋆

n‖PXZ)]
+ ≥ Ei.i.d.

s,n (PX ,W,R)
(154)

Moreover we note thatQ⋆ ≪ PXZ (for if it is not
D(Q⋆‖PXZ) = +∞ and Q⋆ cannot be the minimizer).
Consequently, we can assume∀n ∈ N, Q⋆

n ≪ PXZ . Since
both D(Q‖PXZ) and f(Q‖PXZ) are continuous inQ over
the set of distributionsQ that are absolutely continuous with
respect toPXZ ,

lim
n→∞

D(Q⋆
n‖PXZ) + [R− f(Q⋆

n‖PXZ)]
+

= D(Q⋆‖PXZ) + [R− f(Q⋆‖PXZ)]
+ (155)

= Ei.i.d.
s (PX ,W,R). (156)

Using (154) in the above yields,

Ei.i.d.
s (PX ,W,R) ≥ lim

n→∞
Ei.i.d.

s,n (PX ,W,R) (157)

which, together with (153) prove (152).

B. Proof of (ii)

1) Preliminaries: Let us first examine some properties of
the functionsg andgn defined in (31b) and (27b) respectively.
To this end, it is more convenient to look atg and gn as
mappings from the joint distributionQ = P ×V ∈ P(X ×Z)
to R, namely,

g(Q,W ) ,
∑

x,z

Q(x, z) logW (z|x) +H(QZ)

+ min
Q′∈P(X×Z) :

Q′
X=QX ,

Q′
Z=QZ

D(Q′‖Q′
X ×W ), (158)

gn(Q,W ) ,
∑

x,z

Q(x, z) logW (z|x) +H(QZ)

+ min
Q′∈Pn(X×Z) :

Q′
X=QX ,Q′

Z=QZ

D(Q′‖Q′
X ×W ), (159)

Let us also define the setsQ ⊆ P(X ×Z) andQn ⊆ Pn(X ×
Z) as

Q , {Q ∈ P(X × Z) : Q≪ QX ×W}. (160)

Qn , {Q ∈ Pn(X × Z) : Q≪ QX ×W}. (161)

(Note thatQn = Pn(X ×Z)∩Q.) The setQ is compact and
convex.
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Lemma 8. The functiong(Q,W ) defined in(158) is contin-
uous inQ over the set of distributionsQ ∈ Q.

Proof: The linear part
∑

x,z Q(x, z) logW (z|x) is con-
tinuous inQ as long asQ(x, z) = 0 wheneverW (z|x) = 0
(which is the case forQ ∈ Q). The entropyH(QZ) is also
continuous. It remains to prove the continuity of the last
minimization. We first note that

min
Q′∈P(X×Z) :

Q′
X=QX ,

Q′
Z=QZ

D(Q′‖Q′
X ×W ) = min

Q′∈Q :
Q′

X=QX ,

Q′
Z=QZ

D(Q′‖Q′
X ×W )

(162)
(for if Q′ 6∈ Q, D(Q′‖Q′

X × W ) = +∞ while Q′ = Q
is a feasible point for the minimization where the objective
functions has a finite value). The minimum in the above is
well-defined asQ is compact. Let

φ(Q) , min
Q′∈Q :

Q′
X=QX ,Q′

Z=QZ

D(Q′‖Q′
X ×W ). (163)

We prove thatφ(Q) is convex inQ: Take two distributions
Q1 andQ2 in Q and letQ = λQ1 +λQ2 for someλ ∈ [0, 1]
(where we use the short-hand notation ofλ = 1− λ). Let

Q⋆
j , argmin

Q′∈Q:
Q′

X=(Qj)X ,Q′
Z=(Qj)Z

D(Q′‖Q′
X ×W ), j = 1, 2,

(164)
be the minimizers of (163). We, hence, have

λφ(Q1) + λφ(Q2)

= λD(Q⋆
1‖(Q

⋆
1)X ×W ) + λD(Q⋆

2‖(Q
⋆
2)X ×W ) (165)

(a)
≥ D(λQ⋆

1 + λQ⋆
2‖λ(Q

⋆
1)X ×W + λ(Q⋆

2)X ×W ) (166)
(b)
≥ min

Q′∈Q:
Q′

X=QX ,Q′
Z=QZ

D(Q′‖Q′
X ×W ) = φ(Q). (167)

where (a) follows since KL divergence is convex in both
arguments [22, Lemma 3.5], and (b) follows since the joint
distribution λQ⋆

1 + λQ⋆
2 has x-marginal equal toQX and

z-marginal equal toQZ . The convexity ofφ implies its
continuity in the interior of the setQ. The only discontinuity
points ofφ could be at the boundaries of the setQ where it
may jump up. We prove that this cannot happen.

Let {Qn ∈ Q}n∈N be a sequence of distributions andQ =
limn→∞ Qn be its limit point inQ. Let

Q⋆
n , argmin

Q′∈Q:
Q′

X=(Qn)X ,Q′
Z=(Qn)Z

D(Q′‖Q′
X ×W ) (168)

and Q⋆ = limn→∞ Q⋆
n (by passing to a subsequence if

necessary). SinceD(Q‖QX ×W ) is continuous inQ when
Q≪ QX ×W ,

lim
n→∞

φ(Qn) = D(Q⋆‖Q⋆
X ×W ). (169)

Moreover, since(Q⋆
n)X = (Qn)X , by continuity of projection

we haveQ⋆
X = limn→∞(Q⋆

n)X = limn→∞(Qn)X = QX .
Similarly, Q⋆

Z = QZ . Thus,

lim
n→∞

φ(Qn) = D(Q⋆‖Q⋆
X ×W )

≥ min
Q′∈Q:

Q′
X=QX ,

Q′
Z=QZ

D(Q′‖Q′
X ×W ) = φ(Q), (170)

which showsφ(Q) cannot jump up, hence,∀Q ∈ Q, is
continuous.

Remark. It can be checked that for a fixedP and W , the
function g(V ‖W |P ), defined in (31b), is convex inV .

Lemma 9. Let {Qn ∈ Qn}n∈N be a sequence ofn-types and
Q = limn→∞ Qn ∈ Q its limit point (note that sinceQn ∈ Q
andQ is compact, by passing to a subsequence if necessary,
the limit exists). Then,

lim
n→∞

gn(Qn,W ) = g(Q,W ) (171)

(where gn(Qn,W ) and g(Q,W ) are defined in(158) and
(159) respectively).

Proof: Same considerations as in the proof of Lemma 8
shows that whenQ ∈ Qn, the minimizingQ′ on the right-
hand-side of (159) must be inQn. Define (forQ ∈ Qn),

φn(Q) , min
Q′∈Qn :

Q′
X=QX ,Q′

Z=QZ

D(Q′‖Q′
X ×W ). (172)

Since the linear term
∑

x,z Q(x, z) logW (z|x) (for Q ∈ Q)
and entropyH(QZ) are continuous, it is sufficient to prove

lim
n→∞

φn(Qn) = φ(Q) (173)

whereφ(Q) is defined in (163). SinceQn ⊂ Q, we trivially
haveφn(Qn) ≥ φ(Qn) and sinceφ is continuous (as shown
in Lemma 8), we have

lim
n→∞

φn(Qn) ≥ φ(Q). (174)

To prove the reverse inequality, let

Q⋆ , argmin
Q′∈Q:

Q′
X=QX ,Q′

Z=QZ

D(Q′‖Q′
X ×W ). (175)

Since the union ofn-types is dense in the simplex, there
exists a sequence ofn-types {Q⋆

n}n∈N such that∀n ∈ N,
Q⋆

n ≪ Q⋆ and limn→∞ |Q⋆
n −Q⋆| = 0, thereforeφ(Q) =

limn→∞ D(Q⋆
n‖(Q

⋆
n)X ×W ). Moreover, it is easy to verify

that ∀n, Q⋆
n ∈ Qn. Unfortunately, thex- and z-marginals

of Q⋆
n are not necessarily equal to to(Qn)X and (Qn)Z

respectively. Therefore we cannot immediately lower-bound
D(Q⋆

n‖(Q
⋆
n)X × W ) by φn(Qn) to conclude the proof.

However, since the marginals ofQ⋆
n arecloseto (Qn)X and

(Qn)Z , by perturbingQ⋆
ns we can find a second sequence of

n-types,{Q⋆⋆
n }n∈N such that

(a) (Q⋆⋆
n )X = (Qn)X and (Q⋆⋆

n )Z = (Qn)Z ;
(b) Q⋆⋆

n ∈ Qn; and
(c) limn→∞ |Q⋆⋆

n −Q⋆
n| = 0.
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Accepting the existence of such a sequence{Q⋆⋆
n }n∈N we will

have

φ(Q) = lim
n→∞

D(Q⋆
n‖(Q

⋆
n)X ×W ) (176)

= lim
n→∞

D(Q⋆⋆
n ‖(Q

⋆⋆
n )X ×W ) (177)

≥ lim
n→∞

φn(Qn) (178)

(where the last inequality follows sinceD(Q⋆⋆
n ‖(Q

⋆⋆
n )X ×

W ) ≥ φn(Qn) as thex- andz-marginals ofQ⋆⋆
n are equal to

(Qn)X and(Qn)Z respectively). This will conclude the proof.
It remains to show the existence of the sequence{Q⋆⋆

n }n∈N.
More precisely, we shall show that∀ǫ > 0, ∃n0(ǫ) such∀n >
n0, we can findδ(x, z) : X × Z → R with the following
properties:

1) nδ(x, z) ∈ Z;
2) with

δX(x) , (Qn)X(x)− (Q⋆
n)X(x), and (179)

δZ(z) , (Qn)Z(z)− (Q⋆
n)Z(z), (180)

we have∀x ∈ X ,
∑

z∈Z δ(x, z) = δX(x), and∀z ∈ Z,
∑

x∈X δ(x, z) = δZ(z).
3) ∀(x, z) ∈ X × Z, δ(x, z) + Q⋆

n(x, z) ≥ 0 with equality
if Q⋆

n(x, z) = 0;
4) |δ| ,

∑

x,z |δ(x, z)| ≤ ǫ.
(Note thatδ(x, z) also depends onn but we do not show this
dependence explicitly to keep the notation simple.) If suchδ
can be found,Q⋆⋆

n (x, z) , Q⋆
n(x, z) + δ(x, z) will be an n-

type (due to the first property) whosex- andz-marginals are
(Qn)X and (Qn)Z respectively (due to the second property)
and is absolutely continuous with respect toQ⋆

n (due to the
third property) hence is inQn and is at distanceǫ from Q⋆

n

(due to the fourth property).
Pick any

γ < min
{2

5
min

(x,z)∈supp(Q⋆)
Q⋆(x, z),

ǫ

2|X ||Z|

}

. (181)

Then,∃n0(γ) such that for∀n > n0, |Q⋆
n −Q⋆| ≤ γ/2 and

|Qn −Q| ≤ γ/2. Therefore, in particular,

|(Q⋆
n)X −Q⋆

X | = |(Q
⋆
n)X −QX | ≤ γ/2 (182)

and
|(Qn)X −QX | ≤ γ/2 (183)

which, together with the triangle inequality imply,

|(Q⋆
n)X − (Qn)X | ≤ γ. (184)

Similarly,
|(Q⋆

n)Z − (Qn)Z | ≤ γ. (185)

Let G be the “connectivity graph of the joint distribution
Q⋆

n, namely the bipartite graphG = (X ,Z, E) where there
is an edge betweenx and z, (x, z) ∈ E , iff Q⋆

n(x, z) > 0.
SupposeG is connected (we discuss what happens if this is
not the case later). Then, it certainly has a spanning tree. Let
T = (X ,Z, E ′), E ′ ⊆ E be one such tree, and pick any vertex
v ∈ X ∪ Z as the root. Suppose the tree has heightH . Let
V = X ∪ Z be the set of all nodes ofG andVh denote the
set of vertices at heighth in the tree. For every nodev ∈ Vh,

let p(v) ∈ Vh−1 be the parent ofv andK(v) = {u ∈ Vh+1 :
(v, u) ∈ E ′} be the children ofv (with K(v) = ∅ for the
leaves). Consider the following algorithm to associate a value
δe to each edge of the tree:

1: for h = H to 1 do
2: for v ∈ Vh do
3: δe ← δ(v)−

∑

u∈K(v) δ(v,u)
4: end for
5: end for

where in line 3 we have used the generic notation

δ(v) =

{

δX(x), if v ∈ X ,

δZ(z), if v ∈ Z.
(186)

Finally, set

δ(x, z) =

{

δe if (x, z) ∈ E ′

0 otherwise.
(187)

δ : X × Z → R, as obtained above, satisfies all the desired
four properties:

1) is trivial: if (x, z) is not on the treenδ(x, z) = 0,
otherwiseδ(x, z) = δe, e = (x, z) and δe is the sum
of multiples of 1

n thus is itself a multiple of1n .
2) holds by construction except for the root. Without loss of

generality suppose the root is a vertexx0 ∈ X . Then,
∑

x,z

δ(x, z) =
∑

z

δZ(z) = 0. (188)

(sinceδZ is the difference of two distributions). There-
fore,

0 =
∑

z

δ(x0, z) +
∑

x 6=x0

∑

z

δ(x, z) (189)

=
∑

z

δ(x0, z) +
∑

x 6=x0

δX(x) (190)

which implies
∑

z

δ(x0, z) = −
∑

x 6=x0

δX(x) = δX(x0) (191)

again sinceδX is the difference of two distributions.
Moreover by induction onT , we can prove that for every edge
e ∈ E ′,

δe ≤
∑

v∈Te

|δ(v)|, (192)

where Te is the sub-tree rooted at the highest vertex of
e. By extending the sum in (192) to the entire tree and
noting that

∑

x |δX(x)|+
∑

z |δZ(z)| = |(Q
⋆
n)X − (Qn)X |+

|(Q⋆
n)Z − (Qn)Z | ≤ 2γ, we get the following weaker bound:

∀(x, z) ∈ X × Z,
|δ(x, z)| ≤ 2γ, (193)

which implies the last two properties:
3) follows sinceδ(x, z) = 0 if Q⋆

n(x, z) = 0 (as (x, z) 6∈
E ⊃ E ′) and

Q⋆
n(x, z) + δ(x, z) ≥ Q⋆

n(x, z)− 2γ (194)

≥ Q⋆(x, z)−
5

2
γ ≥ 0 (195)
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because of (181).
4) follows since

|δ| ≤ 2|X ||Z|γ ≤ ǫ (196)

(again because of (181)).

DisconnectedG: Suppose for somen, G is not connected
and is rather union of two connected components (the proof
can be generalized to any finite number of components easily).
This means that we can partitionX andZ into two subsets as
X = X1 ∪ X2, X1 ∩ X2 = ∅ andZ = Z1 ∪ Z2, Z1 ∩ Z2 = ∅
whereE = supp(Q⋆

n) ⊆ (X1 ×Z1) ∪ (X2 ×Z2).

This, together with the choice ofγ in (181) implies
supp(Q⋆) ⊆ (X1 × Z1) ∪ (X2 × Z2) and hence,∀n,
supp(Q⋆

n) ⊆ (X1 ×Z1) ∪ (X2 ×Z2).

For ∀n ∈ N, let

λn ,
∑

(x,z)∈X1×Z1

Q⋆
n(x, z) = 1−

∑

(x,z)∈X2×Z2

Q⋆
n(x, z).

(197)
Note thatnλn is an integer and by assumptionlimn→∞ λn =
Q⋆

X(X1) = QX(X1) > 0 (if this is not the case we should have
started with a smallerX ) thus limn→∞ nλn = ∞. Similarly,
we conclude thatn(1−λn) is an integer-valued sequence that
goes to infinity asn grows.

Let

Q⋆
n
′(x, z) ,

Q⋆
n(x, z)

λn
1{(x, z) ∈ X1 ×Z1} and (198)

Q⋆
n
′′(x, z) ,

Q⋆
n(x, z)

λn

1{(x, z) ∈ X2 ×Z2}, (199)

(where we have used the shorthand notationλn = 1−λn) and
observe that

D(Q⋆
n‖(Q

⋆
n)X ×W )

= λnD
(

Q⋆
n
′‖(Q⋆

n
′)X ×W

)

+ λnD
(

Q⋆
n
′′‖(Q⋆

n
′′)X ×W

)

.
(200)

Note thatQ⋆
n
′ (resp.Q⋆

n
′′) is an nλn-type (resp.nλn-type).

Define also

Q′
n(x, z) ,

Qn(x, z)

λn
1{(x, z) ∈ X1 ×Z1} and (201)

Q′′
n(x, z) ,

Qn(x, z)

λn

1{(x, z) ∈ X2 ×Z2}, (202)

and note thatQ′
n (resp.Q′′

n) is also annλn-type (resp. an
nλn-type).

Our argument for connectedG shows that there ex-
ists a sequence ofnλn-types {Q⋆⋆

n
′ ∈ Qnλn

}n∈N such
that ∀n, (Q⋆⋆

n
′)X = (Q′

n)X , (Q⋆⋆
n

′)Z = (Q′
n)Z and

limn→∞ |Q⋆⋆
n

′ −Q⋆
n
′| = 0. Similarly, there exists a sequence

of nλn-types{Q⋆⋆
n

′′ ∈ Qnλn
}n∈N such that∀n, (Q⋆⋆

n
′′)X =

(Q′′
n)X , (Q⋆⋆

n
′′)Z = (Q′′

n)Z and limn→∞ |Q⋆⋆
n

′′ −Q⋆
n
′′| = 0.

Therefore,

D(Q⋆‖Q⋆
X ×W ) = lim

n→∞
D(Q⋆

n‖(Q
⋆
n)X ×W ) (203)

= lim
n→∞

{

λnD
(

Q⋆
n
′‖(Q⋆

n
′)X ×W

)

+ λnD
(

Q⋆
n
′′‖(Q⋆

n
′′)X ×W

)

}

(204)

= lim
n→∞

{

λnD
(

Q⋆⋆
n

′‖(Q⋆⋆
n

′)X ×W
)

+ λnD
(

Q⋆⋆
n

′′‖(Q⋆⋆
n

′′)X ×W
)

}

(205)

≥ lim
n→∞

{

λnφnλn
(Q′

n) + λnφnλn
(Q′′

n)
}

. (206)

Moreover, using the same reasoning as we had to prove
convexity ofφ (see (167)) it follows that

λnφnλn
(Q′

n)+λnφnλn
(Q′′

n) ≥ φn

(

λnQ
′
n+λnQ

′′
n

)

= φ(Qn).
(207)

Therefore, continuing (206), we will again have

φ(Q) = D(Q⋆‖Q⋆
X ×W ) ≥ lim

n→∞
φn(Qn) (208)

which concludes the proof.
2) Proof of (30): Now we are ready to prove (30). We need

to show that

lim
n→∞

Ec.c.
s,n (Pn,W,R) = Ec.c.

s (PX ,W,R) (209)

for any sequence ofn-types,Pn ∈ Pn(X ) that converge to
PX . Let

Ṽn , argmin
V : X→Z:

PX×V ∈Pn(X×Z)

{

D(V ‖W |Pn)+[R−gn(V ‖W |Pn)]
+
}

(210)
and (by passing to a subsequence if necessary)Ṽ ,

limn→∞ Ṽn. We know thatPn × Vn ≪ Pn × W , thus, by
the continuity of divergence and (171),

lim
n→∞

Ec.c.
s,n (Pn,W,R)

= D(Ṽ ‖W |PX) + [R− g(Ṽ ‖W |PX)]+ (211)

≥ min
V :X→Z

{

D(V ‖W |PX) + [R− g(V ‖W |PX)]+
}

(212)

= Ec.c.
s (PX ,W,R). (213)

On the other side, let

V ⋆ = argmin
V :X→Z

{D(V ‖W |PX)+[R−g(V ‖W |PX)]+}. (214)

There exists a sequence of stochastic matricesV ⋆
n :

X → Z such that, (a)Pn × V ⋆
n ∈ Pn(X × Z), (b)

limn→∞ |Pn × V ⋆
n − PX × V ⋆| = 0, and (c) ∀n, Pn ×

V ⋆
n ≪ Pn × W . Accepting this momentarily, by continuity

of D(V ‖W |P ) and (171), we have

Ec.c.
s (PX ,W,R)

= lim
n→∞

{

D
(

V ⋆
n ‖W |Pn

)

+
[

R− gn
(

V ⋆
n ‖W |Pn

)]+}

(215)

≥ lim
n→∞

Ec.c.
n,s (Pn,W,R) (216)

which, together with (213) yields (209).
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Existence of suchV ⋆
n s already follows from the algorithm

we presented in the proof of Lemma 9 or more simply from
the following argument: We assumed (without essential loss
of generality) thatsupp(PX) = X . Therefore, the assumption
limn→∞ |Pn − PX | = 0, implies ∀x ∈ X , limn→∞ Pn(x) =
PX(x) > 0, thus limn→∞ nPn(x) = +∞. Pick ǫ > 0.
Therefore∃n0(ǫ) such that∀n > n0, |PX − Pn| ≤ ǫ/2.
Moreover, for eachx, V ⋆(·|x) is the limit point of a sequence
of n-types onsupp

(

V ⋆(·|x)
)

. Therefore, for everyx ∈ X ,
∃nx(ǫ) such that for∀n > nx, there exists annPn(x)-type
V ⋆
n (·|x) such that|V ⋆(·|x)− V ⋆

n (·|x)| ≤ ǫ/2 andV ⋆
n (·|x) ≪

V ⋆(·|x). Finally, we observe thatPn×V ⋆
n is an-type and for

n > max
{

n0,maxx∈X nx

}

, |Pn × V ⋆
n − PX × V ⋆| ≤ ǫ.

C. Strict Monotonicity ofEi.i.d.
s andEc.c.

s in R

That Ei.i.d.
s is strictly increasing inR for R > I(PX ,W )

can be easily seen through the form of (32):Ei.i.d.
s is the supre-

mum of affine functions ofR thus is convex inR. On the other
side, sinceF0(PX ,W, λ) is a convex function ofλ passing
through the origin with slopeI(PX ,W ), Ei.i.d.

s (PX ,W,R)
starts to increase above0 onceR exceedsI(PX ,W ) which
means it will be strictly increasing forR > I(PX ,W ).

We only need to prove the claim forEc.c.
s . (This proof

may also be used to showEi.i.d.
s is strictly increasing inR,

replacingg with f .) Note that

Ec.c.
s (PX ,W,R) = min

{

min
V :g(V ‖W |PX )≥R

D(V ‖W |PX),

min
V :g(V ‖W |PX )≤R

{D(V ‖W |PX) +R− g(V ‖W |PX)}
}

.

(217)

We first show that forR > I(PX ,W ),

Ec.c.
s (PX ,W,R)

= min
V :g(V ‖W |PX)≤R

{D(V ‖W |PX) +R− g(V ‖W |PX)}

(218)

= R+ min
V :g(V ‖W |PX )≤R

{D(V ‖W |PX)− g(V ‖W |PX)}

(219)

This follows since forR > I(PX ,W ),

min
V :g(V ‖W |PX)≥R

D(V ‖W |PX)

= min
V :g(V ‖W |PX )=R

D(V ‖W |PX) (220)

Let us first prove (220): Suppose this is not the case, i.e., there
existsV ⋆ with g(V ⋆‖W |PX) > R such thatD(V ⋆‖W |PX) ≤
D(V ‖W |PX) for every V with g(V ‖W |PX) ≥ R. We
can safely assume thatPX × V ⋆ ≪ PX × W (otherwise
D(V ‖W |PX) = +∞ for all V such thatg(V ‖W |PX) ≥ R
and (219) automatically follows). LetVλ , λV ⋆+(1−λ)W ,
for λ ∈ [0, 1]. It is easy to check that∀λ ∈ [0, 1] : PX ×Vλ ≪
PX ×W , thus the mappingλ 7→ g(Vλ‖W |PX) is continuous
by the continuity ofg (see Lemma 8) on the interval[0, 1].
We know that g(V1‖W |PX) = g(V⋆‖W |PX) > R and
g(V0‖W |PX) = g(W‖W |PX) = I(PX ,W ) < R. Therefore,

there existsβ ∈ (0, 1) for which g(Vβ‖W |PX) = R. On the
other side, the convexity of divergence implies

D(Vβ‖W |PX) ≤ βD(V ⋆‖W |PX) + (1− β)D(W‖W |PX)
(221)

< D(V ⋆‖W |PX) (222)

sinceβ < 1. This contradicts the optimality ofV ⋆.
Now, we show thatEc.c.

s (PX ,W,R′) > Ec.c.
s (PX ,W,R)

for R′ > R > I(PX ,W ). Let

V ∗ = argmin
V :g(V ‖W |PX )≤R′

{D(V ‖W |PX)− g(V ‖W |PX)}.

(223)
If g(V ∗‖W |PX) ≤ R, then

Ec.c.
s (PX ,W,R′) = R′ +D(V ∗‖W |PX)− g(V ∗‖W |PX)

(224)

= R′ + min
V :g(V ‖W |PX )≤R

{D(V ‖W |PX)− g(V ‖W |PX)}

(225)

> R + min
V :g(V ‖W |PX )≤R

{D(V ‖W |PX)− g(V ‖W |PX)}

(226)

= Ec.c.
s (PX ,W,R) (227)

which proves the claim.
Otherwise, we haveR < g(V ∗‖W |PX) ≤ R′. Consider

once again the family of stochastic matrices defined asVλ ,

λV ∗ + (1 − λ)W . We knowPX × V ∗ ≪ PX ×W (for if
it is not, D(V ∗‖W |PX) = +∞ and g(V ∗‖W |PX) = −∞
which means the exponent is infinity which is contradic-
tion since Ec.c.

s (PX ,W,R′) ≤ R′ − I(PX ,W ) by taking
V = W in (219)). Using the same reasoning as above, since
g(V1‖W |PX) > R andg(V0‖W |PX) = I(PX ,W ) < R one
can findβ ∈ (0, 1) such thatg(Vβ‖W |PX) = R and

D(Vβ‖W |PX) ≤ βD(V ⋆‖W |PX). (228)

Moreover, we know that

D(Vβ‖W |PX) = R+ [D(Vβ‖W |PX)− g(Vβ‖W |PX)]

(229)

≥ R+ min
V :g(V ‖W |PX )≤R

{D(V ‖W |PX)− g(V ‖W |PX)}

(230)

= Ec.c.
s (PX ,W,R). (231)

One the other side,

Ec.c.
s (PX ,W,R′) = R′ +D(V ∗‖W |PX)− g(V ∗‖W |PX)

(232)
(a)
≥ D(V ∗‖W |PX) (233)
(b)
≥

1

β
D(Vβ‖W |PX) (234)

(c)
≥

1

β
Ec.c.

s (PX ,W,R) (235)

(d)
> Ec.c.

s (PX ,W,R), (236)
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where (a) follows sinceg(V ⋆‖W |PX) ≤ R′, (b) follows from
(228) and (c) from (231) and finally (d) holds sinceβ < 1
andEc.c.

s (PX ,W,R) > 0.

D. Alternative form ofEi.i.d.
s

Let PXZ = PX×W again. Using the fact thatmax{a, 0} =
max0≤λ≤1 λa,

min
Q

{

D(Q‖PXZ) + [R− f(Q‖PXZ)]
+
}

= min
Q

{

D(Q‖PXZ) + max
0≤λ≤1

λ[R − f(Q‖PXZ)]

}

(237)

= min
Q

max
0≤λ≤1

{λR +D(Q‖PXZ)− λf(Q‖PXZ)} (238)

(a)
= max

0≤λ≤1
min
Q
{λR +D(Q‖PXZ)− λf(Q‖PXZ)} (239)

= max
0≤λ≤1

{

λR+min
Q
{D(Q‖PXZ)− λf(Q‖PXZ)}

}

(240)
(b)
= max

0≤λ≤1
{λR − F0(PX ,W, λ)} (241)

where (a) follows sinceD(Q‖PXZ)−λf(Q‖PXZ) is convex
in Q (recall thatf is linear inQ) and (b) since

D(Q‖PXZ)− λf(Q‖PXZ)

=
∑

x,z

Q(x, z) log
Q(x, z)

PXZ(x, z)1+λPX(x)−λPZ(z)−λ

(242)
(∗)

≥ − log
∑

x,z

PXZ(x, z)
1+λPX(x)−λPZ(z)

−λ (243)

= F0(PX ,W, λ), (244)

with equality in (∗) iff Q(x, z) ∝
PXZ(x, z)

1+λPX(x)−λPZ(z)
−λ.

APPENDIX C
PROOF OF(34)

Taking V ′ = V in (31b), we haveg(V ‖W |P ) ≤ I(P, V ),
thus,

R− g(V ‖W |PX) ≥ R− I(PX , V ). (245)

Therefore,

Ec.c.
s (PX ,W,R)

= min
V

{

D(V ‖W |PX) + [R− g(V ‖W |PX)]+
}

(246)

≥ min
V

{

D(V ‖W |PX) + [R− I(PX , V )]+
}

(247)

(a)
= min

V

{

D(V ‖W |PX) + max
0≤λ≤1

{λR− λI(PX , V )}
}

(248)
(b)
= max

0≤λ≤1

{

λR +min
V
{D(V ‖W |PX)− λI(PX , V )}

}

(249)

where (a) follows since[a]+ = max0≤λ≤1 λa and (b) by
observing thatD(V ‖W |PX)−λI(PX , V ) is convex inV for

λ ≤ 1 (and linear inλ). The latter holds sinceI(PX , V ) =
minQZ∈P(Z)D(V ‖QZ|PX), therefore,

D(V ‖W |PX)− λI(PX , V )

= max
QZ∈P(Z)

{D(V ‖W |PX)− λD(V ‖QZ |PX)} (250)

= max
QZ

∑

x,z

PX(x)V (z|x) log
V (z|x)1−λ

W (z|x)QZ(z)−λ
(251)

=
1

t
max
QZ

∑

x,z

PX(x)V (z|x) log
V (z|x)

W (z|x)tQZ(z)1−t
. (252)

where we have definedt , 1
1−λ in the last step. The objective

function inside themax in (252) is convex inV and since the
supremum of convex functions is still convex, the convexity
of D(V ‖W |PX) − λI(PX , V ) in V follows. It can also be
seen that the objective function is concave inQZ for λ > 0
(i.e. t > 1). Using this observation we have

min
V
{D(V ‖W |PX)− λI(PX , V )}

=
1

t
min
V

max
QZ

∑

x,z

PX(x)V (z|x) log
V (z|x)

W (z|x)tQZ(z)1−t

(253)

=
1

t
max
QZ

min
V

∑

x,z

PX(x)V (z|x) log
V (z|x)

W (z|x)tQZ(z)1−t

(254)

(a)
= max

QZ

{

−
1

t

∑

x

PX(x) log
∑

z

W (z|x)tQZ(z)
1−t

}

(255)

(b)
≥ max

QZ

{

−
1

t
log
∑

x

PX(x)
∑

z

W (z|x)tQZ(z)
1−t

}

(256)

= −min
QZ

{

1

t
log
∑

z

QZ(z)
1−t
∑

x

PX(x)W (z|x)t

}

(257)

where (a) and (b) follow by the concavity of logarithm. KKT
conditions imply the solution to the minimization of (257) is

QZ(z) = c

(

∑

x

PX(x)W (z|x)t
)1/t

(258)

with c−1 =
∑

z (
∑

x PX(x)W (z|x)t)
1/t. Plugging this into

the objective function of (257) and replacingt = 1
1−λ , we

have

min
V
{D(V ‖W |PX)− λI(PX , V )}

= − log
∑

z

(

∑

x

PX(x)W (z|x)
1

1−λ

)1−λ

(259)

= −E0(PX ,W, λ). (260)

Plugging (260) into (249) proves the claim.
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APPENDIX D
NUMERICAL EVALUATION OF THE SECRECYEXPONENTS

A. ComputingEi.i.d.
s andEc.c.

s

Both Ei.i.d.
s and Ec.c.

s can be easily evaluated via the
expressions (32) and (33) using the fact that bothF0 andE0

(defined in (32b) and (33b) respectively) are convex inλ, and
pass through the origin with slopeI(PX ,W ).

For instance to evaluateEi.i.d.
s we know that

1) for R ≤ I(PX ,W ) = ∂
∂λF0(PX ,W, λ)

∣

∣

λ=0
,

Es(PX ,W,R) = 0;
2) for I(PX ,W ) < R < ∂

∂λF0(PX ,W, λ)
∣

∣

λ=1
, the pairsR,

Ei.i.d.
s are related parametrically as

R(λ) =
∂

∂λ
F0(PX ,W, λ) (261a)

Es(λ) = λR(λ)− F0(PX ,W, λ) (261b)

for the range ofλ ∈ [0, 1];
3) finally, if R ≥ F ′

0(1),

Es(PX ,W,R) = R− F0(PX ,W, 1). (262)

It is clear that to evaluateEc.c.
s , one has to follow precisely

the same steps replacingF0 with E0.

B. ComputingEc.c.
s

To computeEc.c.
s (defined in (31)), one has to solve two

minimizations. Namely, that of (31a) and that of (31b). The
latter turns out to be efficiently solvable using standard convex
optimization tools.

Fix QZ ∈ P(Z) (to be set toPX ◦ V to compute
g(V ‖W |PX)). We have:

min
V ′:PX◦V ′=QZ

D(V ′‖W |PX) = min
V ′

{

D(V ′‖W |PX)

+ max
ρ∈R|Z|

∑

z

ρz [QZ(z)− (PX ◦ V
′)(z)]

}

(263)

= max
ρ∈R|Z|

{

min
V ′

{

D(V ′‖W |PX)−
∑

x,z

PX(x)V ′(z|x)ρz
}

+
∑

z

ρzQZ(z)
}

, (264)

whereρ , (ρ1, . . . , ρ|Z|) and the last equality follows since
D(V ‖W |PX) is convex inV and the second term is linear
in V . Moreover, the inner unconstrained minimization has the
value

min
V ′

{

D(V ′‖W |PX)−
∑

x,z

PX(x)V ′(z|x)ρz
}

= min
V ′

∑

x,z

PX(x)V ′(z|x) log
V ′(z|x)

W (z|x) exp(ρz)
(265)

= −
∑

x

PX(x) log
∑

z

W (z|x) exp(ρz), (266)

by choosingV ′(z|x) ∝ W (z|x) exp(ρz). Plugging this into
(264), we get

min
V ′:PX◦V ′=Q

D(V ′‖W |PX) = max
ρ∈R|Z|

{

∑

z

ρzQZ(z)

−
∑

x

PX(x) log
∑

z

W (z|x) exp(ρz)
}

. (267)

Remark. Using Hölder’s inequality, it can be checked that
the objective function of (267) is concave inρ, thus can be
efficiently maximized using standard numerical methods.

Proof: Since the first sum in the objective function of
(267) is linear inρ it is sufficient to prove that the function

ρ 7→
∑

x

PX(x) log (W (z|x) exp(ρz)) (268)

is convex inρ. Fix t ∈ [0, 1] and ρ, ρ′ ∈ R|Z|. For every
x ∈ X , Hölder’s inequality implies
∑

z

W (z|x) exp(tρz + (1− t)ρ′z)

=
∑

z

W (z|x)t exp(tρz) ·W (z|x)1−t exp((1− t)ρ′z)

(269)

≤

(

∑

z

W (z|x) exp(ρz)

)t

·

(

∑

x

W (z|x) exp(ρ′z)

)1−t

(270)

Taking the logarithm of both sides, multiplying byPX(x), and
finally summing overx proves the claim.

Finally, for small alphabet sizes that we have considered
in Section IV-B, we can solve the minimization of (31a) via
exhaustive search.

APPENDIX E
PROOF OFLEMMA 6

(i) The linearity of expectation shows that̄PZn as defined
in (12) is the expectation of the non-negative random
variablePCn

(zn) (defined in (8)). Therefore,̄PZn(zn) =
0 impliesPCn

(zn) = 0 almost surely.
(ii) Pick zn andz̃n that have the same type. Therefore, there

exists a permutation, call itπ : Zn → Zn, such that
z̃n = π(zn) andzn = π−1(z̃n). Then,

P̄Zn(z̃n) =
∑

xn

PXn(xn)Wn(z̃n|xn) (271)

(a)
=
∑

x̃n

PXn

(

π(x̃n)
)

Wn
(

π(zn)|π(x̃n)
)

(272)

(b)
=
∑

x̃n

PXn(x̃n)Wn(zn|x̃n) = P̄Zn(zn).

(273)

where in (a) we have takenxn = π(x̃n) and (b) follows
since PXn(xn) only depends on the type ofxn (and
by constructioñxn andπ(x̃n) have the same type) and
similarly Wn

(

π(zn)|π(x̃n)
)

= Wn(zn|x̃n).
(iii) We have

P̄Zn(zn) =
∑

xn∈Xn

PXn(xn)Wn(zn|xn) (274)

P̄Zn(zn) > 0 implies there exists at least one sequence
xn
0 ∈ supp(PXn) for whichWn(zn|xn

0 ) > 0. Therefore,
Wn(zn|xn

0 ) > Wn
min. Thus (274) yields

P̄Zn(zn) ≥ PXn(xn
0 )W

n
min. (275)
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For i.i.d. random coding ensemble,PXn(xn) =
Pn
X(xn) ≥ Pn

min and for the constant-composition ran-
dom coding ensemble,PXn(xn) = 1/

∣

∣T n
PX

∣

∣ ≥ (1/|X |)n

(sinceT n
PX
⊆ Xn).

APPENDIX F
PROOF OFLEMMA 7

TakeU , A
E[A] so thatE[U ] = 1. We shall prove that

c(θ) (var(U)− τθ(U)) ≤ E[U ln(U)] ≤ var(U). (276)

The claim then follows by noting thatE[A ln(A/E[A])] =
E[A] E[U ln(U)] andvar(A) = var(U)/(E[A])2.

We first have

E[U ln(U)] = E[U ln(U)− (U − 1)] (277)

≤ E[(U − 1)2] = var(U), (278)

sinceu ln(u)− (u− 1) ≤ (u− 1)2. On the other hand,

u ln(u)− (u− 1) ≥ c(θ)(u − 1)21{u ≤ θ + 1}. (279)

This follows by observing thatu ln(u)−(u−1)
(u−1)2 is a decreasing

function ofu (see Lemma 10 below). Thus,

E[U ln(U)] ≥ c(θ)

∫ θ+1

0

(u− 1)2dFU (u). (280)

whereFU (u) is the cumulative distribution function ofu.
Furthermore,
∫ θ+1

0

(u− 1)2dFU (u) = var(U)−

∫ +∞

θ+1

(u − 1)2dFU (u)

(281)
Let v , u−1 for the sake of brevity and denote bȳFV (v) ,

Pr{V > v} = Pr{U > v+1} the complementary distribution
function ofV . Then,

∫ +∞

θ+1

(u− 1)2dFU (u) =

∫ +∞

θ

v2dFV (v) (282)

=
[

−v2F̄V (v)
]+∞

θ
+ 2

∫ +∞

θ

vF̄V (v)dv (283)

(∗)
= θ2F̄V (θ) + 2

∫ +∞

θ

vF̄V (v)dv. (284)

The equality in (∗) follows since we assumed the variance of
U exists. This proves (276).

Lemma 10. For t ≥ 0,

(i) the mappingt 7→ t ln(t)−(t−1)
t−1 is increasing int;

(ii) the mappingt 7→ t ln(t)−(t−1)
(t−1)2 is decreasing int.

Proof:

(i)

∂

∂t

{ t ln(t)− (t− 1)

t− 1

}

=
(t− 1)− ln(t)

(t− 1)2
≥ 0 (285)

sinceln(t) ≤ t− 1.
(ii)

∂

∂t

{ t ln(t)− (t− 1)

(t− 1)2

}

=
2(t− 1)− (t+ 1) ln(t)

(t− 1)3
≤ 0,

(286)

since fort ≥ 1, ln(t) ≥ 2 t−1
t+1 while for t ≤ 1, ln(t) ≤

2 t−1
t+1 . The latter follows sinceln(t) − 2 t−1

t+1 equals0 at
t = 1 and has derivative

(t− 1)2

t(t+ 1)2
≥ 0.

APPENDIX G
PROOF OF(48)

We have

pQ(z
n) =

∑

xn∈Xn

1{(xn, zn) ∈ T n
Q }PXn(xn) (287)

=
PXn(T n

QX
)

|T n
QX
|

∑

xn∈Xn

1{(xn, zn) ∈ T n
Q } (288)

sincePXn(xn) only depends on the type ofxn. On the other
side, we have

|T n
Q | =

∑

zn∈Zn

∑

xn∈Xn

1
{

(xn, zn) ∈ T n
Q

}

(289)

The value of the inner sum in (289) only depends on the
type of zn (this can be easily checked using the same type
of argument as we had in Appendix E part (ii)) and, clearly,
is zero ifQZ 6= Q̂zn . Thus

|T n
Q | = |T

n
QZ
|1{QZ = Q̂zn}

∑

xn∈Xn

1
{

(xn, zn) ∈ T n
Q

}

.

(290)
Plugging (290) into (288) yields (48).

APPENDIX H
PROOF OF(55)

We only prove (55a) (as (55b) is trivial). (We omit the
dependence onzn throughout the proof for notational brevity.)

var(L1) =
∑

Q∈Q′
n

1

M2
ℓ(Q)2 var(NQ)

+
∑

(Q1,Q2)∈Q′
n
2

Q1 6=Q2

1

M2
ℓ(Q1)ℓ(Q2) cov(NQ1

, NQ2
) (291)

(⋆)
=

1

M

∑

Q∈Q′
n

ℓ(Q)2pQ(1− pQ)

−
1

M

∑

(Q1,Q2)∈Q′
n
2

Q1 6=Q2

ℓ(Q1)ℓ(Q2)pQ1
pQ2

, (292)

where (⋆) follows since var(NQ) = MpQ(1 − pQ) and
cov(NQ1

, NQ2
) = −MpQ1

pQ2
. Moreover,

∑

(Q1,Q2)∈Q′
n
2

Q1 6=Q2

ℓ(Q1)ℓ(Q2)pQ1
pQ2

=
∑

Q1∈Q′
n

ℓ(Q1)pQ1

∑

Q2∈Q′
n\{Q1}

ℓ(Q2)pQ2
(293)

=
∑

Q1∈Q′
n

ℓ(Q1)pQ1

(

E[L1]− pQ1
ℓ(Q1)

)

. (294)
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Using the above in (292) we get,

var(L1)

=
1

M

∑

Q∈Q′
n

ℓ(Q)pQ

[

(1− pQ)ℓ(Q)−
(

E[L1]− pQℓ(Q)
)

]

(295)

=
1

M

∑

Q∈Q′
n

ℓ(Q)pQ
[

ℓ(Q)− E[L1]
]

(296)

=
1

M

∑

Q∈Q′
n

ℓ(Q)2pQ −
1

M
E[L1]

2.

APPENDIX I
PROOF OF(121)

Equation (119) immediately implies

E[D(PCn
‖P̄Zn)] ≤̇

∑

Q∈Pn(X×Z)

exp
{

−nD(Q‖QX ×W )
}

× PXn

(

T n
QX

)

min
{

1,
ℓ(Q)

M

}

. (297)

It remains to show

E[D(PCn
‖P̄Zn)] ≥̇

∑

Q∈Pn(X×Z)

exp
{

−nD(Q‖QX ×W )
}

× PXn

(

T n
QX

)

min
{

1,
ℓ(Q)

M

}

, (298)

to establish (121).
Equation (119) means there exists a sub-exponentially in-

creasing sequenceβ(n) (which depends only on|X | and|Z|)
such that

β(n)
[

E[D(PCn
‖P̄Zn)] +

log(e)

M

]

≥
∑

Q∈Pn(X×Z)

exp
{

−nD(Q‖QX ×W )
}

× PXn

(

T n
QX

)

min
{

1,
ℓ(Q)

M

}

. (299)

Since the union ofn-types is dense inP(X × Z), for
large enoughn, there exists ann-type that is as close
as desired to the joint distributionPX × W . More pre-
cisely, for every ǫ > 0, there existsn0(ǫ) such that
∀n > n0(ǫ), there existsQn ∈ Pn(X × Z) for which
I(Qn) ≥ I(PX ,W ) − ǫ, D(Qn‖(Qn)X × W ) ≤ ǫ/2 and
PXn

(

T n
(Qn)X

)

> exp(−nǫ/2). Indeed, takingQn = Pn×Wn,
wherePn is ann-type quantization ofPX for the i.i.d. random
coding ensemble andWn is the quantization ofW such that
Wn(·|x) is a nPn(x)-type yields all desired properties.

Note also that

ℓ(Q) ≥ exp
(

nω(Q)
)∣

∣T n
QZ

∣

∣ (300)
(∗)

≥ (n+ 1)−|Z| exp(n[ω(Q) +H(QZ)]) (301)

= (n+ 1)−|Z| exp
(

n[I(Q)−D(Q‖QX ×W )]
)

, (302)

where(∗) follows from [22, Lemma 2.3]. Let

ǫ , min{R/2, I(PX ,W )/4} > 0 (303)

and observe that for alln ≥ n0(ǫ) with Qn as described above

ℓ(Qn) ≥ (n+ 1)−|Z| exp{n(I(PX ,W )− 2ǫ)}. (304)

Consequently, the term corresponding toQ = Qn in the
summation of (299) is lower-bounded as

exp
(

−nD(Wn‖W |Pn)
)

PXn

(

T n
Pn

)

min
{

1,
ℓ(Qn)

M

}

≥ (n+ 1)−|Z| exp{−n(ǫ+ [R− I(PX ,W ) + 2ǫ]+)}
(305)

≥ (n+ 1)−|Z| exp{−n(R− ǫ)}. (306)

The last inequality follows because of the choice ofǫ in (303).
Obviously,∃n1(ǫ, |X |, |Z|) such that∀n ≥ n1,

β(n)
log(e)

M
= β(n) log(e) exp(−nR)

≤
1

2
(n+ 1)−|Z| exp

(

−n(R− ǫ)
)

. (307)

This, together with (306) implies forn ≥ n2 , max{n0, n1},

β(n)
log(e)

M
≤

1

2
exp
(

−nD(Wn‖W |Pn)
)

PXn

(

T n
Pn

)

×min
{

1,
ℓ(Qn)

M

}

. (308)

Using (308) in (298) (and multiplying the summands corre-
sponding toQ 6= Qn by 1

2 ) we conclude that forn ≥ n2,

β(n)E[D(PCn
‖P̄Zn)]

≥
1

2

∑

Q∈Pn(X×Z)

exp
{

−nD(QZ|X‖W |QX)
}

× PXn

(

T n
QX

)

min
{

1,
ℓ(Q)

M

}

. (309)

Take

β′(n) ,

{

+∞ if n < n2

2β(n) otherwise.
(310)

Therefore,∀n,

β′(n)E[D(PCn
‖P̄Zn)]

≥
∑

Q∈Pn(X×Z)

exp
{

−nD(QZ|X‖W |QX)
}

× PXn

(

T n
QX

)

min
{

1,
ℓ(Q)

M

}

. (311)

We finally have

lim sup
n→∞

1

n
log β′(n) = lim sup

n→∞

1

n
log β(n) = 0 (312)

by assumption and thatβ′ only depends on|X |, |Z|, R,
PX , andW (becausen2 only depends on these parameters).
Therefore, (311) establishes (298) and concludes the proof.
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[24] T. S. Han and S. Verdú, “Approximation theory of outputstatistics,”
IEEE Transactions on Information Theory, vol. 39, no. 3, pp. 752–772,
May 1993.

[25] P. Cuff, “Distributed channel synthesis,” vol. 59, no.11, pp. 7071–7096,
Nov. 2013.

[26] R. G. Gallager,Information Theory and Reliable Communication. New
York, NY, USA: John Wiley & Sons, Inc., 1968.

[27] ——, “The random coding bound is tight for the average code,” IEEE
Transactions on Information Theory, vol. 19, no. 2, pp. 244–246, Mar.
1973.

[28] N. Shulman, “Communication over an unknown channel viacommon
broadcasting,” Ph.D. dissertation, Department of Electrical Engineering
Systems, Tel Aviv University, 2003.

[29] N. Merhav, “Exact random coding error exponents of optimal bin index
decoding,” IEEE Transactions on Information Theory, vol. 60, no. 10,
pp. 6024–6031, Oct. 2014.

[30] ——, “Statistical physics and information theory,”Foundations and
Trends in Communications and Information Theory, vol. 6, no. 1–2, pp.
1–212, 2009. [Online]. Available: http://dx.doi.org/10.1561/0100000052

[31] P. Cuff, “Soft covering with high probability,” inProceedings of IEEE
International Symposium on Information Theory (ISIT), Jul. 2016, pp.
2963–2967.

http://dx.doi.org/10.1561/0100000052

	I Introduction
	I-A Contribution and Paper Outline
	I-B Related Work

	II Notation
	III Secrecy via Channel Resolvability
	IV Exact Resolvability Exponents
	IV-A Main Result
	IV-B Comparison of Exponents

	V Proof of Theorem 3
	V-A Preliminaries
	V-B Achievability
	V-C Ensemble Converse
	V-D Derivation of Exponents for Each Ensemble
	V-D1 Ensemble of i.i.d. random codes
	V-D2 Ensemble of constant-composition random codes


	VI Conclusion and Discussion
	Appendix A: Proof of Theorem 2
	Appendix B: Proof of Theorem 4
	B-A Proof of (i)
	B-B Proof of (ii)
	B-B1 Preliminaries
	B-B2 Proof of (30)

	B-C Strict Monotonicity of Esi.i.d. and Esc.c. in R
	B-D Alternative form of Esi.i.d.

	Appendix C: Proof of (34)
	Appendix D: Numerical Evaluation of The Secrecy Exponents
	D-A Computing Esi.i.d. and Esc.c.
	D-B Computing Esc.c.

	Appendix E: Proof of Lemma 6
	Appendix F: Proof of Lemma 7
	Appendix G: Proof of (48)
	Appendix H: Proof of (55)
	Appendix I: Proof of (121)
	References

