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Abstract—Locally repairable codes (LRCs) are error correct-

Besides the parametels:, k,d) referring to the length,

ing codes used in distributed data storage. Besides a globaldimension, and minimum distance of a regular linear code,

level, they enable errors to be corrected locally, reducinghe
need for communication between storage nodes. There is a sl
connection between almost affine LRCs and matroid theory
which can be utilized to construct good LRCs and derive bound
on their performance.

A generalized Singleton bound for linear LRCs with param-
eters (n,k,d,r,§) was given in [N. Prakash et al., “Optimal
Linear Codes with a Local-Error-Correction Property”, IEE E
Int. Symp. Inf. Theory]. In this paper, a LRC achieving this

bound is calledperfect. Results on the existence and nonexistence

of linear perfect (n,k,d,r, §)-LRCs were given in [W. Song
et al., “Optimal locally repairable codes”, IEEE J. Sel. Areas
Comm.]. Using matroid theory, these existence and nonexistce
results were later strengthened in [T. Westerbacket al., “On the

Combinatorics of Locally Repairable Codes”, Arxiv: 1501.M153],

which also provided a general lower bound on the maximal
achievable minimum distancedmax(n, k,r, d) that a linear LRC

with parameters (n, k,r,0) can have. This article expands the
class of parameters(n,k,d,r,d) for which there exist perfect
linear LRCs and improves the lower bound for dmax(n, k, 7, ).

Further, this bound is proved to be optimal for the class of
matroids that is used to derive the existence bounds of linea
LRCs.

|. INTRODUCTION

respectively, a LRC is characterized by two additional para
eters,- andd. Informally speaking, the local error correction is
enabled by dividing the code symbols into locality sets vehos
size is at most- + 6 — 1 and inside which any — 1 symbols
can be recovered using the rest of the symbols in the locality
set.

A. Related Work

The notion of a LRC was first introduced inl[1]. The
generalized Singleton bound for linedn, k,d,r,0)-LRCs
states that

d<n—k+1—([k/r]=1)(—1). 1)

This bound was given in[2] fof = 2 and in [3] for a general
0. This bound has then been generalized for both linear and
nonlinear codes in several ways, s=g.[4], [5], [6] and [7].

The class ofalmost affinecodes is a generalization of the
class of linear codes. I ][8] it was proved that every almost
affine code induces a matroid. Many important properties (bu
not all) of almost affine codes amatroid invariantsin the
sense that the properties only depend on the matroid steuctu

In modern times, the need for large scale data storagethe code. Matroid theory was used inl [9] in order to

is swiftly increasing. This need is present for example igrove that the minimum distance of a class of linear LRCs
large data centers and in cloud storage. The large scaleaghieves the generalized Singleton bound. It was proved in
these distributed data storage systems makes hardwanegil that every almost affine LRC inducesreatroid such that
common. However, the data should be preserved regardles parametergn, k, d,r,5) of the LRC appear as matroid
failures, and error correcting codes can be utilized to @nev j,yariants. Consequently, the parametérsk,d,r,5) were
data loss. . o generalized to matroids and the boulH (1) was proven to also
A traditional approach is to look for codes which simultan|g for all matroids, which is nontrivial since not all maids
neously maximize error tolerance and minimize storageespage induced by almost affine codes. An even more general
consumption. However, this tends to yield codes for whic§ingleton bound was given for polymatroidsin][11], motat
error correction requires an unrealistic amount of commwai py the fact that all general LRCs induce a polymatroid.
tion between storage nodasocally repairable code¢LRCS)  "Results on the existence and non-existence of linear
solve this problem by allowing errors to be corrected locall ;, 1 4 . §)-LRCs achieving the generalized Singleton bound
in addition to the global level. were given in[[I2]. Codes or matroids achieving the general-
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of cyclic flatsof matroids, the non-existence results of1[12]
were strengthened ifn [1L0].
There are many different constructions of perfect LRCs, e.g

seel[8], 9], [12][13], [14]. Using a matroid-based constian
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in [10], classes of linear LRCs with a large span on theonditions for every subset%,Y C E:
parameters(n, k,d,r,d) and local repair sets were given.

By this construction, linear perfect, k, d, r, §)-LRCs were i) 0<p(X)<[X],
constructed for all the parameters from the existence tsesul (i) XCY=pX)<pl),
given in [12]. Further, again by the matroid-based consioag (i) p(X)+p(Y) > p(XUY)+p(XNY).

a general lower bound was given on the maximal achievable
minimum distanced,,.x(n, k,7,0) that a linear LRC with  This definition is for instance satisfied by the set of column

parametergn, k,r,d) can have. vectorsE of a matrix over a field, an@(X) being equal to
the rank of the submatrix consisting of the column vectors
B. Contributions indexed byX. If E is the set of edges of an undirected graph,

This paper strengthens several results given_in [10].Ill¥,irstth.en a matroid is obtained by letting X) be the size of a

using the matroid-based construction we extend the classr%m'mal spannlpg tree of the sqbgraph with edges

linear perfect(n, k, d, r,§)-LRCs with [k/r] = 2. Secondly, Next, we defme some matr0|d concepts relevant to us. A
we improve the general lower bound @, (n, k,r, 8) for SUPSEX C Eis said to bendependentf p(X) = [.X|. The
linear LRCs and prove that the new bound is optimal fgtullity of @ setX C £is defined byn(X) = |.X| — p(X).

the matroid-based construction. The results of this pageew A Circuitis a dependentséf C £ whose all proper subsets
originally presented in the bachelor thesis of the first auth@'® independente., p(X \ {z}) = p(X) = [X|—1 for every
[15], which provides a more comprehensive account as wéll€ X- A setX C E is eyclic if it is a union of circuits.

as full proofs. We denote the sets of circuits and cyclic sets of a matroid by
C(M) andU{/ (M), respectively.
. PRELIMINARIES Theclosureof a setX C E is defined byl(X) = {x € E:
p(XU{z}) =p(X)}. AsetX C Eis aflatif X = cl(X).
A. Almost Affine Locally repairable codes A cyclic flatis a flat that also is a cyclic set.
In this section, we will define an almost affite, k, d,r,6)- ~ Therestriction of M = (E, p) to X is the matroidM | X =

LRC. As usual,n denotes the length of a codeword add (X,px) wherepx(Y) = p(Y) for Y C X.

its minimum (Hamming) distance. An almost affine code is A lattice is a partially ordered set for which every pair

defined as follows: of two elements has a unique infimummeet and a unique
Definition 2.1: A code C C X", whereY is a finite set supremum,join. The cyclic flats of a matroid have the

of size s > 2, is almost affineif for each X C [n] we have Property that they form a finite lattic¢z,C) with meet

log,(|Cx]|) € Z. X ANY =Ucecn.ccxny € and joinX vY =cl(X UY),
Here [n] = {1,2,..,n} and Cx denotes the projectionfor X,Y" € Z [16].
of the codeC to XX, ie, Cx = {(Ciysomrcs,) © € = The least element of the lattice is the elem@éptc Z such
(c1,...,cn) € C}, where X = {iy,...,in} C [n]. The that X C 0z = X = 0z for every X € Z. Correspondingly,
parametelk is, as usual, defined ds= log,(|C|). the greatest element is the elemént € Z such thatlz C
The local error correction of a LRC is performed insidel = X = 0z for every X € Z.
(r,6)-locality sets The sets of the atomd z and coatomgoAz are defined
Definition 2.2:When1 < r < k and§ > 2, an (r,0)- by Az ={X € Z\{0z}: AY € Z such thathz C Y C X}
locality set ofC' is a subseS C [n] such that andcoAdz = {X € Z\{lz}: #Y € Z such thatX C Y C
1z}, respectively.
@ [S|<r+d-1, Matroids can also be defined via tHatice of cyclic flats
(i) d(Cs) > 6, whered(Cys) is the min. distance of's. which is our main tool for constructing and analyzing matsoi

in this paper. The associated axioms are presented in the
We say thatU is alocally repairable codewith all-symbol  following theorem:

locality (r,d) if every code symbol € [n] is included in an  Theorem 2.1 ([16]):Let Z C 2F and letp be a function

(r,0)-locality set. p: Z — Z. There is a matroid/ on E for which Z is the
) set of cyclic flats ang is the rank function restricted to the
B. Matroids sets inZ if and only if

Matroids are combinatorial structures that capture, in an
abstract sense, a certain kind of dependence common to
various mathematical structures. Of the numerous equivale (£1) p(0z) =0,

(Z0) Z is a lattice under inclusion,

matroid definitions, we will use the one utilizing tlrank (Z72) X,YeZandX Y =
functionp. In the following,2¥ denotes the set of all subsets 0<p(Y)=p(X)<|Y|—|X],
of E.

>
Definition 2.3: A matroid M = (FE,p) is a finite setk (23) XY € 2= p(X)+p(Y) 2
along with a rank functiop : 2& — Z satisfying the following PXVY) +p(X AY) +[(XNY)\ (X AY)].



IIl. M ATROIDS AND LRCs

A. Relationship between matroids and almost affine LRCs

The following theorem defines the associated matrdig
of an almost affine codé'.

Theorem 3.1 [[B]):Let C' C Y™ be an almost affine code,
where|>" | = s. ThenM¢ = ([n], pc) is a matroid, where

po(X) = log, (|Cx]), for X C [n]

The following result can be viewed as a definition of th
parameters(n, k,d,r,¢) for a matroid from the viewpoint
of its cyclic flats. Hence, the parametdrs, k,d,r,d) of an

almost affine LRCC' can be analyzed using its associate

matroid M¢ = (pc, [n]) in the theorem below.
Theorem 3.2 [[10]):Let M = (F, p) be a matroid with
0<p(E)andlz = E. Then

(i)  n=[1z],

(i) k=p(lz),

(i11)) d=n—k+1—max{n(Z):Z € coAz},

(tv) M has locality(r, ¢) if and only if for eachz € E

there exists a cyclic sef, € U(M) such that
a)x € 5,,
b) [S.] <r+0-1,
¢) d(M]|S,) =
n(Se) +1—max{n(Z): Z € coAzms,)} = 0.

B. Matroid-based constructions of linear LRCs

The matroid-based construction of linear LRCs that is used

in the constructive proofs of both [10] and this article ig th
following:

Construction 1[10]: Let Fi,...,F,, be a collection of
subsets of a finite sef’, k£ a positive integer, ang :
{F;}iepm) — Z a function such that

(1)  0<p(F;) < |F;| for i e [m],
(1)  Fiy = E,
i€[m]
(i?)) |F[m]\{]} ﬂFjl < p(Fj) forall j € [m],
where for every elemenite [m] and subsef C [m)],
@ n(F) = [F| - p(F),
(b) Fr=JF.

icl
Further, we exteng to a function for subset$ C [m] by

p(Fr) = min{|Fy| = n(F), k} .

el

() Z={F:1C|mp(F;)<k}UE,

(i) n=IE],
(i) = p(E).
(iv) d:n—kJrlfmaX{Zn(Fi):FIGZ\E},

el

(v) 6-1 :Z_Iél[irg]{n(ﬂ)},
e Vi) r= gg%{p(ﬂ)}-

For each € [m], any subset C F; with |S| = p(F;)+d—1
'@ a locality set of the matroid.

The motivation to use this construction comes from the fact
that a matroid from it has a maximadl given the matroid’s
set of atoms{F;}, rank functionp : {F;} — Z restricted to
the atoms, and dimensidn This follows from the fact that its
cyclic flats F; have minimal size and maximal rank, achieving
the bound in Z3 whemw(F;) < k.

In a proof given later, we will use the following more
specialized version of the matroid-based constructiorergiv
above.

Graph construction 1: [[10, v2])et G = G(«, 8,7; k, 7, 9)
be a graph with verticepn] and edgedV, where(a, 5) are
two functionsim] — Z, v : W — Z, and (k,r, ) are three
integers with0 < » < k£ ando > 2, such that
(i) G is a graph with no 3-cycles,
(i) 0<a()<r—1forie[ml,
(i) B(i) >0 for i € [m],

(iv) ~(w)=>1forweW,

V) k<rm- Z ai) — Z 7 (w),
i€[m] weW
2

w={i,j}eW
Theorem 3.4 [[10], v2)Let G(«,B,v;k,r,8) be a
graph on [m] such that the conditions (i)-(vi) given in
(3) are satisfied. Then there is am,k,r,d,§)-matroid
M (Fy, ..., Fpui k; p) given by Theoreni 3]3 with

®3)

iy r—a()> ~v(w) for i € [m].

) n=@+d-Dm— Y ali)+ Y B - Y w),
i€[m] i€[m] weW
(i) d=n—k+1— max {61+ B6)},
where e
Vep =4{IC[m]: r|I|—Z ai)— Z y(w) < k}.
el i,jel, w={i,j}eW

IV. MAIN RESULTS

Our first result is an expanded class of parameters
(n,k,r,¢) for which the generalized Singleton boud (1) can
be achieved for linear LRCs. The previous bound_in [10] was
identical to this bound foRa < r — 1 but weaker otherwise.

Theorem 3.3 [[10]): The previous construction defines @ he parameter restrictior < r < k < n — [k/r] (6 — 1)

matroid M (Fy, ..., Fy,; k; p) which equalsM¢e ([n], pc)
for some linear LRQC over a sufficiently largéf, such that

andd > 2 are required fofn, k, d, r, §)-matroids to exist [10].



Theorem 4.1:Definea = r [k/r] — k andb = (r + 6 —
D[;55=1| —n, and let(n, k,r, ) be integers such that <
r<k<n-—Tlk/r](6—-1),0>2,b>a>T[k/r]—1, and
[k/r] =2.If

dmax > n—k+1—min{v, [k/r] — 1}

~ (i -y ([P o) ©

n
We denote the right side of the bourd (6) By..,. This

| 2 @
. . . ) . bound is an improvement over its counterpdjit, = n — k +
then the maximal achievable minimum distance for linegr_ &/ (6 — 1) + (b— ) in [10], since

LRCs with parameterén, k,r,d) is
r+0—1-0
——— | (m—=[k/r]+1)>0. (7)

dmax:n_k/"i‘l_('_k/?"]—1)(5—1). m

Proof: We prove our result by giving an explicit construc-  Proof: Let n’ € Z be such that it satisfies the conditions
tion of perfect matroidsV/ (Fi, ..., Fy,; k; p) of Thm.[33 for for n in Theoren{4.D.
the desired parameter values. A graph constructionLet G(«, 8,7; k,r, ) be intended as

A matroid constructionLet »/, v/, ¢’, and k be integers an instance of Graph construction 1 with

dnew - dold Z \‘

such thatd < v <k <n' —[k/r"]| (0’ —1),d > 2,0 > d, n'
andm > [V'/a'] + 1, where we define @ m= LJH; — 1-‘ -1,
I [ - © W=
(R © a(i)=0forie [m], @)
a =[k/r" 7" —k, ,
o [%w for 1 <i </,
[W+&J @ A)

5—1-b :
LT*TJ for v’ < i <m,

Let Fi,...
with £ =

, Frn = {Fi}iepm) be a collection of finite sets
F; and X C E a set such that

iem wherebd’ = Lﬁﬁw (r+é6—1)—n"andv’ =r+06—-1-
by — 7'+6—1—b/ljl m.
The rest of the proof consists of checking that the condition

in (3) are satisfied and using Theorém]3.4 to show that the

() FNnFCX
(i) |X|=d,

for i,j € [m] with i # 7,

@iy |F;]=r"4+8—-1 forie[m],
(iv) |F;NX|=d for1<i<[b/ad7,
V) |FEnX|=b—([bt/d]—-1)d fori=[b/a"]+1,

construction yields the expectetifor all desired parameter
sets(n, k,r, ). Finally, the inequalities in{7) will be proved.
A full version of the proof can be found in[1L5].

|
Example 4.1:To see that the differenaé,q,, — do1q is not
Let p be a functiorp : {Fi}ic},) — Z such thaip(F;) =" identically zero, consider for instance the graph consisoc
for eachi € [m)]. used in the proof with parameter valugs= 139, k = 60,r =
For the rest of the proof, we first check that this construrcti®0, § = 21.
satisfies the conditions ifJ(2). Then we use Theofem 3.3 toLastly, we show that the bound in Thin. 4.2 for matroids
show that it yields perfect matroids (and thus linear LR@s) f (linear LRCs) from Construction 1 is tight for parametersset
the desired class of parametdris k,r,d), which are shown (n,k,r,§) for which there exists no perfect matroid (linear
to equal their primed counterparts. The details of this can bRC) from Construction 1.
found in [15].

(i) |F;NnX|=0fori>[b/a]+1.

] Theorem 4.3:Let (n,k,r,d) be integers such that there
Our second main result is an improved lower bounddor exists no perfectn, k, d’, r, §)-matroid from Construction 1.
The actual improvement is the bourid (6) as the bolihd (5)List M be an(n, k, d,r,d)-matroid from Construction 1 and
identical to what was used if [110]. let us denote the bound in Theor€ml4.2dyy= dy(n, k, 1, J).
Thend < d.
Proof: A more detailed proof can be found in_[15]. Let
M = M(Fy,...,F,;k;p) be a matroid from Construction
1 for which there exists no perfect matroid from the same
construction with the same parametérsk, r, ).
Assume thatmax{|I| : F; € Z.,} > [k/r]. Using
Theoreni 3B (iii), we then obtaih < n—k+1—[k/r] (6—1),

Theorem 4.2:Let (n, k,r, ) be integers such thét< r <
E<n-—1TJk/r1(6-1),0 > 2, andb > a. Also letm =

| - Tandv = r 61— b |1 i, Then for
linear LRCs with parameter@, k, r, ):

If 6—1< ([k/r] —1) | ===t | + min{v, [k/r] -1}, we

have asn(F;) > § — 1 for everyi € [m]
> - - n(F;) >0 — 1 € m|.
max 20 = k1= [k/r] (6 = 1). ) Thus the theorem holds in this case and we are only left
Otherwise, if § — 1 > ([k/r] —1) ===t | + with the casenax{|I| : F; € 2} = [k/r] —1, as we easily

min{v, [k/r] — 1}, then see thatmax{|I| : F;y € Z.,} < [k/r] — 1 is impossible.



There must be an atonk; with n(F;) > § — 1, since V. CONCLUSIONS

otherwise the matroi_d WOl_JId be perfect. Next we show that | this paper, we provided an expanded class of parameters
our current assumptions imply: < [-r5—|. We do this for which perfect linear LRCs exist (Thii4.1). We also gave a
by showing thatm > [r5=] would allow the existence general lower bound for the maximal minimum distanigg,.

of perfect matroids, which is a contradiction. The perfe frhm. [22), which we proved to be optimal for sub-perfect
matroids are constructed by, roughly speaking, repeatedligcs from Construction 1 (Thni4.3).

decreasing the nullity of atoms, with 7(F,) > 6 —1byan  These theorems suggest the following two-stage approach
element ofF, to another aton;. which either ha(F;) <7 for solving s (1, k,,0) for almost affine LRCs: The

or overlaps with another atori,.. In the former casep(F;) first goal is to derive an expression fdf,,, restricted to

will be increased by one, and in the latter case, the elemeg-perfect LRCs. Then, full knowledge @f,.. would be

in the intersection will no longer be part &f. achieved by determining the class of parameterst,r, o)

Let us denotes = >, n(f3). Let us distribute this for which perfect LRCs exist.

nullity evenly among the atoms;, i.e., set
[s/m] for1 <i<s—|[s/m|m,

|s/m]| for s — |s/m]m <i<m.

TheorenT 4B is an attempt at accomplishing the first task.
It is only a partial result towards this goal as it is limited
to matroids from Construction 1. However, matroids from
Construction 1 have a maximdlgiven their setup of atoms,

which suggests that the bound in TheorEml 4.2 is tight or

For minimizingmax {}",.; n(F;) : |I| = [k/r] — 1}, this
setup is clearly optimal and yields the bound

max{me I = [k/r] - 1}
> ([k/r]=1)s/m] +min{[k/r] —1,s — |s/m]m}.
9)

The bound in[(B) is clearly increasing as a functionsof
and s is bounded bys > n — rm. Thus we obtain the bound

(1]
(2]

maX{iZIn(Fi) || = [k/r] - 1} > ([k/r] =1) {%J .
st [
(10)

This bound is in turn decreasing as a functiomofind we
can obtain a new bound by substituting= [ —5— 1] —1. By
additionally substituting: andb by their definitions in[(6), we
can see that the boundd (6) ahdl(10) are equal.

We have thus proved that the value @ffor non-perfect
matroids is always bounded from above by either the boun[al
(®) or the bound[{6). This proves the theorem.

(6]
(7]
(8]

m [0

Remark 4.1:The class of matroids constructed I3 (2) con-
stitutes a small subclass of the class of matroids call&éd]
gammoids[[1D]. A method of constructing linear codes from
gammoids can be extracted by usifgl[17]. The smallest figid;
size required by LRCs is an important issue, since it affects
the computational complexity of the code. In general fcﬁ3]
gammoids there is a known upper bound for the field size,
[17]. However, we are convinced that this bound is not tight
for the construction given ifif2). We have ongoing research &4
explicit constructions of linear LRCs over small fields abéal [15]
from (@) and conjecture an upper bound on the smallest field
size that is polynomial witm. However, explicit constructions [16]
of LRCs for the matroid-based construction given[ih (2) afg7
out of the scope of this paper.

almost tight in the general case for sub-perfect matroids.

Theoreni 41 in turn is an addition to the existing results on
for which parameter values perfect matroids exist. A comeple
solution of this second question would seem to require sglvi
hard problems of extremal set theory.
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