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Abstract—Locally repairable codes (LRCs) are error correct-
ing codes used in distributed data storage. Besides a global
level, they enable errors to be corrected locally, reducingthe
need for communication between storage nodes. There is a close
connection between almost affine LRCs and matroid theory
which can be utilized to construct good LRCs and derive bounds
on their performance.

A generalized Singleton bound for linear LRCs with param-
eters (n, k, d, r, δ) was given in [N. Prakash et al., “Optimal
Linear Codes with a Local-Error-Correction Property”, IEE E
Int. Symp. Inf. Theory]. In this paper, a LRC achieving this
bound is calledperfect. Results on the existence and nonexistence
of linear perfect (n, k, d, r, δ)-LRCs were given in [W. Song
et al., “Optimal locally repairable codes”, IEEE J. Sel. Areas
Comm.]. Using matroid theory, these existence and nonexistence
results were later strengthened in [T. Westerbäcket al., “On the
Combinatorics of Locally Repairable Codes”, Arxiv: 1501.00153],
which also provided a general lower bound on the maximal
achievable minimum distancedmax(n, k, r, δ) that a linear LRC
with parameters (n, k, r, δ) can have. This article expands the
class of parameters(n, k, d, r, δ) for which there exist perfect
linear LRCs and improves the lower bound for dmax(n, k, r, δ).
Further, this bound is proved to be optimal for the class of
matroids that is used to derive the existence bounds of linear
LRCs.

I. I NTRODUCTION

In modern times, the need for large scale data storage
is swiftly increasing. This need is present for example in
large data centers and in cloud storage. The large scale of
these distributed data storage systems makes hardware failures
common. However, the data should be preserved regardless of
failures, and error correcting codes can be utilized to prevent
data loss.

A traditional approach is to look for codes which simulta-
neously maximize error tolerance and minimize storage space
consumption. However, this tends to yield codes for which
error correction requires an unrealistic amount of communica-
tion between storage nodes.Locally repairable codes(LRCs)
solve this problem by allowing errors to be corrected locally,
in addition to the global level.
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The support from the European Science Foundation under the COST Action
IC1104 is also gratefully acknowledged. The first author would like to thank
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Besides the parameters(n, k, d) referring to the length,
dimension, and minimum distance of a regular linear code,
respectively, a LRC is characterized by two additional param-
eters,r andδ. Informally speaking, the local error correction is
enabled by dividing the code symbols into locality sets whose
size is at mostr+ δ− 1 and inside which anyδ− 1 symbols
can be recovered using the rest of the symbols in the locality
set.

A. Related Work

The notion of a LRC was first introduced in [1]. The
generalized Singleton bound for linear(n, k, d, r, δ)-LRCs
states that

d ≤ n− k + 1− (⌈k/r⌉ − 1) (δ − 1). (1)

This bound was given in [2] forδ = 2 and in [3] for a general
δ. This bound has then been generalized for both linear and
nonlinear codes in several ways, seee.g. [4], [5], [6] and [7].

The class ofalmost affinecodes is a generalization of the
class of linear codes. In [8] it was proved that every almost
affine code induces a matroid. Many important properties (but
not all) of almost affine codes arematroid invariantsin the
sense that the properties only depend on the matroid structure
of the code. Matroid theory was used in [9] in order to
prove that the minimum distance of a class of linear LRCs
achieves the generalized Singleton bound. It was proved in
[10] that every almost affine LRC induces amatroid such that
the parameters(n, k, d, r, δ) of the LRC appear as matroid
invariants. Consequently, the parameters(n, k, d, r, δ) were
generalized to matroids and the bound (1) was proven to also
hold for all matroids, which is nontrivial since not all matroids
are induced by almost affine codes. An even more general
Singleton bound was given for polymatroids in [11], motivated
by the fact that all general LRCs induce a polymatroid.

Results on the existence and non-existence of linear
(n, k, d, r, δ)-LRCs achieving the generalized Singleton bound
were given in [12]. Codes or matroids achieving the general-
ized Singleton bound are here calledperfect. Using thelattice
of cyclic flatsof matroids, the non-existence results of [12]
were strengthened in [10].

There are many different constructions of perfect LRCs, e.g.
see [3], [9], [12] [13], [14]. Using a matroid-based construction
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in [10], classes of linear LRCs with a large span on the
parameters(n, k, d, r, δ) and local repair sets were given.
By this construction, linear perfect(n, k, d, r, δ)-LRCs were
constructed for all the parameters from the existence results
given in [12]. Further, again by the matroid-based construction,
a general lower bound was given on the maximal achievable
minimum distancedmax(n, k, r, δ) that a linear LRC with
parameters(n, k, r, δ) can have.

B. Contributions

This paper strengthens several results given in [10]. Firstly,
using the matroid-based construction we extend the class of
linear perfect(n, k, d, r, δ)-LRCs with ⌈k/r⌉ = 2. Secondly,
we improve the general lower bound ondmax(n, k, r, δ) for
linear LRCs and prove that the new bound is optimal for
the matroid-based construction. The results of this paper were
originally presented in the bachelor thesis of the first author
[15], which provides a more comprehensive account as well
as full proofs.

II. PRELIMINARIES

A. Almost Affine Locally repairable codes

In this section, we will define an almost affine(n, k, d, r, δ)-
LRC. As usual,n denotes the length of a codeword andd
its minimum (Hamming) distance. An almost affine code is
defined as follows:

Definition 2.1: A code C ⊆ Σn, whereΣ is a finite set
of size s ≥ 2, is almost affineif for eachX ⊆ [n] we have
logs(|CX |) ∈ Z.

Here [n] = {1, 2, ..., n} and CX denotes the projection
of the codeC to Σ|X|, i.e., CX = {(ci1 , ..., cim) : c =
(c1, ..., cn) ∈ C}, where X = {i1, . . . , im} ⊆ [n]. The
parameterk is, as usual, defined ask = logs(|C|).

The local error correction of a LRC is performed inside
(r, δ)-locality sets:

Definition 2.2: When 1 ≤ r ≤ k and δ ≥ 2, an (r, δ)-
locality set ofC is a subsetS ⊆ [n] such that

(i) |S| ≤ r + δ − 1,

(ii) d(CS) ≥ δ,whered(CS) is the min. distance ofCS .

We say thatC is a locally repairable codewith all-symbol
locality (r, δ) if every code symboll ∈ [n] is included in an
(r, δ)-locality set.

B. Matroids

Matroids are combinatorial structures that capture, in an
abstract sense, a certain kind of dependence common to
various mathematical structures. Of the numerous equivalent
matroid definitions, we will use the one utilizing therank
functionρ. In the following,2E denotes the set of all subsets
of E.

Definition 2.3: A matroid M = (E, ρ) is a finite setE
along with a rank functionρ : 2E → Z satisfying the following

conditions for every subsetsX,Y ⊆ E:

(i) 0 ≤ ρ(X) ≤ |X |,

(ii) X ⊆ Y ⇒ ρ(X) ≤ ρ(Y ),

(iii) ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ).

This definition is for instance satisfied by the set of column
vectorsE of a matrix over a field, andρ(X) being equal to
the rank of the submatrix consisting of the column vectors
indexed byX . If E is the set of edges of an undirected graph,
then a matroid is obtained by lettingρ(X) be the size of a
minimal spanning tree of the subgraph with edgesX .

Next, we define some matroid concepts relevant to us. A
subsetX ⊆ E is said to beindependentif ρ(X) = |X |. The
nullity of a setX ⊆ E is defined byη(X) = |X | − ρ(X).

A circuit is a dependent setX ⊆ E whose all proper subsets
are independent,i.e., ρ(X \ {x}) = ρ(X) = |X |− 1 for every
x ∈ X . A set X ⊆ E is cyclic if it is a union of circuits.
We denote the sets of circuits and cyclic sets of a matroid by
C(M) andU(M), respectively.

Theclosureof a setX ⊆ E is defined bycl(X) = {x ∈ E :
ρ(X ∪ {x}) = ρ(X)}. A setX ⊆ E is a flat if X = cl(X).
A cyclic flat is a flat that also is a cyclic set.

The restriction ofM = (E, ρ) to X is the matroidM |X =
(X, ρ|X) whereρ|X(Y ) = ρ(Y ) for Y ⊆ X .

A lattice is a partially ordered set for which every pair
of two elements has a unique infimum,meet, and a unique
supremum, join. The cyclic flats of a matroid have the
property that they form a finite lattice(Z,⊆) with meet
X ∧ Y =

⋃

C∈C(M):C⊆X∩Y C and joinX ∨ Y = cl(X ∪ Y ),
for X,Y ∈ Z [16].

The least element of the lattice is the element0Z ∈ Z such
thatX ⊆ 0Z ⇒ X = 0Z for everyX ∈ Z. Correspondingly,
the greatest element is the element1Z ∈ Z such that1Z ⊆
X ⇒ X = 0Z for everyX ∈ Z.

The sets of the atomsAZ and coatomscoAZ are defined
by AZ = {X ∈ Z \ {0Z} : ∄Y ∈ Z such that0Z ( Y ( X}
and coAZ = {X ∈ Z \ {1Z} : ∄Y ∈ Z such thatX ( Y (
1Z}, respectively.

Matroids can also be defined via thislattice of cyclic flats,
which is our main tool for constructing and analyzing matroids
in this paper. The associated axioms are presented in the
following theorem:

Theorem 2.1 ([16]):Let Z ⊆ 2E and letρ be a function
ρ : Z → Z. There is a matroidM on E for which Z is the
set of cyclic flats andρ is the rank function restricted to the
sets inZ if and only if

(Z0) Z is a lattice under inclusion,

(Z1) ρ(0Z) = 0,

(Z2) X,Y ∈ Z andX ( Y ⇒

0 < ρ(Y )− ρ(X) < |Y | − |X |,

(Z3) X,Y ∈ Z ⇒ ρ(X) + ρ(Y ) ≥

ρ(X ∨ Y ) + ρ(X ∧ Y ) + |(X ∩ Y ) \ (X ∧ Y )|.



III. M ATROIDS AND LRCS

A. Relationship between matroids and almost affine LRCs

The following theorem defines the associated matroidMC

of an almost affine codeC.
Theorem 3.1 ([8]):Let C ⊆

∑n be an almost affine code,
where|

∑

| = s. ThenMC = ([n], ρC) is a matroid, where

ρC(X) = logs(|CX |), for X ⊆ [n].

The following result can be viewed as a definition of the
parameters(n, k, d, r, δ) for a matroid from the viewpoint
of its cyclic flats. Hence, the parameters(n, k, d, r, δ) of an
almost affine LRCC can be analyzed using its associated
matroidMC = (ρC , [n]) in the theorem below.

Theorem 3.2 ([10]):Let M = (E, ρ) be a matroid with
0 < ρ(E) and1Z = E. Then

(i) n = |1Z |,

(ii) k = ρ(1Z),

(iii) d = n− k + 1−max{η(Z) : Z ∈ coAZ},

(iv) M has locality(r, δ) if and only if for eachx ∈ E

there exists a cyclic setSx ∈ U(M) such that

a) x ∈ Sx,

b) |Sx| ≤ r + δ − 1,

c) d(M |Sx) =

η(Sx) + 1−max{η(Z) : Z ∈ coAZ(M|Sx)} ≥ δ.

B. Matroid-based constructions of linear LRCs

The matroid-based construction of linear LRCs that is used
in the constructive proofs of both [10] and this article is the
following:

Construction 1 [10]: Let F1, ..., Fm be a collection of
subsets of a finite setE, k a positive integer, andρ :
{Fi}i∈[m] → Z a function such that

(i) 0 < ρ(Fi) < |Fi| for i ∈ [m],

(ii) F[m] = E,

(iii) k ≤ F[m] −
∑

i∈[m]

η(Fi),

(iv) |F[m]\{j} ∩ Fj | < ρ(Fj) for all j ∈ [m],

(2)

where for every elementi ∈ [m] and subsetI ⊆ [m],

(a) η(Fi) = |Fi| − ρ(Fi) ,

(b) FI =
⋃

i∈I

Fi .

Further, we extendρ to a function for subsetsI ⊆ [m] by

ρ(FI) = min{|FI | −
∑

i∈I

η(Fi), k} .

Theorem 3.3 ([10]):The previous construction defines a
matroid M(F1, ..., Fm; k; ρ) which equalsMC = ([n], ρC)
for some linear LRCC over a sufficiently largeFq such that

(i) Z = {FI : I ⊆ [m], ρ(FI) < k} ∪ E ,

(ii) n = |E| ,

(iii) k = ρ(E) ,

(iv) d = n− k + 1−max{
∑

i∈I

η(Fi) : FI ∈ Z \ E} ,

(v) δ − 1 = min
i∈[m]

{η(Fi)} ,

(vi) r = max
i∈[m]

{ρ(Fi)} .

For eachi ∈ [m], any subsetS ⊆ Fi with |S| = ρ(Fi)+δ−1
is a locality set of the matroid.

The motivation to use this construction comes from the fact
that a matroid from it has a maximald, given the matroid’s
set of atoms{Fi}, rank functionρ : {Fi} → Z restricted to
the atoms, and dimensionk. This follows from the fact that its
cyclic flatsFI have minimal size and maximal rank, achieving
the bound in Z3 whenρ(FI) < k.

In a proof given later, we will use the following more
specialized version of the matroid-based construction given
above.

Graph construction 1: ([10, v2])Let G = G(α, β, γ; k, r, δ)
be a graph with vertices[m] and edgesW , where(α, β) are
two functions[m] → Z, γ : W → Z, and (k, r, δ) are three
integers with0 < r < k andδ ≥ 2, such that

(i) G is a graph with no 3-cycles,

(ii) 0 ≤ α(i) ≤ r − 1 for i ∈ [m],

(iii) β(i) ≥ 0 for i ∈ [m],

(iv) γ(w) ≥ 1 for w ∈ W,

(v) k ≤ rm−
∑

i∈[m]

α(i)−
∑

w∈W

γ(w),

(vi) r − α(i) >
∑

w={i,j}∈W

γ(w) for i ∈ [m].

(3)

Theorem 3.4 ([10], v2):Let G(α, β, γ; k, r, δ) be a
graph on [m] such that the conditions (i)-(vi) given in
(3) are satisfied. Then there is an(n, k, r, d, δ)-matroid
M(F1, ..., Fm; k; ρ) given by Theorem 3.3 with

(i) n = (r + δ − 1)m−
∑

i∈[m]

α(i) +
∑

i∈[m]

β(i)−
∑

w∈W

γ(w),

(ii) d = n− k + 1− max
I∈V<k

{(δ − 1)|I|+
∑

i∈I

β(i)},

where

V<k = {I ⊆ [m] : r|I|−
∑

i∈I

α(i)−
∑

i,j∈I,w={i,j}∈W

γ(w) < k}.

IV. M AIN RESULTS

Our first result is an expanded class of parameters
(n, k, r, δ) for which the generalized Singleton bound (1) can
be achieved for linear LRCs. The previous bound in [10] was
identical to this bound for2a ≤ r − 1 but weaker otherwise.
The parameter restrictions0 < r < k ≤ n − ⌈k/r⌉ (δ − 1)
andδ ≥ 2 are required for(n, k, d, r, δ)-matroids to exist [10].



Theorem 4.1:Define a = r ⌈k/r⌉ − k and b = (r + δ −
1)⌈ n

r+δ−1⌉ − n, and let(n, k, r, δ) be integers such that0 <
r < k ≤ n − ⌈k/r⌉ (δ − 1), δ ≥ 2, b > a ≥ ⌈k/r⌉ − 1, and
⌈k/r⌉ = 2. If

⌈

n

r + δ − 1

⌉

≥ ⌈b/a⌉+ 1 , (4)

then the maximal achievable minimum distance for linear
LRCs with parameters(n, k, r, δ) is

dmax = n− k + 1− (⌈k/r⌉ − 1) (δ − 1) .

Proof: We prove our result by giving an explicit construc-
tion of perfect matroidsM(F1, . . . , Fm; k; ρ) of Thm. 3.3 for
the desired parameter values.

A matroid construction.Let n′, r′, δ′, and k be integers
such that0 < r′ < k ≤ n′ − ⌈k/r′⌉ (δ′ − 1), δ′ ≥ 2, b′ > a′,
andm ≥ ⌈b′/a′⌉+ 1, where we define

b′ =

⌈

n′

r′ + δ′ − 1

⌉

(r′ + δ′ − 1)− n′,

a′ = ⌈k/r′⌉ r′ − k,

m =

⌈

n′

r′ + δ′ − 1

⌉

.

Let F1, ..., Fm = {Fi}i∈[m] be a collection of finite sets
with E =

⋃

i∈m Fi andX ⊆ E a set such that

(i) Fi ∩ Fj ⊆ X for i, j ∈ [m] with i 6= j,

(ii) |X | = a′,

(iii) |Fi| = r′ + δ′ − 1 for i ∈ [m],

(iv) |Fi ∩X | = a′ for 1 ≤ i ≤ ⌈b′/a′⌉ ,

(v) |Fi ∩X | = b′ − (⌈b′/a′⌉ − 1) a′ for i = ⌈b′/a′⌉+ 1,

(vi) |Fi ∩X | = 0 for i > ⌈b′/a′⌉+ 1.

Let ρ be a functionρ : {Fi}i∈[m] → Z such thatρ(Fi) = r′

for eachi ∈ [m].
For the rest of the proof, we first check that this construction

satisfies the conditions in (2). Then we use Theorem 3.3 to
show that it yields perfect matroids (and thus linear LRCs) for
the desired class of parameters(n, k, r, δ), which are shown
to equal their primed counterparts. The details of this can be
found in [15].

Our second main result is an improved lower bound ford.
The actual improvement is the bound (6) as the bound (5) is
identical to what was used in [10].

Theorem 4.2:Let (n, k, r, δ) be integers such that0 < r <
k ≤ n − ⌈k/r⌉ (δ − 1), δ ≥ 2, and b > a. Also let m =
⌈

n
r+δ−1

⌉

− 1 andv = r+ δ− 1− b−
⌊

r+δ−1−b
m

⌋

m. Then for

linear LRCs with parameters(n, k, r, δ):
If δ−1 ≤ (⌈k/r⌉ − 1)

⌊

r+δ−1−b
m

⌋

+min{v, ⌈k/r⌉−1}, we
have

dmax ≥ n− k + 1− ⌈k/r⌉ (δ − 1). (5)

Otherwise, if δ − 1 > (⌈k/r⌉ − 1)
⌊

r+δ−1−b
m

⌋

+
min{v, ⌈k/r⌉ − 1}, then

dmax ≥ n− k + 1−min {v, ⌈k/r⌉ − 1}

− (⌈k/r⌉ − 1)

(⌊

r + δ − 1− b

m

⌋

+ δ − 1

)

.
(6)

We denote the right side of the bound (6) bydnew. This
bound is an improvement over its counterpartdold = n− k+
1− ⌈k/r⌉ (δ − 1) + (b− r) in [10], since

dnew − dold ≥

⌊

r + δ − 1− b

m

⌋

(m− ⌈k/r⌉+ 1) ≥ 0. (7)

Proof: Let n′ ∈ Z be such that it satisfies the conditions
for n in Theorem 4.2.

A graph construction. Let G(α, β, γ; k, r, δ) be intended as
an instance of Graph construction 1 with

(a) m =

⌈

n′

r + δ − 1

⌉

− 1,

(b) W = ∅,

(c) α(i) = 0 for i ∈ [m],

(d) β(i) =











⌈

r+δ−1−b′

m

⌉

for 1 ≤ i ≤ v′,
⌊

r+δ−1−b′

m

⌋

for v′ < i ≤ m,

(8)

whereb′ =
⌈

n′

r+δ−1

⌉

(r+ δ− 1)− n′ andv′ = r+ δ− 1−

b′ −
⌊

r+δ−1−b′

m

⌋

m.
The rest of the proof consists of checking that the conditions

in (3) are satisfied and using Theorem 3.4 to show that the
construction yields the expectedd for all desired parameter
sets(n, k, r, δ). Finally, the inequalities in (7) will be proved.
A full version of the proof can be found in [15].

Example 4.1:To see that the differencednew − dold is not
identically zero, consider for instance the graph construction
used in the proof with parameter valuesn′ = 139, k = 60, r =
20, δ = 21.

Lastly, we show that the bound in Thm. 4.2 for matroids
(linear LRCs) from Construction 1 is tight for parameter sets
(n, k, r, δ) for which there exists no perfect matroid (linear
LRC) from Construction 1.

Theorem 4.3:Let (n, k, r, δ) be integers such that there
exists no perfect(n, k, d′, r, δ)-matroid from Construction 1.
Let M be an(n, k, d, r, δ)-matroid from Construction 1 and
let us denote the bound in Theorem 4.2 bydb = db(n, k, r, δ).
Thend ≤ db.

Proof: A more detailed proof can be found in [15]. Let
M = M(F1, ..., Fm; k; ρ) be a matroid from Construction
1 for which there exists no perfect matroid from the same
construction with the same parameters(n, k, r, δ).

Assume thatmax{|I| : FI ∈ Z<k} ≥ ⌈k/r⌉. Using
Theorem 3.3 (iii), we then obtaind ≤ n−k+1−⌈k/r⌉ (δ−1),
asη(Fi) ≥ δ − 1 for every i ∈ [m].

Thus the theorem holds in this case and we are only left
with the casemax{|I| : FI ∈ Z<k} = ⌈k/r⌉−1, as we easily
see thatmax{|I| : FI ∈ Z<k} < ⌈k/r⌉ − 1 is impossible.



There must be an atomFi with η(Fi) > δ − 1, since
otherwise the matroid would be perfect. Next we show that
our current assumptions implym < ⌈ n

r+δ−1⌉. We do this
by showing thatm ≥ ⌈ n

r+δ−1⌉ would allow the existence
of perfect matroids, which is a contradiction. The perfect
matroids are constructed by, roughly speaking, repeatedly
decreasing the nullity of atomsFu with η(Fu) > δ− 1 by an
element ofFu to another atomFi. which either hasρ(Fi) < r
or overlaps with another atomFk. In the former case,ρ(Fi)
will be increased by one, and in the latter case, the element
in the intersection will no longer be part ofFi.

Let us denotes =
∑

i∈[m] η(Fi). Let us distribute this
nullity evenly among the atomsFi, i.e., set

η(Fi) =

{

⌈s/m⌉ for 1 ≤ i ≤ s− ⌊s/m⌋m,

⌊s/m⌋ for s− ⌊s/m⌋m < i ≤ m.

For minimizingmax
{
∑

i∈I η(Fi) : |I| = ⌈k/r⌉ − 1
}

, this
setup is clearly optimal and yields the bound

max

{

∑

i∈I

η(Fi) : |I| = ⌈k/r⌉ − 1

}

≥ (⌈k/r⌉ − 1) ⌊s/m⌋+min {⌈k/r⌉ − 1, s− ⌊s/m⌋m} .
(9)

The bound in (9) is clearly increasing as a function ofs,
ands is bounded bys ≥ n− rm. Thus we obtain the bound

max

{

∑

i∈I

η(Fi) : |I| = ⌈k/r⌉ − 1

}

≥ (⌈k/r⌉ − 1)

⌊

n− rm

m

⌋

+min

{

⌈k/r⌉ − 1, n− rm−

⌊

n− rm

m

⌋

m

}

.

(10)
This bound is in turn decreasing as a function ofm and we

can obtain a new bound by substitutingm = ⌈ n
r+δ−1⌉−1. By

additionally substitutingv andb by their definitions in (6), we
can see that the bounds (6) and (10) are equal.

We have thus proved that the value ofd for non-perfect
matroids is always bounded from above by either the bound
(5) or the bound (6). This proves the theorem.

Remark 4.1:The class of matroids constructed in (2) con-
stitutes a small subclass of the class of matroids called
gammoids [10]. A method of constructing linear codes from
gammoids can be extracted by using [17]. The smallest field
size required by LRCs is an important issue, since it affects
the computational complexity of the code. In general for
gammoids there is a known upper bound for the field size,2n

[17]. However, we are convinced that this bound is not tight
for the construction given in (2). We have ongoing research on
explicit constructions of linear LRCs over small fields obtained
from (2) and conjecture an upper bound on the smallest field
size that is polynomial withn. However, explicit constructions
of LRCs for the matroid-based construction given in (2) are
out of the scope of this paper.

V. CONCLUSIONS

In this paper, we provided an expanded class of parameters
for which perfect linear LRCs exist (Thm. 4.1). We also gave a
general lower bound for the maximal minimum distancedmax

(Thm. 4.2), which we proved to be optimal for sub-perfect
LRCs from Construction 1 (Thm. 4.3).

These theorems suggest the following two-stage approach
for solving dmax(n, k, r, δ) for almost affine LRCs: The
first goal is to derive an expression fordmax restricted to
sub-perfect LRCs. Then, full knowledge ofdmax would be
achieved by determining the class of parameters(n, k, r, δ)
for which perfect LRCs exist.

Theorem 4.3 is an attempt at accomplishing the first task.
It is only a partial result towards this goal as it is limited
to matroids from Construction 1. However, matroids from
Construction 1 have a maximald given their setup of atoms,
which suggests that the bound in Theorem 4.2 is tight or
almost tight in the general case for sub-perfect matroids.

Theorem 4.1 in turn is an addition to the existing results on
for which parameter values perfect matroids exist. A complete
solution of this second question would seem to require solving
hard problems of extremal set theory.
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