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Abstract

This paper derives Gaussian approximation bounds for #redatdized aggregate wireless inter-
ference (AWI) in the downlink oflenseK -tier heterogeneous cellular networks when base stations i
each tier are distributed over the plane according to a {plgseon-homogeneous) Poisson process.
The proposed methodology is general enough to account foergebounded path-loss models and
fading statistics. The deviations of the distribution o tstandardized AWI from the standard normal
distribution are measured in terms of the Kolmogorov-Sowrdistance. An explicit expression bounding
the Kolmogorov-Smirnov distance between these two digidhs is obtained as a function of a
broad range of network parameters such as per-tier trasgmipower levels, base station locations,
fading statistics and the path-loss model. A simulatiomtis performed to corroborate the analytical
results. In particular, a good statistical match betweenstandardized AWI distribution and its normal
approximation occurs even for moderately dense heteragesneellular networks. These results are
expected to have important ramifications on the charaetiboiz of performance upper and lower bounds

for emerging 5G network architectures.

. INTRODUCTION

The next generation of wireless networks is envisioned tmbee heterogenous and denser in
order to meet high capacity demands from mobile users|[L]¥Berefore, characterization and
mitigation of aggregate wireless interference (AWI) appeabe a more pronounced design
bottleneck against meeting such high data rate demands tarogenous cellular networks

(HCNSs), e.g., see [4] and|[5]. However, even for traditiomaicro cell deployments, computation
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of the exact AWI distribution is a very challenging task thatally does not result in closed
form expressions [6], [7]. This motivates us in the curreapgr to search for a structure in
the distribution of AWI for the downlink of a<-tier HCN that will lead to simplifications in
performance characterization and network design.

The early work in the literature focusing on approximatihg tlistribution of AWI in wireless
networks includes| [8]+[10]. These papers considered ttosdil single-tier macro cell deploy-
ments and obtained various approximations on the disiobudf AWI using LePage series
[8], Edgeworth expansion [9] and geometrical considerstid0]. More recently, Berry-Esseen
types of bounds were obtained in [11], [12], but again by mering only single-tier wireless
networks. The related work also includes those papers [138],0on the analysis of interference
and signal-to-interference-plus-noise ratio (SINR) ia ttownlink of K -tier HCNs. In [13], the
authors investigated a Gamma distribution approximatanttie distribution of AWI clogging
a fixed-size cell with a guard zone and a dominant interférefl4], the author derived the
downlink SINR distribution forK-tier HCNs by assuming the classical unbounded path-loss
model, Rayleigh faded wireless links and the nearest basiers (BS) association rule.

In this paper, we examine the problem of Gaussian approomdbr the standardized (i.e.,
centered and normalized) AWI in the downlink oflansekK -tier HCN, where the network tiers
are differentiated from each other in terms of transmisgiower levels, spatial BS distribution
and RF signal propagation characteristics. In particutes, underlaying spatial stochastic pro-
cesses determining the BS locations in each tier are asstortsel Poisson but not necessarily
homogenous. The signal power attenuation due to pathdessdeled through a general bounded
and power-law decaying path-loss function, which can vasynfone tier to another. Fading and
shadowing are also accounted for in the employed signalagatmon model without assuming
any specific distribution functions for these other randoirelss channel dynamics.

Measuring the distance between the standardized downlitk @&nd normal distributions
by means of Kolmogorov-Smirnov statistic, we obtain an wizdl expression for deviations
between them. This is the main contribution of the presepepaBriefly, the stated distance
consists of two parts: (i) a scaling coefficient, multipligith (ii) a positive function:(z) with z €
R being the point at which we want to estimate the value of taaddrdized AWI distribution.
The scaling coefficient depends on various network parasateeach tier such as transmission

powers, BS distribution and signal propagation charesties. An important property of the



scaling coefficient is its monotonically decaying nature¢oo with denser deployments of BSs
per tier. On the other hand, the functietw) is uniformly boundedoy a small constant and

approaches zero for large absolute values at a rate|9:|‘3, which makes the derived bounds
on the tails of the standardized downlink AWI distributiadght even for sparsely deployed
HCNs. These results are formally given in Theorfem 1.

The above stated contributions in this paper differ from phevious work in several im-
portant aspects. When compared [to [8]+[12], this papernesteahe previous known results
approximating AWI distribution for macro cell deploymentsmore heterogenous and complex
wireless communication environments. In particular, fior@l dependencies among different
tiers to approximate the AWI distribution in the downlink@HCN are clearly identified. When
compared with the results reported in [13], [[14], our netwset-up is much richer, allowing
non-homogenous Poisson point processes (PPP) for BSdosaind general signal propagation
models including fading and shadowing.

II. SYSTEM MODEL

In this section, we will introduce the details of the studikvnlink model in ak -tier cellular
topology, the details of the spatial processes determiBfdpcations and the signal propagation

characteristics.

A. The Downlink Model in &-Tier Cellular Topology

We consider an overlay -tier HCN in which the BSs in all tiers are fully-loaded (j.@0
empty queues) and access to the same communication resdatbein time and frequency. The
BSs in different tiers are differentiated mainly on the basi their transmission powers, with
P, > 0 being the transmission power of a tieBS fork = 1, ..., K. As is standard in stochastic
geometric modeling, it is assumed that BSs are distributent the plane according to a PPP
(possibly non-homogeneous) with differing spatial dgnsinong the tiers. Further, the signal
propagation characteristics (including both large-sqath-loss and small-scale fading effects)
also vary from one tier to another. The details of BS locapoocesses and signal propagation
are elaborated below.

We place a test user at an arbitrary paift! = <x§°), x§0>) € R? and consider signals coming

from all the BSs in all tiers as th@ownlink AWI experienced by this test user. Since we focus



on the downlink analysis, we assume that the uplink and dakrmlo not share any common
communication resources. Therefore, the uplink interfeeecan be ignored for the analysis
of downlink AWI. This setting is general enough to understdine effects of various network
parameters such as transmission powers and BS intensigchnteer on the distribution of the

AWI seen by the test user.

B. BS Location Processes

The BS locations in tiek, k = 1, ..., K, independently form a spatial planar P8R, where
A% represents thenean measuréalternatively called: intensity measure or spatial digisf
the kth tier BSs. We do not assume any specific functional forn\fét and hence do not restrict
our attention only to homogenous PPPs. For each (Borelesubsf R?, A¥) (A) gives us the
average number of BSs lying iA. We will assume thah®) is locally finitei.e., A®) (A) < oo
for all bounded subsetd of R2?, and A®) (R?) = oo, i.e., there is an infinite population of
tier-k BSs scattered all around iR?. For the whole HCN, the aggregate BS location process,
which is the superposition of all individual position preses, is denoted by, = Uszl D).
Henceforth, when we refer to an interfering BS (without sfy@tg its tier) in the sequel, we
write X € &, to represent its location.

For mathematical convenience, we also expregs, as a discrete sum of Dirac measures
X (A) = 1if X;k) € A C R? and zero otherwise. The

level of AWI at (® from tierk BSs depends critically on the distances between the points

as Py = > iy 5XJ(_k>, where §

of &, andz. It is well-known from the theory of Poisson processes that transformed

processzj>15T<X(k>> is still Poisson (on the positive real line) with mean measgiven
- J

by A®) o T, whereT (z) = ||z — 2|, = \/<x1 . x§0>)2 + (xg . xg0>)2 and T-' (A) =
{x € R?: T (x) € A} for all A C R [15]. We will assume that* o T-! has a density in the
form A® o T=1 (A) = X, [, ui(t)dt. Here, ), is a modeling parameter pertaining to thth
tier, which can be interpreted as tB& intensity parametethat will enable us to control the
average number of tigr-BSs whose distances from® belong to.A and interfere with the

signal reception at the test user.



C. Signal Propagation and Interference Power

We model the large scale signal attenuation for kigk-= 1, ..., K, by aboundedmonotone
non-increasing path-loss functids : [0, 00) — [0, 00). G} asymptotically decays to zero at
least as fast as *+ for some path-loss exponenf, > 2. To ensure the finiteness of AWI at the
test user, we require the relationship(t) = O (t**~17¢) ast — oo to hold for somet > 0.

The fading (power) coefficient for the wireless link betweeBS located at poinK € &,
and the test user is denoted lszyH The fading coefficient{ Hx } x,, form a collection of
independent random variables (also independent Qf with those belonging to the same tier,
say tier&, having a common probability distribution with densify(/), h > 0. The first, second
and third order moments of fading coefficients are assuméee finite, and are denoted lnyg}),
m;’;g and mf,fﬂ respectively, for tiek. We note that this signal propagation model is general
enough that x’s could also be thought to incorporasbadow fadingeffects due to blocking
of signals by large obstacles existing in the communicaéonironment, although we do not
model such random factors explicitly and separately in paiper.

Considering all the signal impairments due to fading andh{@ds, we can write the interfer-
ence power seen by the test user from aki@S located aiX %) € &, ) asP.H xx Gy, (T (X)),
Hence, the level of AWI at(® is equal toly = b, Zx(k)@A(k) PyHxw Gy, (T (X®)),
whereX = [\, ..., )\K]T. This parametrization of AWI is chosen to emphasize the dégece
of its distribution to the BS intensity parametgr of each tier./, is a random function of BS
configurations and fading states. In the next section, weslwdw that the distribution of, can

be approximated by a Gaussian distribution.

[1l. GAUSSIAN APPROXIMATION FOR THEAWI DISTRIBUTION

In this section, we will establish the Gaussian approxioratiounds for the distribution of
the standardized AWI in the downlink of a HCN. These bound&alearly show the functional

dependence between the downlink AWI distribution and a don@age of network parameters

IFor simplicity, we only assign aingle fading coefficient to each BS. In reality, it is expected ttha channels between a
BS and all potential receivers (intended or unintendedesgpce different (and possibly independent) fading Bses. Our
simplified notation does not cause any ambiguity here sireéoaus on the total interference power at a given arbitrasitipn

in R? in the remainder of the paper.



such as transmission power levels, BS distribution oveptare and signal propagation charac-
teristics in each tier. We will also specialize these appnation results to the commonly used
homogenous PPPs at the end of this section. Most of the perefselegated to appendices
for the sake of fluency of the paper. Hence, we focus on the reagineering and design

implications of these results for emerging 5G networks i tbmainder of the paper.

Theorem 1:For all z € R,

Pr {71)‘ —EIA < x} — U(x)
Var (1)

)\kP m(k) fO GS (&) g (t)dt

where= = YK o c(x) = min <0.4785 3193.5) and U(z) =

(S AePEmt) I Gt ) ' LHel”
\/%_W [ e~z dt, which is the standard normal cumulative distribution fime (CDF).
Proof: Please see Appendix B. [ |

Measuring the distance by means of Kolmogorov-Smirnovistiat Theorem[IL provides
us with an explicit expression for the deviations betwees standardized AWI and normal
distributions. Several important remarks about this tesrd in order. The scaling coefficieht
appearing in Theorem 1 is linked to the main network parammetach as transmission power
levels, distribution of BSs over the plane and signal pragpiag characteristics. Starting with the
BS intensity parameters,, k = 1,..., K, we observe that the rate of growth of the expression
appearing in the denominator &fis half an order larger than that of the expression appearing
in the numerator oE as a function of\,. This observation implies that the derived Gaussian
approximation becomes tighter for denser deployments oN$lCA formal statement of this
result is given in the following lemma.

Lemma 1:The scaling coefficienE appearing in the Gaussian approximation result in The-

\/II |
Proof: Let a;, = PPm H, fO G3(t) e (t)dt and by, = P,f H2 fo G3(t)ux(t)dt. Then,

Zkz:l ade [ Allallell2
5= 3
(Ele Akbk> <E£(:1 Akbk)

due to Cauchy-Schwarz inequality. Further, we can lowermdothe sum in the denominator

orem[1 is bounded above ¥y <

for some finite posmve constant

—_
—
—

above as

K % K %
> [ i > :
<kz_; )\kbk> > <1£III€I<HK51€Z|>\/<:|> e (IAll2)2



where the last inequality follows from the equivalence dfthé norms in finite dimensional
vector spaces. Combining these two inequalities, we caecthe proof. [ |

Following a similar approach, we can also see that changangsmission powers is not as
effective as changing BS intensity parameters to improeeGhussian approximation bound in
Theorem[lL. This is expected since the power levels are asstonbe deterministic (i.e., no
power control is exercised) and therefore they do not resadly to the randomness coming from
the underlying spatial BS distribution over the plane areghth-loss plus fading characteristics
modulating transmitted signals.

Another important observation we have in regards to the aoedbeffect of the selection of
transmission powers per tier and the moments of fading pe@sein each tier on the Gaussian
approximation result in Theorefd 1 is that our approximatimunds benefit from the fading
distributions with restricted dynamic ranges and the aflignt of received AWI powers due
to fading and path-loss components. This observation isemmggrous through the following
lemma.

Lemma 2:Let ay = Ay, [ G(t)pw(t)dt, b, = N [ Gr(t)u(t)dt and ey, = P2m). Then,
the scaling coefficierfE appearing in the Gaussian approximation result in Thebreabaunded

below by
K

=2 (et
“\Telol) 2

[SI[oY

3
> e
with equality achieved if fading processes in all tiers astedministic and the vectors =
[b1,...,bx] ande = |ey,...,cx]' are parallel.

Proof: Using a;, b, and ¢ introduced above, we can write a lower bound ¥as
3 K 3,.,(k)
Ek 1 ae b mH3 D he1 @M

(Shina) el (SEane)’
<||cH ||b||2) Z a Pimi)

Using Jensen’s inequality, we also havéf) (m%) Usmg this lower bound om: 3 in

—_
—
—

the above expression, we finally hake> ( \Cllzl\b|\2> S akck n
In addition to the above fundamental properties of the sgatioefficient=, it is also worth-

while to mention that the Gaussian approximation boundvedrin Theorem |1 is a combination



of two different types of Berry-Esseen bounds embedded énftimction ¢c(x). One of these
bounds is ainiformbound that helps us to estimate the standardized AWI digtab uniformly
as

< Z-0.4785.

r I —ElL] <zp—U(x)
/Var (1)

On the other hand, the other one isi@an-uniformbound that helps us to estimate ttagls of

the standardized AWI distribution as

31.935

<z. 27
- 1+|x|3

‘Pr {I)‘;E[I)‘] < x} — U(x)
V/Var (1)
and decays to zero as a third order inverse power law.

Up to now, we considered general PPPs for the distributioB®$ in each tier. One sim-
plifying assumption in the literature is to assume that PB&ermining the locations of BSs
are homogenous. In this case,(t) for all tiers is given byu(t) = 27tly>0, Wherely, is
the indicator function. Using this expression feg(t) in Theoren[lL, we obtain the following
approximation result for the distribution of AWI when all B&re homogeneously distributed
over the plane according to a PPP with differing BS intenpalyameters\,, from tier to tier.

Theorem 2:Assume thatb, ., is a homogeneous PPP with a mean measure giferfA) =
A - areaA). Then, for allx € R,

In—E[I
Pr )‘7[)‘] <zp— \I/(x)
Var (1)
3,,(k) oo 3
where = = \/%Zszl APy Jo~ Grlbtdt =, ¢(x) = min (0.4785, ‘:’1'932> and ¥(x) =
" (Z/ﬁ-{:l /\kP;?m;’;% 0 Gi(t)tdt)ﬁ el

e_édt, which is the standard normal CDF.

S = C(SL’), (2)

o
Proof: The proof follows from Theorernl 1 by replacing.(t) with 27¢1>0;. [ |
When all network parameters are assumed to be the sameh@esame transmission power
levels, fading distributions and BS distributions for adlrs, the HCN in question collapses to a
single tier network. In this case, the Gaussian approxonatesult is given below.
Corollary 1: AssumeP, = P, u(t) = 2ntlysoy, G (t) = G (1), A\ = A, mg_’;% = my2 and
m™) = mys forall k =1,..., K. Then, for allz € R, we have

In—E[L] -
‘Pr{mgx}—\ﬂ(x) < Z-c(x),
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Fig. 1. Gaussian approximation bounds for the standard&d CDFs (upper figures). Comparison of the simulated

standardized AWI CDFs with the standard normal CDF (loweurig). Rayleigh fading with unit mean power is assumed.

L1 _mys  J GO a0d (1) and U(z) are as given in Theorefd 1
\/ﬁm mHQ)% (fOOOGQ(t)tdt)%' ( ) ( ) g

We note that this is the same result obtained_in [12] as a abease of the network model

where= =

studied in this paper.

IV. NUMERICAL EXAMPLES

In this section, we will illustrate the analytical Gaussiapproximation results derived for

the standardized AWI distribution in Sectiénl lll for a sdacthree-tier HCN scenario. To this

end, we will assume the same path-loss made(t) = 1—|—1ta for all tiers with various values of

a > 2. Similar conclusions continue to hold for other path-logsdeis. The BSs in each tier are

distributed over the plane according to a homogeneous PEPBS intensity parameters given
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by \i = 0.1k, Ay = k and A3 = 5k. Here, k is our control parameter to control the average
number of BSs interfering with the signal reception at th& teser. The test user is assumed
be located at the origin without loss of any generality simee focus only on homogenous
PPPs in this numerical study. The random fading coefficientdl tiers are assumed to be i.i.d.
random variables, drawn from a Rayleigh distribution withitunean power gain. Our results
are qualitatively the same for other fading distributionsts as Nakagami and Rician fading
distributions. The transmission power levels are sePas 4P, = 16 P;, where P, is assumed
to be unity.

In the upper figures of Fid.]1, we present the upper and lowend® for the Kolmorov-
Smirnov distance between the standardized AWI and nornsfilditions, i.e., we plot the
expressionsl(z) + = - ¢(x) and ¥(z) — = - ¢(z) appearing in Theoreml 1, with a variety of
values. Two different regimes are apparent in these figuoe.tlrfe moderate values at which
we want to estimate the CDF of standardized AWI, iR, I*%Zi]) < :c} with moderater
values, our uniform Berry-Esseen bound, whiclEis0.4785, provides better estimates for the
AWI distribution. On the other hand, for absolute valuegdarthan3.4 at which we want
to estimate the CDF of standardized AWI, i.€y{ 2=Ehl < :c} with |z| larger than3.4,

\/ Var(Iy)

our non-uniform Berry-Esseen bound, which3s f}rfji is tighter. These figures also clearly

demonstrate the effect of BS intensity parametgrson our Gaussian approximation bounds.
As suggested by Lemnid 1, the Kolmogorov-Smirnov distanteden the standardized AWI
and normal distributions approach the zero at a = Further, even if all BS intensity
parameters are fixed, the distance between the upper andboweds in Theorernl 1 disappears
at a rateO (|z| ) as|z| — oo due to the non-uniform bound.

When we compare upper lefthand side and righthand side fignrieig.[1, we observe a better
convergence behavior for smaller values of the path-logementa. This is due to the path-
loss model dependent constants appearing in Thebfem 1hisgpdrticular choice of path-loss
model and BS distribution over the plane, our approximatesults benefit from small values
of path-loss exponent, although the difference betweem thecomes negligible for moderate
to high values ofk.

We also performed Monte-Carlo simulations to compare satedl standardized AWI distri-
butions with the normal distribution for0* random BS configurations. The lower figures in

Fig. [ provides further numerical evidence for the Gaussipproximation of AWI in HCNs.
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Surprisingly, there is a good match between the simulateddstrdized AWI distribution and

the standard normal CDF even for sparsely populated HCBIsxi—= 1.

V. CONCLUSIONS

In this paper, we have investigated the Gaussian approxim#&br the AWI distribution in
the downlink of HCNs under a general set-up. Analytical lsimeasuring the Kolmogorov-
Smirnov distance between these two distributions have loé¢sined. The derived Gaussian
approximation bounds have also been illustrated numéridalough simulation of a particular
three-tier HCN scenario. A good statistical fit between iheutated (centralized and normalized)
AWI distribution and the standard normal distribution hasib observed even for moderate values

of BS intensities.

APPENDIX A

AUXILIARY LEMMAS FOR THEPROOF OFTHEOREM[]

In this appendix, we will provide five lemmas to construct fireof of TheorenilIl in the
next appendix. We start our analysis by showing that AWI hgwabability non-degenerate
distribution. By using Laplace functionals of Poisson meses (refer td [15] for details), we

can find the Laplace transform fdg as follows:

Loy (5) = E [e"1] = ﬁexp (—Ak [ A RO PR dtdh),

wheres > 0. The following lemma establishes that is of a non-degenerate distribution.
Lemma 3:For all s > 0, [;° [° (1 — e=*FhG®) 1y, (1) i, (h) dtdh< oo.
Proof: Recall thatG(t) = O (t~“¢) ast — co. Hence, we can find constanis > 0 and
B > 0 such thatG(t) < gt~ for all t > By. This implies that

/ / (1 — e7sPhCe®Y 1y (4) gy (h) dtdh

0 0
o) By 00 o) B

< [ e o) ey g et [ (1 e ) () g 1) e
0 0 0 B

< | ey + L (e o (o den )
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The first integral in the last line if](3) is finite sindé® is locally finite. To show the finiteness

of the second integral, we divide it into two parts as follows

/ / (1 B 6_3thﬁt*%> e (8) i, (h) dtdh

0 B1

_ /stB / 1 B e_nghBt*ak> m (t) 0k (h) dtdh
By

/ / _e—sthﬁt*“kMk() « () dtdh. 4)
B

sPp

The first integral in[(4) can be bounded as

1 *
[ [ (e g dean < [ (1= et e 0y
0 By b

which is finite sincel — e "* = O (t=*) and u;, (t) = O (t**~'¢) ast — oco. Hence, proving
the finiteness off >, o Io ( - e‘SP’vhﬁt*ak) ik (t) g (h) dtdh will complete the proof. To this
end, we need the following lemma.
Lemma 4:1 — e~ ™" < 2a (1 —e )t~ for all a > 1 andt large enough.
Proof: We let f; (a) = 1 — e~ ™ and g; (a) = 2a(1 —e )t~ Fora = 1, we have
lim {t(ak) =1and Jim f’fak) =2(1—e¢7') > 1. Hence, there exists a constaBf > 0 such that

t—o00

g¢ (1) > fi (1) for aII t > By. We now fix an arbitraryt greater thanB,. Then,

dft (a’) — % e—at*”‘k and dgt (CL)
da da

Thus, g; (a) grows faster thary; (a), implying thatg, (a) > f; (a) for all « > 1 andt¢ > Bs.

= 2T (1 +ae™® — e_a) .

u
By using Lemmal4, we can upper bound the second integral iag4)

/ / (1 - e—spkhﬁt*“k) (e (8) g (h) dtdh
— By

< / o () dt + / / 2sPyhf (1 — e ") gy (h) ¢~y (t) dhdt (5)
B1 Bs sP

for some positive constamii; large enough. The first integral inl (5) is finite due to locaiténess
of A®), The second integral ifi}(5) can be upper bounded 4, 5mY J5, t % . (t) dt, which
is finite sincemg_’}) < oo and yy (t) = O (t*~'¢) ast — oo. This completes the proof of
Lemmal3. [
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The following lemma shows that the probability distributiof 7, can be approximated by
the limit distribution of a sequence of random variablgsi.e., I, 4 I\ asn — oo.

Lemma 5:For eachn, let U1 AP U(’Z)(k) be a sequence of i.i.d. random variables with a

common probability density functiofy, (¢) = A“ﬁ’,;)()l{oqq} for tier-k, whereAlY = Xy, [ 1, (t)dt

and [.] is the smallest integer greater than or equal to its argunhet

K

wherel"’ = P, Zjﬁm 7 a, (Ufffj) and{Hi(k)}(_)o is an i.i.d. collection of random variables
with the common probability density functi(m(hz):llor k=1,...,K. Then I, converges in
distribution to/,, which is shown ad,, i>I>‘, asn — oo.

Proof: It is enough to show that ;, (s) converges tal, (s) pointwise as: tends to infinity.
Observing that the random variablé$’ for k = 1,..., K are independent, we can write the

Laplace transform of,, as

K K

(k)

Cr,(s) = [TE[e ] =TT £,00(5)
k=1 k=1

WhereLISf) (s) is the Laplace transform o™, which is given by

AR

L0 (s) ( AR / / — e ) 1y (1) (h)dtdhy '

As n grows to infinity, [ [* (1 — e=*PhC®) 1y, (2) gy, (h) dtdh converges to

/ / — e PO g (t) gi, (h) ditdh

and [° [° (1 — e=*PhC®)) 1y (1) g (h) dtdh < oo by Lemma[B. This observation leads to the
following identity

Tim £,a) (5) = exp <_)\k/0 /o (1 — e PR D) e (t) i () dtdh)
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which is exactly the Laplace transform of the AWI at the testncoming from tiek BSs alone.

Utilizing this result, we have

lim L7, (s) = JLIQOHLIW

n—oo
= H nh_)rrgo ,Clr(lk) (s)
k=1

— f[exp (—)\k /OOO /OOO (1 — emPhee®y 0 (2) gy, () dtdh)
— Li(5), )

which completes the proof. [ ]
The next lemma shows that the mean value and variandg oén also be approximated by
the mean value and variance bf.
Lemma 6:Let I,, be defined as i {6). Then,

lim E[I,] = E[Ix]

and
nh—>rgo Var (1) = Var (1)
Proof: Using Campbell's Theorem [15], we can exprésd,| and Var (I,) as
K 00
E[L) =) APy /0 G () e (£t
k=1
and

Var (1) = Zxkpkmm/ G2 () (1) dt.
k=1

We note that our modeling assumptions ensure thgt,] and Var (I,,) are both finite
numbers. Let the random variabléé,’;), Hi("”) and I”) be as defined in Lemmid 5. Further,
let m =E [Pk )Gy <U("C )] and al,(f“,f — \/Var <PkHZ.(’“)G,€ <U('“ )) We first observe that

,n

e (1] = ARl and Var (1) = (4] (o42) "

n n n

Furthermore, we can express ") as

Ao
ml = 2 G ) ()
n 0

\n



15

which implies thatlim,,_, . E [[}L’“)] = AkPka f Gr(t)ux(t)dt. Using this result, we have

. . . k)
lim E[f,] = lim > E[IP]

n—o0

Repeating the similar steps and using the identity
2 \.P2m )\2P2<mH)2 2
(o) = 2P0 " G )y~ ([ G )
m ()

we also obtairlim,, ., Var (I,,) = Var (I). [ ]
Lemma 7:Let&y, ..., &, be a sequence of independent and real-valued random \exisiinth
that E[¢;] = 0 and 37", E[€7] = 1. Let x = 7", E[|&J[]. Then,

= 31.935
Pr i<z —VY(r) < ymin | 04785, ——
{Zg } @) < xmin (04755, 275
for all z € R.
Proof: Please refer td [12]. [ |

APPENDIX B

PROOF OFTHEOREM[I

In this appendix, we provide the proof for our main Gaussippreximation result given
H . L pkH/_(k)Gk (U,.(k)> _ ()
in Theorem[L. To this end, we Ieflf ) TR i

“~ fork=1,...,K,n > 1 and
1<i< [A&Zﬂ,wherean: Var (I,)), and I, U

,m !

O'n

), AL andm!") are as defined in Appendix

n 2 .
We note thatE [52(?] = 0 and >;_, ZZL 1E {(f-(k)) } = 1. Hence, the collection of

i\n

random variableg ) | {gf’fj i=1,..., [A,&“H is in the correct form to apply Lemnia 7. We
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to complete the proof. We can upper boupg as
|

1 5 , ) )
= g o e 2 (1) (6 (012)) o () (6 (012))

s (U12) () "+ ()]

( ) 3
need to calculate, = > 12[ W 52(’;)

1 < )] k) k
o < = > [AY] {)Pk e (Ul +mif

1 K k P]ggm(kg)\k " 3 km 2)\19 9 ()
= 5> AT /0 (Gr(1))” pu(B)dt +3 =05 /0 (Gr()? pi(t)at - i)

lkmg))‘k /n (k)) 2 )
+3 Gr(t)pp(t)dt - \my, | + (my,, .
Szk) o k( ) k( ) ( 1, ) ( 1, )

3
We note thatn!") = o(1) and [Aﬁﬂ (mg"i) = 0(1) asn — oo, i.e, see the proof of
Lemmal®. Furthermore, we know thaf converges td/ar (Iy) asn — oo by Lemma®6. Using
these results, we have
K o
limsup v, < ————— > P [ (Gt m(o)e (8)
n—00 (Var (In)? =1 0

After substituting the expression f&far (1) (see the proof of Lemmia 6) inl(8), we obtain
>\,.CP,§mH3 I Ga(t) e (t)dt

l\)lw

lim sup y,, < Z 3 (9)
e k=1 (Zk 1)‘kP2mH2 fo GR(t)p(t )dt> i
By using Lemmad7, we have
(k)
Z Z Em < — ¥(z)| < xp, min (0.4785, 3179353> (20)
k=1 i=1 1+ |z]
for all n > 1 andz € R. Further, Lemmak]5 arid 6 imply that
A(k) [ ]
(k) 4, Iy —E Iy
;;S \/W as n — oo. (11)
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Hence, using[{9) and taking than sup of both sides in_10, we have

K |AY]
lim sup |Pr Z Z fz(];) <zp)—Y(z)
nree k=1 i=1
In—E|I
= |Pr LBl <zp—VY(x)

Var (In)
K (k) oo ~3
Ne P23 [7° G3 () i (t)dt
<> ePimygs J~ Grn(t) ~ min <0.4785,
(S AP [ GOm0

which completes the proof.

31.935 )
14 |z|*/)
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