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Abstract—This paper analyzes the fundamental limits of strate-
gic communication in network settings. Strategic communication
differs from the conventional communication paradigms in in-
formation theory since it involves different objectives for the
encoder and the decoder, which are aware of this mismatch
and act accordingly. This leads to a Stackelberg game where
both agents commit to their mappings ex-ante. Building on
our prior work on the point-to-point setting, this paper studies
the compression and communication problems with the receiver
and/or transmitter side information setting. The equilibrium
strategies and associated costs are characterized for the Gaussian
variables with quadratic cost functions. Several questions on the
benefit of side information in source and joint source-channel
coding in such strategic settings are analyzed. Our analysis
has uncovered an interesting result on optimality of uncoded
mappings in strategic source-channel coding in networks.

I. INTRODUCTION

Consider a Stackelberg game between a transmitter and a
receiver which have conflicting objectives. Both agents commit
to their mappings ex-ante, i.e., they decide the mappings
based on the source/channel statistics. Such communication
settings where the objectives of the transmitter and the receiver
differ are referred to here as “strategic communication.” While
such settings have been studied extensively in the economics
literature (see e.g., [1], [2]), an information theoretic analysis
of strategic communication has been undertaken only very
recently [3].

This work extends the strategic compression and joint
source-channel coding problems in point-to-point settings
(which were analyzed in our prior work [3]) to ones with
receiver/transmitter side information (SI). We consider the
strategic equivalents of the well-known Wyner and Ziv [4]
setting, and also study the associated source-channel coding
settings. Strategic aspect of the problem yields some inter-
esting variations of the well-known results associated with
non-strategic settings. For example, the celebrated result of
Wyner and Ziv on the absence of rate loss in quadratic-
Gaussian setting [4] (due to the non-availability of SI at
the transmitter side) also holds in strategic settings, i.e., the
presence of decoder SI at the encoder cannot be helpful (to the
transmitter) in strategic Wyner-Ziv. Another surprising result,
due to Goblick [5], is that single-letter linear coding is optimal
for joint source-channel coding of a Gaussian source over an
additive Gaussian channel for quadratic costs (distortion and
channel cost). It is well-understood that this optimality breaks
down when there is receiver SI. We analyze the strategic

equivalent of these settings and show that there exist problem
parameters such that single-letter linear strategies continue to
possess optimality even in the receiver SI settings.

We note in passing that the question of source compres-
sion with mismatched distortion measures has been addressed
before, see e.g., [6], and the references therein. The main
difference between our line of “strategic communication”
work and all earlier ones in information theory is that in
our problem, the encoder and the decoder are aware of the
mismatched objectives, and they act (design the encoding
and the decoding mappings) accordingly. In prior work, this
mismatch was considered to be created by nature (worst case,
or robust design) [6], [7] or by an adversarial secondary
decoder [8], but not as an intentional consequence of strategic
agents.

II. PRELIMINARIES

A. Notation

R and R+ denote the respective sets of real numbers
and positive real numbers. Let E(·) denote the expectation
operator. The Gaussian density with mean µ and variance
σ2 is denoted by N (µ, σ2). All logarithms in the paper are
natural logarithms and may in general be complex valued,
and the integrals are, in general, Lebesgue integrals. S de-
notes the set of Borel measurable, square integrable functions
{f : R → R}. We use standard information theoretic and
game theoretic notations for the related quantities throughout
this paper (cf. [9], [10]).

B. An Overview of Point-to-Point Results

Consider the general communication system whose block
diagram is shown in Figure 1. The source X and private
information θ are mapped into U ∈ R which is fully deter-
mined by the conditional distribution p(·|x, θ). For the sake of
brevity, and with a slight abuse of notation, we refer to this
as a stochastic mapping U = g(X, θ) so that

P(g(X, θ) ∈ U) =

∫

u′∈U

p(u′|x, θ)dxdθ ∀U ⊆ R (1)

holds almost everywhere in X and θ. Let the set of all
such mappings be denoted by Γ (which has a one-to-one
correspondence to the set of all the conditional distributions
that construct the transmitter output U ).

We consider an additive noise channel as shown in Figure
1, with Gaussian noise N ∼ N (0, σ2

N ), hence the input to
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the receiver is Y = U + N . We first consider the simpler
problem where there is no channel noise, i.e., we effectively
assume σ2

N = 0, and hence Y = U (almost everywhere).
The receiver produces an estimate of the source X̂ through a
mapping h ∈ S as X̂ = h(Y ). The objective of the receiver
is to minimize

DD = E{dD(X, X̂)} (2)

while that of the transmitter is to minimize

DE = E{dE(X, θ, X̂)} (3)

over the mappings g(·, ·) ∈ Γ, h(·) ∈ S. In game theoretic
terms, we consider a Stackelberg game, where the transmitter
(the leader) knows that the decoder (the follower) acts to
minimize its own measure in (2) as a function of encoding
mapping g(·, ·). From the transmitter’s point of view, we are
looking for an encoding mapping, g(·, ·), that minimizes a
distortion measured by dE , with a decoder h(·) matched to
the distortion measure dD.

Quadratic-Gaussian Setting: Most of our results concern
the setting where the source and the private information are
jointly Gaussian i.e., (X, θ) ∼ N (0, RXθ) where, without
any loss of generality, RXθ is parametrized as RXθ =

σ2
X

[
1 ρ
ρ r

]
, with r > ρ2, and the distortion measures are

given as follows:

dE(x, θ, y) = (x+ θ − y)2; dD(x, y) = (x− y)2. (4)

Hence, we have the following cost functions:

DE = E{(X + θ − X̂)2}; DD = E{(X − X̂)2}. (5)

The following theorem characterizes the equilibrium in the
noiseless quadratic-Gaussian (Q-G) setting

Theorem 1 ( [3]). In the noiseless Q-G setting, the unique
equilibrium is achieved by g(X, θ) = X+αθ and h(Y ) = κY
where α and κ are constants given as:

α =
A− 1

2(r + ρ)
, κ =

1 + αρ

1 + α2r + 2αρ
(6)

Distortion costs at the equilibrium are

DE =σ2
X

(
1 +

(A− 3)(r + ρ)

A− 1

)
(7)

DD =σ2
X

(
(r − ρ2)(A− 1)

A(2r +Aρ+ ρ)

)
(8)

where A =
√

1 + 4(r + ρ).

Strategic Compression: A memoryless source Xn and the
private information sequence θn are mapped to an index set
M by fE : Xn × θn −→ M. The decoder applies fD :
M −→ Yn to generate the reconstruction sequence X̂

n
. An

achievable triple (R,DE , DD) satisfies

1

n
log |M| ≤ R+ δ

E{dnE(Xn, θn, fD(fE(Xn, θn)))} ≤ DE + δ

E{dnD(Xn, fD(fE(Xn, θn)))} ≤ DD + δ ,

X̂+

N

Y

h(Y )
U

(X, ✓) g(X, ✓)
h(Y,W )

W

Fig. 1: The strategic variant of Gaussian test channel, with or
without receiver side information W .

X̂+

N

Y

h(Y )
U h(Y,W )

W

X g(X)

Fig. 2: The (non-strategic) Gaussian test channel, with or
without receiver side information W .

for every δ > 0 and sufficiently large n. The set of achievable
R-D triples (R,DE , DD) is denoted here as RDS which is
characterized in the following theorem.

Theorem 2 ( [3]). RDS is the convex hull of the set of
all triplets (R,DE , DD) for which there exist a function
h : Y → X̂ and a conditional distribution p(Y |X, θ) such
that

R ≥ I(X, θ;Y )

DE ≥ E{dE(X, θ, h(Y ))}, DD ≥ E{dD(X,h(Y ))}.
The region of R,DE , DD at equilibrium follows

from optimizing RS over p(Y |X, θ) which satisfies
E{dE(X, θ, h(Y ))} ≤ DE and h(·) which satisfies
E{dD(X,h(Y ))} ≤ DD:

R = inf
p(Y |X,θ)

inf
h
I(X, θ;Y ) (9)

[ [3]] The following theorem characterizes the strategic R-D
function for the quadratic-Gaussian equilibrium.

Theorem 3. For the quadratic-Gaussian setting, the equilib-
rium (DE , DD) pair in terms of R is:

DD =σ2
X2−2R

(
1+(2−2R−1)

(
(r − ρ2)(A− 1)

A(2r +Aρ+ ρ)

))
(10)

DE =σ2
X

(
1 + 2ρ+ r −

(
1− 2−2R

) A(r + ρ) + ρ

A− 1

)
(11)

where A =
√

1 + 4(r + ρ). The forward test channel that
achieves R-D function is

Y = X + αθ + S (12)

where S ∼ N (0, σ2
S) is independent of X and θ and α is

given in Theorem 1.

Remark 1. Theorem 3 admits an intuitive interpretation: in
the Q-G setting, strategic compression simplifies to compress-
ing X+αθ where α is the coefficient in the simple equilibrium.
This enables, in practice, the use of standard, “of the shelf”



encoding codes for strategic compression operating on the
effective source X + αθ.

Noisy Equilibrium: We first review the non-strategic equiv-
alent of the noisy equilibrium setting. Consider the general
communication system whose block diagram is shown in
Figure 2, the source X ∼ N (0, σ2

X) is to be transmitted to the
receiver via g ∈ S as U = g(X) over an additive Gaussian
channel; hence the input to the receiver is Y = U + N ,
where N ∼ N(0, σ2

N ) is statistically independent of X .
The receiver produces its output X̂ through an h ∈ S as
X̂ = h(Y ). The common objective of both agents is to
minimize E(X − X̂)2, while the transmitter has an average
power constraint E{U2

i } ≤ PT . The following result due to
Goblick [5], states Shannon sense1 optimality of single-letter
linear strategies.

Theorem 4 ( [5]). For the Gaussian test channel problem,
single-letter mappings

g(X) =

√
PT
σ2
X

X, h(Y ) =
σ2
X

PT + σ2
N

√
PT
σ2
X

Y

are the essentially unique2, Shannon sense optimal encod-
ing/decoding mappings.

This optimality breaks down in the presence of receiver side
information, shown as W in Figure 2, and linear strategies are
no longer optimal even in the zero-delay case (see e.g., [11]).

The following theorem states a similar optimality result in
the strategic version of the problem (without SI).

Theorem 5 ( [3]). For the noisy Q-G equilibrium, the strate-
gies

g(X, θ)=

√
PT

σ2
X(1+2αρ+α2r)

(X+αθ), h(Y )=E{X|Y }
(13)

with α =
−1+
√

1+4(r+ρ)

2(r+ρ) are Shannon sense optimal for all
power levels.

In Section V, we incorporate SI into the problem setting.
We show that, unlike its non-strategic counterpart which does
not admit a linear optimal solution, there exist values for the
problem parameters that render the solution to be linear.

III. NOISELESS EQUILIBRIUM

We begin with noiseless equilibrium with receiver SI. The
focus of our results is the quadratic-Gaussian setting, i.e.,
(X, θ,W ) ∼ N (0, RXθW ) where, RXθW is parametrized as

RXθW = σ2
X




1 ρX,θ ρX,W
ρX,θ rθ ρθW
ρX,W ρθW rW




1Shannon sense optimality refers to optimality within the strategies that
allow asymptotically high delay. If a single-letter strategy is Shannon sense
optimal, it is also optimal among all single-letter strategies, but the converse
does not hold.

2If g(X) = cX and h(Y ) = dY pair is a solution to this problem,
g(X) = −cX and h(Y ) = −dY is also a solution due to symmetry, which
is why the solution is “essentially” unique.

and the distortion measures are given as in (4). Hence, we
have (5) as the cost functions.

The following lemma states that mappings at the equilib-
rium are linear (affine if variables have non-zero mean).

Lemma 1. The noiseless Q-G equilibrium is achieved by
mappings

g(X, θ) = X + αSIθ, h(Y,W ) = bY + cW, (14)

for some αSI , b, c ∈ R.

The proof follows identical steps to those of Theorem 1,
and hence is omitted here. The coefficients, αSI , b, c at this
equilibrium can be explicitly computed as in the case of
Theorem 1, but this computation is rather involved and not
included here. Instead, we focus on the high level impact of
SI. We introduce DSI

E and DSI
D denote the distortion of the

transmitter and the receiver at the equilibrium.
Next, we analyze the benefit of the presence of receiver

SI at the transmitter side. This question is intimately related
to the feedback scenarios in strategic communication: if the
receiver has the option of conveying its side information to
the transmitter, should it choose to do so? Let us define DRSI

E

and DRSI
D as the distortions of the transmitter and the receiver

in the setting where SI is also available at the transmitter.
The following theorem states that in the Q-G setting, the
presence of the receiver SI at the transmitter is not useful
to the transmitter or to the receiver.

Theorem 6. In the Q-G setting, the following holds:

DRSI
E = DSI

E , DRSI
D = DSI

D .

Proof. We begin by showing optimality of linear strategies in
these setting where SI is available at both agents. This problem
simplifies to one without any SI, analyzed in Theorem 1, since
the transmitter can operate on (X−E{X|W}, θ−E{θ|W}) as
the effective (X, θ) pair and due to jointly Gaussian statistics,
(X − E{X|W}, θ − {θ|W}) is statistically independent of
W . Since the receiver has also access to W , the problem is
equivalent to minimizing E{(X + θ − X̂)2} for some k ∈ R.
Following the steps in the proof of Theorem 1, we can show
optimality of linear mappings for this modified problem which
implies their optimality for the original problem.

Given that Y = X + aθ + bW for some a, b ∈ R, and W
is also available at the receiver, and the receiver can eliminate
W from Y without any change to its estimate (note also that
there are no constraints on Y such as a power constraint).
Hence, Y = X+aθ+bW yields distortions (DRSI

E and DRSI
D )

identical to the ones achieved by Y = X + aθ (DSI
E and

DSI
D ).

Remark 2. An essential step in this argument is the absence
of constraint associated with Y . A constraint on Y , such a
power constraint, i.e., E{Y 2} ≤ P for some P ∈ R+ renders
the realization of Y useful to the transmitter and also to the
receiver as shown in Section V.



IV. STRATEGIC WYNER-ZIV PROBLEM

This section focuses on the Wyner-Ziv problem [4] in the
strategic settings. The following theorem, whose proof directly
follows from standard arguments, states the achievable rate-
distortion region (R,DE , DD triple), denoted by RDSIS .

Theorem 7. RDSIS is the convex hull of the set of all triplets
(R,DE , DD) for which there exist a function h : X×W → X̂
and a conditional distribution p(Y |X, θ) such that

R ≥ I(X, θ;Y )− I(Y ;W ) (15)
DE ≥ E{dE(X, θ, h(Y,W ))} (16)
DD ≥ E{dD(X,h(Y,W ))} (17)

In general, in non-strategic information theoretic settings,
side information has two types of benefits for the receiver,
demonstrated in Theorem 7 (for a detailed analysis, see [12,
Section 11] and [13]). The first one is estimation benefit,
which corresponds to the receiver using W (in addition to Y )
to generate X̂ , as shown in (16) and (17). This benefit also
exists in the single-letter case. The second one, namely the
rate reduction benefit only exists in the information theoretic
setting, and is demonstrated by the term I(Y ;W ) in (15). In
non-strategic settings, the encoder makes Y correlated with W
to maximize this rate reduction. However, in strategic settings,
there exist problem parameters that render Y independent of
W due to differences in dE and dD, hence make I(Y ;W )
vanish. This observation plays a pivotal role in the noisy
equilibrium with SI setting.

Next, we extend our analysis to the Q-G setting, as shown
in Figure 1, where X, θ,W is jointly Gaussian. The following
theorem characterizes the forward test channel that achieves
the RDSIS .

Lemma 2. In the Q-G setting, RDSIS is achieved by

Y = X + β(R)θ + S

where S ∼ N (0, σ2
S) is statistically independent of X , θ and

W . The equilibrium coefficient β(R) as well as σ2
S depend on

the allowed rate.

Proof. The fact that jointly Gaussian X, θ, Y achieves RDSIS
follows from Lemma 1 and the entropy maximization property
of jointly Gaussian distribution subject to second order con-
straints [14]. From the definition of the problem, we have the
natural Markov chain Y − (X, θ)−W (see e.g., [15]). Hence,
we have

Y = X + βθ + S (18)

for some β ∈ R and S ∼ N (0, σ2
S) is independent of X, θ

and W . Plugging (18) into (15), we have ( 19). and into (16),
we obtain (20). noting that h(Y,W ) = E{X|Y,W} due to
quadratic dD and is linear due to jointly normal X,Y,W .
Using (19), we have

σ2
S

σ2
X

=
1

22R − 1

(
1 + β2rθ + 2βρXθ −

(ρXW + βρθW )2

rW

)

(21)

We next note that the objective of the encoder is to minimize
DE over the possible choices of β, which is equivalent to
maximizing

J(β) = − (1 + βρXθ)(β
2rθ + 2βρXθ)

1 + β2rθ + 2βρXθ +
σ2
S

σ2
X

(22)

over β. Plugging (21) into (22) we observe that β∗ =
argmax J(β) depends on R.

Remark 3. In Theorem 3, the compression coefficient β is
independent of the allowed rate, and identical to the equi-
librium coefficient α in Theorems 1 and 5. Here, due to SI,
particularly, the I(Y ;W ) term, β depends on the allowed rate,
and is obviously different from αSI in Lemma 1 where there
is no rate constraint.

Next, we analyze the benefit of the presence of SI at the
transmitter side. A well-known result in networked source
coding is the “no rate loss” result of Wyner and Ziv stating
that there is no loss of not having access to the receiver SI
at the transmitter. At first sight, it might seem that due to the
strategic aspect of the problem at hand, the presence of this
SI should help to the transmitter (or even to the receiver).
The following theorem states that this intuition is not correct,
specifically, there is no benefit of the presence of the receiver
SI at the transmitter side.

Theorem 8. In the Q-G setting, the following holds:

RDSIS = RDRSIS .

Proof. We first note that, following the arguments in the proof
of Theorem 6, the transmitter SI does not affect the distortions
(DE and DD). When SI is available at both ends, it can be
shown using the arguments in [16] and Theorem 3 that the
rate expression simplifies to R = min I(X, θ;Y |W ) where
minimization is over all conditional probability distributions
p(Y |X, θ,W ), while when SI is only available at the encoder
we have the same minimization over p(Y |X, θ). Hence, the
only difference is due to the additional Markov chain con-
straint Y − (X, θ) − W , it is well-known that for jointly
Gaussian variables this constraint is always satisfied (see e.g.,
[4], [15]), hence does not affect the minimization.

V. NOISY EQUILIBRIUM

In this section, we analyze Q-G noisy equilibirum with
the receiver SI. First, we investigate the optimal single-letter
strategy within the set of affine strategies. The

Lemma 3. Optimal linear strategies at the noisy Q-G setting
with SI are

g(X, θ) =

√
PT

σ2
X(1+2αSIρX,θ +α2

SIrθ)
(X + αSIθ), (23)

h(Y,W ) =E{X|Y,W} (24)

where αSI satisfies the equilibrium in Theorem 1.

The proof of Lemma ?? follows from standard minimum
mean-squared error (MMSE) computations, very similar to



R =
1

2
log

(
1 +

σ2
X

σ2
S

(
1 + β2rθ + 2βρXθ −

(ρXW + βρθW )2

rW

))
(19)

DE = σ2
X


1 + 2ρXθ + rθ −

(1 + βρXθ)(β
2rθ + 2βρXθ)

1 + β2rθ + 2βρXθ +
σ2
S

σ2
X


 (20)

derivation of DE in the proof of Lemma 2, and is omitted here.
Next, we present our main result pertaining to this setting.

Theorem 9. In strategic, noisy Q-G setting with SI, single-
letter linear strategies stated in Lemma 3 are Shannon sense
optimal if and only if

ρX,W = −ρθ,Wβ(R), (25)

and
R =

1

2
log

(
1 +

PT
σ2
N

)
(26)

is the capacity of the channel.

Proof. Equating the outer bound obtained by simply applying
data processing inequality RSIS (D) = C(P ) to the inner bound
that results in the linear mapping in Lemma 3, we get a
matching condition which implies that for the Shannon sense
optimality, the communication channel in Figure 1 must be
identical to the R-D test channel provided in Lemma 2. Note
that αSI does not depend on the channel parameters PT or σ2

N .
However, β(R) depends on the rate, and hence on the channel
parameters, due to (26). The only way to make the R-D test
channel identical to the actual one is to operate at the rate point
where β(R) = α. From Theorem 7, β(R) = α implies that
I(Y ;W ) = 0 which is equivalent to statistical independence
of Y and W . Since all variables are jointly Gaussian with
zero mean, the statistical independence implies uncorrelated
variables, hence we have (25).

Remark 4. Theorem 9 does not preclude the possibility of
optimality of the mappings in (24) within the set of single-
letter strategies even if they do not satisfy (25) in which case
they are strictly suboptimal in the Shannon sense (i.e., among
n-letter strategies).

VI. DISCUSSION

In this paper, we have analyzed the impact of side infor-
mation on strategic compression and source-channel coding
problems. Particularly, we have shown that the equilibrium for
the quadratic-Gaussian setting with receiver side information
admits linear optimal strategies, if there is no channel noise
present. Otherwise, i.e., for the noisy case, it does so for the
very specific, matched case of the channel noise, the allowed
power and the joint statistics of source-private information-
side information. Some future directions for research on this
general class of problems include a detailed study of vector
and networked extensions, and applications of the developed
strategic communication framework to other problem areas.
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