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Abstract—In this paper, we study the information-theoretic
limits of community detection in the symmetric two-community
stochastic block model, with intra-community and inter-
community edge probabilities a

n
and b

n
respectively. We consider

the sparse setting, in which a and b do not scale with n, and
provide upper and lower bounds on the proportion of community
labels recovered on average. We provide a numerical example for
which the bounds are near-matching for moderate values of a−b,
and matching in the limit as a− b grows large.

I. INTRODUCTION

The problem of identifying community structures in undi-
rected graphs is a fundamental problem in network analysis,
machine learning, and computer science [1], and is relevant
to numerous practical applications such as social networks,
recommendation systems, image processing, and biology.

The stochastic block model (SBM) is a widely-used statis-
tical model for studying this problem. Despite its simplicity,
this model has helped to provide significant insight into the
problem, has led to the development of several powerful
community detection algorithms, and still comes with a variety
of interesting open problems.

One such open problem, and the focus of the present paper,
is to characterize the necessary and sufficient conditions for
partial recovery, in which one seeks to correctly recover
a fixed proportion of the community assignments. This is
arguably of more practical interest compared to exact recovery,
which is usually too stringent to be expected in practice,
and compared to correlated recovery, which only seeks to
marginally beat a random guess.

A. The Symmetric Two-Community SBM
We focus on the simplest SBM, in which there are only

two communities and the edge probabilities are symmetric.
Specifically, the n nodes, labeled {1, . . . , n}, are randomly
assigned community labels σ = {σ1, . . . , σn}, where each σi
equals 1 or 2 with probability 1

2 each. Given the community
labels, a set of

(
n
2

)
unordered edges E = {Eij : i 6= j} is

generated according to

P[Eij = 1 |σ] =

{
a
n σi = σj
b
n σi 6= σj ,

(1)
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for some constants a, b > 0, with independence between
different (i, j) pairs. We assume throughout the paper that a
and b are fixed (i.e., not scaling with n), and hence the graph
is sparse. We also assume that a > b (i.e., on average there are
more intra-community edges than inter-community edges).

Given the edge set E, a decoder forms an estimate σ̂ :=
{σ̂1, . . . , σ̂n} of the communities. Note that in this paper, we
assume that a and b are known; this assumption is common
in the literature, though sometimes avoided [2], [3].

B. Previous Work and Contributions

Studies of the SBM can roughly be categorized according
to the recovery criteria of correlated recovery, exact recovery,
and partial recovery. A comprehensive review is not possible
here, so we mention only some key relevant works.

The correlated recovery problem only seeks to determine
whether any community structure is present or absent, thus
insisting on classifying only a proportion 1

2 (1 + ε) correctly
for some arbitrarily small ε > 0. An exact phase transition
between success and failure is known to occur according to
whether (a− b)2 > 2(a+ b) [4], [5], as was conjectured in an
earlier work based on tools from statistical physics [6].

In the exact recovery problem, one seeks to perfectly recover
the two communities. This is impossible with the above-
mentioned scaling laws; instead, the main scaling regime
of interest is a, b = Θ(log n), in which a phase transition
occurs according to whether 1

logn

(
a+b

2 −
√
ab
)
> 1 [7].

Furthermore, this is achievable via practical methods [7], [8],
and extensions to the case of multiple communities and non-
symmetric settings have been given [9].

Several works have provided partial recovery bounds for the
case that a and b exhibit certain scaling laws, or are finite
but sufficiently large. In [10], it is shown that a practical
algorithm based on belief propagation achieves the optimal
recovery proportion when (a− b)2 > C(a+ b) for sufficiently
large C. Bounds for several asymptotic scalings of a and
b are given in [3], [11]–[13], with [3], [11] considering a
regime where the recovery proportion tends to zero, and
[12], [13] considering cases where the proportion tends to a
constant. A non-asymptotic bound is given in [14], but the
conditions on a and b are written in terms of a loose constant
whose optimization is not attempted. We are not aware of
any previous works seeking tight performance bounds at finite
values of a and b.
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In this paper, our goal is to partially close this gap by
providing partial recovery bounds specifically targeted at the
case that a and b are fixed and not necessarily large. We
consider the partial recovery criterion

r(σ, σ̂) := min
π∈Π

1

n

n∑
i=1

1
{
π(σi) 6= π(σ̂i)

}
, (2)

where Π contains the two permutations of {1, 2}; this is
included since one can only hope to recover the communities
up to relabeling. Note that r(σ, σ̂) is a random variable; we
will primarily be interested in characterizing its expectation,
but we will also present a high-probability bound.

C. Notation

All logarithms have base e, and we define the binary entropy
function in nats as H2(α) := −α logα− (1− α) log(1− α).
The indicator function is denoted by 1{·}, and we use the
standard asymptotic notations O(·), o(·), and Θ(·).

II. MAIN RESULTS

Here we present our main results, namely, information-
theoretic bounds characterizing how the proportion of errors
r(σ, σ̂) can behave. The proofs are given in Section III.

A. Necessary Condition

We begin with a necessary condition that must hold for any
decoding procedure.

Theorem 1. (Necessary Condition) Under the symmetric SBM
with fixed parameters a > b > 0, any decoder must yield

lim inf
n→∞

E
[
r(σ, σ̂)

]
≥ P

[
Z1 < Z2

]
+

1

2
P
[
Z1 = Z2

]
, (3)

where Z1 ∼ Poisson
(
a
2

)
, Z2 ∼ Poisson

(
b
2

)
are independent.

The proof is based on a global to local relation from [11],
roughly stating that the best average error rate is equal to the
best average error rate in estimating a single assignment (node
1, say). Assuming the best case scenario that all other nodes
are estimated correctly, the estimation of the remaining node
roughly amounts to performing a Poisson hypothesis test [9],
thus yielding the expression in (3) in terms of Poisson random
variables.

B. Sufficient Conditions

Next, we provide our sufficient conditions. Note that these
are purely information-theoretic, as the decoders used in the
proofs are not computationally feasible. We first provide a high
probability bound based on a minimum-bisection decoder,
which has also been considered in previous works such as
[7]. We will see that this bound is reasonable but sometimes
loose; nevertheless, it will provide the starting point for an
improved bound given in Theorem 3 below.

Theorem 2. (High-Probability Sufficient Condition) Under
the symmetric SBM with fixed parameters a > b > 0, there

exists a decoder such that, for any ε > 0, there exists ψ > 0
such that

P[r(σ, σ̂) > α+ ε] ≤ e−ψn +
1

n2
, (4)

for sufficiently large n, where α ∈
(
0, 1

2

]
is defined to be the

solution to
a+ b

2
−
√
ab =

H2(α)

α(1− α)
(5)

if such a solution exists, and α = 0.5 otherwise.

Our main sufficient condition is given as follows.

Theorem 3. (Refined Sufficient Condition) Under the sym-
metric SBM with fixed parameters a > b > 0, suppose that
there exists a value α ∈

(
0, 1

4

)
satisfying (5). Then there exists

a decoding procedure such that

lim sup
n→∞

E
[
r(σ, σ̂)

]
≤ P

[
Z1,α < Z2,α

]
+

1

2
P
[
Z1,α = Z2,α

]
,

(6)
where Z1,α ∼ Poisson

(
a
2 (1 − α) + b

2α
)

and Z2,α ∼
Poisson

(
b
2 (1− α) + a

2α
)

are independent.

The proof uses a two-step decoding procedure inspired by
[3], in which the first step uses the decoder from Theorem
2, and the second step performs local refinements. We again
liken this to a Poisson-based testing procedure to obtain (6).
Note that this condition takes a similar form to that in (3); we
will see numerically in Section II-D that the gap between the
two is often small, particularly when a− b is large.

C. Discussion and a Conjectured Sufficient Condition

The proof of our main achievability bound, Theorem 3, is
based on using a high probability bound in the first step, and
then obtaining an improved bound in the second step using
local refinements. If we could show that the average-distortion
bound in Theorem 3 also holds with high probability (e.g.,
1−o

(
1
n

)
), then we could use this overall procedure in the first

step of a new two-step procedure, and then obtain a further
improved bound of the form (6), with our current achievability
(6) bound playing the role of α.

One could then imagine repeating this argument several
times, further improving the bound on each iteration. See
Section II-D for a numerical example.

Even if this argument can be formalized, there is still a
major hurdle in handling small values of a− b: We require an
initial high probability bound with a fraction of errors strictly
smaller than 1

4 . Theorem 2 does not suffice for this purpose
in general, and refined methods for obtaining such bounds
would be of significant interest. Alternatively, one could seek
to adjust the two-step procedure so that one may start with a
high probability bound considering any fraction of errors in(
0, 1

2

)
, rather than just

(
0, 1

4

)
.

D. Numerical Example

In Figure 1, we plot our asymptotic bounds for various
values of (a, b) such that a = 2b. Thus, higher values of
a (or equivalently, b) correspond to a larger gap between a
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Figure 1: Asymptotic partial recovery bounds with a = 2b.
The vertical axis gives the limit of E[r(σ, σ̂)] as n→∞.

and b, making the community detection problem easier. Along
with the main achievability and converse bounds, we plot the
high probability achievability bound (i.e., the solution to (5)).
Moreover, we plot the bounds that would arise from the first
two iterations of the iterative procedure corresponding to the
conjectured sufficient condition described in Section II-C.

While the high probability bound provides a similar rate
of decay to the converse bound as a increases, the gap
between the two at finite values of a remains significant.
In contrast, our main achievability bound from the two-step
procedure approaches the converse bound as a → ∞, which
is to be expected since this procedure bears similarity to the
asymptotically optimal two-step procedure proposed in [3].

In contrast, our bounds have more room for improvement
at low values of a. In particular, results from the correlated
recovery problem [4], [5] reveal that one can achieve an error
rate better than 1

2 if and only if (a − b)2 > 2(a + b), or
equivalently a > 12 (since we are considering the case a =
2b). Our converse bound is below 1

2 for all a > 0, our high-
probability achievability bound is still equal to 1

2 for a = 60,
and our refined achievability bound is only valid for a & 70,
since it relies on the high-probability bound being below 1

4 .
Closing these gaps for small values of a and b is a

challenging but interesting direction for future work. While
our conjectured sufficient condition appears that it could help
significantly at moderate values of a and b, it still has the
same limitations when these values are small. The techniques
of [12] may also be useful, since the genie argument used in
the converse part is more general than the one we use, and
the belief propagation decoder used in the achievability part
is potentially more powerful at small values of a and b.

III. PROOFS

Here we provide the proofs of Theorems 1–3. Due to space
constraints, we omit some details that are in common with
previous works such as [7] and [11].

A. Proof of Necessary Condition (Theorem 1)

The proof is based on a global to local lemma given in [11].
Recall that Π is the set of permutations of {1, 2} corresponding
to reassignments (of which there are only two, since we con-
sider the two-community case), and define S(σ, σ̂) = {σ′ :
σ′ = π(σ̂), r(σ, σ̂) = 1

n

∑n
i=1 1{π(σi) 6= π(σ̂i), π ∈ Π}

}
,

containing the reassignments of σ̂ corresponding to the set
of permutations achieving the minimum in (2) (typically a
singleton).

Lemma 1. (Global to local [11]) The minimum value of
E[r(σ, σ̂)] over all decoders is equal to the minimum value
of E

[
1

|S(σ,σ̂)|
∑

σ′∈S(σ,σ̂) 1{σ1 6= σ′1}
]

over all decoders.

This result essentially allows us to obtain a lower bound
on the error rate E[r(σ, σ̂)] via a lower bound on the er-
ror rate corresponding to the first node. For the latter, we
consider a genie-aided setting in which the true assignments
of nodes 2, . . . , n are revealed to the decoder, which is left
to estimate node 1. We can then assume without loss of
optimality that σ̂i = σi for i = 2, . . . , n, and in this
case we have S(σ, σ̂) = {σ̂}. Thus, we are left to bound
E
[

1
|S(σ,σ̂)|

∑
σ′∈S(σ,σ̂) 1{σ1 6= σ′1}

]
= P[σ1 6= σ̂1]. Note

that the information from the genie only makes the recovery
of σ1 easier, and hence any converse bound for this setting is
also valid for the original setting.

Suppose that, among the revealed nodes 2, . . . , n, there are
n1 := n−1

2 (1+δ) nodes in community 1, and n2 := n−1
2 (1−δ)

in community 2, for some δ ∈ [−1, 1]. Since the community
assignments are independent and equiprobable, Hoeffding’s
inequality [15, Ch. 2] gives the following with probability at
least 1− 1

n2 :

|δ| ≤ 2

√
log n

n− 1
. (7)

For fixed δ, the study of the error event {σ1 6= σ′1} in the
genie-aided setting comes down to a binary hypothesis testing
problem, where hypothesis Hν (ν = 1, 2) is that σ1 = ν.
Letting `ν denote the number of edges from node 1 to nodes
from 2, . . . , n that are in the ν-th community, we have

H1 : `1 ∼ Binomial
(n− 1

2
(1 + δ),

a

n

)
,

`2 ∼ Binomial
(n− 1

2
(1− δ), b

n

)
(8)

H2 : `1 ∼ Binomial
(n− 1

2
(1 + δ),

b

n

)
,

`2 ∼ Binomial
(n− 1

2
(1− δ), a

n

)
. (9)

We now observe, as in [9], that this problem can be approxi-
mated by a Poisson hypothesis testing problem of the form

H′1 : `1 ∼ Poisson
(a

2
(1 + δ)

)
, `2 ∼ Poisson

( b
2

(1− δ)
)

(10)

H′2 : `1 ∼ Poisson
( b

2
(1 + δ)

)
, `2 ∼ Poisson

(a
2

(1− δ)
)
.

(11)



�̂1 �̂2

�1

�2

n1 � k1
n2 � k2

k1k2

Figure 2: Sizes of true communities and their estimates in the
case that δ > 0 (i.e., n1 > n2).

Specifically, we have from Le Cam’s inequality [9, Eq. (32)]
that each Binomial distribution above differs from the corre-
sponding Poisson distribution by O

(
1
n

)
in the total-variation

norm, and hence the difference in the error rates resulting from
the two hypothesis testing problems is also O

(
1
n

)
.

Recalling that our hypotheses are equiprobable, a substi-
tution of the Poisson probability mass function (PMF) pk =
λk

k! e
−λ into (10)–(11) reveals that the decision rule minimizing

the error rate is to choose H′1 if and only if

`1 ≥ `2 +
δ(b− a)

log a
b

. (12)

Using (7) and the fact that a and b do not scale with n, we
find that

∣∣ δ(b−a)
log a

b

∣∣ < 1 for sufficiently large n, and hence the
decision simply amounts to testing which of `1 and `2 is larger,
with ties broken according to whether δ is positive (choose
H′1), negative (choose H′2), or zero (choose randomly). For
example, under H′1 with δ = 0, we find that the probability
of incorrectly choosing H′2 is

P[Z ′1 < Z ′2] +
1

2
P[Z ′1 = Z ′2], (13)

where Z ′1 ∼ Poisson
(
a
2 (1+δ)

)
and Z ′2 ∼ Poisson

(
b
2 (1−δ)

)
.

Since δ → 0 by (7), the error rate in (13) approaches that
given in (3). By handling the other cases of H and sign(δ)
similarly, we find that the overall error rate also approaches
the right-hand side of (3), thus completing the proof.

B. Proof of High-Probability Sufficient Condition (Theorem 2)

The theorem is trivial for α = 1
2 , since even a random guess

recovers half of the communities correctly on average; we thus
focus on the case that α ∈

(
0, 1

2

)
. We also assume that n is

even; otherwise, the same result follows by simply ignoring
an arbitrary node and assigning its community at random.

We consider a minimum-bisection decoder that splits the n
nodes into two communities of size n

2 , such that the number
of inter-community connections is minimized. This decoder
was studied in several previous works such as [7], [11].

We begin by conditioning on the true community assign-
ments having n1 = n

2 (1 + δ) nodes in community 1, and
n2 = n

2 (1 − δ) nodes in community 2. As we showed in the
converse proof, we have with probability at least 1− 1

n2 that
δ satisfies (7); this is what leads to the second term in (4).

Consider a fixed estimate σ̂ of the communities from the
above procedure, and suppose that there are kν indices such

that σi = ν but σ̂i 6= ν (ν = 1, 2). See Figure 2 for an
illustration. Since the decoder always declares exactly n

2 nodes
to be in each of the two communities, we must have n

2 (1 +
δ) − k1 + k2 = n

2 and n
2 (1 − δ) − k2 + k1 = n

2 , and hence
k1−k2 = n

2 δ or equivalently k1+k2 = 2k2+ n
2 δ. Since k1+k2

corresponds to the total number of mis-labeled communities,
and since δ satisfies (7), in order to have r(σ, σ̂) > α(1+η), it
is necessary that k2 >

n
2α and k2 <

n
2 (1−α) for sufficiently

large n (recall from (2) that the recovery is only defined up
to relabeling).

We now consider the probability that a fixed estimate yield-
ing some (k1, k2) pair is chosen by the minimum-bisection
decoder. We focus on the case that k2 ∈

(
n
2α,

n
4

]
and k1 ≤ k2

(i.e., δ > 0), since the cases with k2 ∈
[
n
4 ,

n
2 (1 − α)

]
or

k2 > k1 are handled analogously. In order for an error to
occur, the true assignment must yield a lower number of
inter-community connections than the assignment obtained
by swapping k1 incorrect nodes from community 1 with
k1 incorrect nodes from community 2. Such a swap causes
k1(n1 − k1) + k1(n2 − k2) = k1(n − k1 − k2) inter-
community edges to have probability b

n instead of an , as well as
k1(k1−k2) = k1

n
2 δ inter-community edges to have probability

a
n instead of b

n . Thus, in order for an error occur, a random
variable of the following form (corresponding to the inter-
community edges differing in the two assignments) must be
non-negative:

Ψk1,k2 := W1,b −W1,a +W2,a −W2,b, (14)

where W1,a ∼ Binomial
(
k1(n − k1 − k2), an

)
and W2,a ∼

Binomial
(
k1

n
2 δ,

a
n

)
, and analogously for W1,b and W2,b with

b in place of a.
Applying the union bound and a simple counting argument,

we obtain

P[error |σ] ≤ 2

n
4∑

k2= n
2 α

(
n1

k1

)(
n2

k2

)
P[Ψk1,k2 > 0], (15)

where k1 = k2 + n
2 δ, and σ is an arbitrary assignment with nν

nodes in community ν (ν = 1, 2). The factor of 2 here arises
from a symmetry argument with respect to the estimates with
k2 <

n
4 and k2 >

n
4 .

Let PA and PB denote Bernoulli PMFs with parameters
a
n and b

n , respectively. An application of the Chernoff bound
yields for any λ > 0 that

P[Ψk1,k2 > 0] ≤
( ∑
za,zb

PA(za)PB(zb)e
λ(zb−za)

)m1

×
( ∑
za,zb

PA(za)PB(zb)e
λ(za−zb)

)m2

, (16)

where m1 := k1(n − k1 − k2), m2 := k1
n
2 δ, and za, zb ∈

{0, 1}. It is straightforward to show that the choice of λ

minimizing the first summation is λ = 1
2 log

a
n (1− b

n )
b
n (1− a

n )
, and that

the summation evaluates to 2
√

a
n (1− b

n ) bn (1− a
n ) + a

n
b
n +(

1 − a
n

)(
1 − b

n

)
. The second summation also behaves as



1+Θ
(

1
n

)
, and since m1 = Θ(n2) but m2 = o(n2), we obtain

the following after applying some asymptotic expansions:

− 1

n
logP[Ψk1,k2 > 0] ≥ m1

n2

(
2
(a+ b

2
−
√
ab
))

+o(1). (17)

Supposing now that k2 = n
2α0 for some α0 ∈

[
α, 1

2

]
(see

(15)), we readily obtain from (7) that k1 = n
2α0(1 + o(1))

and m1 = 1
2n

2α0(1 − α0)(1 + o(1)), and we similarly have
n1 = n

2 (1 + o(1)) and n2 = n
2 (1 + o(1)). Substituting

these estimates and (17) into (15) and using the identity
1
N log

(
N
θN

)
= H2(θ)(1 + o(1)), we find that the right-hand

side of (15) decays to zero exponentially fast provided that

H2(α0)− α0(1− α0)
(a+ b

2
−
√
ab
)
< 0 (18)

for all α0 ∈
[
α, 1

2

]
. Since H2(α0)

α0(1−α0) is monotonically decreas-
ing in this range, this holds provided that α satisfies (5).

C. Proof of Refined Sufficient Condition (Theorem 3)

We again assume that n is even, and the case that n is
odd follows similarly by ignoring one node and assigning its
community randomly. Theorem 2 allows us to prove Theorem
3 via the following two-step procedure [3]:

1) For each j = 1, . . . , n, do the following:
a) Apply the decoder from Theorem 2 to the set

of nodes {1, . . . , n}\{j} to obtain the estimates
{σ̃(j)

i }i 6=j . Choose the remaining estimate σ̃(j)
j in

such a way that there are an equal number of nodes
with σ̃(j)

j = 1 and σ̃(j)
j = 2.

b) If there are more values of i with σ̃(j)
i = σ̃

(1)
i than

σ̃
(j)
i 6= σ̃

(1)
i , set each σ̂

(j)
i = σ̃

(j)
i . Otherwise, set

each σ̂(j)
i to be the value differing from σ̃

(j)
i .

2) For each j = 1, . . . , n, set the final estimate σ̂j = 1 if
there are more edges from node j to nodes with σ̂(j)

i = 1

than to nodes with σ̂(j)
i = 2, and set σ̂j = 2 otherwise.

We again write n1 = n
2 (1+δ) and n2 = n

2 (1−δ), and note
that δ satisfies (7) with probability at least 1− 1

n2 .
Let α′ be an arbitrary value in the range

(
α, 1

4

)
. For each

j = 1, . . . , n, let k̃(j)
ν (ν = 1, 2) be the number of nodes

from the ν-th community such that the j-th decoder in Step 1
outputs σ̃(j)

i 6= ν, and let k(j)
ν be defined similarly with σ̂

(j)
i

in place of σ̃(j)
i . By Theorem 2 and the union bound, with

probability 1−O
(

1
n

)
, we have for all j that either k̃(j)

1 +k̃
(j)
2 ≤

nα′ or k̃(j)
1 + k̃

(j)
2 ≥ n(1− α′).

We consider the case that k̃(1)
1 + k̃

(1)
2 ≤ nα′; the other case

k̃
(1)
1 +k̃

(1)
2 ≥ n(1−α′) is handled analogously. From the above

definitions and Step 1b above, we trivially have k(1)
ν = k̃

(1)
ν ,

and hence k
(1)
1 + k

(1)
2 ≤ nα′. We claim that it is also the

case that k(j)
1 + k

(j)
2 ≤ nα for j = 2, . . . , n. Indeed, since

α′ < 1
4 , the contrary would imply that less than a quarter of

the σ̂(1)
i differ from the true assignments and more than three

quarters of the σ̂(j)
i differ from the true assignments, in turn

implying that more than half of the σ̂(1)
i differ from the σ̂(j)

i ,
in contradiction with Step 1b above.

By definition, among the σ̂(j)
i , there are n

2 (1+δ)−k(j)
1 +k

(j)
2

nodes estimated to be in community 1, and n
2 (1− δ)− k(j)

2 +

k
(j)
1 to be in community 2. Since the decoder from Step 1

outputs an estimate with an equal number n
2 of nodes in each

community, this implies that k(j)
1 − k

(j)
2 = n

2 δ. Summing this
with k

(j)
1 + k

(j)
2 ≤ nα′, we obtain k

(j)
1 ≤ n

2

(
α′ + δ

2

)
, and

subtracting the two equations similarly gives k(j)
2 ≤ n

2

(
α′− δ2

)
.

Finally, we consider the testing procedure given in Step 2
above. We have the following when σj = 1: (i) To nodes with
σ̂

(j)
i = 1 there are n1−k(j)

1 potential edges having probability
a and k

(j)
2 having probability b; (ii) To nodes with σ̂

(j)
i = 2

there are n2 − k(j)
2 potential edges having probability b and

k
(j)
1 having probability a. When σj = 2, the same is true with

the roles of a and b reversed.
The proof is now completed in the same way as Section

III-A by approximating each of these numbers of edges by
a Poisson distribution. The above estimates, along with (7),
reveal that n1 and n2 behave as n

2 + o(n), and each k
(j)
ν is

upper bounded by n
2α
′+ o(n). In the worst case scenario that

these upper bounds are met with equality, the parameters of
the resulting Poisson distributions converge to a

2 (1−α′)+ b
2α
′

and b
2 (1−α′) + a

2α
′. Since α′ can be chosen to be arbitrarily

close to α, this leads to the final bound given in (6).
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