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Abstract

In this paper, we propose systematic block Markov supetipogiransmission of repetition (BMST-
R) codes, which can support a wide range of code rates buttamairssentially the same encod-
ing/decoding hardware structure. The systematic BMST-tResaesemble the classical rate-compatible
punctured convolutional (RCPC) codes, except that theytyseally non-decodable by the Viterbi
algorithm due to the huge constraint length induced by treckabriented encoding process. The
information sequence is partitioned equally into blocksl amnsmitted directly, while their replicas
are interleaved and transmitted in a block Markov supetipmsimanner. By taking into account that
the codes are systematic, we derive both upper and lowerdsoon the bit-error-rate (BER) under
maximuma posteriori (MAP) decoding. The derived lower bound reveals connestiamong BER,
encoding memory and code rate, which provides a way to degogu systematic BMST-R codes
and also allows us to make trade-offs among efficiency, peidoce and complexity. Numerical results
show that: 1) the proposed bounds are tight in the high sitgnabise ratio (SNR) region; 2) systematic
BMST-R codes perform well in a wide range of code rates; argy8jematic BMST-R codes outperform

spatially coupled low-density parity-check (SC-LDPC) esdinder an equal decoding latency constraint.
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I. INTRODUCTION

Since the invention of turbo codes [1] and the rediscovetpwfdensity parity-check (LDPC)
codes [2], constructing practical good codes has been lagiragtive research topic in our field.
Recent developments include the invention of polar codésaf®l flourishment of spatially
coupled LDPC (SC-LDPC) codes (first introduced as LDPC chlutianal codes [4] and later
recast as SC-LDPC codes [5]), both of which are provable agpachieving [3,5-7] over
memoryless binary-input symmetric-output channels. Respis success in theory, more flexible
constructions are still desired in practice. Especiatlys ioften desirable in practice to design
codes that support a variety of code rates but maintain #abgrnhe same encoding/decoding
hardware structure. One way to achieve this is the use ofcratgatible codes, which can be
constructed from a mother code by using the puncturing amtending techniques. The former
starts with a low-rate mother code and punctures some cadtietblachieve higher rates [8-12],
while the latter starts with a high-rate code and extendpat#ty-check matrix to achieve lower
rates [13—17]. Both puncturing and extending require ojtions. For example, the puncturing
patterns for rate-compatible punctured convolutional PRE codes in [8] were selected by
maximizing the average free distance, while the punctudrgjributions for rate-compatible
LDPC codes in [13] were optimized by density evolution. IidJjlthe incremental protomatrices
for protograph-based raptor-like (PBRL) LDPC codes weresen by maximizing the density
evolution threshold. To reduce the construction compyegaused by the optimizations, one
can use random puncturing, as proposed in [18]. Howeveilasito the conventional punctured
LDPC codes [13], the performance of the randomly punctufl@BC codes degrades significantly
when the puncturing fraction increases beyond a thresfi@dhe best of our knowledge, no
methods were reported along with simulations in the liteatthat can construct good rate-
compatible codes over all rates of interest in the inter@gl)(

Recently, a coding scheme called block Markov superpasitiansmission (BMST) of short
codes (referred to alsasic codeswas proposed [19], which has a good performance over the
binary-input additive white Gaussian noise (AWGN) chanrehas been pointed out in [19]

that any short code (linear or nonlinear) with fast encodifgprithm and efficient soft-in soft-



out (SISO) decoding algorithm can be chosen as the basic @o®MST code is indeed a
convolutional code with extremely large constraint lengthich has a simple encoding algorithm
and a low complexity sliding window decoding algorithm. Mommportantly, BMST codes
have near-capacity performance (observed by simulatidrcanfirmed by extrinsic information
transfer (EXIT) chart analysis [20]) in the waterfall regiof the bit-error-rate (BER) curve and
an error floor (predicted by analysis) that can be contrdiiethe encoding memory. In [21], short
Hadamard transform (HT) codes are taken as the basic casd{ing in a class of multiple-
rate codes with fixed code length, referred to as BMST-HT soé@ even simpler construction
for multiple-rate BMST codes was proposed in [22], where ithwlved basic codes consist
of repetition (R) codes and single-parity-check (SPC) spdesulting in BMST-RSPC codes.
Different from BMST-HT codes which adjust their code ratgsdsetting properly the number
of frozen bits in the short HT codes, BMST-RSPC codes adhstcbde rates by time-sharing
between the R code and the SPC code. The construction of BM8&scis flexible, in the
sense that it applies to all code rates of interest in theviat€0,1). However, original BMST
codes [19-22] are neither rate-compatible nor systemiltate that systematic codes may be
more attractive in practical applications since the infation bits can be extracted directly from
the estimated codeword. Even worse, original BMST codes atoperform well over block
fading channels due to errors propagating to successivedder windows.

In this paper, we propose systematic BMST of repetition spdeferred to as systematic
BMST-R codes. For encoding, the information sequence istipaied equally into blocks and
transmitted directly, while their replicas are interlednaad transmitted in a block Markov super-
position manner. For decoding, a sliding window decodirgpathm with a tunable decoding
delay can be implemented, as with SC-LDPC codes [6, 23].efystic BMST-R codes not
only preserve the advantages of the original non-systerBMiST codes, namely, low encoding
complexity, effective sliding window decoding algorithmdapredictable error floors, but also
have improved decoding performance especially in shemdderate decoding latency.

The main contributions of this paper include:

1) We propose systematic rate-compatible BMST-R codes ingumth extending and punc-

turing. The construction requires no optimization but agpluniversally to all code rates
varying “continuously” from zero to one.

2) We propose an upper bound on the BER of a systematic BMS@eRR ensemble under



maximum a posteriori (MAP) decoding, which can be evaluated by calculating par-
tial input-redundancy weight enumerating function (IRWE#th truncated information
weight.

3) We propose a lower bound on the BER of a systematic BMST-R ansemble under
MAP decoding, which depends on the encoding memory and @ide The derived lower
bound reveals connections among BER, encoding memory athel reabe, which provides
a way to design good systematic BMST-R codes and also allem® umake trade-offs
among efficiency, performance and complexity.

4) We investigate the impact of various parameters on thimpeance of systematic BMST-
R codes, and then present a performance comparison of atateBMST-R codes and
SC-LDPC codes on the basis of equal decoding latency.

Simulation results show that: 1) the upper and lower boundstight in the high signal-
to-noise ratio (SNR) region; 2) with a moderate decodingaglethe BER curves can match
the respective lower bounds in the low BER region, implyihgttthe iterative sliding window
decoding algorithm is near optimal; 3) systematic BMST-Rlex perform well (within one
dB away from the corresponding Shannon limits) in a wide ean§ code rates, confirming
the effectiveness of the construction procedure; and 4) beéh AWGN channels and block
fading channels, systematic BMST-R codes, overcoming takness of non-systematic BMST
codes, can have better performance than SC-LDPC codes wetieefall region under the equal
decoding latency constraint.

The rest of the paper is structured as follows. In Sectiorwh, present the encoding and
decoding algorithms of systematic BMST-R codes. In Secliprwe analyze the performance
and complexity of systematic BMST-R codes. Numerical asialgnd performance comparison

are presented in Section IV. Finally, some concluding résare given in Section V.

Il. SYSTEMATIC BMST-R CODES
A. Encoding Algorithm

Let F, = {0,1} be the binary field. Lets = (u®, u), --.) be the information sequence
to be transmitted, whera® < FX is the information subsequence of length The encoding

algorithm of a systematic BMST-R code of rateN with encoding memoryn is described as
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Fig. 1. Encoder of a systematic BMST-R code with repetitimgrde N and encoding memoryn, where the information
subsequence”) at timet is encoded into the subcodewoet) = {c{", c{”, ... €% |} for transmission.

follows (see Fig. 1 for reference), whelg; ; (1 <i < N —1, 0 < j <m) are interleavers of
size K.
Algorithm 1: Encoding of Systematic BMST-R Codes
1) Initialization: Fort <0 andl1 <i¢ < N — 1, setfugt) =0 € F¥.
2) Loop: Fort >0,
. Repeatu® N times such that) = u® ¢ FX andv!” = u® ¢ F¥ for 1 < i <
N —1,
e FOri <i:< N -1,
a) For0 <j<m, interleavefv(t_j) into wgt’j) using the(i, j)-th interleaverT, ;;
b) Computec!” 20<j<m (b3,

o« Takec® = {ci, cl” -+l |} as thet-th block of transmission.



The above encoding structure can implement all code ratéseoform1/N, N =2.3,---.
If K, of K bits in cgf,)_l are randomly punctured resulting "ﬁf,)_l, we can implement a code
rate 5 € (&, v— ), whered 2 % is the puncturing fraction. In practice, the code need to be
terminated. This can be done easily by driving the encodéndazero state with a zero-tail of
lengthm K after L blocks of data. That is, far= L, L+1, ---, L+m—1, we setu” = 0 € F¥,
computec® following Loop in Algorithm 1, and then take the redundant check par¢6fas
the t-th block of transmission. The rate of the resulting terredasystematic BMST-R code is

KL

KL+ K(N—-1)(L+m)— K,(L+m)

1

SN (V10 @)

R, =

which is less than that of the unterminated code. Howeveryrale loss is negligible for large
L.

In summary, all code rates of interest in the interval (0dn e implemented by adjusting
the repetition degreeV and thepuncturing fractiond, all with the encoding structure as shown

in Fig. 1, wherg P] stands for the optional puncturing.

B. Decoding Algorithm

Assume that the subcodewoef) is modulated using binary phase-shift keying (BPSK) with
0 and 1 mapped te-1 and —1, respectively, and transmitted over an AWGN channel, tesul

in a received vectoy") expressed as

s = @

for0<j<KN-K,—1, Whereyj(.t) is the j-th component ofy® and zj(.t) is a sample from
an independent Gaussian random variable with distributi@f, o).

The decoding algorithm for systematic BMST-R codes can Berd®zed as an iterative message
processing/passing algorithm over the associated Fatydyfactor graph, which is also known
as a normal graph [24]. In the normal graph, edges represerdbles and vertices (nodes)
represent constraints. All edges connected to a node mitistysine specific constraint of the
node. A full-edge connects to two nodes, while a half-edgeeots to only one node. A half-

edge is also connected to a special symbol, called a “dongiat denotes coupling to other



parts of the transmission system (say, the channel or tleennaition source) [24]. Fig. 2 shows
the normal graph of a systematic BMST-R code with= 4, m =1 and L = 3. It is indeed a
high-level normal graph, where each edge represents arssgoé random variables. There are

four types of nodes in the normal graph of the systematic BM@SJode.

« Node[+]: All edges (variables) connected to ndeg must sum to the all-zero vector. The
message updating rule at ndde is similar to that of a check node in the factor graph of a
binary LDPC code. The only difference is that the messagab@half-edges are obtained
from the channel observations.

« Node[=]: All edges (variables) connected to nddg must take the same (binary) values.
The messages on the half-edges are obtained from both timaelhabservations and the
information sourcé.The message updating rule at ngdeis the same as that of a variable

node in the factor graph of a binary LDPC code.

« Node |II; ; || The node(Il; ; | represents thé¢:, j)-th interleaver, which interleaves or de-

interleaves the input messages.

« Node @: Two edges (variables) connected to nmust satisfy the constraint specified

by the puncturing rules.

The normal graph of a systematic BMST-R code can be dividexlayers where each layer
typically consists of a node of tyge], N — 1 nodes of type+], (m+ 1)(N — 1) nodes of type
, and a node of typ@ (see Fig. 2).

Similar to SC-LDPC codes, an iterative sliding window deaogdalgorithm with decoding
delayd performing over a subgraph consistingd# 1 consecutive layers can be implemented
for systematic BMST-R codes. For each window position, titieng) window decoding algorithm
can be implemented using the parallel (flooding) updatifgedale within the decoding window.
The first layer in any window is called tharget layer Decoding proceeds until a fixed number
of iterations has been performed or certain given stoppitigrion is satisfied, in which case
the window shifts to the right by one layer and the symbolgsesponding to the target layer
shifted out of the window are decoded.

1The half-edges (variables) connected to the informatiarrcsn which are omitted in Fig. 2 to avoid confusion and messy
plots, are assumed to be independent and uniformly disedbaverFx .
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Fig. 2. Normal graph of a systematic BMST-R code with=4, m =1 and L = 3.

C. Relations of Systematic BMST-R Codes to Existing Codes

From Fig. 1, we can see that systematic BMST-R codes reseahwtdassical RCPC codes [8].
Evidently, we can start from a rate/ N systematic BMST-R code (the mother code), whare
is as large as required. By puncturfpgne can obtain all code rates of interest frayiV to
1, all of which can be implemented with essentially the samie @f encoder and decoder. The
difference between systematic BMST-R codes and RCPC cadalso obvious. The encoding
of systematic BMST-R codes is block-oriented and the dexpdi typically not implementable
by the Viterbi algorithm [25] due to the huge constraint lEngduced by the block-oriented
encoding process.

Alternatively, systematic BMST-R codes are decodable witiding window decoding algo-
rithm, which is similar to SC-LDPC codes. More generallystgynatic BMST-R codes can be
viewed as a special class of spatially coupled codes, sipaigas coupling can be interpreted as
introducing memory among successive independent trasgmig where extra edges are allowed
to be added during the coupling process [20]. In contrastGd_BPC codes, which are usually
defined by the null space of a sparse parity-check matrixesyastic BMST-R codes are easily

described using generator matrices. Further, since thedendor a systematic BMST-R code is

2If needed, one or more whole branches in Fig. 1 can be removed.



non-recursive, an all-zero tail can be added to drive th@@ers to the zero state at the end of
the encoding process. This is different from SC-LDPC coddgre the tail is usually non-zero
and depends on the encoded information bits (see Sectiofi [26§). As a result, the encoding
procedure for systematic BMST-R codes is simpler than foiL®E€C codes.

When described in terms of generator matrices, systematis Bcodes can also be viewed
as a special class of spatially coupled low-density geaeratitrix (SC-LDGM) codes [27, 28].
However, as an ensemble, systematic BMST-R codes areatifféftom SC-LDGM codes. SC-
LDGM code ensembles are usually defined in terms of their miigtebutions, while systematic
BMST-R code ensembles are defined in terms of their integlsaisee Fig. 1).

As another evidence that systematic BMST-R codes are diffefrom existing codes, we
would like to emphasize that systematic BMST-R codes haumpls lower bound on the BER

performance, as described in the next section.

[Il. PERFORMANCE AND COMPLEXITY ANALYSIS

A reasonable criterion for a construction to be good is itfitglio make trade-offs between
complexity and performance. Specifically, if the error pariance required by the user is relaxed
or, if the gap between the code rate and the capacity is mégeatd, the encoding/decoding
complexity should be reduced. In this section, we will findekation of the performance to the
complexity forterminatedsystematic BMST-R codes. We start with a general systerhagar
block code.

A. Basic Notations of Systematic Linear Block Codes

A binary linear block cod€[n, k] is a k-dimensional subspace &f . An encoding algorithm
can be described simply by
¢: FE — Ty

u — ¢ =uG,

®3)

whereu € T} is the information vectore is the associated codeword, aG#lis a generator

matrix of sizek x n with rank of k. Define

Cl,i é {C =uG : U; = 1} (4)
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Let dyin,; be the minimum Hamming weight df, ;, i.e.,

dmin,i é min WH(C)7 (5)

ceC g
where Wy (-) represents the Hamming weight. Obviously, the minimum Hamgmveightd,;,,
of the linear block cod€ can be given by

dmin - m,in dmin,i- (6)

Assume that the codeword is modulated using BPSK and transmitted over an AWGN
channel, resulting in a received vectgr A decoding algorithm is defined as a mapping
Y Y — FE
y— u=1(y),

(7)

where Y C R. Given the signal mapping — +1 and1 — —1, the SNR is given by
101og,,(1/0?) in dB, whereo? is the variance of the noise.

Suppose thalU is distributed uniformly at random ovef%. Let £ 2 {f] # U} be the
error event that the decoder outplit is not equal to the encoder input vectbt, and let
E; 2 {Ui # U} be the error event that theth estimated bif/; at the decoder is not equal to
the i-th input bitU;. Obviously,E = |J E;. Then, under the given decoding algorithim

) _0<i<k—1
we can define frame error probability

FER, 2 Pr{E}, (8)
and bit-error probability
BER, £ % Pr{E;}. 9)
0<i<k—1

From the definitions of BER and FER, we have
FER, = Pr {U E} > max Pr{E;} > BERy,. (10)
We also have

FER, = Pr {U E} < Y Pr{E}=kBER,. (11)

0<i<k—1



11

Thus, we have
BER, < FER, <k BER,. (12)

The maximume-likelihood (ML) decoding algorithm selectsaleworde such thatf (y|¢) >
f(y|e) for all codewordsc. If ties happen, the ML decoding algorithm can randomly ctetee
candidate as the decoder output. Sifi¢ds distributed uniformly at random ovét}, the ML
decoding algorithm is optimal in the sense that it minimi#es FER. To minimize the BER,

the MAP decoding algorithm computes
> OPr(u)f(yluG)

U=

> Pr(u)f(yluG)

u€cF}

Pr(U; = Oly) = (13)

for all 7. For eachi =0,1,--- ,k — 1, the MAP decoding algorithm outputs = 0 if Pr(U; =
0ly) > 0.5 andu; = 1 otherwise.
The IRWEF of a systematic block code can be given as [29]

AXY) £ A4,;XY7, (14)
2

where X, Y are two dummy variables and;,; denotes the number of codewords having
input (information bits) weighti and redundancy (parity check bits) weight The IRWEF

can also be written in a more compact form as
AX,Y) =) A (V) XY, (15)

where
A (V)£ ALY (16)
j

is the conditional redundancy weight enumerating func©@RWEF), which enumerates redun-

dancy weight for a given input weiglit

B. Upper Bound on BER Performance

Since MAP decoding is optimal in the sense that it minimizes BER, an upper bound on
BER performance under any decoding algorithm is applicéblihe MAP decoding algorithm.
In the following, we consider a suboptimal list decodingaaithm.
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Algorithm 2: A List Decoding Algorithm for the Purpose of Performance Ames

1) Make hard decisions on the information part of the reckiectory, resulting in a vector

y of length k. Then the channel becomes a memoryless binary symmetnmeh&BSC)

c2Q (1) . (17)

2) List all sequences of length within the Hamming sphere with center gt of radius
r* > 0. The resulting list is denoted a3, .
3) Encode each sequencefy by the encoding algorithm of the systematic code, resulting

with cross probability

in a list of codewords, denoted &%.
4) Find the codewora@* € L. that is closest tgy. Output the information partt of ¢* as

the decoding result.

The above list decoding algorithm is similar to but diffearérom the algorithm presented
in [30]. The list region in [30] is an n-dimensional Hamming sphere with center at the hard
decision of the whole received sequence, while the lisoregiere is a-dimensional Hamming
sphere with center at the hard decision of the informatiort phthe received sequence. By
analyzing the BER performance of the proposed list decodiggrithm, we have the following

theorem.

Theorem 1:For any integer* > 0, the bit-error probability of systematic codes under MAP

decoding is upper-bounded by

BERMap < Z % (Z Ai,jQ (v’l;‘])> i Z mln{'l—]:’l“ ,k} <I;)52(1 _g)kz—i. (18)

i<2r* i=r*+1

Proof: Consider the list decoding algorithm (Algorithm 2). The déimg error occurs in
two cases under the assumption that the all-zero codewdrdnsmitted.

1) The all-zero sequence of lengths not in the listZ,, i.e., the hard-decisions have> r*+1
errors. In this case, the decoder output has at mpst erroneous bits. Hence, the bit-error
probability, denoted ag;, is upper-bounded by

i min{i + r*, k} (k) Sl — ey, (19)

k 1
i=r*+1

IN

P
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2) The all-zero sequence of lengthis in the list£,,, but the all-zero codeword® is not

the closest one tg. In this case, the bit-error probability, denotedpasis upper-bounded

by
P2 < Z % (Z Ai;Q (\/@;‘j)) . (20)

i<

In summary, for any given radius, we have

BER;s < Z % (Z Ai,jQ (\/l(:‘])) + Z mIH{Z;—T ,/{?} (lz)gi(l _ g)kz—i. (21)

1<2r* i=r*+1

Combining (21) and the fact th&ER\ap < BERy;:, we complete the proof. [ |

From Theorem 1, we have the following three corollaries.

Corollary 1:
BERyap < ;% (zj: A:,Q (\/"UTJ» . (22)
Proof: It can be proved by simply setting = & in (18). [ ]
Corollary 2:
BERuae < Q1) 23)

Proof: By simply settingr* = 0 in (18), we have
"0k
< 2 :_ i1 \k—i
BERMAP = i (Z)g (1 5)

- szQG). (24)

Corollary 3: Assuming that we know only the truncated IRWER,;, 0 < i < T} of
systematic codes, we have

‘ i Vit min{i +r*, k} (k\ ; i
< - y —
BERyap < min > - (Ej Ai Q0 ( > )>+ > ’ o Jed=e)

1<2r* i=r*+1

(25)
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Proof: It is obvious and omitted here. [ ]
Remarks. Corollary 1 is the well-known union bound, while Corollaryi® almost trivial,
which can be easily understood by noting that settihg= 0 in Algorithm 2 is equivalent to
taking directly the hard decisiong as the decoding resuli (one of the simplest sub-optimal
decoding algorithms). Given that only the truncated IRWEFavailable, Corollary 3 is the
tightest upper bound of this type.

C. Lower Bound on BER Performance

There exist several lower bounds on FER under ML decoding38]L However, lower bounds
on BER are rarely mentioned in the literature. Any lower bwm FER,;;, can be adapted to
a lower bound on BER by noticing th&ER,;;, > % FERy, from (12). The simplest lower
bound on FER under ML decoding over AWGN channels is given by

V dmin
FERML > Q( . )7 (26)
which leads to
BERyy, > + FERui > 7 Q ( V dmi“) | (27)
ag

Logically, it is not safe to conclude from the above derioatthat the lower bound (27) applies
to MAP decoding. This is subtle due to the fact that ML decgdsnot optimal for minimizing
the bit-error probability. In the following, we will show &h the lower bound oBER,, (27)
is indeed a lower but usually loose bound BERyap by proving an improved lower bourd.
To see the looseness of the lower bound, we consider thevaliptoy example.

Let A = {00,10} with d,;, = 1 and B = {00,11} with d,,;, = 2 be two codes. Define
C = A x B9 whose codewords are in a Cartesian product féegicy, - - - , coogo), Where
co € Aande; € B for 1 < i < 9999. Obviously, the cod€ has minimum Hamming weight
dmin = 1. However, for BPSK modulation over an AWGN channel, the BBRthe codeC is
dominated by the codB rather than the codel. To be precise,

1 1 9999 V2
BERwar = 150009 (E) 10000 (7) ’ (28)

3A slightly surprising fact is that no lower bound @ERyap Was found with proof in the literature.
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which implies that the lower bounBERyap > 5555 @ (£) can be very loose in the low SNR

region. In the following we present an improved lower boumdler MAP decoding.

Theorem 2:The bit-error probability for the linear block cod®& under MAP decoding can

be lower-bounded by

k—1
1 \V dmini
> — ~— .
BERyap > - ;:o:Q ( . ) (29)

Proof: It suffices to prove thaPr{£;} > @ (@) for each given (0 <i <k —1).
Let ¢V € C,; be a codeword such thalt,;, ; = Wg(cV). There must exist an invertible matrix
T of sizek x k such thatG = T'G with the first row of G beingc()). AssumeU € F% be the
information vector and” = UG be the codeword to be transmitted. Def¥Wie= UT'. The MAP
decoder for a binary linear block code computes{u;|y}. We know that ifPr{u;|y} > 0.5,
the decoding output is correct for this considered bit. la theanwhile, we assumegenie-
aided decoderwhich compute®r{u;|y, v'} with v’ = (v, v, - -+ ,v,_1) available. Likewise, if
Pr{u;|y,v'} > 0.5, the decoding output is correct for this considered bit. &@pecificu and

y, it is possible thaPr{u;|v’, y} < Pr{u,;|y}. However, the expectation

Priu|y}

where I (U;; V'|Y) is the conditional mutual information. This implies thaetlgenie-aided

E [log M} (U VIY) 20, (30)

decoder performs statistically no worse than the MAP decofi¢he binary linear block code.
Under the condition that’ is available, there exist only two codewords whose Hammistadce

iS dmin ;. Thus, the bit-error probability with the genie-aided ddeofor the binary-input AWGN
channels iPr{E; } genie = @ (@) It follows that

\/ dmini
Pr{Ei} 2 Pr{Ei}Genie = Q ( 7 ) . (31)

g

[ |
Remarks. Theorem 2 also applies twon-systematitinear block codes. However, it does not
apply to non-linear codes, indicating that the proof is r@ttsimple as considering only the
two closest codewords.

From Theorem 2, we have the following three corollaries.
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Corollary 4:

BERyap > 7 Q ( V ij“i“) . (32)

Proof: Combining (6) and Theorem 2, we have

k—1
1 \V4 dmini ]- V dmin

BERMmap > T ZQ <7> > —Q <7) . (33)

— o k o
[ ]

Corollary 5: If a codé has the property that,,;,; = d, for all i, we have
BERuap > Q ( Y dmm) . (34)
g

Proof: It is obvious and omitted here. [ |

Corollary 6: If the row weights of the generator matr& for a linear block codeC are

W, Wy, *++ , We_1, WE have
1 (s
> — Y.
BERyap > k;@( ! ) (35)

Proof: This can be proved by noting théd.;,; < w; and thatQ)(x) is a decreasing function.
[
Remarks. Corollary 4 shows that the lower bound (27) &R, is also a lower bound
on the BERyap, While Corollary 5 indicates that the lower bound (27) canveey loose.
Corollary 6 indicates that an LDGM code may have a higherrdtoor compared to an LDPC

code, since the generator matrix for an LDPC code is typidatjh-density.

A cyclic code can be such an example.
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D. Applications to Systematic BMST-R Codes
To apply the derived bounds to systematic BMST-R codes, \ee oalculate the IRWEF. For

systematic BMST-R codes, we have

AXY) = > A XY

L+m—1 N—-2
_ ZXWH(U) H <YWH CN 1 H YWH(C(T) >

u t=0 =1
L+m—1

N—
_ Z H <XWH(u(t) YWH(C H (t) ) (36)
u t=0

where the summation is over all possible data sequenogih «® = 0 for ¢t > L. Since it is
a sum of products4(X,Y) can be computed in principle by a trellis-based algorithrardhe
polynomial ring. For specific interleavers, the trellis laastate space of sizZ#'®, which makes
the computation intractable for large K. To circumvent this issue, we turn to an ensemble
of systematic BMST-R codes by assuming that all the intedesa(see Fig. 1 for reference)
are chosen at each time independently and uniformly at randond thafégf,)_1 is obtained by
randomly puncturingy, of K bits in c}?_l. With the assumption that all interleavers are uniform
interleavers [29], we can see thH/fH(cZ(-t)), for 1 <i < N —1, is a random variable which
dependsonly on the Hamming weight§ Wy (u®=9)),0 < j < m}. This admits a reduced-
complexity trellis representation of the average IRWEFh# tlefined systematic BMST-R code
ensemble.

The trellis is time-invariant. At stage, the trellis has(K + 1) states, each of which
corresponds to a vector of Hamming weigpts= (Wg (u=), Wy (u=?), -+ Wy (u=™)).
A statep at stage and a statey at stage + 1 are connected (with a branch denotedgby> q)
if and only if p; = ¢;+1 for 0 < j <m — 2, wherep; andg; are thej-th components op and
q, respectively. Evidently, emitting from (or entering ihach state, there ai€ + 1 branches.
Associated with a branch — ¢ are a deterministic input weiglt but a random redundancy
weight due to the existence of random interleavers. The Walgstribution of the parity check

vectorc!l” is given by

K
Yooa =Y f(rlp,q0)Y", (37)
r=0
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wheref(r|p, qo) is interpreted as the probability of current outpcﬁf% having weightr given that
the weight vector of previous: input blocks (W (w!™9), Wy (ul=2)), .- Wy (ul=™)) =p
and the current input weight/; (u®) = ¢o. By symmetry, it is easy to see that the weight
distribution ofc!” for 1 <i < N — 2 is the same asp_.q. Since the parity check vect(i:t‘]?_1

is obtained by randomly puncturing,, of K bits in cgf,)_l, the weight distribution oﬁgf,)_l iS
given by’

K K r K r)
Tp—q = Z( 7P, qo Z SR Y?"‘“’>. (38)

r=0 w=0
To calculate the probability (r|p, q0), we defineg (r\p, q) as the probability that a vector
of length K has weightr, given that the vector is obtained by superimposing two oamy
interleaved vectors of (respective) weightaind ¢q. Definew 2 p + q — r. Following the same
lines as the method in Section IV-B of [19], the probabilityr|p, ¢) is given by

(%) (39)

0, otherwise.

q K—q
M7 if w is even,
(rlp,q) =

Then, f(r|p, ¢o) can be calculated as described in Algorithm 3.

°By a general definition, the binomial coeﬁicie(’{t) is equal to zero fok < 0 or k > n.
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Algorithm 3: Computing the probability (r|p, qo)

1) Initialize a vectora® of length K + 1 such that its components are all zero except that
the ¢o-th component is 1.

2) Forj=0,1,---, m—1, compute

Qi+ Za (@6, p;)

for 0 <i < K, Whereaéj) is the ¢-th component ofx'”) and p; is the j-th component of
.
3) We havef(r|p,q) = o™ forr=0,1,--, K.

Finally, A(X,Y) can be calculated recursively by performing a forward isddased algo-

rithm [35] over the polynomial ring in Algorithm 4.
Algorithm 4: Computing IRWEF of Systematic BMST-R Codes

1) Initialize 5y(p) = 1 if p is the all-zero state; otherwise, initializg(p) = 0.
2) Fort=0,1,---, L+m— 1, for each statey,

fr@ = X ()X (o) 100

p:p—q
whereq, € {0,1,---, K} is the first component of.
3) Attime L +m, we haveA(X,Y) = 51.1m(0).

Remarks. The summation for Step 2) in Algorithm 4 is ovéf + 1 possible statep for a
given stateg. The computation of Algorithm 4 becomes more complicated eren intractable
for largem and/or K due to the huge number of trellis statgs + 1)™. Fortunately, as shown in
Section IlI-B, we can calculate bounds by the use of a triatt8dRWEF, which can be obtained
by removing certain states and branches from the trelli@cipally, for a given truncating
parameterl” which corresponds to the maximum input weight, we removettal branches
p — q with ¢ +ni1 p; > T and keep only those terms’A,(Y) with i < T of the polynomial
Bi(q) for 0 <t §]20+ m.

From Corollary 3, the upper bounds may be improved by inangake truncating parameter
T, which usually needs more computational and memory loadsveer, the lower bound (as

well as the upper bound in the high SNR region) is dominatedhgy CRWEFs with input
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weights 1 and 2, which can be given explicitly as below.
We first show the CRWEFs for a systematic BMST-R code ensewmith®ut puncturing. We
have
A (V) = LKY (m+D(V=1), (40)

For the CRWEFA,(Y'), we consider the following three cases.

1) The two non-zero information bits are in the same layetthia case, the corresponding
CRWEF 4" (v) is given by

K(K-1)L
AP vy = FE Dl yaeenoy, @1)

2) The two non-zero information bits are in two differentday with a gapy (spaced away
from ¢ — 1 layers) satisfying that < ¢ < m. In this case, the corresponding CRWEF
AP (V) is given by

) m 1 K_1 (m+1—0)(N—1)
AP (V) =Y (L - R <? + = Y2) . (42)
(=1

3) The two non-zero information bits are in two differentday with a gapy satisfying that
m+1</¢<L-—1.In this case, the corresponding CRWEEE” (Y) is given by

[y

AP (V)= D (L—0OR? yHmhN -y, (43)

{=m-+1
In summary, the CRWER,(Y") for a systematic BMST-R code ensemble without puncturing
is given by
A (V) = 47 (V) + A9 (V) + 47 (). (44)

Then, we consider the CRWEFs for a systematic BMST-R codenebie with I, bits in
each layer punctured. Taking into account the puncturifigcefwhen K, bits of a sequence

with length K and weight 1 are randomly punctured, the resulting weightr@ratorB; (Y') is
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given by
(), (%)
() (&)
K, K-K,
K K
— 04+ (1-0)Y. (45)

Y

By (Y)

Y

When K, bits of a sequence with lengti’ and weight 2 are punctured, the resulting weight

enumeratorB; (Y) is given by

22y 4 Eey? K,=0,1,
By (YY) = 2\ ( K—2 2\ ( K—2 K—2 46
2( ) (2)(?,72) 4 (1)(1;,,71)1/ 4 (I;p >Y2, Kp 2 2. ( )
(#6,) (#6p) (1,
Then we have

A (Y) = LKYmHOWN=2 (B (y))"+!

m+1 m+1
— LKy<m+1><N—2>Z< ) )9m+1-f(1_9)fyf. (47)

=0

For the CRWEFA,(Y'), we consider the following three cases.

1) The two non-zero information bits are in the same layetthia case, the corresponding
CRWEF AY (v) is given by

K(K —1)L

4 (V) = ==

YZ(m-‘rl)(N—Z) (B2(Y))m+l ) (48)

2) The two non-zero information bits are in two differentéay with a gapy satisfying that
1 < ¢ < m. In this case, the corresponding CRWE&Z) (Y') is given by
AP (Y) =D (L= OKY* N (B (Y))
(=1

1 K —1 (mA1-)(N-2) 1 K—1 mAl—4
~<?+TY2> <E+ e B2(Y)) . (49)

3) The two non-zero information bits are in two differentday with a gapy satisfying that
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m+1</¢<L—1.In this case, the corresponding CRWE!Z@) (Y) is given by

L

—_

AP (V)= Y (L - OR? YA (B (v))Rm (50)

{=m+1
In summary, the CRWEH,(Y’) for a systematic BMST-R code ensemble with bits in each

layer punctured is given by
A (V) = 47 (V) + AP (V) + 457 (). (51)

From Theorem 2, we know that the bit-error probability fostgynatic codes under MAP
decoding can be lower-bounded in terms of the minimum Hargnueights d,,; of C; ;.
However, these minimum weights are usually not availableafgeneral code. If this is the case,
we can use instead the row weights of the generator matrialiculate a looser lower bound
as shown in Corollary 6, where theth row weight can be determined by setting the binary
information dataw to a nonzero sequence with only theéh component;; = 1. Then we have

the following two corollaries.

Corollary 7: The bit-error probability of a systematic BMST-R code enskEnunder MAP

decoding can be lower-bounded by

m—+1
BERuy > 3 <m + 1) gt 60 <\/N +m(N—2)—1+ f) 52

14 o
=0

whered is the puncturing fraction.
Proof: Due to the random puncturing, theh row weight1V; of the generator matrix for
a systematic BMST-R code ensemble is a random variable.nGiveuncturing fractior#, the

probability mass function of; can be calculated as

m+1

Pr{Wi:Ner(N—Q)—l—l—ﬁ}:( p

)9m+1—€(1 _ 9)6, (53)

wherel € {0,1,--- ,m+1}. Thus, the error probability of theth estimated bit of the systematic
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BMST-R code ensemble under MAP decoding can be lower-balbge

Pr{Ei}yvap > E {Q (@)}
::gf@jvmw4ﬂ—@@<¢N+mﬁ;m_l+g' (54)

(=0
It follows that the bit-error probability of the systema®8MST-R code ensemble under MAP

decoding can be lower-bounded by

k—1
1
BERwap = > Pr{Eihuar
=0
\/N+m(N—2)—1+€> (55)

m—+1 m+1 —_ ,
;( ) )9 (1 - 0)'Q .

v

Corollary 8: The bit-error probability of a systematic BMST-R code ensknwithout punc-
turing (i.e., with puncturing fractiod = 0) under MAP decoding can be lower-bounded by

Bmmsz<VN+ﬁW;”>. (56)

Proof: For a specifici (0 < i < k — 1), we can see from (40) that theth row of the

generator matrix has a deterministic weight
w; = N+m(N —1). (57)
Thus, the error probability of theth estimated bit of the systematic BMST-R code ensemble

under MAP decoding can be lower-bounded by

Pr{E;}xiap > Q(Cﬂ_i)
Q<¢N+mWFD>. (58)

g

It follows that the bit-error probability of the systemaB&MST-R code ensemble without punc-
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Fig. 3. Decoding complexity for systematic BMST-R codes dsration of code rate that requires an SNR of 2 dB to achieve
target BERs ofl0~3, 10~* and10~°.

turing under MAP decoding can be lower-bounded by
1 k—1
BERyap = E;Pr{Ei}MAP

Q<\/N+m(N—1)>. (59)

Vv

o
[
Remarks. Corollaries 7 and 8 also hold for systematic BMST-R codes wsjpecific inter-
leavers for the reason that the interleavers have no effe¢h® row weights of the generator
matrix. Since the lower bound (56) without puncturing is igglent to the lower bound (52)
with puncturing fractiond = 0, in the rest of the paper, we consider for generality the fowe

bound (52).

E. Trade-Off Between Performance and Complexity

The implementation complexity of systematic BMST-R codas be analyzed as with their
non-systematic counterpart. For encoding, the informmasequence is partitioned equally into

blocks and transmitted directly, while their replicas ameefleaved and transmitted in a block
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Fig. 4. Decoding complexity for rate 1/2 systematic BMST-®les as a function of SNR with target BERs16f 3, 10~*
and1075.

Markov superposition manner. This shows that the encodormgptexity grows linearly with
the encoding memoryn. For decoding, a sliding window decoding algorithm with adhle
decoding delay can be implemented over the normal graphHige@). The decoding complexity
for node[+] and nod¢=] of systematic BMST-R codes grows linearly with the encodirgmory
m. Furthermore, similar to non-systematic BMST codes, a decpdelayd = 2m ~ 3m is
required to achieve the lower bound on the performance. Assalty the decoding complexity
for systematic BMST-R codes can be roughly givencdsVimd), or equivalentlyO(Nm?).

The above analysis shows that the decoding complexity isetjorelated to the repetition
degreeN and the encoding memonry:, both of which in turn determine the lower bound (52).
This allows us to make trade-offs among efficiency, perfaroeaand complexity. To be precise,
we consider the following two cases.

1) Fixed SNR. We can observe from the lower bound (52) thata fgiven SNR and BER, the
required encoding memory, decreases as the repetition deghééncreases (accordingly,
the code rate decreases), resulting in a lower complexity. & shows the decoding
complexity for systematic BMST-R codes as a function of caate that requires an SNR

of 2 dB to achieve BERs of0—3, 10~ and10~°. As expected, for fixed BER, the greater
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the code rate is, the higher the decoding complexity is. Ve ake that for fixed code
rate, the higher the performance requirement (equivaletitt more stringent the BER)
is, the higher the decoding complexity is.

2) Fixed code rate. We can observe from the lower bound (%) ftbr a given rate and BER,
the required encoding memory decreases as the SNR increases, resulting in a lower
decoding complexity. This is reasonable since more exee$H\R is available compared
to the corresponding Shannon limit. Fig. 4 shows the degpdomplexity for rate 1/2
systematic BMST-R codes as a function of SNR with BER4®f?, 10~* and107°. As
expected, for fixed BER, the greater the SNR is, the lower #wding complexity is. We
also observe that for fixed SNR, the more stringent the BERh&s higher the decoding

complexity is.

IV. NUMERICAL ANALYSIS AND PERFORMANCE COMPARISON

In this section, all simulations are performed assumingBR®dulation and transmitted over
an AWGN channel, unless otherwise specified. Tihe-1)(N —1) random interleavers (randomly
generated but fixed) of siz& are used for encoding. The iterative sliding window decgdin
algorithm for systematic BMST-R codes is performed using garallel (flooding) updating
schedule within the decoding window with a maximum itenattmmber of 18, and the entropy

stopping criterion [19, 36] with a preselected threshold @f is employed.

A. Performance Bounds and Code Construction

In this subsection, we present an example to study the peaioce bounds on BER of
systematic BMST-R codes. We consider systematic BMST-Rs@dth repetition degred = 2
and puncturing fractiof = 0. The decoding delay for the sliding window decoding is specified
asd = 3m.

Assume that there aré = 20 blocks of information data to be transmitted, where the
information subsequence have length= 30. We consider systematic BMST-R code ensembles
with encoding memoryn = 0, m = 1 andm = 2, whose code rates are 0.5, 0.4878 and 0.4762,
respectively. Here, the systematic BMST-R code with= 0 is equivalent to the independent

transmission of rate 0.5 repetition code. Assume that wg oalculate the truncated IRWEF
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Fig. 5. Spectrum{D,} (0 < s < 60) of systematic BMST-R code ensembles with encoding encodirgiorym = 0,
m =1 andm = 2 in Example 1. Assumd. = 20 blocks of information data, where the information subsegeehas length
K = 30. The systematic BMST-R code witth = 0 is equivalent to the independent transmission of rate (oBtiton code.
The truncating parameter is set To= 60. The code rates of systematic BMST-R code ensembles wits 0, m = 1 and
m = 2 are 0.5, 0.4878 and 0.4762, respectively.

{4;,,0 <i<60}. That is, the truncating parameter is sef/te= 60. Fig. 5 shows the spectrum
{D;} (0 < s <T) of systematic BMST-R code ensembles, where
T .

7
Ds = Z EAi,s—i- (60)
i=1

From Fig. 5, we see that the spectrum of the systematic BM$dd® ensembles withh = 1
andm = 2 have less number of codewords with small Hamming weights.aldle see that the
minimum Hamming distances of systematic BMST-R code ensssnbith encoding memory
m =0, m =1andm = 2 are 2, 3 and 4, respectively. These indicate that the systema
BMST-R codes have potentially better performance than ridependent transmission system.
The simulation results are shown in Fig. 6, where we obsdrae t

1) The lower and upper bounds on the BER performance of systelMST-R codes are

tight in the high SNR region.
2) The simulated BER performance curves match well with tbands in the high SNR

region, indicating that the sliding window decoding algiom is near optimal in the high
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Fig. 6. Performance of systematic BMST-R code ensemblés @ntoding encoding memony, = 0, m = 1 andm = 2
in Example 1. The systematic BMST-R code with = 0 is equivalent to the independent transmission of rate (p&titton
code. Assumel, = 20 blocks of information data, where the information subsegeehas lengthk’ = 30. The codeword is
modulated using BPSK and transmitted over an AWGN chanrfed. decoding delayl is specified agl = 3m. The truncating
parameter is set t& = 60. The code rates of systematic BMST-R code ensembleswitk 0, m = 1 andm = 2 are 0.5,
0.4878 and 0.4762, respectively.

SNR region.

3) The systematic BMST-R codes outperform the independansmission system (i.e., the
systematic BMST-R code witim = 0). Furthermore, the systematic BMST-R code with
encoding memoryn = 2 outperforms the systematic BMST-R code with= 1. Taking
into account the rate loss, the systematic BMST-R code withs 2 obtains a net gain of
1.175 dB in terms of%, /N, at a BER ofl0~°, compared to the systematic BMST-R code
with m = 1.

Given the tightness of the lower bound (52) as demonstrateExample 1, we have the
following simple procedure to construct good codes. et (0,1) be the target code rate
and pi.et D€ the target BER. The object is to construct a code with fatex R, which can
approach the Shannon limit at the target BER. A systematiSBM code has the following
five parameters: repetition degrég information subsequence lengiy, puncturing lengthi,,

data block length., and encoding memory:.. These parameters can be determined as follows.

1) Determine the repetition degréé and puncturing fractiod such thatﬁ = R. Choose
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TABLE |
ENCODING MEMORIES FOR SYSTEMATIdBBMST-R CODES REQUIRED TO APPROACH THE CORRESPONDINSH{ANNON
LIMITS AT GIVEN TARGET BERS

Encoding Memorym

Systematic BMST-R Codes prp— 155 TBER =10 * | BER = 10" [ BER =10

Rate 2/3, N =2, 0 = 0.5 12 18 24 31
Rate 1/2, N=2,0=0 8 12 16 20
Rate 2/5, N =3, 6 = 0.5 8 11 15 19
Rate 1/3, N=3,0 =0 7 11 14 18
Rate 1/4, N =4, 0 =0 7 10 14 17

sufficiently large information subsequence lefigih and puncturing length, such that
K,/K ~ 6,
2) Find the Shannon limit for the given code rdteand target BERbarget;
3) Determine the minimum encoding memaony such that the lower bound dBERyap
in (52) at the Shannon limit is not greater than the presetetarget BERp et ;
4) Choose a data block lengfhsuch that the rate loss (i.e2 — R;) due to the termination
is small;
5) Generatdm + 1)(N — 1) interleavers randomly.
Evidently, the above procedure requires no optimizatiahlznce can be easily implemented.
The encoding memories for some systematic BMST-R codesregbio approach the correspond-
ing Shannon limits at given target BERs are shown in Tableslerpected, the lower the target

BER is, the greater the required encoding memarys.

B. Impact of Parameters on BER

In this subsection, we study the impact of various parareefery., encoding memory:,
information subsequence lengkhand decoding delay) on the BER performance of systematic
BMST-R codes with fixed code rate. Note that, as pointed o&ection II-A, varying repetition
degree/N and puncturing fractiofl results in systematic codes with different rates. For sicitp)
we focus onR; = 0.49 systematic BMST-R codes with repetition degrfée= 2 and puncturing
fraction# = 0. Three regimes are considered: (1) fixadand K, increasingd, (2) fixedm and
d, increasingK’, and (3) fixedK, increasingn (and hencel).

®By simulation, we find that< > 2500 suffices to approach the Shannon limit within around half dB.
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Example 2 (Fixedm and K, Increasingd):
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Fig. 7. Simulated decoding performance of r&ge = 0.49 systematic BMST-R codes decoded with different decodirgyde

d in Example 2. Information subsequence lengfth= 300, encoding memoryn = 16 and data block lengti. = 392. The
codeword is modulated using BPSK and transmitted over an AVW¢@annel. The corresponding window decoding thresholds
and the lower bound are also plotted.

Consider a systematic BMST-R code with information subsaqa length/’ = 300, encoding
memorym = 16 and data block length = 392. The BER performance of the systematic BMST-
R code decoded with different decoding delalys shown in Fig. 7. The asymptotic threshold
performance obtained by using the EXIT chart analysis niethd20] is also included. From
Fig. 7, we observe that

1) The BER performance of the systematic BMST-R code decodt#ddifferent delaysd
matches well with the corresponding window decoding thogshin the high SNR region.

2) The BER performance in the waterfall region improves a&sdbcoding delay increases,
but it does not improve much further beyond a certain degpdelay (roughlyd = 20).

3) The BER performance in the error floor region improves asdécoding delay increases,
and it matches well with the lower bound for the systematic®8MR code withm = 16
whend increases up to a certain point (rouglly= 32).

Consider systematic BMST-R codes constructed with engodiemorym = 16, data block

length L. = 392 and decoded with decoding deldy= 32. The BER performance of systematic



31

Example 3 (Fixedm and d, IncreasingK):
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Fig. 8. Simulated decoding performance of réate = 0.49 systematic BMST-R codes with different information suhsstce
lengths K in Example 3. The codes are constructed with encoding memory 16 and data block lengt, = 392, and
decoded with decoding delay = 32. The codeword is modulated using BPSK and transmitted avelVlGN channel. The
corresponding lower bound is also plotted.

BMST-R codes constructed with different information supgence length#’ is shown in Fig. 8,
where we observe that
1) Increasing the information subsequence lenfthcan improve waterfall region perfor-
mance. As expected, this improvement saturates for suffigiearge K. For example, the
improvement at a BER of0~° from K = 200 to K = 450, both decoded withl = 16,
is about 0.25 dB, while the improvement decreases to ab@®% @ from K = 700 to
K = 950.
2) The error floors, which are determined by the encoding mmgnamd code rate (see
Corollary 7), cannot be lowered by increasihg
Example 4 (Fixed K, Increasingm (and hencel)): Consider systematic BMST-R codes con-
structed with information subsequence length= 2500 and encoding memories = 8, 12 and
16. The performance with sufficiently large decoding delay: 2m of the systematic BMST-R
codes is shown in Fig. 9, where we observe that

1) The BER performance of systematic BMST-R codes matchdsmith the corresponding
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Fig. 9. Simulated decoding performance of rdte = 0.49 systematic BMST-R codes constructed with different enogdi
memoriesm and decoded with decoding delay= 2m in Example 4. The information subsequence length of thelmb

systematic BMST-R codes & = 2500. The codeword is modulated using BPSK and transmitted avé&VéiGN channel. The
corresponding window decoding thresholds and lower botdiodsystematic BMST-R codes are also plotted.

window decoding thresholds in the high SNR region.

2) For a high target BER (roughly abové—3), the BER performance improves as the encod-
ing memorym increases, which is consistent with the threshold anapeiformance. Note
that this phenomenon does not exist for non-systematic Bi&les whose performance
degrades slightly as: increases (see Section V-C of [20]).

3) The error floor can be lowered by increasing the encodinghong m (and hence the
decoding delayi).

C. Decoding Performance Based on Latency

In addition to decoding performance, the latency introduog employing channel coding is
a crucial factor in the design of a practical communicatigstem, such as personal wireless
communication and real-time audio and video. In this sulis@cwe study the BER performance
of systematic BMST-R codes based on their decoding latency.

Example 5: We consider ratd?; = 0.49 systematic BMST-R codes with encoding memory

m = 16, repetition degreeV = 2 and puncturing fractiod = 0. The decoding latency of the
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Fig. 10. Required SNR to achieve a BERI1gF ° for finite-length systematic BMST-R codes, non-systemBtitST-R codes
in [20], (3, 6)-regular SC-LDPC codes, artd, 8)-regular SC-LDPC codes as a function of decoding latendyth&l codes have
rate 0.49. The decoding delays f@¥, 6)-regular SC-LDPC codes ar(d, 8)-regular SC-LDPC codes afeand 3, respectively.
The encoding memories for non-systematic BMST-R codes gstematic BMST-R codes are 8 and 16, respectively. The
values of the information subsequence length and decoditay dor the non-systematic BMST-R codes are chosen such tha
the combination gives the best decoding performance. Thedileg delays for the systematic BMST-R codes @re 16, 17,

-, 24. The codeword is modulated using BPSK and transmitted ave®dGN channel.

sliding window decoder, in terms of bits, is given by
T=2K(d+1). (61)

The SNR required to achieve a BER o~ as a function of decoding latency is shown in
Fig. 10. We observe that the performance of systematic BRSBdes (with fixed information
subsequence lengthl) improves as the decoding deldyand hence the latency) increases, but
it does not improve much further beyond a certain decodingyd®loreover, beyond a certain
latency, using a greater information subsequence legtvith a smaller decoding delay
gives better performance. For example, the systematic BRI$®de constructed with a greater
information subsequence lengfti = 300 and decoded with a smaller decoding detay- 19
outperforms the systematic BMST-R code constructed withmallsinformation subsequence
length K = 250 and decoded with a greater decoding detay= 23 (both have the same
decoding latency of 12000 bits).
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We also compare the performance of systematic BMST-R cadas;systematic BMST-R
codes in [20], and SC-LDPC codes when the decoding latelaceesqual, as shown in Fig. 10.
All the codes have rate 0.49. We restrict considerationi3t@)-regular SC-LDPC codes with
two component submatricd3, = [2 1] and B; = [1 2], and (4, 8)-regular SC-LDPC codes
with two component submatricd3, = [3 1] and B, = [1 3]. The decoding delays fo3, 6)-
regular SC-LDPC codes and, 8)-regular SC-LDPC codes are and 3, respectively, which
are good choices to achieve optimum performance when thediteg latencies are fixedThe
encoding memories for non-systematic BMST-R codes an@&syaic BMST-R codes are 8 and
16, respectively. The values of the information subsegeidength and decoding delay for the
non-systematic BMST-R codes are chosen such that the catidnngives the best decoding
performance (see Section VI-A of [20]). The decoding defayghe systematic BMST-R codes
ared = 16, 17, - - -, 24. We observe that the systematic BMST-R codes perform bigtder both
the non-systematic BMST-R codes and the SC-LDPC codesxaange, in the decoding latency
of 12000 bits, the systematic BMST-R code with informatiobsequence length” = 300 and
decoding delayd = 19 gains 0.12 dB, 0.21 dB and 0.24 dB, respectively, comparethdo
non-systematic BMST-R codé3, 6)-regular SC-LDPC code, and, 8)-regular SC-LDPC code.

D. Rate-Compatible Property

In this subsection, we show the performance of systematiSBIR codes with different rates
by varying repetition degre& and puncturing fractior.

Example 6: Consider systematic BMST-R codes with information subsaqa lengthK =
500 and data block lengtlh, = 500. The encoding memories. for systematic BMST-R codes
required to approach the Shannon limits at a target BEROof are determined following the
procedure described in Section IV-A. The decoding delaypicsied asd = 2m. Simulation
results for systematic BMST-R codes with different rates sttown in Fig. 11. We observe that
the performances for all code rates are almost the same ta®thancoded code in the relatively
low SNR region. This is different from non-systematic BMSddes whose performance in the

relatively low SNR region is very bad due to error propagate also observe that, as the SNR

"For a more in-depth discussion of the relationship betw&enptotograph lifting factor, the decoding window size ahe t
decoding performance of SC-LDPC codes when the decodiegdgtis fixed, we refer the reader to [37].



35

= FSErE R
P ey, , > N=3m=190=035
10719 * *%%V*i . TN = RI=07
SRS R S ¥ m |[TN=3m=150=05
Pt *14 ?: reees “’7""4"N:3m=149:() 1
RROR 0 SN W B =<\ =t =t
0% 0 0 b Ay 0 L IENTETTIR0Z0
Bokogiogag e'! pooot : = N=6m=130=0
I E: L e { ‘o : i l N Kl Uncoded Sode
ple_sg;? !I?i g 1 . 3
2 pmaaaaiiAged
B R N IREIE i S S
0% 5 L kg Yoot X .
SE T I
LT I AT G
DAL M I
CH R
—67 = l I> < % P % - ® Y
10 & % ; &%% A Qo £ 13
i :’ [ DI q Y \i f* \'/x« I I L ‘E
-6 -4 -2 0 2 4 6 8 10 12 14
SNR (dB)

Fig. 11. Simulated decoding performance of systematic BM®Sdodes with information subsequence lendth = 500
and data block lengtl. = 500. The repetition degreéV, encoding memoriesn and puncturing fractiorf are specified

in the legends. The decoding delay is specifieddas= 2m. The codeword is modulated using BPSK and transmitted
over an AWGN channel. The corresponding lower bounds (dottegenta) for systematic BMST-R codes are also plot-
ted. The rates of the systematic BMST-R codes correspontinthe BER curves from left to right in the figure are
0.1631, 0.1959, 0.2449, 0.2801, 0.3272, 0.3929, 0.4921, 0.5623, 0.6562, and 0.7874.

increases, the performance curves of the systematic BM83deles drop down to the respective
lower bounds for all considered code rates.

To evaluate the bandwidth efficiency, we plot the requiredRSN achieve a BER of 0~ of
the systematic BMST-R codes with information subsequeangth X' = 500 against the code
rate in Fig. 12, where we observe that the systematic BMS®Bdres achieve the BER df)—°
within one dB from the Shannon limits for all considered codtes. In Fig. 12, we also include
the simulation results of three AR4JA LDPC codes with codesa/2, 2/3 and4/5 in the
CCSDS standard [38], and five PBRL LDPC codes [17] with codiesrs/4, 1/3, 1/2, 2/3, and
4/5, all of which have information length6384. We observe that the systematic BMST-R codes
have a similar performance as both AR4JA LDPC codes and PEBRQ codes over such code
rates. Note that no simulation results were reported for MRUDPC codes and PBRL LDPC
codes with rates less than'4, while codes of all rates of interest in the interval (0,1h dze
constructed using the systematic BMST-R constructionudlty, to the best of our knowledge,

no other methods were reported along with simulations inlitbeature that can construct good
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Fig. 12. Required SNR to achieve a BERIOf° for systematic BMST-R codes with information subsequerogthK = 500.
The codeword is modulated using BPSK and transmitted ovedVdGN channel. The performances of three AR4JA LDPC
codes with code rates/2, 2/3 and4/5 in the CCSDS standard [38], and five PBRL LDPC codes [17] wilecratesl /4,
1/3, 1/2, 2/3, and4/5, all of which have information length6384, are also included.

rate-compatible codes over such a wide range of code rates.

E. Further Discussions

All the examples above assume that the subcodewords arelatediusing BPSK and trans-
mitted over an AWGN channel. In this subsection, we study ghdormance of systematic
BMST-R codes transmitted over a block fading channel. Thelveoror-rate (WER) is defined as
the ratio between the number of erroneous subcodewordsherndtal number of subcodewords
transmitted.

Assume that the subcodewoetf) is modulated using BPSK with 0 and 1 mappedttb and
—1, respectively, and transmitted over a block fading chamesblting in a received vectagy")
expressed as

yj(»t) = ag»t) c§-t) + zj(»t) (62)

" is a sample from an

for 0 < j < KN — K, Whereyj(.t) is the j-th component ofy®, z](-

independent Gaussian random variable with distribufgi, o%), anda§t) is a fading coefficient.
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Fig. 13. Performance oRR;, = 0.49 systematic BMST-R codes with information subsequencetiei§ = 100, repetition
degreeN = 2 and puncturing fractio® = 0 over a block fading channel. The encoding memoriesrare- 4, 6,8, and 10.
The decoding delay is specified ds= 2m.

In this paper, we consider a Rayleigh fading channel, WlaétPeis a sample from a Rayleigh
distribution R with E[R?] = 1. For block fading channels with a coherence periodBf
symbols, we assume th@Y) (perfectly known at the receiver) remains constant dvesymbols
within the same period and is independent identically iisted across different coherence
periods.

Example 7: ConsiderR; = 0.49 systematic BMST-R codes with information subsequence
length KX = 100, repetition degreéV = 2 and puncturing fractiod = 0. The subcodewords are
modulated using BPSK and transmitted over a block fadingneilwith a coherence period of
B; = 100 symbols. That is, a subcodeward hasF = KN /B; = 2 independent fading values.
The WER curves of systematic BMST-R codes constructed wito@ng memoryn = 4,6, 8,
and 10, and decoded with decoding deldy= 2m are shown in Fig. 13, where we observe
that the performance of systematic BMST-R code improvel witreasing encoding memory
m until m = 8 and then it degrades slightly as increases further. This implies that = 8 is

a good choice for optimum performance.



38

10 *11??: = % T
. "R,
10 : \\ 3
- ' ‘3\* |
10 ¢ o 4
& B
LSRN
g \\\*ss
10° o, :
\\ ‘*s
\\\ ~~s 1
10—4k 0\\ ‘k\ E
-6 -Systematic BMST-R, m=8d =9 ‘\Q '
%~ (3,6)-regular SC-LDPC, m=2d=9 .
0 2 4 6 8 10
SNR (dB)

Fig. 14. Performance comparison of the systematic BMST-dR @nd the SC-LDPC code with BPSK modulation over a block
fading channel. The systematic BMST-R code is constructigld information subsequence lengiti = 100, encoding memory
m = 8, repetition degreéV = 2, and puncturing fractio® = 0, and decoded with decoding deldy= 9. The (3, 6)-regular
SC-LDPC codes is constructed with the protograph liftinggda 100 and three component submatriBes= B1 = B, = [1 1],

and decoded with decoding deldy= 9. The decoding latencies of two codes are the same.

The performance comparisoof the systematic BMST-R code and the SC-LDPC code over
a block fading channel is shown in Fig. 14. The systematic BN®Scode is constructed with
information subsequence length = 100, encoding memoryn = 8, repetition degreeV = 2,
and puncturing fractiod = 0, and decoded with decoding deldy= 9. The (3, 6)-regular SC-
LDPC code is constructed with the protograph lifting fad00 and three component submatrices
By = B; = B, = [1 1], and decoded with decoding deldy= 9 presented in [39]. Thus, the
decoding latencies of two codes are the same. We see from &itpat, in the low WER region,
the systematic BMST-R code performs better than(thé)-regular SC-LDPC code under the
equal decoding latency constraint. For example, at a WERof, the systematic BMST-R code
gains about one dB compared to the equal latei3cy)-regular SC-LDPC code. These results
confirm that systematic BMST-R codes without any furtheliropation can perform well over

block fading channels.

8The simulation results (not included in the figure) suggkat hon-systematic BMST codes suffer from severe perfocean
degradation caused by the error propagation.



39

V. CONCLUSIONS

In this paper, we have proposed systematic block Markovrpagéion transmission (BMST)
of repetition codes, referred to as systematic BMST-R codsig both extending and punctur-
ing, systematic BMST-R codes support a wide range of codss Hatit maintain essentially the
same encoding/decoding hardware structure. The syste®BBtET-R codes not only preserve
the advantages of the original non-systematic BMST codasety, low encoding complexity,
effective sliding window decoding algorithm and predidéérror floors, but also have improved
decoding performance especially in short-to-moderatediag latency. A simple lower bound
and an upper bound were derived to analyze the performansystématic BMST-R codes
under MAP decoding. Simulation results show that, over arGN\thannel, 1) the performance
of systematic BMST-R codes around or below the BER®@f° can be predicted by the lower
bound; 2) systematic BMST-R codes can approach the Shaimmibai a BER of10~° within one
dB for a wide range of code rates; and 3) systematic BMST-Rsadn outperform both non-
systematic BMST codes and SC-LDPC codes in the waterfaibmegnder the equal decoding
latency constraint. Simulation results also show thattesgatic BMST-R codes without any
further optimization can outperforii3, 6)-regular SC-LDPC codes over a block fading channel.
A final note is that the construction of systematic BMST-Re&®dan be extended to high-order

Abelian groups since only addition is required during theceting process.
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