
ar
X

iv
:1

60
1.

03
80

3v
1 

 [c
s.

IT
]  

15
 J

an
 2

01
6

A Class of Non-Linearly Solvable Networks∗

Joseph Connelly and Kenneth Zeger

IEEE Transactions on Information Theory
Submitted: January 14, 2016

Abstract

For each integerm ≥ 2, a network is constructed which is solvable over an alphabet of
sizem but is not solvable over any smaller alphabets. Ifm is composite, then the network has
no vector linear solution over anyR-module alphabet and is not asymptotically linear solvable
over any finite-field alphabet. The network’s capacity is shown to equal one, and whenm
is composite, its linear capacity is shown to be bounded awayfrom one for all finite-field
alphabets.
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1 Introduction

A networkwill refer to a finite, directed, acyclic multigraph, some ofwhose nodes aresourcesor
receivers. Source nodes generatek-dimensional vectors ofmessages, where each of thek messages
is an arbitrary element of a fixed, finite set of size at least2, called analphabet. The elements of an
alphabet are calledsymbols. Theinputsto a node are the messages, if any, originating at the node
and the symbols on the incoming edges of the node. Each outgoing edge of a network node carries
a vector ofn alphabet symbols, callededge symbols. If a node has at mostn input symbols, then
we will assume, without loss of generality, that each of its out-edges carries alln of such symbols.
Each outgoing edge of a node has associated with it anedge functionwhich maps the node’s inputs
to the output vector carried by the edge. Each receiver node hasdemands, which arek-dimensional
message vectors the receiver wishes to obtain. Each receiver also hasdecoding functionswhich
map the receiver’s inputs tok-dimensional vectors of alphabet symbols in an attempt to satisfy the
receiver’s demands.

A (k, n) fractional code over an alphabetA (or, more briefly, a(k, n) code overA) is an
assignment of edge functions to all of the edges in a network and an assignment of decoding
functions to all of the receiver nodes in the network.

A (k, n) solution overA is a (k, n) code overA such that each receiver’s decoding functions
can recover allk components of each of its demands from its inputs.

An edge function
f : Ak × · · · × Ak

︸ ︷︷ ︸

i message vectors

×An × · · · × An

︸ ︷︷ ︸

j in-edges

−→ An

is linear overA if it can be written in the form

f(x1, . . . , xi, y1, . . . , yj) =M1x1 + · · ·+Mixi +M ′
1y1 + · · ·+M ′

jyj (1)

whereM1, . . . ,Mi aren×k matrices andM ′
1, . . . ,M

′
j aren×nmatrices whose entries are constant

values. Similarly, a decoding function is linear if it has a form analogous to (1). A(k, n) code is
said to belinear overA if each edge function and each decoding function is linear over A. We
will focus attention on linear codes in a very general setting where the alphabets areR-modules
(discussed in in Section 1.3). If the network alphabet is anR-module, then, in (1),A is an Abelian
group, the elements of the matrices are from the ringR, and multiplication of ring elements by
elements ofA is the action of the module. Special cases of linear codes over R-modules include
linear codes over groups, rings, and fields.

A network is defined to be
– solvable overA if there exists a(1, 1) solution overA,
– scalar linear solvable overA if there exists a(1, 1) linear solution overA,
– vector linear solvable overA if there exists a(k, k) linear solution overA, for somek ≥ 1,
– asymptotically linear solvable overA if for any ǫ > 0, there exists a(k, n) linear solution

overA for somek andn satisfyingk/n > 1− ǫ.
We say that a network issolvable, (respectively,vector linear solvableor scalar linear solvable) if
it is solvable (respectively, vector linear solvable or scalar linear solvable) over some alphabet.

Page 2 of 68



Connelly-Zeger January 14, 2016

Thecapacity1 of a network is:

sup{k/n : ∃ a (k, n) solution over someA}.

The linear capacityof a network with respect to an alphabetA is:

sup{k/n : ∃ a (k, n) linear solution overA}.

It was shown in [4] that the capacity of a network is independent of alphabet size, and it was noted
that linear capacity can depend on alphabet size.

1.1 Previous work

One decade ago, it was demonstrated in [7] that there can exist a network which is solvable, but not
vector linear solvable over any finite-field alphabet and anyvector dimension. To date, the network
given in [7] is the only known example of such a network published in the literature. In fact, the
network given in [7] was shown to not be vector linear solvable over very general algebraic types
of alphabets, such as finite rings and modules, and was shown not to even be asymptotically linear
solvable over finite-field alphabets, and, as a result, the network has been described as “diabolical”
by Kschischang [18]2 and Koetter [16].

The diabolical network has been utilized in numerous extensions and applications of network
coding, such as by Krishnan and Rajan [17] for network error correction, and by Rai and Dey [21]
for multicasting the sum of messages to construct networks with equivalent solvability properties
hence showing that linear codes are insufficient for each problem. El Rouayheb, Sprintson, and
Georghiades [13] reduced the index coding problem to a network coding problem, thereby using
the diabolical network to show that linear index codes are not necessarily sufficient. Blasiak,
Kleinberg, and Lubetzky [2] used index codes to create networks where there is a polynomial
separation between linear and non-linear network coding rates. Chan and Grant [5] showed a
duality between entropy functions and network coding problems, which allowed for an alternative
proof of the insufficiency of linear network codes.

We now summarize some of the existing results regarding the solvability and linear solvability
of multicast networks(in which each receiver demands all of the messages) andgeneral networks
(in which each receiver demands a subset of the messages). Network codes were first presented by
Ahlswede, Ning, Li, and Yeung [1] as a method of improving thethroughput of a network; they
presented the butterfly network, a variant of which is scalarlinear solvable but not solvable via
routing. Li, Young, and Cai [19] showed that if a multicast network is solvable, then it is scalar
linear solvable over all sufficiently large finite-field alphabets. In addition, Riis [23] showed that
every solvable multicast network has a binary linear solution in some vector dimension. Feder,
Ron, and Tavory [14] and Rasala Lehman and Lehman [22] both independently showed that some
solvable multicast networks asymptotically require finite-field alphabets to be at least as large as
twice the square root of the number of receiver nodes.

1In the literature, this is sometimes referred to as the “coding capacity” (as opposed to the routing capacity). For
brevity, we will simply use the term “capacity,” as we do not discuss routing capacity in this paper.

2The terminology was apparently attributed by F. Kschischang to M. Sudan.
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Non-linear coding in multicast networks can offer advantages such as reducing the alphabet
size required for solvability; Rasala Lehman and Lehman [22] presented a network which is solv-
able over a ternary alphabet but has no scalar linear solution over any alphabet whose size is less
than five, and Riis [23] and also [9] demonstrated general andmulticast networks, respectively,
which have scalar non-linear binary solutions but no scalarlinear binary solutions. A multicast
network was presented in [9] which is solvable precisely over those alphabets whose size is neither
2 nor6, and Sun, Yin, Li, and Long [29] presented families of multicast networks which are scalar
linear solvable over certain finite-field alphabets but not over all larger finite-field alphabets.

Unlike multicast networks, general networks that are solvable are not necessarily vector linear
solvable, as demonstrated in [7]. Médard, Effros, Ho, and Karger [20] showed that there can exist a
network which is vector linear solvable but not scalar linear solvable. Shenvi and Dey [27] showed
that for networks with2 source-receiver pairs the following are equivalent: the network is solvable,
the network is vector linear solvable, the network satisfiesa simple cut condition. Cai and Han [3]
showed that for a particular class of networks with3 source-receiver pairs: the solvability can be
determined in polynomial time, being solvable is equivalent to being scalar linear solvable, and
finite-field alphabets of size2 or 3 are sufficient to construct scalar linear solutions. In [11], the
Fano and non-Fano networks were shown to be solvable precisely over even and odd alphabets,
respectively. For each integerm ≥ 2, Rasala Lehman and Lehman [22] demonstrated a class of
networks which are not solvable over any alphabet whose sizeis less thanm and are solvable over
all alphabets whose size is a prime power greater than or equal tom. For each integerm ≥ 3, Chen
and HaiBin [6] demonstrated a class of networks which are notsolvable over any alphabet whose
size is less thanm and are solvable over all alphabets whose size is not divisible by2, 3, . . . , m−1.

Koetter and Médard [15] showed for every finite fieldF and every network, the network is
scalar linear solvable overF if and only if a corresponding system of polynomials has a common
root inF, and in [8] it was shown that for every finite fieldF and any system of polynomials there
exists a corresponding network which is scalar linear solvable overF if and only if the system
of polynomials has a common root inF. Subramanian and Thangaraj [28] showed an alternate
method of deriving a system of polynomials which corresponds to the scalar linear solvability of
a network, such that the degree of each polynomial equation is at most2. Presently, there are no
known algorithms for determining whether a general networkis solvable.

While vector linear solvable networks are solvable networks, the converse need not be true.
This paper demonstrates infinitely many such counterexamples.

There remain numerous open questions regarding the existence of solvable networks which are
not vector linear solvable. Are many/most solvable networks not vector/scalar linearly solvable?
Can such networks be efficiently characterized? Can such networks be algorithmically recognized?
We leave these questions for future research.

1.2 Our contributions

In this paper, we present an infinite class of solvable networks which are not linear solvable over
anyR-module alphabet and any vector dimension. We denote each such network asN4, and we
constructN4 from several intermediate networks denoted byN0,N1,N2, andN3, all of which
are constructed from a fundamental network building blockB. Specifically, for each positive
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composite numberm, we describe how to construct a networkN4 which has a non-linear solution
over an alphabet of sizem, yet has no vector linear solution over any vector dimensionand any
finite field, commutative ring with identity, orR-module alphabet. In addition, such a network is
not solvable over any alphabet whose size is less thanm. The diabolical network in [7] was shown
to be non-linear solvable over an alphabet of size4.

We will now summarize the main results of this paper, which all appear in Section 6. The
networkN4 is parameterized by an arbitrary integerm ≥ 2. Theorem 6.4 shows thatN4 is solvable
over an alphabet of sizem. Theorem 6.5 shows, however, thatN4 is never solvable over alphabets
smaller thanm. Theorem 6.7 shows that whenm is prime,N4 has a scalar linear solution over
a field of sizem. In fact, for all non-prime integersm, the networkN4 has no linear solution,
as demonstrated by Theorems 6.8 and 6.9. In particular, Theorem 6.8 shows that whenm is
composite, no vector linear solution forN4 exists over anyR-module, and Corollary 6.10 shows
that in such case,N4 is not even asymptotically linear solvable over any finite-field alphabet. In
the special case ofm = 4, the demonstrated networkN4 exhibits properties similar to the network
presented in [7].

The diabolical network was shown in [7] to have capacity equal to one, whereas its linear
capacity is bounded away from one for any finite-field alphabet. Analogously, we show in The-
orem 6.9 that for allm, the capacity ofN4 equals one, whereas for all compositem, its linear
capacity over any finite-field alphabet is bounded away from one. Related capacity results are
given for the constituent networksN0 (in Lemma 2.4),N1 (in Lemma 3.8),N2 (in Lemma 4.7),
andN3 (in Lemma 5.8).

The rest of the paper is organized as follows. Table 1 summarizes the networks created and the
results in this paper. Section 1.3 provides mathematical background and definitions. Sections 2-
5 present the building block networks which are used to construct the main class of networks.
Section 6 details the properties and construction of the main class of networks. For each network
family, we will discuss the solvability properties, the linear solvability properties, and the capacity.
The Appendix contains the proofs of every lemma in this paper. All other proofs are given in the
main body of the paper.

Section 7 poses some open questions regarding solvability of networks.
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Networks and Their Main Properties Location
Network N0(m) Section 2
· Consists of a blockB(m) together with source nodes. Figure 2
· 4m+ 6 nodes. Remark 2.1
· If a (1, 1) code overA is a solution, then the code has an Abelian group structure. Lemma 2.2
Network N1(m) Section 3
· Consists of a blockB(m) together with source nodes and an additional receiver. Figure 3
· 4m+ 7 nodes. Remark 3.1
· If solvable overA, thengcd(|A|,m) = 1. Lemma 3.2
· Scalar linear solvable over standardR-moduleG iff gcd(char(R),m) = 1. Lemma 3.3
· If asymptotically linear solvable over finite fieldF, thenchar(F) ffl m. Lemma 3.8
Network N2(m,w) Section 4
· Consists ofw blocksB(m+ 1) together with source nodes and
an additional receiver. Figure 4

· 4mw + 9w + 2 nodes. Remark 4.1
· If w ≥ 2, then non-linear solvable over an alphabet of sizemw. Lemma 4.4
· If solvable overA, thengcd(|A|,m) 6= 1. Lemma 4.5
· Scalar linear solvable over standardR-moduleG iff char(R)

∣
∣m. Lemma 4.6

· If asymptotically linear solvable over finite fieldF, thenchar(F)
∣
∣m. Lemma 4.7

Network N3(m1,m2) Section 5
· Consists of blocksB(m1) andB(m2) together with source nodes and
an additional receiver. Figure 5

· 4m1 + 4m2 + 12 nodes. Remark 5.1
· For eachs, t ≥ 1 relatively prime tom1, if m2 = smα

1 for someα > 0, Corollary 5.7
then non-linear solvable over an alphabet of sizetmα+1

1 .
· If solvable overA, thengcd(|A|,m1) = 1 or |A| ffl m2. Lemma 5.5
· Scalar linear solvable over standardR-moduleG iff gcd(char(R),m1,m2) = 1. Lemma 5.6
· If asymptotically linear solvable over finite fieldF, thenchar(F) is
relatively prime tom1 or m2. Lemma 5.8

Network N4(m) Section 6
· Consists of a disjoint union of various networksN1,N2, andN3. Equation (7)
· Solvable over an alphabet of sizem. Theorem 6.4
· If |A| < m, then not solvable overA. Theorem 6.5
· If m is prime, then scalar linear solvable overGF(m). Theorem 6.7
· If m is composite, then: (1) not vector linear solvable over anyR-module. Theorem 6.8

(2) not asymptotically linear solvable over any finite field. Corollary 6.10

· Number of nodes isO
(

m
logm

log logm

)

andΩ(m). Theorem 6.11

Table 1: Summary of the networks constructed in this paper, wherem,m1, m2, andw are integers
such thatm,m1, m2 ≥ 2 andw ≥ 1.
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Connelly-Zeger January 14, 2016

1.3 Preliminaries

The following definitions and results regarding linear network codes overR-modules are from [7]
and [12].

Definition 1.1. Let (R,+, ∗) be a ring with additive identity0R. An R-module(specifically a left
R-module) is an Abelian group(G,⊕) with identity0G and an action

· : R×G→ G

such that for allr, s ∈ R and allg, h ∈ G the following hold:

r · (g ⊕ h) = (r · g)⊕ (r · h)

(r + s) · g = (r · g)⊕ (s · g)

(r ∗ s) · g = r · (s · g)

0R · g = 0G.

The ring multiplication symbol∗ will generally be omitted for brevity. If the ringR has a multi-
plicative identity1R, then we also require1R · g = g for all g ∈ G. For brevity, we say thatG is an
R-module.⊖ will denote adding the inverse of an element (subtraction) within the group.

The following definition describes a class ofR-modules which we will use to discuss linear
solvability in this paper.

Definition 1.2. LetG be anR-module. We will say thatG is astandardR-moduleif

1. R acts faithfully onG; that is if r, s ∈ R are such thatr · g = s · g for all g ∈ G, thenr = s.

2. R has a multiplicative identity1R.

3. R is finite.

4. If r ∈ R has a multiplicative left (respectively, right) inverse, then it has a two-sided inverse,
which will be denotedr−1.

This enables us to characterize over which standardR-modules the networks in this paper are
scalar linear solvable. Lemmas 1.3 and 1.4 show that if a network is not scalar linear solvable over
any standardR-module, then the network is not vector linear solvable overanyR-module.

A finite ringR, with a multiplicative identity, acting on itself is a standardR-module. For any
finite fieldF and positive integerk, the setMk(F) of k × k matrices overF with matrix addition
and multiplication is a ring andFk is a standardMk(F)-module.

Lemma 1.3. If a networkN is not scalar linear solvable over any standardR-module, then it is
not scalar linear solvable over anyR-module.

Lemma 1.4. If a network is not scalar linear solvable over anyR-module, then it is not vector
linear solvable over anyR-module.
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Vector linear solutions over rings are special cases of vector linear solutions overR-modules
whereR acts on itself. A field is a special case of a commutative ring with identity where all
elements have multiplicative inverses, and scalar linear solutions are special cases of vector linear
solutions wherek = 1. Thus if a network is not vector linear solvable overR-modules, it is also
not vector (or scalar) linear solvable over rings with identity (or fields).

For any ringR with multiplicative identity, thecharacteristic ofR is denotedchar(R) and is
the smallest positive integerm such that1R added to itselfm times equals0R. The characteristic
of a finite field is always a prime number. We say that a positiveintegerm is invertible inR if there
existsm−1 ∈ R such thatm−1 (m1R) = 1R, where(m1R) denotes1R added to itselfm times.
Specifically,

m−1 =



1R + · · ·+ 1R
︸ ︷︷ ︸

m adds





−1

.

The following lemmas discuss properties of multiplicativeinverses in rings and will be used to
more easily characterize the classes ofR-modules over whichN1 andN3 are scalar linear solvable.

Lemma 1.5. For each finite ringR with a multiplicative identity and each positive integerm, the
integerm is invertible inR if and only if there does not exists ∈ R\{0R} such thatms = 0R.

Lemma 1.6. For each finite ringR with a multiplicative identity and each positive integerm, the
integerm is invertible inR if and only ifchar(R) andm are relatively prime.

The following definition is called PropertyP ′ in [6], and will be utilized throughout.

Definition 1.7. Letm ≥ 2. A (1, 1) code for a networkN over an alphabetA, containing messages
x0, x1, . . . , xm and edge symbolse0, e1, . . . , em, e, is said to havePropertyP (m) if there exists a
binary operation⊕ : A×A → A and permutationsπ0, π1, . . . , πm andσ0, σ1, . . . , σm of A, such
that(A,⊕) is an Abelian group and the edge symbols can be written as

ei = σi







m⊕

j=0
j 6=i

πj(xj)







(i = 0, 1, . . . , m)

e =

m⊕

j=0

πj(xj).
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2 The networkN0(m)
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Figure 1: Network building blockB(m) has message inputsy0, y1, . . . , ym (from unspecified
source nodes) andm + 1 output edges. For eachi, the nodeui receives each of the inputs ex-
ceptyi and has a single outgoing edge to the nodevi, which carries the edge symbolei. The node
u receives each of the inputs and has a single outgoing edge to the nodev, which carries the edge
symbole. For eachi, the receiver nodeRi has an incoming edge fromvi and an incoming edge
from v and demands theith messageyi. Theith output edge ofB(m) is an outgoing edge of node
vi.

For eachm ≥ 2, the network building blockB(m) is defined in Figure 1 and is used to build
networkN0(m), which is defined in Figure 2. For eachi, the nodevi within B(m) has a single
incoming edge from nodeui, so without loss of generality, we may assume both outgoing edges of
vi carry the symbolei. Similarly, we may assume each of the outgoing edges of the nodev carries
the symbole. Lemma 2.2 demonstrates that for eachm ≥ 2, the(1, 1) solutions of networkN0(m)
are precisely those codes which satisfy PropertyP (m), defined in Definition 1.7. In particular, the
solution alphabets have to be permutations of Abelian groups.

Remark 2.1. NetworkN0(m) hasm+ 1 source nodes,2(m+ 2) intermediate nodes, andm+ 1
receiver nodes, so the total number of nodes inN0(m) is 4m+ 6.
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Figure 2: NetworkN0(m) consists of a blockB(m) together with source nodesS0, S1, . . . , Sm,
which generate messagesx0, x1, . . . , xm, respectively. The output edges ofB(m) are unused.

Lemma 2.2 characterizes the solvability ofN0(m) and will be used in the proofs of the solv-
ability conditions ofN1,N2, andN3.

Lemma 2.2. Letm ≥ 2. A (1, 1) code over an alphabetA is a scalar solution for networkN0(m)
if and only if the code satisfies PropertyP (m).

The following result regarding the scalar linear solvability of N0(m) will be used in later
proofs.

Lemma 2.3. Letm ≥ 2 and letG be a standardR-module. Suppose a scalar linear solution for
networkN0(m) overG has edge symbols

ei =
m⊕

j=0
j 6=i

(ci,j · xj) (i = 0, 1, . . . , m)

e =

m⊕

j=0

(cj · xj)

and decoding functions

Ri : xi = (di,e · e)⊕ (di · ei) (i = 0, 1, . . . , m)

whereci,j, cj, di,e, di ∈ R. Then eachdi andci is invertible inR, and

ci,j = −d−1
i di,e cj (i, j = 0, 1, . . . , m andj 6= i).

Lemma 2.4. The networkN0(m) has capacity and linear capacity, for any finite-field alphabet,
equal to1.
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3 The networkN1(m)
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Figure 3: The networkN1(m) is constructed from aB(m) block together with source nodes
S0, S1, . . . , Sm and an additional receiverRx. For eachi, the source nodeSi generates the message
xi and is theith input toB(m). The additional receiverRx receives all of the output edges of
B(m) and demands the messagex0.

For eachm ≥ 2, networkN1(m) is defined in Figure 3. The special casem = 2 corresponds
to the non-Fano network from [10], [11], with a relabeling ofmessages and nodes. Lemmas 3.2,
3.3, and 3.8, respectively, demonstrate that networkN1(m) is

1. solvable over alphabetA only if |A| is relatively prime tom,

2. scalar linear solvable over standardR-moduleG if and only if char(R) is relatively prime to
m,

3. asymptotically linear solvable over finite fieldF if and only if char(F) does not dividem.

Remark 3.1. NetworkN1(m) is a networkN0(m) with one additional receiver node, so the total
number of nodes inN1(m) is 4m+ 7.

3.1 Solvability conditions ofN1(m)

The following lemma also follows from [6, Proposition 4.1] and characterizes a condition on the
alphabet size necessary for the solvability ofN1(m).

Lemma 3.2. For eachm ≥ 2, if networkN1(m) is solvable over alphabetA, thenm and |A| are
relatively prime.
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3.2 Linear solvability conditions ofN1(m)

Lemma 3.3 presents a necessary and sufficient condition for the scalar linear solvability ofN1(m)
over standardR-modules.

Lemma 3.3. Letm ≥ 2, and letG be a standardR-module. Then networkN1(m) is scalar linear
solvable overG if and only ifchar(R) is relatively prime tom.

3.3 Capacity and linear capacity ofN1(m)

Definition 3.4. Let F be a finite field and supposea1, . . . , aq ∈ F
si and b1, . . . , br ∈ F

tj are
functions of variablesx1, . . . , xw. We writea1, . . . , aq −→ b1, . . . , br to mean that there exist
tj × si matricesMj,i overF such that for all choices of the variablesx1, . . . , xw,

bj =

q
∑

i=1

Mj,i ai (j = 1, . . . , r).

In the context of network coding, the variablesx1, . . . , xw will always be taken as the network
messages. In what follows, the transitive relation−→ will be used to describe linear coding func-
tions at network nodes. Lemma 3.5 is known from linear algebra [26, p. 124], and will be used in
later proofs. In particular, Lemmas 3.5, 3.6, and 3.7 will beused in bounding the linear capacities
of N1,N2, andN3.

Lemma 3.5. LetF be a finite field. IfA : Fm → F
n andB : Fk → F

m are linear maps, then

rank (A) + rank (B)−m ≤ rank (AB) (2)

≤ min(rank (A) , rank (B)). (3)

Lemma 3.6. If A is ann × k matrix of rankk over finite fieldF, then there exists a nonsingular
n× n matrixB such that

BA =

[
Ik
0

]

.

Lemma 3.7. If A is anm× n matrix of rankk over finite fieldF, then there exists an(n− k)× n
matrixQ overF of rankn− k such that for allx ∈ F

n

Ax, Qx −→ x.

The following lemma characterizes the capacity and the linear capacity over finite-field alpha-
bets ofN1(m).

Page 12 of 68



Connelly-Zeger January 14, 2016

Lemma 3.8. For eachm ≥ 2, networkN1(m) has:

(a) capacity equal to1,

(b) linear capacity equal to1 for any finite-field alphabet whose characteristic does not divide
m,

(c) linear capacity equal to1 − 1
2m+2

for any finite-field alphabet whose characteristic divides
m.
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4 The networkN2(m,w)
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Figure 4: NetworkN2(m,w) is constructed fromw blocks ofB(m+1) together withw(m+1)+1
source nodes and an additional receiverRz. Thelth block is denotedB(l)(m + 1), and the nodes
and edge symbols withinB(l)(m + 1) are denoted with a superscriptl. For eachl = 1, 2, . . . , w,
the blockB(l)(m+1) has inputs from source nodesS(l)

1 , S
(l)
2 , . . . , S

(l)
m+1, which generate messages

x
(l)
1 , x

(l)
2 , . . . , x

(l)
m+1. The shared messagez is generated by source nodeSz and is the0th input to

eachB(l)(m+1). Each of the output edges ofB(l)(m+1), except the0th, is an input to the shared
receiverRz, which demands the shared messagez.

For eachm ≥ 2 andw ≥ 1, networkN2(m,w) is defined in Figure 4. We note thatN2(m, 1)
andN1(m + 1) have similar structure, but in networkN1(m + 1) each of the output edges of
B(m+1) is connected toRx, and in networkN2(m, 1) all but one of the output edges ofB(m+1)
are connected toRz. This disconnected edge causes the difference in solvability properties of the
two networks. Lemmas 4.4, 4.5, 4.6, and 4.7 demonstrate thatnetworkN2(m,w) is:

1. non-linear solvable over an alphabet of sizemw, if w ≥ 2,

2. solvable over alphabetA only if |A| is not relatively prime tom,

3. scalar linear solvable over standardR-moduleG if and only if char(R) dividesm,

4. asymptotically linear solvable over finite fieldF if and only if char(F) dividesm.

Remark 4.1. For eachm ≥ 2 andw ≥ 1 networkN2(m,w) hasw(m + 1) + 1 source nodes,
w(2m+ 6) intermediate nodes, andw(m+ 2) + 1 receiver nodes, so the total number of nodes in
N2(m,w) is 4mw + 9w + 2.
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4.1 Solvability conditions ofN2(m,w)

For each positive integerm, we will view the ringZm as the set{0, 1, . . . , m − 1} together with
addition and multiplication modulom. This ring will be used to construct non-linear solutions in
Lemmas 4.2, 4.4, 5.2, and 5.4.

For eachm,w ≥ 2 anda ∈ Zmw, a receiver cannot uniquely determine the symbola in Zmw

from the symbolwa ∈ Zmw sincew is not invertible inZmw. For example, if a receiver receives
wa = 0 in Zmw, then the symbola could be any element in the set{0, m, 2m, . . . , (w − 1)m}.
The following lemma describes a technique for recovering the value ofa via a decoding functionψ
from thew-tuplewπ1(a), wπ2(a), . . . , wπw(a), where eachπi is a particular permutation ofZmw.
This technique will then be used to show that networkN2(m,w) is solvable over an alphabet of
sizemw.

Lemma 4.2. For eachm ≥ 2 andw ≥ 1, there exist permutationsπ1, π2, . . . , πw of Zmw and a
mappingψ : Zw

mw → Zmw such that for alla ∈ Zmw

ψ (wπ1(a), wπ2(a), . . . , wπw(a)) = a.

Example 4.3.The following table illustrates Lemma 4.2 for the casem = 4 andw = 3.

a = π3(a) π2(a) π1(a) 3π3(a) 3π2(a) 3π1(a)
0 0 0 0 0 0
1 1 1 3 3 3
2 2 2 6 6 6
3 3 3 9 9 9
4 4 5 0 0 3
5 5 6 3 3 6
6 6 7 6 6 9
7 7 4 9 9 0
8 9 8 0 3 0
9 10 9 3 6 3
10 11 10 6 9 6
11 8 11 9 0 9

For eacha ∈ Z12, the triple(3π3(a), 3π2(a), 3π1(a)) ∈ Z
3
12 is distinct.

Lemma 4.2 will be used in the proof of Lemma 4.4 to show that thereceiverRz can recover
the messagez from the set of edge symbolse(l)i wherel = 1, 2, . . . , w andi = 1, 2, . . . , m+ 1.

Lemma 4.4. For eachm ≥ 2 andw ≥ 1, networkN2(m,w) is solvable over an alphabet of size
mw.

In the code given in the proof of Lemma 4.4, ifw = 1, thenπ1 andψ are identity permutations,
so the code is linear. However ifw > 1, thenπ1, π2, . . . , πw−1 are generally non-linear, so the code
is non-linear.
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Lemma 4.5. For eachm ≥ 2 andw ≥ 1, if networkN2(m,w) is solvable over alphabetA, then
m and |A| are not relatively prime.

Lemmas 4.4 and 4.5 together provide a partial characterization of the alphabet sizes over which
N2(m,w) is solvable. However, these conditions are sufficient for showing our main results.

4.2 Linear solvability conditions ofN2(m,w)

Lemma 4.6 characterizes a necessary and sufficient condition for the scalar linear solvability of
N2(m,w) over standardR-modules.

Lemma 4.6. Letm ≥ 2 andw ≥ 1, and letG be a standardR-module. Then networkN2(m,w)
is scalar linear solvable overG if and only ifchar(R) dividesm.

By Lemma 4.4, for everym,w ≥ 2, the networkN2(m,w) is solvable over the ringZmw, but
char(Zmw) = mw ffl m so by Lemma 4.6, the solution is necessarily non-linear.

4.3 Capacity and linear capacity ofN2(m,w)

The following lemma provides a partial characterization ofthe linear capacity ofN2(m,w) over
finite-field alphabets.

Lemma 4.7. For eachm ≥ 2 andw ≥ 1, networkN2(m,w) has

(a) capacity equal to1,

(b) linear capacity equal to1 for any finite-field alphabet whose characteristic dividesm,

(c) linear capacity upper bounded by1− 1
2mw+2w+1

for any finite-field alphabet whose charac-
teristic does not dividem.

Improving these upper-bounds on the linear capacities and/or finding codes at these rates are
left as open problems. The problems appear to be non-trivial, and such improvements are unrelated
to the main results of this paper.

Page 16 of 68



Connelly-Zeger January 14, 2016

5 The networkN3(m1,m2)
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Figure 5: The networkN3(m1, m2) is constructed fromB(m1) andB(m2) blocks together with
m1 +m2 + 1 source nodes and an additional receiverRz. The blocks are denotedB(1)(m1) and
B(2)(m2) respectively, and for eachl = 1, 2, the nodes and edge symbols inB(l)(ml) are denoted
with a superscriptl. EachB(l)(ml) block has inputs from source nodesS(l)

1 , S
(l)
2 , . . . , S

(l)
ml , which

generate messagesx(l)1 , x
(l)
2 , . . . , x

(l)
ml . The shared messagez is generated by source nodeSz and is

the0th input toB(l)(ml). The additional receiverRz receives all of the output edges ofB(1)(m1)
andB(2)(m2) and demands the shared messagez.

For eachm1, m2 ≥ 2, networkN3(m1, m2) is defined in Figure 5. We note thatN2(m, 2) and
N3(m+1, m+1) have similar structure, with the exception of the disconnected output edge of each
B(m+1) in N2(m, 2). This disconnected edge causes the difference in solvability properties of the
two networks. Corollary 5.7 and Lemmas 5.5, 5.6, and 5.8 demonstrate that networkN3(m1, m2)
is:

1. non-linear solvable over an alphabet of sizetmα+1
1 , if α ≥ 1, m2 = smα

1 , ands andt are
relatively prime tom1,

2. solvable over alphabetA only if |A| is relatively prime tom1 or |A| does not dividem2,

3. scalar linear solvable over standardR-moduleG if and only if gcd(char(R), m1, m2) = 1,

4. asymptotically linear solvable over finite fieldF if and only if char(F) is relatively prime to
m1 orm2.

Remark 5.1. For eachm1, m2 ≥ 2, the networkN3(m1, m2) hasm1 + m2 + 1 source nodes,
2(m1+m2+4) intermediate nodes, andm1+m2+3 receiver nodes, so the total number of nodes
in N3(m1, m2) is 4m1 + 4m2 + 12.
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5.1 Solvability conditions ofN3(m1, m2)

The following lemmas demonstrate thatN3(m1, m2) is non-linear solvable whenm2 = smα
1 ,

α ≥ 1, ands is relatively prime tom1. Consider the ring alphabetZmα+1
1

. For everya ∈ Zmα+1
1

, a
receiver cannot uniquely determine a symbola in Zmα+1

1
from the symbolsm1a andsmα

1a, since
m1 is not invertible inZmα+1

1
. For example, if a receiver receivesm1a = smα

1a = 0 in Zmα+1
1

,
then the symbola could be any element in the set{0, mα

1 , 2m
α
1 , . . . , (m1 − 1)mα

1}. The following
lemma describes a technique for recovering the value ofa via a decoding functionψ fromm1π1(a)
andsmα

1π2(a), whereπ1 andπ2 are particular permutations ofZmα+1
1

.

Lemma 5.2. Let m ≥ 2 andα, s ≥ 1 be integers such thats is relatively prime tom. Then
there exist permutationsπ1 andπ2 of Zmα+1 and a mappingψ : Z2

mα+1 → Zmα+1 such that for all
a ∈ Zmα+1 ,

ψ (mπ1(a), sm
απ2(a)) = a.

Example 5.3. The table below illustrates Lemma 5.2 for the casem = 2, s = 3, andα = 2, and
permutationsπ1 andπ2 of Z8.

a = π2(a) π1(a) 12π2(a) 2π1(a)

0 0 0 0
1 4 4 0
2 1 0 2
3 5 4 2
4 2 0 4
5 6 4 4
6 3 0 6
7 7 4 6

For eacha ∈ Z8, the pair(2π1(a), 12π2(a)) ∈ Z
2
8 is distinct.

Lemma 5.2 will be used in the proof of Lemma 5.4 to show that thereceiverRz can recover
the messagez from the set of edge symbolse(l)i , wherel = 1, 2 andi = 0, 1, . . . , ml.

Lemma 5.4. Letm1, m2 ≥ 2 andα, s ≥ 1 be integers such thatm2 = smα
1 ands is relatively

prime tom1. Then networkN3(m1, m2) is solvable over an alphabet of sizemα+1
1 .

In the code given in the proof of Lemma 5.4, the permutationπ1 is non-linear, so the code is
non-linear.

Lemma 5.5. Letm1, m2 ≥ 2. If networkN3(m1, m2) is solvable over alphabetA and|A| divides
m2, thenm1 and|A| are relatively prime.

Lemmas 5.4 and 5.5 together provide a partial characterization of the alphabet sizes over which
N2(m,w) is solvable. However, these conditions are sufficient for showing our main results.
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5.2 Linear solvability conditions ofN3(m1, m2)

The following lemma characterizes a necessary and sufficient condition for the scalar linear solv-
ability of N3(m1, m2) over standardR-modules.

Lemma 5.6. Letm1, m2 ≥ 2, and letG be a standardR-module. Then networkN3(m1, m2) is
scalar linear solvable overG if and only ifgcd(char(R), m1, m2) = 1.

Corollary 5.7. Letm1, m2 ≥ 2 andα, s, t ≥ 1 be integers such thatm2 = smα
1 ands and t are

relatively prime tom1. Then networkN3(m1, m2) is solvable over an alphabet of sizetmα+1
1 .

Proof. By Lemma 5.4, networkN3(m1, m2) is solvable over an alphabet of sizemα+1
1 . Zt is

a standardZt-module andchar(Zt) = t is relatively prime tom1, so by Lemma 5.6, network
N3(m1, m2) is scalar linear solvable over the ringZt.

By taking the Cartesian product code of these solutions, network N3(m1, m2) is solvable over
an alphabet of sizetmα+1

1 . �

For eachm1 ≥ 2 andα, s ≥ 1 such thats is relatively prime tom1, let m2 = mα
1 s. By

Lemma 5.4, networkN3(m1, m2) is solvable overZmα+1
1
, but we have

gcd
(

m1, m2, char
(

Zmα+1
1

))

= gcd
(
m1, m

α
1s,m

α+1
1

)
= m1 6= 1,

in this case, so by Lemma 5.6 the solution is necessarily non-linear. This also implies that the
Cartesian product code in Corollary 5.7 is necessarily non-linear.

5.3 Capacity and linear capacity ofN3(m1, m2)

Since the characteristic of any finite field is prime, the conditions of (b) and (c) of the following
lemma are complements of one another.

Lemma 5.8. For eachm1, m2 ≥ 2, networkN3(m1, m2) has

(a) capacity equal to1,

(b) linear capacity equal to1 for any finite-field alphabet whose characteristic is relatively prime
tom1 or m2,

(c) linear capacity equal to1 − 1
2m1+2m2+3

for any finite-field alphabet whose characteristic
dividesm1 andm2.
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6 The networkN4(m)

A disjoint unionof networks refers to a new network formed by combining existing networks with
disjoint sets of nodes, edges, sources, and receivers. Specifically, the nodes/edges/sources/receivers
in the resulting network are the disjoint union of the nodes/edges/sources/receivers in the smaller
networks.

Remark 6.1. The disjoint union of networksN1, . . . ,Nw, has a(k, n) solution over alphabetA if
and only ifN1, . . . ,Nw each has a(k, n) solution overA.

For any integerm ≥ 2, let ω(m) denote the number of distinct prime factors ofm. Denote the
prime factorization ofm by

m = pγ11 · · · p
γω(m)

ω(m)

whereγ1, . . . , γω(m) ≥ 1 andp1, . . . , pω(m) are distinct primes. We define the following functions
of m and its prime divisors, which will be used throughout this section:

f(m) = pγ1−1
1 . . . p

γω(m)−1

ω(m) (4)

µ(m, i) = min {α ≥ 0 : pαi ≥ f(m)} (i = 1, . . . , ω(m)) (5)

g(m, i) = pγi−1
i

ω(m)
∏

j=1
j 6=i

p
µ(m,j)
j (i = 1, . . . , ω(m)). (6)

For eachm ≥ 2 with prime factorizationm = pγ11 · · · p
γω(m)

ω(m) , we construct networkN4(m) from
the followingdisjoint union3 of networks:

N4(m) =









⋃

primeq
qfflm

q<f(m)

N1(q)









∪





ω(m)
⋃

i=1

N2 (p
γi
i , (m/p

γi
i ))



 ∪






ω(m)
⋃

i=1
γi>1

N3 (pi, g(m, i))




 . (7)

Theorem 6.2.For eachm ≥ 2, the networkN4(m) is:

1. solvable over an alphabet of sizem,

2. not solvable over any alphabet whose size is less thanm,

3. scalar linear solvable overGF(m), if m is prime,

4. neither vector linear solvable over anyR-module alphabet nor asymptotically linear solv-
able over any finite-field alphabet ifm is composite.

3When node (respectively, edge and message) labels are repeated (e.g.N1(m1) andN1(m2) both have receiver
Rx), add additional superscripts to each node (respectively,edge and message) to avoid repeated labels. Each disjoint
network has a set of messages, nodes, and edges which is disjoint to every other network’s set in the union. The
messages, nodes, and edges are not directly referenced in this section, so the additional level of labeling is arbitraryso
long as the networks are disjoint.
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Proof. The theorem follows immediately from Theorems 6.4, 6.5, 6.7, 6.8, and Corollary 6.10.�

Example 6.3. Consider the special cases of the square-free integer4 6, the prime power27, and
the integer100 which is neither square-free nor a prime power.

• m = 6 = 2131. We haveγ1 = γ2 = 1 andf(m) = 2(1−1)3(1−1) = 1, soN4(6) has neither
N1 norN3 components. Thus by(7), networkN4(6) is the disjoint union of networks:

N2(2, 3) ∪ N2(3, 2).

• m = 27 = 33. We havef(27) = 3(3−1) = 9, g(27, 1) = 3(3−1) = 9, and the primes less
thanf(27) which do not divide27 are2, 5, and7. Thus by(7), networkN4(6) is the disjoint
union of networks:

N1(2) ∪ N1(5) ∪ N1(7) ∪ N2(27, 1) ∪ N3(3, 9).

• m = 100 = 2252. We havef(100) = 2(2−1)5(2−1) = 10. Thenµ(100, 1) = 4, since
24 > f(100) > 23, andµ(100, 2) = 2, since52 > f(100) > 51. Sog(100, 1) = 2152,
g(100, 2) = 5124, and the primes less thanf(100) which do not divide100 are3 and7. Thus
by (7), networkN4(100) is the disjoint union of networks:

N1(3) ∪ N1(7) ∪ N2(4, 25) ∪ N2(25, 4) ∪ N3(2, 50) ∪ N3(5, 80).

We will use these networks as running examples throughout this section and will refer back
to these constructions.

6.1 Solvability conditions ofN4(m)

The following lemma shows that each disjoint component ofN4(m) is solvable over an alphabet
of sizem, and thereforeN4(m) is solvable over an alphabet of sizem. The proofs of Theorems 6.4
and 6.5 make use of the functionsf, µ, andg defined in (4), (5), and (6), respectively.

Theorem 6.4.For eachm ≥ 2, networkN4(m) is solvable over an alphabet of sizem.

Proof. Letm have prime factorizationm = pγ11 · · ·p
γω(m)

ω(m) .
For each primeq < f(m) such thatq ffl m, by (7), networkN4(m) contains a copy ofN1(q).

Zm is a standardZm-module andchar(Zm) = m is relatively prime toq, so by Lemma 3.3, network
N1(q) is scalar linear solvable over the ringZm.

For eachi = 1, . . . , ω(m), by (7), networkN4(m) contains a copy ofN2 (p
γi
i , (m/p

γi
i )). By

Lemma 4.4, networkN2 (p
γi
i , (m/p

γi
i )) is solvable over an alphabet of sizem.

For eachi = 1, . . . , ω(m) such thatγi > 1, by (7), networkN4(m) contains a copy of
N3(pi, g(m, i)). Also, pi andm/pγii are relatively prime, and by (6),g(m, i) is the product of

4An integer issquare-freeif it is not divisible by the square of any prime.
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pγi−1
i and a term which is relatively prime topi, so by Corollary 5.7, networkN3 (pi, g(m, i)) is

solvable over an alphabet of sizem.
Thus each disjoint component ofN4(m) is solvable over an alphabet of sizem, soN4(m) is

solvable over an alphabet of sizem. �

Each networkN1,N2, andN3 requires the alphabet size to meet some divisibility condition
in order to have a solution over that alphabet. The followinglemma shows that because of these
conditions, there does not exist an alphabet whose size is less thanm over which each component
of N4(m) is solvable.

Theorem 6.5.For eachm ≥ 2, if networkN4(m) is solvable over alphabetA, then|A| ≥ m.

Proof. Assume to the contrary thatN4(m) is solvable over an alphabetA such that|A| < m. Then
each disjoint component ofN4(m) must be solvable overA.

Letm have prime factorizationm = pγ11 · · · p
γω(m)

ω(m) .
For eachi = 1, . . . , ω(m), by (7), networkN4(m) contains a copy ofN2 (p

γi
i , (m/p

γi
i )). Since

networkN2 (p
γi
i , (m/p

γi
i )) is solvable overA, then by Lemma 4.5,pi is not relatively prime to|A|.

Sincepi is prime, we havepi
∣
∣ |A|, and thusp1 · · · pω(m)

∣
∣ |A|. Let

δ =
|A|

p1 · · · pω(m)
.

If m = p1 · · · pω(m) (i.e.m is square-free), then we contradict the assumption that|A| < m.
So we may assumem > p1 · · · pω(m), which impliesδ ≥ 2. If δ ≥ f(m), then

|A| = δ p1 . . . pω(m) ≥ f(m) p1 . . . pω(m) = pγ11 · · · p
γω(m)

ω(m) = m [from (4)] ,

which again contradicts the assumption|A| < m, so we must haveδ < f(m).
In order to write the prime factorization of|A|, let {q1, . . . , qρ} denote the set of primes which

are less thanf(m) and do not dividem. Each prime less thanf(m) either dividesm and is in the
set{p1, . . . , pω(m)} or it does not dividem and is in the set{q1, . . . , qρ}. Thusδ must be a product
of q1, . . . , qρ andp1, . . . , pω(m) terms, so there existα1, . . . , αω(m) ≥ 1 andβ1, . . . , βρ ≥ 0 such
that we can write|A| as

|A| = pα1
1 . . . p

αω(m)

ω(m) q
β1

1 . . . qβρ

ρ . (8)

For each primeq < f(m) such thatq ffl m, by (7), networkN4(m) contains a copy ofN1(q).
Since networkN1(q) is solvable overA, then by Lemma 3.2, we havegcd(q, |A|) = 1. Thus in
(8) we haveβ1 = · · · = βρ = 0.

For eachi = 1, . . . , ω(m) such thatγi > 1, by (7), networkN4(m) contains a copy of
N3(pi, g(m, i)). Since networkN3(pi, g(m, i)) is solvable overA andpi

∣
∣ |A|, then by Lemma 5.5,

Page 22 of 68



Connelly-Zeger January 14, 2016

|A| does not divideg(m, i). Expressing|A| andg(m, i) as their prime factorizations yields:

pα1
1 . . . p

αω(m)

ω(m) 6
∣
∣
∣ p

γi−1
i

ω(m)
∏

j=1
j 6=i

p
µ(m,j)
j [from (6), (8)] .

This implies that for eachi ∈ {1, . . . , ω(m)} such thatγi > 1, eitherαi ≥ γi or αj ≥ µ(m, j) + 1
for somej 6= i.

If there existsj ∈ {1, . . . , ω(m)} such that thatαj ≥ µ(m, j) + 1, then we have

|A| = pα1
1 · · · p

αω(m)

ω(m) [from (8)]

≥ p
αj−1
j

(
p1 · · · pω(m)

)
[from αl ≥ 1]

≥ p
µ(m,j)
j

(
p1 · · ·pω(m)

)

≥ f(m)
(
p1 · · ·pω(m)

)
= m [from (4), (5)] ,

which contradicts the assumption that|A| < m. So if each component of networkN4(m) is
solvable overA and |A| < m, it must be the case thatαi ≥ γi, for eachi such thatγi > 1. If
γi = 1, thenαi ≥ 1 = γi. So we haveαi ≥ γi for all i, but this implies

|A| = pα1
1 · · · p

αω(m)

ω(m) [from (8)]

≥ pγ11 · · · p
γω(m)

ω(m) = m,

which again contradicts the assumption that|A| < m.
Thus there does not exist an alphabetA whose size is less thanm such that each disjoint

component ofN4(m) is solvable overA. �

Example 6.6.We continue our example networksN4(6),N4(27), andN4(100).

• SupposeN4(6) is solvable over an alphabetA. SinceN2(2, 3) is solvable overA, we have
2 divides|A|. Similarly for N2(3, 2), we have that3 divides|A|. Since6 is the smallest
positive integer that is divisible by2 and3, we have|A| ≥ 6.

• SupposeN4(27) is solvable over an alphabetA whose size is less than27. Then

– N2(27, 1) requires3
∣
∣ |A|, so|A| ∈ {3, 6, 9, 12, 15, 18, 21, 24}.

– N1(2), N1(5), andN1(7) require|A| be relatively prime to2, 5, and7,

so |A| 6∈ {6, 12, 15, 18, 21, 24}.

– N3(3, 9) requires|A| ffl 9, so|A| 6∈ {3, 9}.

ThereforeN4(27) is not solvable over any alphabet whose size is less than27.

• SupposeN4(100) is solvable over an alphabetA whose size is less than100. Then

– N2(4, 25) andN2(25, 4) require10
∣
∣ |A|, so|A| ∈ {10, 20, . . . , 90}.
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– N1(3) andN1(7) require|A| to be relatively prime to3 and7, so|A| 6∈ {30, 60, 70, 90}.

– N3(2, 50) requires|A| ffl 50, so|A| 6∈ {10, 50}.

– N3(5, 80) requires|A| ffl 80, so|A| 6∈ {10, 20, 40, 80}.

ThereforeN4(100) is not solvable over any alphabet whose size is less than100.

6.2 Linear solvability conditions ofN4(m)

The following theorems show thatN4(m) is linear solvable if and only ifm is prime.

Theorem 6.7.For each primep, networkN4(p) is scalar linear solvable overGF(p).

Proof. If p is a prime number, thenf(p) = 1 and the power ofp is one, so by (7), networkN4(p)
consists solely of a copy of networkN2(p, 1). By Lemma 4.6, networkN2(p, 1) has a scalar linear
solution over every finite-field alphabet with characteristic p. �

Theorem 6.8. For each composite numberm, networkN4(m) is not vector linear solvable over
anyR-module.

Proof. Let G be a standardR-module, and assume a scalar linear solution forN4(m) exists over
G. SinceN4(m) is scalar linear solvable overG, each disjoint component ofN4(m) is scalar linear
solvable overG. Supposem is a composite number. Thenm is a product of two or more (possibly
distinct) primes. We will separately consider the cases of prime powers and non-power-of-prime
composite numbers.

For each primep and integerγ ≥ 2, by (7), networkN4(p
γ) contains copies ofN2(p

γ , 1)
andN3 (p, p

γ−1). Since networkN2(p
γ, 1) is scalar linear solvable overG, by Lemma 4.6, the

characteristic ofR dividespγ. Since networkN3 (p, p
γ−1) is scalar linear solvable overG, by

Lemma 5.6, the characteristic ofR is relatively prime top. If the characteristic ofR both divides
pγ and is relatively prime top, then the characteristic ofR is 1, which only occurs in the trivial ring
(of size one). Thus there is no standardR-module over which all components of networkN4(p

γ)
are scalar linear solvable.

Now supposeω(m) ≥ 2. Thenm has prime factorizationm = pγ11 · · · p
γω(m)

ω(m) , and by (7), net-
workN4(m) contains copies ofN2 (p

γ1
1 , (m/p

γ1
1 )) and networkN2 (p

γ2
2 , (m/p

γ2
2 )). Since network

N2 (p
γi
i , (m/p

γi
i )) is scalar linear solvable overG, by Lemma 4.6, the characteristic ofR divides

pγii . For primesp1 6= p2, if the characteristic ofR divides bothpγ11 andpγ22 then the characteristic
of R is 1, which only occurs in the trivial ring. Thus there is no standardR-module over which all
components of networkN4(m) are scalar linear solvable.

If m is a composite number, then there are no scalar linear solutions forN4(m) over any
standardR-module, which, by Lemmas 1.3 and 1.4 implies there are no vector linear solutions for
N4(m) over anyR-module. �

Page 24 of 68



Connelly-Zeger January 14, 2016

6.3 Capacity and linear capacity ofN4(m)

Theorem 6.9.For eachm ≥ 2 networkN4(m) has:

(a) capacity equal to1,

(b) linear capacity bounded away from1 over all finite-field alphabets, ifm is composite.

Proof. For eachm ≥ 2, by Theorem 6.4, networkN4(m) is solvable over an alphabet of sizem,
so its capacity is at least1. Each networkN1,N2, andN3 has capacity equal to1, andN4(m)
consists of disjoint copies ofN1,N2, andN3, so its capacity is at most1. Thus the capacity of
N4(m) is equal to1.

For compositem, we will again separately consider the cases of prime powersand non-power-
of-prime composite numbers.

For each primep and integerγ ≥ 2, by (7), networkN4(p
γ) contains copies ofN2(p

γ , 1) and
N3 (p, p

γ−1). By Lemma 4.7, networkN2(p
γ, 1) has linear capacity upper bounded by

1−
1

2pγ + 3

for finite-field alphabets with characteristic other thanp. By Lemma 5.8, networkN3 (p, p
γ−1) has

linear capacity equal to

1−
1

2pγ−1 + 2p+ 3

for finite-field alphabets with characteristicp. Whether we select a finite-field alphabet with char-
acteristicp or characteristic other thanp, the linear capacity ofN4(p

γ) is bounded away from1,
for fixedp andγ.

Now supposeω(m) ≥ 2. Thenm has prime factorizationm = pγ11 · · · p
γω(m)

ω(m) , and by (7),
networkN4(m) contains copies ofN2 (p

γ1
1 , (m/p

γ1
1 )) andN2 (p

γ2
2 , (m/p

γ2
2 )). By Lemma 4.7,

networkN2 (p
γi
i , (m/p

γi
i )) has linear capacity upper bounded by

1−
1

2m+ 2(m/pγii ) + 1

for finite-field alphabets with characteristic other thanpi. Sincep1 6= p2, whether we select a
finite-field alphabet with characteristicp1, p2, or neitherp1 nor p2, the linear capacity is bounded
away from1, for fixedm.

Thus for any fixed composite numberm, the linear capacity of networkN4(m) is bounded
away from1 over all finite-field alphabets. �

Calculating the exact linear capacity ofN4(m) over every finite-field alphabet is left as an open
problem.

Corollary 6.10. For each compositem, networkN4(m) is not asymptotically linear solvable over
any finite-field alphabet.

Proof. This follows directly from the fact that for any fixed composite numberm, by Theorem 6.9,
the linear capacity ofN4(m) is bounded away from one over all finite-field alphabets. �
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6.4 Size ofN4(m)

Depending on the prime divisors ofm, the number of nodes inN4(m) can be dominated by nodes
from N1 networks,N2 networks, orN3 networks. The following theorem makes use of the func-
tionsf(m), µ(m, i), andg(m, i) defined in (4), (5), (6).

Theorem 6.11.For eachm ≥ 2, the number of nodes in networkN4(m) is asymptotically

(a) Ω(m),

(b) O(m), whenm is prime,

(c) O
(

m logm
log logm

)

, whenm is square-free,

(d) O (m2/ logm), whenm is a prime-power,

(e) O
(

m
logm

log logm

)

, whenm is neither square-free nor a prime-power.

Proof. By Remark 3.1, the number of nodes inN1(q) is 4q + 7.
By Remark 4.1, the number of nodes inN2(m,w) is 4mw + 9w + 2.
By Remark 5.1, the number of nodes inN3(m1, m2) is 4m1 + 4m2 + 12.
By the construction ofN4(m) given in (7), the total number of nodes inN4(m) is:








∑

prime q
qfflm

q<f(m)

(4q + 7)









+





ω(m)
∑

i=1

(4m+ 9(m/pγii ) + 2)



+






ω(m)
∑

i=1
γi>1

(4g(m, i) + 4pi + 12)




 (9)

where the first, second, and third terms are the number of nodes fromN1, N2, andN3 networks,
respectively. In order to find upper and lower bounds on the total number of nodes inN4(m),
we will first find upper and lower bounds on the number of nodes fromN1,N2, andN3 networks
within N4(m).

It is known [25, VII.27a] that

∑

primeq
q≤m

q = O

(
m2

logm

)

. (10)

If m is a square-free number, then we havef(m) = 1, so in this case, there are no nodes in
N4(m) from N1 networks. Thus for generalm, we have

∑

prime q
qfflm

q<f(m)

(4q + 7) ≥ 0 (11)
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and

∑

prime q
qfflm

q<f(m)

(4q + 7) <
∑

primeq
q≤m

(4q + 7) = O

(
m2

logm

)

[from (10)] . (12)

The total number of nodes inN4(m) from N2 networks is

ω(m)
∑

i=1

(4m+ 9(m/pγii ) + 2) >

ω(m)
∑

i=1

4m = Ω(ω(m)m) (13)

and

ω(m)
∑

i=1

(4m+ 9(m/pγii ) + 2) <

ω(m)
∑

i=1

(13m+ 2) = O (ω(m)m) . (14)

For eachi = 1, . . . , ω(m) we have

p
µ(m,i)
i < pi f(m) [from (5)] (15)

g(m, i) = pγi−1
i

ω(m)
∏

j=1
j 6=i

p
µ(m,j)
j [from (6)]

< pγi−1
i

ω(m)
∏

j=1
j 6=i

pjf(m) [from (15)]

< pγii f(m)ω(m)−1

ω(m)
∏

j=1

pj

= pγii f(m)ω(m)−2m [from (4)] . (16)

If m is square-free, thenγi = 1 for all i, so in this case, there are no nodes inN4(m) from N3

networks. Thus for generalm, we have

ω(m)
∑

i=1
γi>1

(4g(m, i) + 4pi + 12) ≥ 0. (17)
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and

ω(m)
∑

i=1
γi>1

(4g(m, i) + 4pi + 12) ≤

ω(m)
∑

i=1

20g(m, i) [from (6)]

< 20mf(m)ω(m)−2

ω(m)
∑

i=1

pγii [from (16)]

< 20mf(m)ω(m)−2

ω(m)
∏

i=1

pγii [from ab ≥ a+ b for all a, b ≥ 2]

= 20m2 f(m)ω(m)−2

< 20mω(m) = O
(
mω(m)

)
[from (4)] . (18)

To prove part (a), consider the lower bounds of each term of (9). The total number of nodes in
N4(m) is lower bounded by:

0 + Ω(ω(m)m) + 0 = Ω(ω(m)m) = Ω(m) [from (9), (11), (13), (17)] ,

where the final equality comes from the factω(m) = Ω(1), sinceω(m) = 1 whenm is prime.
It follows from [24, Theorem 11] that

ω(m) = O

(
logm

log logm

)

. (19)

To prove parts (b)-(e), we will consider the upper bounds on the number of nodes of each term
of (9). However, each term dominates in different cases, depending on the prime factors ofm.

To prove parts (b) and (c), consider a square-free integerm = p1 · · · pω(m). Sinceγi = 1 for
all i, we havef(m) = 1, so there are neitherN1 nor N3 components inN4(m). Thus there are
0 nodes fromN1 andN3 components. Then by (9) and (14), the number of nodes inN4(m) is
O(ω(m)m). If m is prime, thenω(m) = 1, so we have the desired bound. Ifm is not prime, then
the number of nodes isO(ω(m)m), which, along with (19), yields the desired bound.

To prove part (d), consider a prime powerm = pγ , whereγ ≥ 2. We haveω (pγ) = 1, so by
(14), the number of nodes fromN2 components isO(m), and, by (18), the number of nodes from
N3 components isO(m). By (12), the number of nodes fromN1 components isO(m2/ logm).
Thus the number of nodes inN4(m) isO(m2/ logm).

To prove part (e), considerm which is neither a prime power (soω(m) ≥ 2) nor square-free
(so there areN3 components inN4(m)). The number of nodes inN4(m) is

O

(
m2

logm

)

+O (ω(m)m) +O
(
mω(m)

)
[from (9), (12), (14), (18)]

= O
(
mω(m)

)
[from ω(m) ≥ 2] ,

which, along with (19), yields the desired bound. �
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Example 6.12.We continue our example networksN4(6),N4(27), andN4(100).

• N4(6) has97 nodes:53 fromN2(2, 3) and44 fromN2(3, 2).

• N4(27) has256 nodes:15 fromN1(2), 27 fromN1(5), 35 fromN1(7), 119 fromN2(27, 1),
and60 fromN3(3, 9).

• N4(100) has1691 nodes: 19 from N1(3), 35 from N1(7), 627 from N2(4, 25), 438 from
N2(25, 4), 220 fromN3(2, 50), and352 fromN3(5, 80).

7 Open Questions

Below are some remaining open questions regarding linear and non-linear solvability:

1. In [7] it was shown that there exists a network which is not vector linear solvable over any
R-module yet is non-linear solvable over an alphabet of size4. We have shown that for each
composite numberm, there exists a network which is not vector linear solvable over any
R-module yet is non-linear solvable over an alphabet of sizem. Do there exist networks
which are not vector linear solvable overR-modules but are non-linear solvable over some
alphabet of prime size?

2. There are examples [6], [22] in the literature of solvablenetworks which are not solvable
over any alphabet whose size is less than somem. For eachm ≥ 2, we have demonstrated
a network which is solvable over an alphabet of sizem but is not solvable over any alphabet
whose size is less thanm. For eachm ≥ 2 does there exist a network which is solvable over
alphabetA if and only if |A| ≥ m? Which other “interesting” setsS ⊆ N have the property
that there exists a network which is solvable overA if and only if |A| ∈ S?

3. It is not currently known whether there can exist an algorithm which determines whether a
network is solvable. We have demonstrated a class of solvable networks with no vector linear
solutions (i.e. diabolical networks). Can there exist an algorithm which detects whether a
network is diabolical?
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Appendix - Proofs of Lemmas

Proofs of Lemmas in Section 1

Proof of Lemma 1.3.This follows from the proof of [7, Theorem III.4]. �

Proof of Lemma 1.4.If R is a ring andG is anR-module, then the setMk(R) of k × k matrices
overR with matrix addition and multiplication defined in the usualway, is a ring andGk is an
Mk(R)-module. So any vector linear solution over anR-module is also a scalar linear solution
over some otherR-module. Thus if no scalar linear solutions exist, no vectorlinear solutions
exist. �

Proof of Lemma 1.5.Assumem is invertible inR. Then for alls ∈ R such thatms = 0R, if we
multiply both sides of the equation bym−1, we haves = 0R.

To prove the converse, assumems = 0R only if s = 0R. Let T = {ms : s ∈ R}. For
eachs, s′ ∈ R, we havems = ms′ if and only if m(s − s′) = 0R, which impliess = s′, so, by
assumption,|T | = |R|. Thus1R ∈ T , which impliesm is invertible. �

Proof of Lemma 1.6.Assumechar(R) andm are not relatively prime, so they share a common
factora > 1. Let c andm′ be integers such thatchar(R) = ac andm = am′. Then we have

0R = char(R) 1R = m′ char(R) 1R = m′ a c 1R = mc 1R = m



1R + · · ·+ 1R
︸ ︷︷ ︸

c adds



 .

Sincea > 1, we have1R + · · ·+ 1R
︸ ︷︷ ︸

c adds

6= 0R, so by Lemma 1.5,m is not invertible inR.

Conversely, assumem is not invertible inR. Then by Lemma 1.5, there existss ∈ R\{0R}
such that

0R = ms = s+ · · ·+ s
︸ ︷︷ ︸

m adds

which implies the additive order ofs dividesm. We also have

s+ · · ·+ s
︸ ︷︷ ︸

char(R) adds

= char(R) s = 0R,

which implies the additive order ofs divideschar(R). Sinces 6= 0R, the additive order ofs is
greater than1, and the additive order ofs divides bothm andchar(R), so they are not relatively
prime. �
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Proofs of Lemmas in Section 2

Proof of Lemma 2.2.This lemma follows directly from [6, Proposition 3.2]. �

Proof of Lemma 2.3.Equating message components atRi yields

1R = di,e ci (i = 0, 1, . . . , m)

0R = di,e cj + di ci,j (i, j = 0, 1, . . . , m andj 6= i)

which implies the following elements ofR are invertible:

di,e andci (i = 0, 1, . . . , m)

di andci,j (i, j = 0, 1, . . . , m andj 6= i).

The result then follows by solving forci,j. �

Proof of Lemma 2.4.LetG be a standardR-module. The networkN0(m) has the following scalar
linear solution overG:

ei =
m⊕

j=0
j 6=i

xj (i = 0, 1, . . . , m)

e =

m⊕

j=0

xj

and decoding at each receiver as follows:

Ri : e⊖ ei = xi (i = 0, 1, . . . , m).

A scalar linear solution over a finite-field alphabet is a special case of a scalar linear solution
over a standardR-module. ThereforeN0(m) is scalar linear solvable over any finite-field alphabet,
so the linear capacity ofN0(m) for any finite-field alphabet is at least1. The only path for message
x0 to reach the receiverR0 is through the edge connecting nodesu andv, so its capacity is at most
1. Thus, both the capacity ofN0(m) and its linear capacity for any finite-field alphabet are equal
to 1. �
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Proofs of Lemmas in Section 3

Proof of Lemma 3.2.AssumeN1(m) is solvable overA. NetworkN1(m) consists of a network
N0(m) with the additional receiverRx, so by Lemma 2.2, the edge functions withinB(m) must
satisfy PropertyP (m). Thus, there exists an Abelian group(A,⊕) and permutationsπ0, π1, . . . , πm
andσ0, σ1, . . . , σm of A, such that the edges carry the symbols:

ei = σi







m⊕

j=0
j 6=i

πj(xj)







(i = 0, 1, . . . , m) (20)

e =

m⊕

j=0

πj(xj).

Now suppose to the contrary thatm and|A| share a prime factorp. By Cauchy’s Theorem of
Finite Groups [12, p. 93], there exists a nonzero elementa in the groupA whose order isp. Since
p
∣
∣m, we havea⊕ · · · ⊕ a

︸ ︷︷ ︸

m adds

= 0.

Define two collections of messages as follows:

xj = π−1
j (0) (j = 0, 1, . . . , m)

x̂j = π−1
j (a) (j = 0, 1, . . . , m).

Sincea 6= 0 and eachπj is bijective, it follows thatxj 6= x̂j for all j. By PropertyP (m), we have

ei = σi



0⊕ · · · ⊕ 0
︸ ︷︷ ︸

m adds



 = σi(0) (i = 0, 1, . . . , m) [from (20)]

for the messagesx0, x1 . . . , xm, and

ei = σi



a⊕ · · · ⊕ a
︸ ︷︷ ︸

m adds



 = σi(0) (i = 0, 1, . . . , m) [from (20)]

for the messageŝx0, x̂1 . . . , x̂m. For both collections of messages, the edge symbolse0, e1, . . . , em
are the same, and therefore the decoded valuex0 atRx must be the same. However, this contradicts
the fact thatx0 6= x̂0. �

Proof of Lemma 3.3.By Lemma 1.6,m is invertible inR if and only if char(R) is relatively prime
to m, so it suffices to show that for eachm and each standardR-moduleG, networkN1(m) is
scalar linear solvable overG if and only ifm is invertible inR.

Assume networkN1(m) is scalar linear solvable over standardR-moduleG. The messages are
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drawn fromG, and there existci,j, cj ∈ R, such that the edge symbols can be written as:

ei =

m⊕

j=0
j 6=i

(ci,j · xj) (i = 0, 1, . . . , m) (21)

e =
m⊕

j=0

(cj · xj) (22)

and there existdi,e, di, dx,i ∈ R, such that each receiver can linearly recover its respective message
from its inputs by:

Ri : xi = (di,e · e)⊕ (di · ei) (i = 0, 1, . . . , m) (23)

Rx : x0 =
m⊕

i=0

(dx,i · ei) . (24)

SinceN1(m) containsN0(m), by Lemma 2.3 and (21) – (23), eachci and eachdi is invertible
in R, and

ci,j = −d−1
i di,e cj (i, j = 0, 1, . . . , m andj 6= i). (25)

Equating message components atRx yields:

1R =
m∑

i=1

dx,i ci,0 [from (21), (24)]

= −
m∑

i=1

dx,i d
−1
i di,e c0 [from (25)] (26)

and for eachj = 1, 2, . . . , m,

0R =
m∑

i=0
i 6=j

dx,i ci,j [from (21), (24)]

= −






m∑

i=0
i 6=j

dx,i d
−1
i di,e




 cj [from (25)] . (27)

For eachj = 1, 2, . . . , m, multiplying (27) on the right byc−1
j c0 yields

0R =
m∑

i=0
i 6=j

dx,i d
−1
i di,e c0. [from (27)] . (28)
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By summing (28) overj = 1, 2, . . . , m and subtracting (26), we get

−1R =
m∑

j=0

m∑

i=0
i 6=j

dx,i d
−1
i di,e c0 [from (26), (28)]

= m
m∑

i=0

dx,i d
−1
i di,e c0.

Therefore,m is invertible inR.
To prove the converse, letG be a standardR-module such thatm is invertible inR. Define a

scalar linear code overG by:

ei =

m⊕

j=0
j 6=i

xj (i = 0, 1, . . . , m)

e =
m⊕

j=0

xj .

ReceiverRi can linearly recoverxi from its received edge symbolse andei by:

Ri : e⊖ ei = xi (i = 0, 1, . . . , m)

and receiverRx can linearly recoverx0 from its received edge symbolse0, e1, . . . , em by:

Rx :

(

m−1 ·
m⊕

i=0

ei

)

⊖ e0

=






m−1 ·

m⊕

i=0

m⊕

j=0
j 6=i

xj







⊖
m⊕

j=1

xj

=
m⊕

j=0

xj ⊖
m⊕

j=1

xj = x0.

Thus the code is a scalar linear solution forN1(m). �

Proof of Lemma 3.6.It follows immediately from Gaussian elimination. �

Proof of Lemma 3.7.Choosek independent rows ofA, find n− k members ofFn which together
with thek rows ofA form a basis ofFn, and let then − k members be the rows ofQ. Since the
rows ofA together with the rows ofQ form a basis ofFn, there exists ann×m matrixC1 and an
n× (n− k) matrixC2 such that for allx ∈ F

n

x = C1Ax+ C2Qx.
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The results follow immediately. �

Proof of Lemma 3.8.Since a scalar linear solution over a finite-field alphabet isa special case of
a scalar linear solution over a standardR-module, by Lemma 3.3,N1(m) is scalar linear solvable
over any finite-field alphabet whose characteristic does notdividem, so the network’s linear ca-
pacity for such finite-field alphabets is at least1. By Lemma 2.4, networkN0(m) has capacity
equal to1, and sinceN1(m) containsN0(m), the capacity ofN1(m) is at most1. Thus, both the
capacity ofN1(m) and its linear capacity for finite-field alphabets whose characteristic does not
dividem are equal to1.

To prove part (c), consider a(k, n) fractional linear solution forN1(m) over a finite fieldF
whose characteristic dividesm. Sincechar(F)

∣
∣m, we havem = 0 in F.

We havexi ∈ F
k ande, ei ∈ F

n, with n ≥ k, since the capacity is one. There existn × k
coding matricesMj,Mi,j with entries inF, such that the edge vectors can be written as:

ei =

m∑

j=0
j 6=i

Mi,j xj (i = 0, 1, . . . , m) (29)

e =
m∑

j=0

Mj xj (30)

and there existk×n decoding matricesDi,e, Di with entries inF, such that eachxi can be linearly
decoded atRi from the twon-vectorse andei by:

Ri : xi = Di,e e +Di ei (i = 0, 1, . . . , m). (31)

Since receiverRx linearly recoversx0 from e0, e1, . . . , em, we can write

e0, e1, . . . , em −→ x0. (32)

For eachi = 0, 1 . . . , m, if we setxi = 0 in (31), then we get the following relationship among
the remainingm messages (sinceei does not depend onxi):

0 = Di,e

m∑

j=0
j 6=i

Mj xj +Di ei (i = 0, 1, . . . , m) [from (29), (30), (31)] , (33)

and thus

ei −→ Di,e

m∑

j=0
j 6=i

Mj xj (i = 1, 2, . . . , m) [from (33)] (34)

m∑

j=1

Mj xj −→ D0 e0 [from (33)] . (35)

Page 35 of 68



Connelly-Zeger January 14, 2016

For eachi = 1, . . . , m, letQi,e be the matrixQ in Lemma 3.7 corresponding to whenDi,e is
the matrixA in Lemma 3.7. Similarly, letQ0 be the matrixQ in Lemma 3.7 corresponding to
takingA to beD0. LetL be the following list of2m+ 1 vector functions ofx0, x1, . . . , xm:

Q0 e0,

ei, (i = 1, 2, . . . , m)

Qi,e

m∑

j=0
j 6=i

Mj xj (i = 1, 2, . . . , m).

We have

L −→ Di,e

m∑

j=0
j 6=i

Mj xj (i = 1, 2, . . . , m) [from (34)] (36)

L −→
m∑

j=0
j 6=i

Mj xj (i = 1, 2, . . . , m) [from Lemma 3.7, (36)] , (37)

and






m∑

j=0
j 6=i

Mj xj : i = 1, 2, . . . , m







−→
m∑

i=1

m∑

j=0
j 6=i

Mj xj

= mM0 x0 + (m− 1)
m∑

j=1

Mj xj

= −
m∑

j=1

Mj xj
[
from char(F)

∣
∣m
]
. (38)
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Thus we have

L −→
m∑

j=1

Mj xj [from (37), (38)] (39)

L −→ D0 e0 [from (35), (39)] (40)

L −→ e0 [from Lemma 3.7, (40)] (41)

L −→ x0 [from (32), (41)] (42)

x0,

m∑

j=1

Mj xj −→ e [from (30)] (43)

L −→ e [from (39), (42), (43)] (44)

L −→ xi (i = 1, 2, . . . , m) [from (31), (44)] . (45)

We will now bound the number of independent entries in the list L. By equating message
components in equation (31), we have:

Ik = Di,eMi (i = 0, 1, . . . , m) [from (29), (30), (31)] . (46)

Since eachDi,e andMi arek × n andn × k, respectively, andk ≤ n, the rank of each matrix
is at mostk, but we also have

min (rank (Di,e), rank (Mi)) ≥ rank (Di,eMi) [from (3)]

= rank (Ik) = k [from (46)] ,

and sorank (Di,e) = rank (Mi) = k, which, by Lemma 3.7, implies

rank (Qi,e) = n− k (i = 1, 2, . . . , m). (47)

Sincerank (M0) = k, by Lemma 3.6, there exists ann× n nonsingular matrixW overF such
that

WM0 =

[
Ik

0(n−k)×k

]

. (48)

Partition each of thek×n matrix productsDi,eW
−1 into ak×k blockTi to the left of ak×(n−k)

blockUi:

Di,eW
−1 = [Ti Ui] (49)

and then letV be the followingn× n matrix overF:

V =

[
Ik U0

0(n−k)×k In−k

]

. (50)
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It is easy to verify that

V −1 =

[
Ik −U0

0(n−k)×k In−k

]

. (51)

For eachi = 0, 1, . . . , m, change the network encoding and decoding matrices fromMi andDi,e,
respectively, to

M ′
i = VWMi (52)

D′
i,e = Di,eW

−1V −1. (53)

We have

T0 = D0,eW
−1WM0 = Ik [from (46), (48), (49)] (54)

and therefore

M ′
0 =

[
Ik
0

]

[from (48), (50), (52)]

D′
0,e = [Ik 0] [from (49), (51), (53), (54)] . (55)

In this case,

e′ =
m∑

j=0

M ′
j xj

and for eachi = 0, 1, . . . , m, the messages can be recovered by:

D′
i,ee

′ +Diei = Di,eW
−1V −1

m∑

j=0

VWMj xj +Diei [from (52), (53)]

= Di,ee+Diei = xi [from (30), (31)] .

Thus, this linear code still provides a(k, n) solution.
Partition each of the matricesMi into ak × k blockRi on top of a(n− k)× k blockSi:

Mi =

[
Ri

Si

]

(56)

and let
ρ = rank ([R1 . . . Rm])

where[R1 . . . Rm] is the concatenation of the matricesRi into ak×mk matrix. Clearlyρ ≤ k.
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We have

D0

m∑

j=1

M0,j xj = D0 e0 = −D0,e

m∑

j=1

Mj xj [from (29), (33)]

= −
m∑

j=1

Rj xj [from (55), (56)] .

This gives us

D0 [M0,1 . . . M0,m] = − [R1 . . . Rm] ,

which implies

rank (D0) ≥ rank ([R1 . . . Rm]) = ρ [from (3)]

∴ rank (Q0) = n− rank (D0) ≤ n− ρ. (57)

Since the matrix[R1 . . . Rm] has rankρ, there exists ak × k permutation matrixP such
that the firstρ rows ofP [R1 . . . Rm] are linearly independent and the remainingk − ρ rows
are linear combinations of those firstρ rows. Thus, there exists a(k − ρ) × k matrixX, whose
right-mostk − ρ columns formIk−ρ, and such that

XP [R1 . . . Rm] = 0(k−ρ)×mk. (58)

X andP are(k − ρ)× k andk × k respectively, thus the rank ofX is at most(k − ρ) and the
rank ofP is at mostk. Since the right-most columns ofX form Ik−ρ, we haverank (X) = k − ρ,
and sinceP is a permutation matrix, we haverank (P ) = k. SinceXP is (k − ρ)× k, we have

k − ρ ≥ rank (XP )

≥ rank (X) + rank (P )− k [from (2)]

= (k − ρ) + k − k = k − ρ

and thusrank (XP ) = k − ρ.
Define a(k−ρ)×nmatrixY by concatenating the productXP with an all-zero matrix as follows:
Y =

[
XP 0(k−ρ)×(n−k)

]
. For eachi = 1, 2, . . . , m we have

YMi =
[
XP 0(k−ρ)×(n−k)

]
[
Ri

Si

]

= 0(k−ρ)×k [from (56), (58)] . (59)

Since, for eachi = 1, 2, . . . , m, we haveYMi = 0(k−ρ)×k and by (46),Di,eMi = Ik, the rows
of Y and the rows ofDi,e are linearly independent. (Ifv is a nontrivial linear combination of rows
of Di,e, thenvMi 6= 0; if v′ is a nontrivial linear combination of rows ofY , thenv′Mi = 0, so
v 6= v′). Therefore, by Lemma 3.7, we may chooseQi,e such that its firstk − ρ rows are the rows
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of Y . By (47), each vector function

Qi,e

m∑

j=0
j 6=i

Mj xj

in the listL has dimensionn− k, but the firstk − ρ components of each such vector function can
be written as

Y
m∑

j=0
j 6=i

Mj xj = YM0 x0 [from (59)] . (60)

If we view the message vectorsx0, x1, . . . , xm as random variables, each of whosek com-
ponents are independent and uniformly distributed over thefield F, then we have the following
entropy (using logarithms with base|F|) upper bounds:

H (Q0e0) ≤ n− ρ [from (57)]

H (e1, . . . , em) ≤ mn [from ei ∈ F
n]

H






Qi,e

m∑

j=0
j 6=i

Mj xj : i = 1, 2, . . . , m







≤ m (n− k)− (m− 1) (k − ρ) [from (47), (60)] .

Therefore, the entropy of all of the vector functions in the listL is bounded by summing these
bounds:

H(L) ≤ (m(n− k)− (m− 1)(k − ρ)) + (n− ρ) +mn

= (2m+ 1)n− (m+ 1)k − (k − ρ)(m− 2)

≤ (2m+ 1)n− (m+ 1)k [from ρ ≤ k andm ≥ 2] . (61)

But then we have:

(m+ 1)k = H(x0, x1, . . . , xm)
[
from xi ∈ F

k
]

≤ H(L) [from (42), (45)]

≤ (2m+ 1)n− (m+ 1) k [from (61)]

∴
k

n
≤

2m+ 1

2m+ 2
.

Thus the linear capacity ofN1(m) for any finite-field alphabet whose characteristic dividesm is
upper bounded by

1−
1

2m+ 2
.

For eachy ∈ F
m, let [y]i denote theith component ofy. To show the upper bound on the linear

capacity is tight, consider a (2m+1, 2m+2) fractional linear code forN1(m) over any finite-field
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alphabet whose characteristic dividesm, given by:

[e0]l =







m∑

j=1
j 6=l

[xj ]l (l = 1, 2, . . . , m)

m∑

j=1

[xj ]l (l = m+ 1, . . . , 2m+ 1)

m∑

j=2

[xj ]j (l = 2m+ 2)

[ei]l =







m∑

j=0
j 6=i
j 6=l

[xj ]l (l = 1, 2, . . . , m andl 6= i)

[x0]m+1 +

m∑

j=1
j 6=i

[xj ]j (l = i)

m∑

j=0
j 6=i

[xj ]l (l = m+ 1, . . . , 2m+ 1)

[x0]m+1+i (l = 2m+ 2)

(i = 1, 2, . . . , m)

[e]l =







m∑

j=0
j 6=l

[xj ]l (l = 1, 2, . . . , m)

m∑

j=0

[xj ]l (l = m+ 1, . . . , 2m+ 1)

[x0]m+1 +
m∑

j=1

[xj ]j (l = 2m+ 2).

For eachl = 1, 2, . . . , m, we have

m∑

i=0
i 6=l

[ei]l =

m∑

i=0
i 6=l

m∑

j=0
j 6=i
j 6=l

[xj ]l = (m− 1)

m∑

j=0
j 6=l

[xj ]l = −
m∑

j=0
j 6=l

[xj ]l
[
from char(F)

∣
∣m
]
. (62)
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For eachi = 1, 2, . . . , m, the receivers withinB(m) can linearly recover all2m+1 components
of their respective demands by:

R0 : [e]l − [e0]l = [x0]l (l = 1, 2, . . . , 2m+ 1)

Ri : [e]l − [ei]l = [xi]l (l = 1, 2, . . . , 2m+ 1 andl 6= i)

[e]2m+2 − [ei]i = [xi]i

and the additional receiver can linearly recover all components ofx0 by:

Rx : − [e0]l −
m∑

i=0
i 6=l

[ei]l = [x0]l (l = 1, 2, . . . , m) [from (62)]

[e1]1 − [e0]2m+2 = [x0]m+1

[el−m−1]2m+2 = [x0]l (l = m+ 2, . . . , 2m+ 1).

Thus, the code is in fact a solution forN1(m). �
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Proofs of Lemmas in Section 4

Proof of Lemma 4.2.Assumew = 1 and letπ1 andψ be identity permutations. For eacha ∈ Zmw

we have
ψ(wπ1(a)) = ψ(a) = a.

Assumew > 1. By the Euclidean Division Theorem, for each integery, there exist unique
integersqy, ry such thaty = qym + ry and0 ≤ ry < m. We havewy = w(qym + ry), which
implies

wy = wry (modmw) . (63)

For all integersx, y we have

wx = wy (modmw) ⇐⇒ wrx = wry (modmw) [from (63)]

⇐⇒ rx = ry [from 0 ≤ rx, ry < m] . (64)

For eacha = qam + ra ∈ Zmw such thatra ∈ {0, 1, . . . , m − 1}, let r̂a be the unique integer
in {0, 1, . . . , m − 1} such that̂ra = ra + 1 (modm), and define permutationsπ1, π2, . . . , πw of
Zmw as follows:

πl(a) =

{
qam+ r̂a if qa = l
qam+ ra otherwise

(l = 1, 2, . . . , w − 1) (65)

πw(a) = a = qam+ ra. (66)

Note that for alll = 1, 2, . . . , w − 1, the (non-linear) permutationπl modifies the remainderra if
qa = l and otherwise acts as the identity permutation. Also,πw is the identity permutation. Since
a ∈ Zmw, we have0 ≤ qa, < w.

For eacha ∈ Zmw we will show the mappinga 7−→ (wπ1(a), . . . , wπw(a)) is injective. For
eacha, b ∈ Zmw, suppose

wπl(a) = wπl(b) (modmw) (l = 1, 2, . . . , w), (67)

wherea = qam+ ra andb = qbm+ rb, with 0 ≤ ra, rb < m and0 ≤ qa, qb < w. Then we have

wπw(a) = wπw(b) (modmw) [from (67)] (68)

wra = wrb (modmw) [from (63), (66),(68)]

∴ ra = rb [from (64)] . (69)

Let r̂b be the unique integer in{0, 1, . . . , m − 1} such that̂rb = rb + 1 (modm). If qa 6= qb,
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then without loss of generality,qb 6= 0, so we have:

wπqb(a) = wπqb(b) (modmw) [from (67)] (70)

∴ wra = wr̂b (modmw) [from (63), (65), (70)]

∴ ra = ra + 1 (modm) [from (64), (69)] ,

which is a contradiction, so we must haveqa = qb. Thusa = b.
We have shownwπl(a) = wπl(b) (modmw) for all l if and only if a = b. Thusa can be

uniquely determined from thew-tuple(wπ1(a), wπ2(a), . . . , wπw(a)). This implies the existence
of the claimed mapping. �

Proof of Lemma 4.4.Let π1, π2, . . . , πw andψ be the permutations and mapping, respectively,
from Lemma 4.2. Define a code for networkN2(m,w) over the ringZmw for eachl = 1, 2, . . . , w
by:

e
(l)
0 =

m+1∑

j=1

x
(l)
j

e
(l)
i = πl(z) +

m+1∑

j=1
j 6=i

x
(l)
j (i = 1, 2, . . . , m+ 1)

e(l) = πl(z) +

m+1∑

j=1

x
(l)
j .

For eachl = 1, 2, . . . , w, the receivers within eachB(l)(m+ 1) block can recover their respective
messages as follows:

R
(l)
0 : π−1

l

(

e(l) − e
(l)
0

)

= z

R
(l)
i : e(l) − e

(l)
i = x

(l)
i (i = 1, 2, . . . , m+ 1).

We have

w
m+1∑

i=1

e
(l)
i = w(m+ 1) πl(z) +mw

m+1∑

j=1

x
(l)
j (l = 1, 2, . . . , w)

= wπl(z) [frommw = 0 modmw] . (71)

ReceiverRz can recoverz from its inputs as follows:

Rz : ψ

(

w

m+1∑

i=1

e
(1)
i , w

m+1∑

i=1

e
(2)
i , . . . , w

m+1∑

i=1

e
(w)
i

)

= ψ (wπ1(z), wπ2(z), . . . , wπw(z)) = z [from (71) and Lemma 4.2] .
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Thus the network code described above is, in fact, a solutionfor N2(m,w). �

Proof of Lemma 4.5.AssumeN2(m,w) is solvable overA. For eachl = 1, 2, . . . , w, the block
B(l)(m + 1) together with source nodesSz, S

(l)
1 , S

(l)
2 , . . . , S

(l)
m+1 forms a copy ofN0(m + 1), so

by Lemma 2.2, the edge functions within blockB(l)(m + 1) must satisfy PropertyP (m + 1).
Thus, for eachl, there exists an Abelian group(A,⊕l), with identity 0l ∈ A, and permutations
π
(l)
0 , π

(l)
1 , . . . , π

(l)
m+1 andσ(l)

0 , σ
(l)
1 , . . . , σ

(l)
m+1 of A, such that the edges carry the symbols:

e
(l)
0 = σ

(l)
0

(
m+1⊕

j=1

π
(l)
j

(

x
(l)
j

)
)

e
(l)
i = σ

(l)
i






π
(l)
0 (z)⊕l

m+1⊕

j=1
j 6=i

π
(l)
j

(

x
(l)
j

)







(i = 1, 2, . . . , m+ 1) (72)

e(l) = π
(l)
0 (z)⊕i

m+1⊕

j=1

π
(l)
j

(

x
(l)
j

)

,

where
⊕

in each of the previous three equations denotes⊕l.
Now suppose to the contrary thatm and|A| are relatively prime. Then by Cauchy’s Theorem,

for each group(A,⊕l) there are no non-identity elements whose order dividesm. That is, for each
⊕l and eacha ∈ A, we havea⊕l · · · ⊕l a

︸ ︷︷ ︸

m adds

= 0l if and only if a = 0l. So for eachl = 1, 2, . . . , w

let a, b ∈ A. We have

a⊕l · · · ⊕l a
︸ ︷︷ ︸

m adds

= b⊕l · · · ⊕l b
︸ ︷︷ ︸

m adds

⇐⇒ (a⊖l b)⊕l · · · ⊕l (a⊖l b)
︸ ︷︷ ︸

m adds

= 0l [from (A,⊕l) Abelian]

⇐⇒ a = b [from gcd(m, |A|) = 1] .

Thus, for eachl the mappinga 7−→ a⊕l · · · ⊕l a
︸ ︷︷ ︸

m adds

is injective on the finite setA and therefore is

bijective, and its inverseφl : A → A satisfies

φl(a)⊕l · · · ⊕l φl(a)
︸ ︷︷ ︸

m adds

= a (l = 1, 2, . . . , w). (73)

For eacha ∈ A such thata 6= 01, let

fl(a) = π
(l)
0

(

π
(1)−1

0 (01)
)

⊖l π
(l)
0

(

π
(1)−1

0 (a)
)

(l = 2, . . . , w), (74)
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and define two collections of messages as follows:

x
(1)
j = π

(1)−1

j (φ1(a))) (j = 1, 2, . . . , m+ 1)

z = π
(1)−1

0 (01)

x
(l)
j = π

(l)−1

j (0l)
(l = 2, . . . , w)
(j = 1, 2, . . . , m+ 1)

x̂
(1)
j = π

(1)−1

j (01) (j = 1, 2, . . . , m+ 1)

ẑ = π
(1)−1

0 (a)

x̂
(l)
j = π

(l)−1

j (φl(fl(a)))
(l = 2, . . . , w)
(j = 1, 2, . . . , m+ 1).

Sincea 6= 01 andπ(1)
0 is bijective, it follows thatz 6= ẑ. By PropertyP (m+ 1) and (72), for each

i = 1, 2, . . . , m+ 1 we have:

e
(1)
i = σ

(1)
i



φ1(a)⊕1 · · · ⊕1 φ1(a)
︸ ︷︷ ︸

m adds



 = σ
(1)
i (a) [from (73)]

e
(l)
i = σ

(l)
i

(

π
(l)
0

(

π
(1)−1

0 (01)
))

(l = 2, . . . , w)

for the messagesx(l)j , z, and

e
(1)
i = σ

(1)
i (a)

e
(l)
i = σ

(l)
i



π
(l)
0

(

π
(1)−1

0 (a)
)

⊕l φl(fl(a))⊕l · · · ⊕l φl(fl(a))
︸ ︷︷ ︸

m adds



 (l = 2, . . . , w)

= σ
(l)
i

(

π
(l)
0

(

π
(1)−1

0 (a)
)

⊕l fl(a)
)

[from (73)]

= σ
(l)
i

(

π
(l)
0

(

π
(1)−1

0 (01)
))

[from (74)] .

for the messageŝx(l)j , ẑ. For both collections of messages, the edge symbolse
(l)
i are the same for

all l = 1, 2, . . . , w andi = 1, 2, . . . , m + 1, and therefore the decoded valuez atRz must be the
same. However, this contradicts the fact thatz 6= ẑ. �

Proof of Lemma 4.6.For any ringR with multiplicative identity1R, the characteristic ofR di-
videsm if and only if m = m 1R = 0R, so it suffices to show that for eachm,w and each
standardR-moduleG, networkN2(m,w) is scalar linear solvable overG if and only ifm = 0R.

Assume networkN2(m,w) is scalar linear solvable over standardR-moduleG. The messages
are drawn fromG, and there existc(l)i,j , c

(l)
j ∈ R, such that for eachl = 1, 2, . . . , w, the edge symbols
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can be written as:

e
(l)
0 =

m+1⊕

j=1

(

c
(l)
0,j · x

(l)
j

)

(75)

e
(l)
i =

(

c
(l)
i,0 · z

)

⊕
m+1⊕

j=1
j 6=i

(

c
(l)
i,j · x

(l)
j

)

(i = 1, 2, . . . , m+ 1) (76)

e(l) =
(

c
(l)
0 · z

)

⊕
m+1⊕

j=1

(

c
(l)
j · x(l)j

)

(77)

and there existd(l)i,e, d
(l)
i , d

(l)
z,i ∈ R, such that each receiver can linearly recover its respective message

from its received edge symbols by:

R
(l)
0 : z =

(

d
(l)
0,e · e

(l)
)

⊕
(

d
(l)
0 · e(l)0

)

(l = 1, 2, . . . , w) (78)

R
(l)
i : x

(l)
i =

(

d
(l)
i,e · e

(l)
)

⊕
(

d
(l)
i · e(l)i

) (l = 1, 2, . . . , w)
(i = 1, 2, . . . , m+ 1)

(79)

Rz : z =
w⊕

l=1

m+1⊕

i=1

(

d
(l)
z,i · e

(l)
i

)

. (80)

For eachl = 1, 2, . . . , w, the blockB(l)(m+1) together with source nodesSz, S
(l)
1 , S

(l)
2 , . . . , S

(l)
m+1

forms a copy ofN0(m+ 1), so by Lemma 2.3 and (75) – (79), eachc(l)i and eachd(l)i is invertible
in R, and

c
(l)
i,j = −

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
j

(l = 1, 2, . . . , w)
(i, j = 0, 1, . . . , m+ 1 andj 6= i).

(81)

Equating message components atRz yields:

1R =

w∑

l=1

m+1∑

i=1

d
(l)
z,i c

(l)
i,0 [from (76), (80)]

= −
w∑

l=1

m+1∑

i=1

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0 [from (81)] (82)
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and for eachl = 1, 2, . . . , w,

0R =
m+1∑

i=1
i 6=j

d
(l)
z,i c

(l)
i,j (j = 1, 2, . . . , m+ 1) [from (76), (80)]

= −






m+1∑

i=1
i 6=j

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e




 c

(l)
j (j = 1, 2, . . . , m+ 1) [from (81)] . (83)

For eachl = 1, 2, . . . , w, by multiplying (83) by
(

c
(l)
j

)−1

c
(l)
0 , we have

0R =

m+1∑

i=1
i 6=j

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0 (j = 1, 2, . . . , m+ 1) [from (83)]

and by summing overj = 1, 2, . . . , m+ 1 we have

0R =
m+1∑

j=1

m+1∑

i=1
i 6=j

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0

= m
m+1∑

i=1

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0 . (84)

By summing (84) overl = 1, 2, . . . , w, we have

0R = m

w∑

i=1

m+1∑

i=1

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0 [from (84)]

∴ 0R = m [from (82)] .

To prove the converse, letG be a standardR-module such thatm 1R = 0R. Define a scalar
linear code overG, for eachl = 1, 2, . . . , w, by:

e
(l)
0 =

m+1⊕

j=1

x
(l)
j

e
(l)
i = z ⊕

m+1⊕

j=1
j 6=i

x
(l)
j (i = 1, 2, . . . , m+ 1)

e(l) = z ⊕
m+1⊕

j=1

x
(l)
j .
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For eachl = 1, 2, . . . , w, the receivers within eachB(l)(m+1) block can linearly recover their
respective messages as follows:

R
(l)
0 : e(l) ⊖ e

(l)
0 = z

R
(l)
i : e(l) ⊖ e

(l)
i = x

(l)
i (i = 1, 2, . . . , m+ 1).

ReceiverRz can linearly recoverz as follows:

Rz :
m+1⊕

i=1

e
(1)
i = z ⊕ (mz)⊕

(

m
m+1⊕

j=1

x
(1)
j

)

= z [fromm = 0R] .

Thus the code is a scalar linear solution forN2(m,w). �

Proof of Lemma 4.7.Since a scalar linear solution over a finite-field alphabet isa special case of a
scalar linear solution over a standardR-module, by Lemma 4.6,N2(m,w) is scalar linear solvable
over any finite-field alphabet whose characteristic dividesm, so the linear capacity for such finite-
field alphabets is at least1. By Lemma 2.4, networkN0(m + 1) has capacity equal to1, and
the blockB(1)(m + 1) together with the source nodesSz, S

(1)
1 , S

(1)
2 , . . . , S

(1)
m+1 forms a copy of

N0(m+ 1), so the capacity ofN2(m,w) is at most1. Thus both the capacity ofN2(m,w) and its
linear capacity over any finite-field alphabet whose characteristic dividesm are1.

To prove part (c), consider a(k, n) fractional linear solution forN2(m,w) over a finite fieldF
whose characteristic does not dividem. Sincechar(F) ffl m, the integerm is invertible inF.

We havex(l)j , z ∈ F
k ande(l)i , e

(l) ∈ F
n, with n ≥ k, since the capacity is one. There exist

n × k coding matricesM (l)
j , M

(l)
i,j overF, such that for eachl = 1, 2, . . . , w the edge vectors can

be written as:

e
(l)
0 =

m+1∑

j=1

M
(l)
0,j x

(l)
j

e
(l)
i =M

(l)
i,0 z +

m+1∑

j=1
j 6=i

M
(l)
i,j x

(l)
j (i = 1, 2, . . . , m+ 1) (85)

e(l) =M
(l)
0 z +

m+1∑

j=1

M
(l)
j x

(l)
j (86)

and there existk×n decoding matricesD(l)
i,e andD(l)

i overF, such that for eachl = 1, 2, . . . , w the

messagex(l)i can be linearly decoded atR(l)
i from then-vectorse(l)i ande(l) by:

R
(l)
i : x

(l)
i = D

(l)
i,e e

(l) +D
(l)
i e

(l)
i (i = 1, 2, . . . , m+ 1). (87)
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Since receiverRz linearly recoversz from its incoming edge vectors, we have
{

e
(l)
i :

l = 1, 2, . . . , w
i = 1, 2, . . . , m+ 1

}

−→ z. (88)

For eachl = 1, 2, . . . , w andi = 1, 2, . . . , m+1, if we setx(l)i = 0 in (87), then, sincee(l)i does
not depend onx(l)i , we get the following relationship among the remaining messages:

0 = D
(l)
i,e






M

(l)
0 z +

m+1∑

j=1
j 6=i

M
(l)
j x

(l)
j







+D
(l)
i e

(l)
i [from (85), (86), (87)] (89)

and thus

e
(l)
i −→ D

(l)
i,e






M

(l)
0 z +

m+1∑

j=1
j 6=i

M
(l)
j x

(l)
j







(l = 1, 2, . . . , w)
(i = 1, 2, . . . , m+ 1)

[from (89)] . (90)

For eachl = 1, 2, . . . , w and i = 1, 2, . . . , m + 1, let Q(l)
i,e be the matrixQ in Lemma 3.7

corresponding to whenD(l)
i,e is the matrixA in Lemma 3.7.

For eachl = 1, 2, . . . , w, letL(l) be the following list of2(m+ 1) vector functions of
z, x

(l)
1 , x

(l)
2 , . . . , x

(l)
m+1:

Q
(l)
i,e






M

(l)
0 z +

m+1∑

j=1
j 6=i

M
(l)
j x

(l)
j







(i = 1, 2, . . . , m+ 1)

e
(l)
i (i = 1, 2, . . . , m+ 1).

For eachl = 1, 2, . . . , w we have

L(l) −→ D
(l)
i,e






M

(l)
0 z +

m+1∑

j=1
j 6=l

M
(l)
j x

(l)
j







(i = 1, 2, . . . , m+ 1) [from (90)] (91)

L(l) −→ M
(l)
0 z +

m+1∑

j=1
j 6=i

M
(l)
j x

(l)
j (i = 1, 2, . . . , m+ 1) [from Lemma 3.7, (91)] ,

(92)
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and

z,







M
(l)
0 z +

m+1∑

j=1
j 6=i

M
(l)
j x

(l)
j : i = 1, 2, . . . , m+ 1







−→
m+1∑

i=1






M

(l)
0 z +

m+1∑

j=1
j 6=i

M
(l)
j x

(l)
j







−M
(l)
0 z

= (m+ 1)M
(l)
0 z +m

m+1∑

j=1

M
(l)
j x

(l)
j −M

(l)
0 z

= me(l) −→ e(l) [from (86) andchar(F) ffl m] . (93)

We also have

L(1), . . . , L(w) −→z [from (88)] (94)

and for eachl = 1, 2, . . . , w

L(l), z −→e(l) [from (92), (93)] (95)

L(l), z −→x
(l)
i (i = 1, 2, . . . , m+ 1) [from (87), (95)] . (96)

Thus

L(1), . . . , L(w) −→ z,

{

x
(l)
i :

l = 1, 2, . . . , w
i = 1, 2, . . . , m+ 1

}

[from (94), (96)] . (97)

We will now bound the number of independent entries in each listL(l).
By equating message components in equation (87), we have:

Ik =D
(l)
i,eM

(l)
i

(l = 1, 2, . . . , w)
(i = 1, 2, . . . , m+ 1)

[from (85), (86), (87)] (98)

Since eachD(l)
i,e is k × n andk ≤ n, the rank of each matrix is at mostk, but we also have

rank
(

D
(l)
i,e

)

≥ rank
(

D
(l)
i,eM

(l)
i

)

= rank (Ik) = k [from (3), (98)] ,

and sorank
(

D
(l)
i,e

)

= k. By Lemma (3.7), this impliesrank
(

Q
(l)
i,e

)

= n − k. Therefore each
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vector function

Q
(l)
i,e






M

(l)
0 z +

m+1∑

j=1
j 6=i

M
(l)
j x

(l)
j







(l = 1, 2, . . . , w)
(i = 1, 2, . . . , m+ 1)

in the listL(l) has dimensionn− k.
If we view the messages vectors as random variables, each of whosek components are in-

dependent and uniformly distributed over the fieldF, then we have the following entropy (using
logarithms base|F|) upper bounds:

H






Q

(l)
i,e






M

(l)
0 z +

m+1∑

j=1
j 6=i

M
(l)
j x

(l)
j







:
l = 1, 2, . . . , w
i = 1, 2, . . . , m+ 1







≤ w(m+ 1) (n− k) (99)

H

(

e
(l)
i :

l = 1, 2, . . . , w
i = 1, 2, . . . , m+ 1

)

≤ w(m+ 1)n. (100)

Therefore, the entropy of all of the vector functions in the list of listsL(1), . . . , L(w) is bounded
by summing the bounds in (99) and (100):

H
(
L(1), . . . , L(w)

)
≤ w(m+ 1)n− w(m+ 1) k [from (99), (100)] . (101)

But then we have:

(w(m+ 1) + 1) k = H

(

z,

{

x
(l)
i :

l = 1, 2, . . . , w
i = 1, 2, . . . , m+ 1

}) [

from z, x
(l)
i ∈ F

k
]

≤ H
(
L(1), . . . , L(w)

)
[from (97)]

≤ 2w(m+ 1)n− w(m+ 1) k [from (101)]

∴
k

n
≤

2w(m+ 1)

2w(m+ 1) + 1
.

Thus the linear capacity ofN2(m,w) for finite-field alphabets whose characteristic does not divide
m is upper bounded by

1−
1

2mw + 2w + 1
.

�
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Proofs of Lemmas in Section 5

Proof of Lemma 5.2.Define permutationsπ1, π2 of Zmα+1 as follows. For eacha ∈ Zmα+1 , let
∑α

i=0m
iai denote the basem representation ofa. We define

π1(a) = mαa0 +

α∑

i=1

mi−1ai (102)

π2(a) = a =
α∑

i=0

miai. (103)

The (non-linear) permutationπ1 performs a right-cyclic shift of the base-m digits ofa, andπ2 is the
identity permutation. For eacha ∈ Zmα+1 , we will show the mappinga 7−→ (mπ1(a), sm

απ2(a))
is injective. For eacha, b ∈ Zmα+1 , suppose

mπ1(a) = mπ1(b)
(
modmα+1

)
(104)

smαπ2(a) = smαπ2(b)
(
modmα+1

)
(105)

wherea =
∑α

i=0m
iai andb =

∑α
i=0m

ibi. Then we have

α∑

i=1

miai =
α∑

i=1

mibi
(
modmα+1

)
[from (102), (104)]

∴ ai = bi (i = 1, 2, . . . , α) [from 0 ≤ ai, bi < m]

and

smαa0 = smαb0
(
modmα+1

)
[from (103), (105)]

∴ mαa0 = mαb0
(
modmα+1

)
[from gcd(m, s) = 1]

∴ a0 = b0 [from 0 ≤ a0, b0 < m] .

Thusa = b.
We have shown thatmπ1(a) = mπ1(b) andsmαπ2(a) = smαπ2(b) if and only ifa = b. Thusa

can be uniquely determined frommπ1(a) andsmαπ2(a). This implies the existence of the claimed
mapping. �

Proof of Lemma 5.4.Let π1, π2 andψ be the permutations and mapping, respectively, from
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Lemma 5.2. Define a code for the networkN3(m1, m2) over the ringZmα+1
1

, for eachl = 1, 2, by:

e
(l)
0 =

ml∑

j=1

x
(l)
j

e
(l)
i = πl(z) +

ml∑

j=1
j 6=i

x
(l)
j (i = 1, 2, . . . , ml)

e(l) = πl(z) +

ml∑

j=1

x
(l)
j .

For eachl = 1, 2, the receivers within the blockB(l)(ml) can recover their respective messages as
follows:

R
(l)
0 : π−1

l

(

e(l) − e
(l)
0

)

= z

R
(l)
i : e(l) − e

(l)
i = x

(l)
i (i = 1, 2, . . . , ml).

For eachl = 1, 2, we have

−mle
(l)
0 +

ml∑

i=0

e
(l)
i = −ml

ml∑

j=1

x
(l)
j +mlπl(z) +ml

ml∑

j=1

x
(l)
j

= mlπl(z). (106)

The receiverRz can recoverz from its inputs as follows:

ψ

(

−m1e
(1)
0 +

m1∑

i=0

e
(1)
i , −m2e

(2)
0 +

m2∑

i=0

e
(2)
i

)

= ψ (m1π1(z), m2π2(z)) [from (106)]

= ψ (m1π1(z), sm
α
1π2(z)) = z [fromm2 = smα

1 and Lemma 5.2] .

Thus the network code described above is, in fact, a solutionfor N3(m1, m2). �

Proof of Lemma 5.5.AssumeN3(m1, m2) is solvable overA. For eachl = 1, 2 the blockB(l)(ml)

together with the source nodesSz, S
(l)
1 , S

(l)
2 , . . . , S

(l)
ml forms a copy ofN0(ml), so by Lemma 2.2,

the edge functions withinB(1)(m1) andB(2)(m2) must satisfy PropertyP (m1) and Property
P (m2), respectively. Thus there exist Abelian groups(A,⊕1) and(A,⊕2) with identity elements
01 and02 for the left-hand side and right-hand side of the network, respectively, and permuta-
tionsπ(l)

0 , π
(l)
1 , . . . , π

(l)
ml andσ(l)

0 , σ
(l)
1 , . . . , σ

(l)
ml of A, such that for eachl = 1, 2 the edges carry the
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symbols:

e
(l)
0 = σ

(l)
0

(
ml⊕

j=1

π
(l)
j

(

x
(l)
j

)
)

(107)

e
(l)
i = σ

(l)
i






π
(l)
0 (z)⊕l

ml⊕

j=1
j 6=i

π
(l)
j

(

x
(l)
j

)







(i = 1, 2, . . . , ml) (108)

e(l) = π
(l)
0 (z)⊕l

ml⊕

j=1

π
(l)
j

(

x
(l)
j

)

where
⊕

in each of the previous three equations denotes⊕l.
Now suppose to the contrary thatm1 and|A| are not relatively prime and|A| dividesm2. Then,

since(A,⊕2) is a finite group, for alla ∈ A, we have

a⊕2 · · · ⊕2 a
︸ ︷︷ ︸

m2 adds

= 02
[
from |A|

∣
∣m2

]
. (109)

Sincem1 and|A| are not relatively prime,m1 and|A| share a common factorp. Sincep
∣
∣ |A|,

by Cauchy’s Theorem, there existsa ∈ A\{01} such that the order ofa is p, and sincep divides
m1 we havea⊕1 · · · ⊕1 a

︸ ︷︷ ︸

m1 adds

= 01. Define two collections of messages as follows:

x
(1)
j = π

(1)−1

j (01) (j = 1, 2, . . . , m1)

x
(2)
j = π

(2)−1

j

(

π
(2)
0

(

π
(1)−1

0 (01)
))

(j = 1, 2, . . . , m2)

z = π
(1)−1

0 (01)

x̂
(1)
j = π

(1)−1

j (a) (j = 1, 2, . . . , m1)

x̂
(2)
j = π

(2)−1

j

(

π
(2)
0

(

π
(1)−1

0 (a)
))

(j = 1, 2, . . . , m2)

ẑ = π
(1)−1

0 (a).

Sincea 6= 01 andπ(1)
0 is bijective, it follows thatz 6= ẑ. By PropertiesP (m1) andP (m2) and
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(107) and (108), we have

e
(1)
i = σ

(1)
i



01 ⊕1 · · · ⊕1 01
︸ ︷︷ ︸

m1 adds



 = σ
(1)
i (01) (i = 0, 1, . . . , m1)

e
(2)
i = σ

(2)
i






π
(2)
0

(

π
(1)−1

0 (01)
)

⊕2 · · · ⊕2 π
(2)
0

(

π
(1)−1

0 (01)
)

︸ ︷︷ ︸

m2 adds







(i = 0, 1, . . . , m2)

= σ
(2)
i (02) [from (109)]

for the messagesx(l)j , z, and

e
(1)
i = σ

(1)
i



a⊕1 · · · ⊕1 a
︸ ︷︷ ︸

m1 adds



 = σ
(1)
i (01) (i = 0, 1, . . . , m1)

e
(2)
i = σ

(2)
i






π
(2)
0

(

π
(1)−1

0 (a)
)

⊕2 · · · ⊕2 π
(2)
0

(

π
(1)−1

0 (a)
)

︸ ︷︷ ︸

m2 adds







(i = 0, 1, . . . , m2)

= σ
(2)
i (02) [from (109)]

for the messageŝx(l)j , ẑ. For both collections of messages, the edge symbolse
(1)
0 , e

(1)
1 , . . . , e

(1)
m1

ande(2)0 , e
(2)
1 , . . . , e

(2)
m2 are the same, and therefore the decoded valuez at Rz must be the same.

However, this contradicts the fact thatz 6= ẑ. �

Proof of Lemma 5.6.For any integersa, b, c ≥ 1, we havegcd(a, b, c) = gcd(gcd(a, b) , c), so
by Lemma 1.6gcd(m1, m2) is invertible inR if and only if gcd(m1, m2, char(R)) = 1. Thus
it suffices to show that for eachm1, m2 and each standardR-moduleG, networkN3(m1, m2) is
scalar linear solvable overG if and only if gcd(m1, m2) is invertible inR.

Assume networkN3(m1, m2) is scalar linear solvable over standardR-moduleG. The mes-
sages are drawn fromG, and there existc(l)i,j , c

(l)
j ∈ R, such that for eachl = 1, 2 the edge symbols

can be written as:

e
(l)
0 =

ml⊕

j=1

(

c
(l)
0,j · x

(l)
j

)

(110)

e
(l)
i =

(

c
(l)
i,0 · z

)

⊕

ml⊕

j=1
j 6=i

(

c
(l)
i,j · x

(l)
j

)

(i = 1, . . . , ml) (111)

e(l) =
(

c
(l)
0 · z

)

⊕
ml⊕

j=1

(

c
(l)
j · x(l)j

)

(112)
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and there existd(l)i,e, d
(l)
i , d

(l)
z,i ∈ R, such that each receiver can linearly recover its respective message

from its received edge symbols by:

R
(l)
0 : z =

(

d
(l)
0,e · e

(l)
)

⊕
(

d
(l)
0 · e(l)0

)

(l = 1, 2) (113)

R
(l)
i : x

(l)
i =

(

d
(l)
i,e · e

(l)
)

⊕
(

d
(l)
i · e(l)i

)
(l = 1, 2)
(i = 1, . . . , ml)

(114)

Rz : z =

2⊕

l=1

ml⊕

i=0

(

d
(l)
z,i · e

(l)
i

)

. (115)

For eachl = 1, 2 the blockB(l)(ml) together with the source nodesSz, S
(l)
1 , S

(l)
2 , . . . , S

(l)
ml forms

a copy ofN0(ml), so by Lemma 2.3 and (110) – (114), eachc(l)i and eachd(l)i is invertible inR,
and

c
(l)
i,j = −

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
j

(l = 1, 2)
(i, j = 0, 1, . . . , ml andj 6= i).

(116)

Equating message components atRz yields:

1R =

2∑

l=1

ml∑

i=1

d
(l)
z,i c

(l)
i,0 [from (110), (111), (115)]

= −
2∑

l=1

ml∑

i=1

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0 [from (116)] (117)

and for eachl = 1, 2 we have

0R =

ml∑

i=0
i 6=j

d
(l)
z,i c

(l)
i,j (j = 1, 2, . . . , ml) [from (111), (110), (115)]

= −






ml∑

i=0
i 6=j

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e




 c

(l)
j (j = 1, 2, . . . , ml) [from (116)] . (118)

For eachl = 1, 2, by multiplying (118) by
(

c
(l)
j

)−1

c
(l)
0 , we have

0R =

ml∑

i=0
i 6=j

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0 (j = 1, 2, . . . , ml). (119)

Page 57 of 68



Connelly-Zeger January 14, 2016

Summing (119) overl = 1, 2 andj = 1, 2, . . . , ml and subtracting (117), yields

−1R =

2∑

l=1

ml∑

j=0

ml∑

i=0
i 6=j

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0

=

2∑

l=1

ml

ml∑

i=0

d
(l)
z,i

(

d
(l)
i

)−1

d
(l)
i,e c

(l)
0 . (120)

Equation (120) implies there existr1, r2 ∈ R such that

1R = m1 r1 +m2 r2. (121)

Sincegcd(m1, m2) can be factored out of both terms on the right-hand side of equation (121), the
ring elementgcd(m1, m2) is invertible.

To prove the converse, letG be a standardR-module, such thatgcd(m1, m2) is invertible inR.
Define a scalar linear code overG for N3(m1, m2), for eachl = 1, 2, by:

e
(l)
0 =

ml⊕

j=1

x
(l)
j

e
(l)
i = z ⊕

ml⊕

j=1
j 6=i

x
(l)
j (i = 1, . . . , ml)

e(l) = z ⊕

ml⊕

j=1

x
(l)
j .

For eachl = 1, 2, the receivers withinB(l)(ml) can linearly recover their respective messages by:

R
(l)
0 : e(l) ⊖ e

(l)
0 = z

R
(l)
i : e(l) ⊖ e

(l)
i = x

(l)
i (i = 1, 2, . . . , ml).

Letm′
1 = m1/gcd(m1, m2) andm′

2 = m2/gcd(m1, m2). Thenm′
1 andm′

2 are relatively prime, so
there existn1, n2 ∈ Z such thatn1m

′
1 + n2m

′
2 = 1. Thus inR we have

(n1m
′
1) 1R + (n2m

′
2) 1R = 1R.
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ReceiverRz can linearly recover messagez as follows:

Rz :

2⊕

l=1

(

(
nl gcd(m1, m2)

−1) ·

(
ml⊕

i=0

e
(l)
i ⊖

(

mle
(l)
0

)
))

=

2⊕

l=1

((
nl gcd(m1, m2)

−1) · (ml z)
)

= (n1m
′
1 z)⊕ (n2m

′
2 z) = ((n1m

′
1) 1R + (n2m

′
2) 1R) z = z.

Thus the code is a scalar linear solution forN3(m1, m2).
�

Proof of Lemma 5.8.By Lemma 5.6, networkN3(m1, m2) is scalar linear solvable over any finite-
field alphabet whose characteristic is relatively prime tom1 orm2, so the network’s linear capacity
for such finite-field alphabets is at least1. By Lemma 2.4, networkN0(m1) has capacity equal
to 1, the blockB(1)(m1) together with the source nodesSz, S

(1)
1 , S

(1)
2 , . . . , S

(1)
m1 forms a copy of

N0(m1), so the capacity ofN3(m1, m2) is at most1. Thus both the capacity ofN3(m1, m2) and its
linear capacity over any finite-field alphabet whose characteristic is relatively prime tom1 or m2

are1.
To prove part (c), consider a(k, n) fractional linear solution forN3(m1, m2) over a finite field

F whose characteristic divides bothm1 andm2. Sincechar(F)
∣
∣m1 andchar(F)

∣
∣m2, we have

m1 = m2 = 0 in F.
We havex(l)j , z ∈ F

k ande(l)i , e
(l) ∈ F

n, with n ≥ k, since the capacity is one. There exist

n× k coding matricesM (l)
j ,M

(l)
i,j with entries inF, such that for eachl = 1, 2 the edge vectors can

be written as:

e
(l)
0 =

ml∑

j=1

M
(l)
0,j x

(l)
j (122)

e
(l)
i =M

(l)
0 z +

ml∑

j=1
j 6=i

M
(l)
i,j x

(l)
j (i = 1, 2, . . . , ml) (123)

e(l) =M
(l)
0 z +

ml∑

j=1

M
(l)
j x

(l)
j (124)

and there existk × n decoding matricesD(l)
i,e, D

(l)
i with entries inF, such that for eachl = 1, 2 the

receivers within the blockB(l)(ml) can recover their respective messages from their received edge
vectors by:

R
(l)
0 : z = D

(l)
0,e e

(l) +D
(l)
0 e

(l)
0 (125)

R
(l)
i : x

(l)
i = D

(l)
i,e e

(l) +D
(l)
i e

(l)
i (i = 1, 2, . . . , ml). (126)

Page 59 of 68



Connelly-Zeger January 14, 2016

Since the receiverRz recovers messagez linearly from its incoming edge vectors, we have
{

e
(l)
i :

l = 1, 2
i = 0, 1, . . . , ml

}

−→ z. (127)

By settingz = 0 in (125), for eachl = 1, 2 we have

0 = D
(l)
0,e

ml∑

j=1

M
(l)
j x

(l)
j +D

(l)
0 e

(l)
0 [from (122), (124), (125)]

∴

ml∑

j=1

M
(l)
j x

(l)
j −→ D

(l)
0 e

(l)
0 , (128)

and similarly, by settingx(l)i = 0 in (126) forl = 1, 2 we have

0 = D
(l)
i,e






M

(l)
0 z +

ml∑

j=1
j 6=i

M
(l)
j x

(l)
j







+D
(l)
i e

(l)
i (i = 1, 2, . . . , ml) [from (123), (124), (125)]

∴ e
(l)
i −→ D

(l)
i,e






M

(l)
0 z +

ml∑

j=1
j 6=i

M
(l)
j x

(l)
j







(i = 1, 2, . . . , ml). (129)

As in Lemma 3.8, for eachl = 1, 2 andi = 1, 2, . . . , ml, letQ(l)
0 be the matrixQ in Lemma 3.7

corresponding to whenD(l)
0 is the matrixA in the lemma, and letQ(l)

i,e be the matrixQ correspond-

ing to whenD(l)
i,e is the matrixA.

Let L(1) andL(2) be the lists from Lemma 3.8 (wherez plays the role ofx0), corresponding to
the left-hand side and right-hand side of the network, respectively. Specifically, for eachl = 1, 2,
letL(l) be the list

Q
(l)
0 e

(l)
0

e
(l)
i (i = 1, 2, . . . , ml)

Q
(l)
i,e






M

(l)
0 z +

ml∑

j=1
j 6=i

M
(l)
j x

(l)
j







(i = 1, 2, . . . , ml).
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For eachl = 1, 2 we have

L(l) −→ D
(l)
i,e






M

(l)
0 z +

ml∑

j=1
j 6=i

M
(l)
j x

(l)
j







[from (129)] (130)

L(l) −→M
(l)
0 z +

ml∑

j=1
j 6=i

M
(l)
j x

(l)
j [from Lemma 3.7, (130)] . (131)

For eachl = 1, 2 we also have






M
(l)
0 z +

ml∑

j=1
j 6=i

M
(l)
j x

(l)
j : i = 1, 2, . . . , ml







−→

ml∑

i=1






M

(l)
0 z +

ml∑

j=1
j 6=i

M
(l)
j x

(l)
j







= mlM
(l)
0 z + (m1 − 1)

ml∑

j=1

M
(l)
j x

(l)
j

= −
ml∑

j=1

M
(l)
j x

(l)
j

[
from char(F)

∣
∣ml

]
, (132)

and so

L(l) −→
ml∑

j=1

M
(l)
j x

(l)
j [from (132), (131)] (133)

L(l) −→ D
(l)
0 e

(l)
0 [from (128), (133)] (134)

L(l) −→ e
(l)
0 [from Lemma 3.7, (134)] . (135)

We have

L(1), L(2) −→ z [from (127), (135)] . (136)

Page 61 of 68



Connelly-Zeger January 14, 2016

For eachl = 1, 2 we also have

z,

ml∑

j=1

M
(l)
j x

(l)
j −→ e(l) [from (124)] (137)

L(l), z −→ e(l) [from (133), (137)] (138)

L(l), z −→ x
(l)
i (i = 1, 2, . . . , ml) [from (126), (138)] . (139)

Thus

L(1), L(2) −→ z,

{

x
(l)
i :

l = 1, 2
i = 1, 2, . . . , ml

}

[from (136), (139)] . (140)

We haveL(l) corresponding to the same set of vector functions as the listL for N1(ml) in
Lemma 3.8 (with a slight change of labeling). Thus the bound on the entropy of the listL in (61)
in Lemma 3.8 can be used to bound the entropy of the listL(1), L(2):

H
(
L(1), L(2)

)
≤ (2m1 + 2m2 + 2)n− (m1 +m2 + 2) k [from (61)] . (141)

But then we have

(m1 +m2 + 1) k = H

(

z,

{

x
(l)
i :

l = 1, 2
i = 1, 2, . . . , ml

}) [

from z, x
(l)
i ∈ F

k
]

≤ H(L1, L2) [from (140)]

≤ (2m1 + 2m2 + 2) n− (m1 +m2 + 2) k [from (141)]

∴
k

n
≤

2m1 + 2m2 + 2

2m1 + 2m2 + 3
.

Thus the linear capacity ofN3(m1, m2) for finite-field alphabets whose characteristic divides
bothm1 andm2 is upper bounded by

1−
1

2m1 + 2m2 + 3
.

Consider a(2m1 + 2m2 + 2, 2m1 + 2m2 + 3) fractional linear code forN3(m1, m2) over any
finite-field alphabet whose characteristic divides bothm1 andm2, described below.
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The edges symbols on the left-hand side ofN3(m1, m2) are given by:

[

e
(1)
0

]

l
=







m1∑

j=1
j 6=l

[

x
(1)
j

]

l
(l = 1, 2, . . . , m1)

m1∑

j=1

[

x
(1)
j

]

l
(l = m1 + 1, . . . , 2m1 + 2m2 + 2)

m1∑

j=2

[

x
(1)
j

]

j
(l = 2m1 + 2m2 + 3)

[

e
(1)
i

]

l
=







[z]l +

m1∑

j=1
j 6=i
j 6=l

[

x
(1)
j

]

l
(l = 1, 2, . . . , m1 andl 6= i)

[z]m1+1 +

m1∑

j=1
j 6=i

[

x
(1)
j

]

j
(l = i)

[z]l +

m1∑

j=1
j 6=i

[

x
(1)
j

]

l
(l = m1 + 1, . . . , 2m1 + 2m2 + 2)

[z]m1+i+1 (l = 2m1 + 2m2 + 3)

(i = 1, 2, . . . , m1)

[
e(1)
]

l
=







[z]l +

m1∑

j=1
j 6=l

[

x
(1)
j

]

l
(l = 1, 2, . . . , m1)

[z]l +

m1∑

j=1

[

x
(1)
j

]

l
(l = m1 + 1, . . . , 2m1 + 2m2 + 2)

[z]m1+1 +
m1∑

j=1

[

x
(1)
j

]

j
(l = 2m1 + 2m2 + 3).
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For brevity, letδ = 2m1 +m2 + 2 = n− (m2 + 1). The edges symbols on the right-hand side
of N3(m1, m2) are given by:

[

e
(2)
0

]

l
=







m2∑

j=1

[

x
(2)
j

]

l
(l = 1, 2, . . . , δ)

m2∑

j=1
j 6=l−δ

[

x
(2)
j

]

l
(l = δ + 1, . . . , δ +m2)

m2∑

j=2

[

x
(2)
j

]

δ+j
(l = δ +m2 + 1)

[

e
(2)
i

]

l
=







[z]l +

m2∑

j=1
j 6=i

[

x
(2)
j

]

l
(l = 1, 2, . . . , δ)

[z]δ +

m2∑

j=1
j 6=i

[

x
(2)
j

]

δ+j
(l = δ + i)

[z]l +

m2∑

j=1
j 6=i

j 6=l−δ

[

x
(2)
j

]

l

(
l = δ + 1, . . . , δ +m2

andl 6= δ + i

)

[z]2m1+1+i (l = δ +m2 + 1)

(i = 1, 2, . . . , m2)

[
e(2)
]

l
=







[z]l +

m2∑

j=1

[

x
(2)
j

]

l
(l = 1, 2, . . . , δ)

[z]l +

m2∑

j=1
j 6=l−δ

[

x
(2)
j

]

l
(l = δ + 1, . . . , δ +m2)

[z]δ +

m2∑

j=1

[

x
(2)
j

]

δ+j
(l = δ +m2 + 1).
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We have

m1∑

i=1
i 6=l

[

e
(1)
i

]

l
= (m1 − 1) [z]l + (m1 − 2)

m1∑

j=1
j 6=l

[

x
(1)
j

]

l
(l = 1, 2, . . . , m1)

= −[z]l − 2
[

e
(1)
0

]

l

[
from char(F)

∣
∣m1

]
(142)

m2∑

i=1
i 6=l−δ

[

e
(2)
i

]

l
= (m2 − 1) [z]l + (m2 − 2)

m2∑

j=1
j 6=l−δ

[

x
(2)
j

]

l
(l = δ + 1, . . . , δ +m2)

= −[z]l − 2
[

e
(2)
0

]

l

[
from char(F)

∣
∣m2

]
. (143)

Each of the receivers can linearly recover each of the2m1 + 2m2 + 2 components of its de-
manded message from its received vectors by:

R
(1)
0 :

[
e(1)
]

l
−
[

e
(1)
0

]

l
= [z]l (l = 1, 2, . . . , 2m1 + 2m2 + 2)

R
(1)
i :

[
e(1)
]

2m1+2m2+3
−
[

e
(1)
i

]

i
=
[

x
(1)
i

]

i
(i = 1, 2, . . . , m1)

[
e(1)
]

l
−
[

e
(1)
i

]

l
=
[

x
(1)
i

]

l
(l = 1, 2, . . . , 2m1 + 2m2 + 2 andl 6= i)

R
(2)
0 :

[
e(2)
]

l
−
[

e
(2)
0

]

l
= [z]l (l = 1, 2, . . . , 2m1 + 2m2 + 2)

R
(2)
i :

[
e(2)
]

δ+m2+1
−
[

e
(2)
i

]

δ+i
=
[

x
(2)
i

]

δ+i
(i = 1, 2, . . . , m2)

[
e(2)
]

l
−
[

e
(2)
i

]

l
=
[

x
(2)
i

]

l
(l = 1, 2, . . . , 2m1 + 2m2 + 2 andl 6= δ + i)
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Rz : − 2
[

e
(1)
0

]

l
−

m1∑

i=1
i 6=l

[

e
(1)
i

]

l
= [z]l (l = 1, 2, . . . , m1) [from (142)]

[

e
(1)
1

]

1
−
[

e
(1)
0

]

2m1+2m2+3
= [z]m1+1

[

e
(1)
l−m1−1

]

2m1+2m2+3
= [z]l (l = m1 + 2, . . . , 2m1 + 1)

[

e
(2)
l−2m1−1

]

δ+m1+1
= [z]l (l = 2m1 + 2, . . . , 2m1 +m2 + 1)

[

e
(2)
1

]

δ+1
−
[

e
(2)
0

]

21+2m2+3
= [z]δ (δ = 2m1 +m2 + 2)

− 2
[

e
(2)
0

]

l
−

m2∑

i=1
i 6=l−δ

[

e
(2)
i

]

l
= [z]l (l = δ + 1, . . . , δ +m2) [from (143)] .

Thus the code is in fact a linear solution forN3(m1, m2). �
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