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Abstract

For each integem > 2, a network is constructed which is solvable over an alphabet o
sizem but is not solvable over any smaller alphabetsnlfs composite, then the network has
no vector linear solution over any-module alphabet and is not asymptotically linear solvable
over any finite-field alphabet. The network’s capacity isveindgo equal one, and whem
is composite, its linear capacity is shown to be bounded dnay one for all finite-field
alphabets.
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1 Introduction

A networkwill refer to a finite, directed, acyclic multigraph, somewvafiose nodes arsourcesor
receivers Source nodes generdtalimensional vectors aghessagesvhere each of the messages
is an arbitrary element of a fixed, finite set of size at |@astlled aralphabet The elements of an
alphabet are callesymbols Theinputsto a node are the messages, if any, originating at the node
and the symbols on the incoming edges of the node. Each ogtgdge of a network node carries
a vector ofn alphabet symbols, callegtige symbolslf a node has at most input symbols, then
we will assume, without loss of generality, that each of its@dges carries atl of such symbols.
Each outgoing edge of a node has associated withatigie functionvhich maps the node’s inputs
to the output vector carried by the edge. Each receiver nase@gdmandswhich arek-dimensional
message vectors the receiver wishes to obtain. Each re@sehaslecoding functionsvhich
map the receiver’s inputs todimensional vectors of alphabet symbols in an attempttisfgdhe
receiver’'s demands.

A (k,n) fractional code over an alphabed (or, more briefly, a(k,n) code overA) is an
assignment of edge functions to all of the edges in a netwndkan assignment of decoding
functions to all of the receiver nodes in the network.

A (k,n) solution overA is a(k,n) code overA such that each receiver’'s decoding functions
can recover alk components of each of its demands from its inputs.

An edge function

FrAlPx o x AP A" x o AT — AT

-~

i message vectors j in-edges

is linear over A if it can be written in the form
f(xlvvxzvylvvy]) :M1x1++szz+M{yl++M],yj (l)

wherelM, ..., M; aren x k matrices and/j, .. ., M; aren xn matrices whose entries are constant
values. Similarly, a decoding function is linear if it hasoarfi analogous td {1). Ak, n) code is
said to belinear over A if each edge function and each decoding function is linear g We
will focus attention on linear codes in a very general sgttirhere the alphabets afémodules
(discussed in in Sectidn 1.3). If the network alphabet i®amodule, then, in(1)A4 is an Abelian
group, the elements of the matrices are from the diygand multiplication of ring elements by
elements of4 is the action of the module. Special cases of linear codes /@modules include
linear codes over groups, rings, and fields.

A network is defined to be

— solvable ovetA if there exists g1, 1) solution overA,
scalar linear solvable over! if there exists 41, 1) linear solution overA4,
vector linear solvable oved if there exists dk, k) linear solution over4, for somek > 1,
asymptotically linear solvable oved if for any e > 0, there exists dk, n) linear solution
over A for somek andn satisfyingk/n > 1 — e.
We say that a network solvable (respectivelyyector linear solvabl®r scalar linear solvablgif
it is solvable (respectively, vector linear solvable orlacénear solvable) over some alphabet.
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The capacit@ of a network is:
sup{k/n : Fa(k,n) solution over somel}.
Thelinear capacityof a network with respect to an alphabéis:
sup{k/n : Fa(k,n) linear solution overd}.

It was shown in[[4] that the capacity of a network is indeperad alphabet size, and it was noted
that linear capacity can depend on alphabet size.

1.1 Previous work

One decade ago, it was demonstratedin [7] that there caneaxeétwork which is solvable, but not
vector linear solvable over any finite-field alphabet andastor dimension. To date, the network
given in [7] is the only known example of such a network puieid in the literature. In fact, the
network given in[[7] was shown to not be vector linear soleabler very general algebraic types
of alphabets, such as finite rings and modules, and was shatto aven be asymptotically linear
solvable over finite-field alphabets, and, as a result, thear& has been described as “diabolical”
by Kschischang [1§]and Koetter/[15].

The diabolical network has been utilized in numerous exterissand applications of network
coding, such as by Krishnan and Rajani [17] for network eroorection, and by Rai and Dey [21]
for multicasting the sum of messages to construct networttsequivalent solvability properties
hence showing that linear codes are insufficient for eacblpno. El Rouayheb, Sprintson, and
Georghiades [13] reduced the index coding problem to a n&teamding problem, thereby using
the diabolical network to show that linear index codes arensxessarily sufficient. Blasiak,
Kleinberg, and Lubetzkyl [2] used index codes to create netsvavhere there is a polynomial
separation between linear and non-linear network coditgsraChan and Grantl/[5] showed a
duality between entropy functions and network coding peotd, which allowed for an alternative
proof of the insufficiency of linear network codes.

We now summarize some of the existing results regardingdivalsility and linear solvability
of multicast networkgin which each receiver demands all of the messagesyandral networks
(in which each receiver demands a subset of the messagdsjoieodes were first presented by
Ahlswede, Ning, Li, and Yeung [1] as a method of improving theoughput of a network; they
presented the butterfly network, a variant of which is schtear solvable but not solvable via
routing. Li, Young, and Cai [19] showed that if a multicastwerk is solvable, then it is scalar
linear solvable over all sufficiently large finite-field aldfets. In addition, Riis [23] showed that
every solvable multicast network has a binary linear soluth some vector dimension. Feder,
Ron, and Tavory [14] and Rasala Lehman and Lehrnan [22] bagpiendently showed that some
solvable multicast networks asymptotically require fidiedd alphabets to be at least as large as
twice the square root of the number of receiver nodes.

In the literature, this is sometimes referred to as the ‘tgdiapacity” (as opposed to the routing capacity). For
brevity, we will simply use the term “capacity,” as we do nitaliss routing capacity in this paper.
>The terminology was apparently attributed by F. KschisgharV. Sudan.
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Non-linear coding in multicast networks can offer advaetaguch as reducing the alphabet
size required for solvability; Rasala Lehman and Lehmalij p2@sented a network which is solv-
able over a ternary alphabet but has no scalar linear solotier any alphabet whose size is less
than five, and Riis [23] and als0![9] demonstrated generalmanlicast networks, respectively,
which have scalar non-linear binary solutions but no sdal@ar binary solutions. A multicast
network was presented in/[9] which is solvable precisely tivese alphabets whose size is neither
2 nor6, and Sun, Yin, Li, and Long [29] presented families of ma#tnetworks which are scalar
linear solvable over certain finite-field alphabets but narall larger finite-field alphabets.

Unlike multicast networks, general networks that are dalvare not necessarily vector linear
solvable, as demonstrated|in [7]. Médard, Effros, Ho, aady€r [20] showed that there can exist a
network which is vector linear solvable but not scalar lirgzvable. Shenvi and Dey [27] showed
that for networks witl2 source-receiver pairs the following are equivalent: thevoek is solvable,
the network is vector linear solvable, the network satisdisanple cut condition. Cai and Han [3]
showed that for a particular class of networks withource-receiver pairs: the solvability can be
determined in polynomial time, being solvable is equivaltenbeing scalar linear solvable, and
finite-field alphabets of siz2 or 3 are sufficient to construct scalar linear solutions.[In [1h¢
Fano and non-Fano networks were shown to be solvable pkeciger even and odd alphabets,
respectively. For each integer > 2, Rasala Lehman and Lehman [22] demonstrated a class of
networks which are not solvable over any alphabet whosasless thann and are solvable over
all alphabets whose size is a prime power greater than of exua For each integer:. > 3, Chen
and HaiBin [6] demonstrated a class of networks which aresavable over any alphabet whose
size is less tham and are solvable over all alphabets whose size is not digiby®, 3, ..., m—1.

Koetter and Médard [15] showed for every finite fiédldand every network, the network is
scalar linear solvable ovéf if and only if a corresponding system of polynomials has a roam
root inF, and in [8] it was shown that for every finite fielland any system of polynomials there
exists a corresponding network which is scalar linear sévaverF if and only if the system
of polynomials has a common root ih Subramanian and Thangaraj [28] showed an alternate
method of deriving a system of polynomials which corresgotadthe scalar linear solvability of
a network, such that the degree of each polynomial equatiahinos. Presently, there are no
known algorithms for determining whether a general netwsdolvable.

While vector linear solvable networks are solvable netwptke converse need not be true.
This paper demonstrates infinitely many such counterexasnpl

There remain numerous open questions regarding the eséstéisolvable networks which are
not vector linear solvable. Are many/most solvable netwaorét vector/scalar linearly solvable?
Can such networks be efficiently characterized? Can sugionet be algorithmically recognized?
We leave these questions for future research.

1.2 Our contributions

In this paper, we present an infinite class of solvable ndtsvahich are not linear solvable over
any R-module alphabet and any vector dimension. We denote eathraiwork as\V,, and we
construct\,; from several intermediate networks denoted My, N, N>, andN3, all of which
are constructed from a fundamental network building blétk Specifically, for each positive
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composite numberm, we describe how to construct a netwdvk which has a non-linear solution
over an alphabet of size, yet has no vector linear solution over any vector dimensiaoth any
finite field, commutative ring with identity, oR-module alphabet. In addition, such a network is
not solvable over any alphabet whose size is lessithahhe diabolical network iri [7] was shown
to be non-linear solvable over an alphabet of dize

We will now summarize the main results of this paper, whidnagpear in Sectiof]6. The
network/\V, is parameterized by an arbitrary integer> 2. Theoreni 6.4 shows thaf;, is solvable
over an alphabet of size. Theoreni 6.6 shows, however, thi} is never solvable over alphabets
smaller thanm. Theoreni 6.7 shows that whem is prime, NV, has a scalar linear solution over
a field of sizem. In fact, for all non-prime integers:, the network\; has no linear solution,
as demonstrated by Theorems]6.8 6.9. In particular, réh€6.8 shows that whem is
composite, no vector linear solution far; exists over anyk-module, and Corollary 6.10 shows
that in such casey, is not even asymptotically linear solvable over any finigdefialphabet. In
the special case of. = 4, the demonstrated netwar¥, exhibits properties similar to the network
presented in [7].

The diabolical network was shown in|[7] to have capacity éqaane, whereas its linear
capacity is bounded away from one for any finite-field alphaBealogously, we show in The-
orem[6.9 that for alin, the capacity of\, equals one, whereas for all composite its linear
capacity over any finite-field alphabet is bounded away frara. oRelated capacity results are
given for the constituent networks, (in Lemmal2.4) N, (in Lemma3.8),\; (in Lemmal4.7),
and A5 (in Lemmas.B).

The rest of the paper is organized as follows. Table 1 sunzesmthe networks created and the
results in this paper. Sectién 1.3 provides mathematicetdraund and definitions. Sectionls 2-
present the building block networks which are used to coosthe main class of networks.
Sectior 6 details the properties and construction of thenrlass of networks. For each network
family, we will discuss the solvability properties, thediar solvability properties, and the capacity.
The Appendix contains the proofs of every lemma in this pap#rother proofs are given in the
main body of the paper.

SectiorLY poses some open questions regarding solvaHiligtaorks.
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Networks and Their Main Properties Location
Network Ny(m) Sectior 2
- Consists of a bloc3(m) together with source nodes. Figlie
- 4m + 6 nodes. Remark 2.1
-1fa (1,1) code overA is a solution, then the code has an Abelian group structure. Lemmd2.2
Network N7 (m) Sectior 3
- Consists of a block3(m) together with source nodes and an additional receiver. Figure[3
- 4m + 7 nodes. Remark 3.1l
- If solvable overA, thenged(].A|,m) = 1. Lemmd3.2
- Scalar linear solvable over standd®emoduleG iff ged(char(R), m) = 1. Lemmd 3.8
- If asymptotically linear solvable over finite field] thenchar(F) f m. Lemmd3.8
Network Na(m, w) Sectiorl 4
- Consists ofw blocks B(m + 1) together with source nodes and

an additional receiver. Figure4
- 4mw + 9w + 2 nodes. Remark 4.1
-If w > 2, then non-linear solvable over an alphabet of size. Lemmd4.4
- If solvable overA, thenged(|.A|,m) # 1. Lemmd4b
- Scalar linear solvable over standatemoduleG iff char(R) | m. Lemmd4.6
- If asymptotically linear solvable over finite fiele] thenchar(F) |m Lemmd4.y
Network N3(my, m2) Sectiorb
- Consists of blocks3(m,) and B(my) together with source nodes and

an additional receiver. Figure
-4mq + 4msy + 12 nodes. Remark5.1
- For eachs, t > 1 relatively prime tom, if mo = sm§ for somea > 0, Corollary[5.7

then non-linear solvable over an alphabet of sizé .
- If solvable overA, thengcd(|A|,m1) = 1 or |A| } ma. Lemmd5.b
- Scalar linear solvable over standa®dmoduleG iff gcd(char(R), m1,m2) = 1. Lemm&5.6
- If asymptotically linear solvable over finite field] thenchar(F) is

relatively prime tam; or mo. Lemmd5.8
Network Ny (m) Sectior 6
- Consists of a disjoint union of various netwotk§, N3, andAs. Equation[(¥)
- Solvable over an alphabet of size Theorem 6.4
-If | A| < m, then not solvable oveH. Theoreni 6.b
- If m is prime, then scalar linear solvable ow&F (m). Theoreni 6.17
- If m is composite, then: (1) not vector linear solvable over Eanodule. Theoremn 618

(2) not asymptotically linear solvable over any finite field. Corollary[6.10

- Number of nodes i®) <mlolg1%) andQ(m). Theoreni6.111

Table 1: Summary of the networks constructed in this papeerem, m,, m,, andw are integers
such thatn, m, m, > 2 andw > 1.
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1.3 Preliminaries

The following definitions and results regarding linear nativcodes overR-modules are fromi [7]
and [12].

Definition 1.1. Let (R, +, ) be a ring with additive identit9z. An R-module(specifically a left
R-module) is an Abelian grouf, ©) with identity O and an action

T RxG—>G
such that for ali-, s € R and allg, h € G the following hold:

re(g®h)=(r-g)&(r-h)
(r+s)-g=(@-9)®(s-g)
(rxs)-g=r-(s-g)
OR g = 0(;.
The ring multiplication symbok will generally be omitted for brevity. If the ring has a multi-

plicative identityl g, then we also requirei - ¢ = g for all g € G. For brevity, we say that is an
R-module.© will denote adding the inverse of an element (subtractiathiwthe group.

The following definition describes a class Bfmodules which we will use to discuss linear
solvability in this paper.

Definition 1.2. Let G be anR-module. We will say thaf7 is astandardR-moduleif

R acts faithfully onG; thatis ifr, s € Rare suchthat - g = s-gforall g € G, thenr = s.
R has a multiplicative identity .

R is finite.

W bd P

If » € R has a multiplicative left (respectively, right) inverseen it has a two-sided inverse,
which will be denoted—!.

This enables us to characterize over which standardodules the networks in this paper are
scalar linear solvable. Lemmias1l.3 1.4 show that if aorétis not scalar linear solvable over
any standard?-module, then the network is not vector linear solvable @rsrR-module.

A finite ring R, with a multiplicative identity, acting on itself is a staard R-module. For any
finite field F and positive integek, the setM,(F) of k£ x k matrices oveif with matrix addition
and multiplication is a ring anB* is a standard//,,(F)-module.

Lemma 1.3. If a network\V is not scalar linear solvable over any standafdmodule, then it is
not scalar linear solvable over ang-module.

Lemma 1.4. If a network is not scalar linear solvable over am¢module, then it is not vector
linear solvable over anyz-module.
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Vector linear solutions over rings are special cases ofovdtear solutions oveRR-modules
where R acts on itself. A field is a special case of a commutative riritlp wdentity where all
elements have multiplicative inverses, and scalar linelations are special cases of vector linear
solutions wherd: = 1. Thus if a network is not vector linear solvable oveimodules, it is also
not vector (or scalar) linear solvable over rings with idggn(or fields).

For any ringR with multiplicative identity, thecharacteristic ofR is denotecthar(R) and is
the smallest positive integet such thatl  added to itselin times equal®y. The characteristic
of a finite field is always a prime number. We say that a posititegerm is invertible in R if there
existsm™! € R such thatm™! (mly) = 1z, where(m1y) denoteslz added to itselfn times.
Specifically,

-1

m! = lp+---+1g
—

m adds

The following lemmas discuss properties of multiplicaiiweerses in rings and will be used to
more easily characterize the classe&ahodules over which\; andA/; are scalar linear solvable.

Lemma 1.5. For each finite ringR with a multiplicative identity and each positive integer the
integerm is invertible inR if and only if there does not existe R\{0r} such thatns = Og.

Lemma 1.6. For each finite ringR with a multiplicative identity and each positive integer the
integerm is invertible in R if and only ifchar(R) andm are relatively prime.

The following definition is called Property’ in [6], and will be utilized throughout.

Definition 1.7. Letm > 2. A (1, 1) code for a network/” over an alphabetl, containing messages
xg, 1, . . ., T, and edge symbols, e, ..., e, e, is said to havd’roperty P(m) if there exists a
binary operatior® : A x A — A and permutations,, 71, ..., T, andog, o1, ..., o, of A, such
that(.A, @) is an Abelian group and the edge symbols can be written as
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2 The network NVy(m)

Figure 1: Network building blockB(m) has message inputg, v, - ..,y (from unspecified
source nodes) anah + 1 output edges. For eachthe nodeu; receives each of the inputs ex-
cepty; and has a single outgoing edge to the nogevhich carries the edge symhgl The node
u receives each of the inputs and has a single outgoing edbe twodev, which carries the edge
symbole. For each, the receiver nod&; has an incoming edge from and an incoming edge
from v and demands thi#h message;. The:th output edge of3(m) is an outgoing edge of node
V.

For eachm > 2, the network building block3(m) is defined in Figurél1l and is used to build
network Ay (m), which is defined in Figure]2. For ea¢hthe nodey; within B(m) has a single
incoming edge from node;, so without loss of generality, we may assume both outgailyge of
v; carry the symbot;. Similarly, we may assume each of the outgoing edges of tHe moarries
the symbok. Lemmd2.2 demonstrates that for each> 2, the(1, 1) solutions of networkV,(m)
are precisely those codes which satisfy Propéity.), defined in Definition 1]7. In particular, the
solution alphabets have to be permutations of Abelian ggoup

Remark 2.1. NetworkA\,(m) hasm + 1 source node(m + 2) intermediate nodes, and + 1
receiver nodes, so the total number of node&/ytm) is 4m + 6.
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Lo

P

Figure 2: NetworkN,(m) consists of a block3(m) together with source nodes, S, . . ., S,
which generate messages =1, . . ., z,,, respectively. The output edgesBfm) are unused.

Lemma 2.2 characterizes the solvabilitygf(m) and will be used in the proofs of the solv-
ability conditions of\;, V5, and ;.

Lemma 2.2. Letm > 2. A(1,1) code over an alphabed is a scalar solution for network/y(m)
if and only if the code satisfies PropemB(m).

The following result regarding the scalar linear solvapibf Ny(m) will be used in later
proofs.

Lemma 2.3. Letm > 2 and letG be a standard?-module. Suppose a scalar linear solution for
network\,(m) overG has edge symbols

€;, — (Ci,j'xj) (120,1,,m)
7=0
J#i

€= @ (¢j - x;)
7=0

and decoding functions
RZ‘Z xi:(di,e-e)@(di-ei) (2:0,1,,m)
wherec, ;, ¢;,d; ., d; € R. Then eachl; andc; is invertible inR, and

Cij =—d; " dicc; (i,j =0,1,...,mandj # ).

Lemma 2.4. The networkN,(m) has capacity and linear capacity, for any finite-field alpkgb
equal tol.
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3 The network NVi(m)

¢
B(m)

Figure 3: The network\;(m) is constructed from &(m) block together with source nodes
So, S1, ..., S, and an additional receivét,. For each, the source nodg; generates the message
x; and is theith input to B(m). The additional receiveR, receives all of the output edges of
B(m) and demands the message

For eachn > 2, network\;(m) is defined in Figur€l3. The special case= 2 corresponds
to the non-Fano network from [1L0], [11], with a relabelingméssages and nodes. Lemrnas 3.2,
3.3, and3.B, respectively, demonstrate that netwdrkn) is

1. solvable over alphabet only if |A] is relatively prime tan,

2. scalar linear solvable over standdtemoduleG if and only if char(R) is relatively prime to
m,

3. asymptotically linear solvable over finite fididf and only if char(F) does not dividen.

Remark 3.1. Network\; (m) is a networkN,(m) with one additional receiver node, so the total
number of nodes iV, (m) is 4m + 7.

3.1 Solvability conditions of Ni(m)

The following lemma also follows from [6, Proposition 4.Xjcacharacterizes a condition on the
alphabet size necessary for the solvabilit\gf{(m).

Lemma 3.2. For eachm > 2, if network \/; (m) is solvable over alphabed, thenm and|.A| are
relatively prime.
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3.2 Linear solvability conditions of A;(m)

Lemmd3.B presents a necessary and sufficient conditiohdasdalar linear solvability o/ (m)
over standard?-modules.

Lemma 3.3. Letm > 2, and letG be a standard?-module. Then network/; (m) is scalar linear
solvable ove(: if and only ifchar(R) is relatively prime tan.

3.3 Capacity and linear capacity ofN;(m)

Definition 3.4. Let F be a finite field and supposa,...,a, € F% andby,...,b. € FY are
functions of variables, ..., z,. We writea,,...,a, — by,...,b, to mean that there exist
t; x s; matricesM; ; overF such that for all choices of the variables . . ., z,,,

q
bj:ZMj,iai (jzl,,T)
i=1

In the context of network coding, the variables. . ., z,, will always be taken as the network
messages. In what follows, the transitive relatien will be used to describe linear coding func-
tions at network nodes. LemrhaB.5 is known from linear alg¢pé, p. 124], and will be used in
later proofs. In particular, Lemmas B[5,13.6, 3.7 willised in bounding the linear capacities
of N7, Ny, andNs.

Lemma 3.5. LetF be a finite field. IfA : F* — F?* andB : F¥ — F™ are linear maps, then

rank (A) + rank (B) — m < rank (A B) 2
< min(rank (A), rank (B)). 3

Lemma 3.6. If A is ann x k matrix of rankk over finite fieldF, then there exists a nonsingular
n X n matrix B such that

pas[h].

Lemma 3.7.If Ais anm x n matrix of rankk over finite fieldF, then there exists afn — k) x n
matrix () overF of rankn — k such that for allz € F"

Az, Qr — .

The following lemma characterizes the capacity and thelicapacity over finite-field alpha-
bets of\/;(m).
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Lemma 3.8. For eachm > 2, network\/;(m) has:

(a) capacity equal td,

(b) linear capacity equal ta for any finite-field alphabet whose characteristic does noide
m’

(c) linear capacity equal ta — ﬁ for any finite-field alphabet whose characteristic divides
m.
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4  The network Ny(m, w)

1 1 1 2 2 2 w w w
R R LR L ER S T
|00-6 | 06-6 | 00-6

BW(m + 1) B®(m +1) B®(m +1)

Figure 4: Network\>(m, w) is constructed fronw blocks of B(m+ 1) together withw(m+1)+1
source nodes and an additional receiiter Thelth block is denoted3) (m + 1), and the nodes
and edge symbols withiB" (m + 1) are denoted with a superscriptFor eachl = 1,2, ..., w,
the blockB" (m + 1) has inputs from source nodSé”, Sél), e S&l, which generate messages
xﬁl),xgl), e ,:c,%l. The shared messages generated by source node and is theth input to
eachBY(m + 1). Each of the output edges B! (m + 1), except théth, is an input to the shared
receiverRR., which demands the shared message

For eachm > 2 andw > 1, networkN,(m, w) is defined in Figurél4. We note thaf,(m, 1)
and NV;(m + 1) have similar structure, but in netwosk’ (m + 1) each of the output edges of
B(m+1) is connected td&,., and in network\V>(m, 1) all but one of the output edges Bf(m + 1)
are connected t&®,. This disconnected edge causes the difference in solyapilbperties of the
two networks. Lemmds 4.4, 4[5, 4.6, dnd 4.7 demonstrateétaork N (m, w) is:
non-linear solvable over an alphabet of size, if w > 2,
solvable over alphabet only if |A] is not relatively prime ton,
scalar linear solvable over standdtemoduleG if and only if char(R) dividesm,

asymptotically linear solvable over finite figidf and only if char(IF) dividesm.

P w0 NP

Remark 4.1. For eachm > 2 andw > 1 networkN,(m, w) hasw(m + 1) + 1 source nodes,
w(2m + 6) intermediate nodes, and(m + 2) + 1 receiver nodes, so the total number of nodes in
No(m,w) is dmw + 9w + 2.
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4.1 Solvability conditions of N3(m, w)

For each positive integern, we will view the ringZ,, as the se{0, 1, ..., m — 1} together with
addition and multiplication module:. This ring will be used to construct non-linear solutions in
Lemmas 4.1, 414,52, and 5.4.

For eachmn,w > 2 anda € Z,,,, a receiver cannot uniquely determine the symbuwl Z,,,.,
from the symbolwa € Z,,,, sincew is not invertible inZ,,,,,. For example, if a receiver receives
wa = 01in Z,,,, then the symbok could be any element in the s, m,2m, ..., (w — 1)m}.
The following lemma describes a technique for recoverirgvtidue ofu via a decoding functiogp
from thew-tuple wm; (a), wms(a), . .., wr,(a), where eachr; is a particular permutation &,,,., .
This technique will then be used to show that netwafKm, w) is solvable over an alphabet of
sizemuw.

Lemma 4.2. For eachm > 2 andw > 1, there exist permutations,, 7, . .., m, of Z,,, and a
mappingy : Z¥ . — Z.,, such that for alla € Z,,,,

Y (wm (a), wm(a), ..., wr,(a)) = a.

Example 4.3. The following table illustrates Lemma 4.2 for the case= 4 andw = 3.

a=ms(a) | m(a) | m(a) || 3ms(a) | 3m(a) | 3m(a)
0 0 0 0 0 0
1 1 1 3 3 3
2 2 2 6 6 6
3 3 3 9 9 9
4 4 ) 0 0 3
b} 5 6 3 3 6
6 6 7 6 6 9
7 7 4 9 9 0
8 9 8 0 3 0
9 10 9 3 6 3
10 11 10 6 9 6
11 8 11 9 0 9

For eacha € Z,, the triple (3m3(a), 3ma(a), 3m(a)) € Z3, is distinct.

Lemmal4.2 will be used in the proof of Lemrmal4.4 to show thatrdueiver, can recover
the message from the set of edge symboéé’) wherel =1,2,...,wandi=1,2,...,m+ 1.

Lemma 4.4. For eachm > 2 andw > 1, network\,(m, w) is solvable over an alphabet of size
muw.

In the code given in the proof of Lemrha ¥4.44if= 1, thenm; andy are identity permutations,
so the code is linear. Howeverif > 1, thenr, m, ..., m,_1 are generally non-linear, so the code
is non-linear.
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Lemma 4.5. For eachm > 2 andw > 1, if network N> (m, w) is solvable over alphabed, then
m and|.A| are not relatively prime.

Lemmas 4.4 and 4.5 together provide a partial charact@izaf the alphabet sizes over which
N (m,w) is solvable. However, these conditions are sufficient femshg our main results.

4.2 Linear solvability conditions of AV5(m, w)

Lemmal4.6 characterizes a necessary and sufficient comditiche scalar linear solvability of
N> (m, w) over standardz-modules.

Lemma 4.6. Letm > 2 andw > 1, and letG be a standard?-module. Then netwotk/s(m, w)
is scalar linear solvable ovef if and only ifchar(R) dividesm.

By Lemmal4.4, for everyn,w > 2, the network\;(m, w) is solvable over the rind.,,.,, but
char(Z..,) = mw } m so by Lemm&4]6, the solution is necessarily non-linear.

4.3 Capacity and linear capacity ofN(m, w)

The following lemma provides a partial characterizatiortef linear capacity a5 (m, w) over
finite-field alphabets.

Lemma 4.7. For eachm > 2 andw > 1, network\5(m, w) has

(a) capacity equal td,
(b) linear capacity equal ta for any finite-field alphabet whose characteristic divides

(c) linear capacity upper bounded hy- m for any finite-field alphabet whose charac-
teristic does not dividen.

Improving these upper-bounds on the linear capacitiesoaticiding codes at these rates are
left as open problems. The problems appear to be non-tranal such improvements are unrelated
to the main results of this paper.
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5 The network N3(mq, ms)

z

N (1)
1

Im

RN ORI

(2)

me

Figure 5: The network\3(my, ms) is constructed fronB(m;) and B(my) blocks together with
my + my + 1 source nodes and an additional recei®er The blocks are denoted™ (m,) and
B® (m,) respectively, and for eadh= 1, 2, the nodes and edge symbolsi¥) (m,;) are denoted
with a superscript. EachBY (m;) block has inputs from source nodﬁg), Sél), e Sﬁ?l which
generate message%), :cg), ey :cff?l. The shared messages generated by source nodeand is
the Oth input to BY (m;). The additional receiveR, receives all of the output edges BfY) (m;)
and B® (m,) and demands the shared message

For eachmy, my > 2, network 3 (my, m») is defined in Figurél5. We note thaf,(m, 2) and
N3(m+1, m+1) have similar structure, with the exception of the discotegoutput edge of each
B(m+1)in Ny(m, 2). This disconnected edge causes the difference in solighibperties of the
two networks. Corollarf 517 and Lemmas]4.5,5.6, 5.8 ahestnate that network/s (my, ms)

IS:

1. non-linear solvable over an alphabet of siz&*’, if o > 1, my, = sm§, ands andt are
relatively prime tom,

2. solvable over alphabet only if |.A] is relatively prime tan, or |.A| does not dividen,,
3. scalar linear solvable over standdtemoduleG if and only if ged(char(R), my, ms) = 1,
4. asymptotically linear solvable over finite fidtif and only if char(IF) is relatively prime to

my O mo.

Remark 5.1. For eachmy, my, > 2, the networkNs(my, ms) hasm, + ms + 1 source nodes,
2(my +ms +4) intermediate nodes, and, +m, + 3 receiver nodes, so the total number of nodes
in /\/},(ml, mg) is dmq + 4my + 12.
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5.1 Solvability conditions of N3(m;, ms)

The following lemmas demonstrate th&g(m,, ms) is non-linear solvable whem, = sm$,
a > 1, ands is relatively prime tan;. Consider the ring aIphabZI;naH For everya € Z mo 1y &
receiver cannot uniquely determine a symbah Z mot1 from the symbolsma andsmf{a, 'since
my 1S not invertible inZ mot - For example, if a receiver receives,a = smfa = 0inZ mo
then the symbak could be any element in the s, m$, 2mg, ..., (m; — 1)m$}. The folIowmg
lemma describes a technique for recovering the valuevid a decoding functiozp frommymi(a)
andsm{'ms(a), wherer, andm, are particular permutations ﬂfm?ﬂ.

Lemma 5.2. Letm > 2 anda,s > 1 be integers such that is relatively prime tom. Then
there exist permutations; and, of Z,,,.+1 and a mapping) : Z2 .., — Z,,.+ such that for all
a € Lot

Y (mm(a), sm®ma(a)) = a.

Example 5.3. The table below illustrates Lemrha b.2 for the case- 2, s = 3, anda = 2, and
permutationsr; and, of Zs.

a=ma(a) | m(a) || 12m2(a) | 271 (a)
0 0 0 0
1 4 4 0
2 1 0 2
3 ) 4 2
4 2 0 4
) 6 4 4
6 3 0 6
7 7 4 6

For eacha € Zg, the pair(2r,(a), 12w, (a)) € Z2 is distinct.

Lemma[5.2 will be used in the proof of Lemral5.4 to show thatréoeiverR, can recover
the message from the set of edge symboéé’), wherel = 1,2andi =0,1,...,m,.

Lemma 5.4. Letm,, my > 2 anda, s > 1 be integers such thah, = sm{ ands is relatively
prime tom;. Then networkV(m,, m,) is solvable over an alphabet of siz€ .

In the code given in the proof of Lemrha b.4, the permutatipis non-linear, so the code is
non-linear.

Lemma 5.5. Letmy, my > 2. If networkAs(my, m») is solvable over alphabed and|.A| divides
ms, thenm, and|.A| are relatively prime.

Lemmas 5.4 and 5.5 together provide a partial charact@izaf the alphabet sizes over which
N, (m, w) is solvable. However, these conditions are sufficient fomshg our main results.
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5.2 Linear solvability conditions of N3(my, ms)

The following lemma characterizes a necessary and sufficardition for the scalar linear solv-
ability of AV5(mq, ms) over standard?-modules.

Lemma 5.6. Letmy, my, > 2, and letG be a standard?-module. Then network/s(my, my) is
scalar linear solvable ove if and only ifgcd(char(R), my, ms) = 1.

Corollary 5.7. Letm;, my > 2 anda, s,t > 1 be integers such that, = sm{ ands andt are
relatively prime tom,. Then networkV;(my, ms) is solvable over an alphabet of sim?*l.

Proof. By Lemmal5.#, network\s(m,,ms) is solvable over an alphabet of size&f™. Z, is
a standardZ;-module andchar(Z;) = t is relatively prime tom;, so by Lemma 516, network
N3(mq,my) is scalar linear solvable over the rig.

By taking the Cartesian product code of these solutionsyarét/\5(m,, my) is solvable over
an alphabet of sizen?*!, u

For eachm; > 2 anda,s > 1 such thats is relatively prime tom,, let my = m{s. By
Lemmd5.4, networlVz(my, ms) is solvable OVel, a+1, but we have

ged <m1,m2,char<Zm?+1>) = ged(my, m$s,m{™) = my # 1,

in this case, so by Lemmia 5.6 the solution is necessarilylinea+. This also implies that the
Cartesian product code in Corolldary 5.7 is necessarily lnaar.

5.3 Capacity and linear capacity ofA5(my, ms)

Since the characteristic of any finite field is prime, the ¢bons of (b) and (c) of the following
lemma are complements of one another.

Lemma 5.8. For eachmy, my > 2, networkN3(my, ms) has

(a) capacity equal ta,

(b) linear capacity equal td for any finite-field alphabet whose characteristic is relaty prime
to my Or mo,

1

(c) linear capacity equal td — 35—

dividesm, andms.

for any finite-field alphabet whose characteristic
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6 The network NVy(m)

A disjoint unionof networks refers to a new network formed by combining @xgshetworks with
disjoint sets of nodes, edges, sources, and receiversifiSady the nodes/edges/sources/receivers
in the resulting network are the disjoint union of the noddgks/sources/receivers in the smaller
networks.

Remark 6.1. The disjoint union of network&/, . . ., \V,,, has a(k, n) solution over alphabet if
and only ifVy, ..., N, each has dk, n) solution overA.

For any integern > 2, letw(m) denote the number of distinct prime factorswof Denote the

prime factorization ofn by
m=p*-- plu(f;l))

wherevy,, ..., Ym) = 1andp, ..., p,m) are distinct primes. We define the following functions
of m and its prime divisors, which will be used throughout thistsm:

fm)y=pP . pl™ (4)

u(m,i) =min {a >0 : p > f(m)} (1=1,...,w(m)) (5)
w(m)

g(m,i) = p; T o/ (i=1,...,w(m)). (6)
j=1
i

For eachm > 2 with prime factorizationn = p]* - - ~pl“gﬁ§)), we construct networR/;(m) from

the followingdisjoint uniofd of networks:

w(m) w(m)
Nim) = | U M@ | o [ UM mmy | o | UM gmin ] @
s
q<f(m)

Theorem 6.2. For eachm > 2, the network\(m) is:

1. solvable over an alphabet of size

N

not solvable over any alphabet whose size is lessitihan

w

scalar linear solvable ove&F (m), if m is prime,

»

neither vector linear solvable over a§+module alphabet nor asymptotically linear solv-
able over any finite-field alphabetiif is composite.

3When node (respectively, edge and message) labels araageay. NV; (m) andN; (ms) both have receiver
R,), add additional superscripts to each node (respectigdtye and message) to avoid repeated labels. Each disjoint
network has a set of messages, nodes, and edges which istdisjevery other network’s set in the union. The
messages, nodes, and edges are not directly referencésisedttion, so the additional level of labeling is arbitraoy
long as the networks are disjoint.
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Proof. The theorem follows immediately from Theorems 6.4] 6.5,[6.9, and Corollary 6.10. B

Example 6.3. Consider the special cases of the square-free in[ﬂa@;ethe prime poweR7, and
the integer1 00 which is neither square-free nor a prime power.

e m =6 = 2'3". We havey, = v, = 1 and f(m) = 207Y30-D = 1, soN,(6) has neither
N1 nor N3 components. Thus Ify)), network\,(6) is the disjoint union of networks:

Na(2,3) U Na(3,2).

e m = 27 = 3°. We havef(27) = 36-Y =9, g(27,1) = 3¢-1) = 9, and the primes less
than f(27) which do not divide7 are 2, 5, and 7. Thus by(7), network\(6) is the disjoint
union of networks:

N1(2) U N (5) U N(T) U No(27,1) U N3(3,9).

e m = 100 = 2252, We havef(100) = 2?-U52-D = 10. Thenu(100,1) = 4, since
24 > f(100) > 23, and x(100,2) = 2, since5? > f(100) > 5'. Sog(100,1) = 2'52
g(100,2) = 5'2%, and the primes less thaf{100) which do not dividd 00 are 3 and7. Thus
by (@), networkN;(100) is the disjoint union of networks:

Ni1(3) U N (7) U Na(4,25) U Na(25,4) U N3(2,50) U N3(5,80).

We will use these networks as running examples through@uséiation and will refer back
to these constructions.

6.1 Solvability conditions of V;(m)

The following lemma shows that each disjoint component/efm) is solvable over an alphabet
of sizem, and thereforeV,(m) is solvable over an alphabet of size The proofs of Theorenis 6.4
and 6.5 make use of the functiofis:, andg defined in[(4),[(b), and{6), respectively.

Theorem 6.4. For eachm > 2, networkN,(m) is solvable over an alphabet of size

Proof. Let m have prime factorizatiom = p]* - - - p%):;),

For each primeg < f(m) such thay t m, by (@), networkN,(m) contains a copy alVi(q).
Z., is a standard.,,,-module ancthar(Z,,) = m is relatively prime taj, so by Lemma 3]3, network
Ni(q) is scalar linear solvable over the rig, .

For eachi = 1,...,w(m), by (@), network\,(m) contains a copy alV, (p;*, (m/p;")). By
Lemmda 4.4, network\; (p;*, (m/p]*)) is solvable over an alphabet of size

For eachi = 1,...,w(m) such thaty; > 1, by (@), network\,(m) contains a copy of
Ns(pi, g(m,i)). Also, p; andm/p]* are relatively prime, and by(6)(m, ) is the product of

4An integer issquare-fregf it is not divisible by the square of any prime.
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p?~! and a term which is relatively prime 19, so by Corollary 517, network/s (p;, g(m, 1)) is
solvable over an alphabet of size

Thus each disjoint component &f,(m) is solvable over an alphabet of size soN,(m) is
solvable over an alphabet of size [ |

Each networkN;, N>, and N3 requires the alphabet size to meet some divisibility coolit
in order to have a solution over that alphabet. The followamgma shows that because of these
conditions, there does not exist an alphabet whose sizesghann over which each component
of Ny(m) is solvable.

Theorem 6.5. For eachm > 2, if network\;(m) is solvable over alphabed, then|.A| > m.

Proof. Assume to the contrary thaf, (m) is solvable over an alphahdtsuch that.A| < m. Then
each disjoint component df,(m) must be solvable oved.

Letm have prime factorizatiom = p]* - - - pf(’;zs).

Foreach = 1,...,w(m), by (@), network\/,(m) contains a copy al\; (p}*, (m/p}*)). Since
network\; (p), (m/p]?)) is solvable overd, then by Lemma4]g; is not relatively prime td.A|.

Sincep; is prime, we have; ||.A|, and thug; - - - pugn) | |A4]. Let

Al

§=
P1 - Pu(m)

If m = p1 - puem) (i-€.m is square-free), then we contradict the assumption|thiat m.
So we may assume > p; - - - Doy, Which impliess > 2. If § > f(m), then

which again contradicts the assumptiofj < m, so we must havé < f(m).

In order to write the prime factorization #l, let{q, ..., ¢,} denote the set of primes which
are less tharf(m) and do not dividen. Each prime less thafi(m) either dividesn and is in the
set{p1,...,pum) } Or it does not dividen and is in the sefqi, . . ., ¢,}. Thusé must be a product
of qi,...,q, andpy, ..., p,m terms, so there exist;, ..., o m) > 1 andp,..., 3, > 0 such
that we can write. A| as

Al =pi" e 8)

For each primeg < f(m) such thay t m, by (@), networkN,(m) contains a copy aiVi(q).
Since network\; (¢) is solvable ovet4, then by Lemma3]2, we haged(q, |A|) = 1. Thusin
B) we haves; =--- = g, = 0.

For eachi = 1,...,w(m) such thaty; > 1, by (@), network\,(m) contains a copy of
Ns(pi, g(m,7)). Since networld\;(p;, g(m, 1)) is solvable overd andp; | |A], then by Lemm&Z5I5,
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|A| does not dividey(m, 7). Expressind.A| andg(m,¢) as their prime factorizations yields:

w(m)

R v )( ol | A [from (@), (8) .
et
2

This implies that for eache {1,...,w(m)} such thaty > 1, eithera; > ~; ora; > p(m, j) +1
for somej # i.
If there existsj € {1,...,w(m)} such that thaty; > u(m, j) + 1, then we have

JAl = pf - pey [from (8)]
> p7 " (P D) [from a; > 1]

> P (1 P
Z f(m) (pl o pw(m)) =m [from @)! Ej ;
which contradicts the assumption that| < m. So if each component of network,(m) is

solvable overd and|A| < m, it must be the case that > ~;, for eachi such thaty; > 1. If
~v; = 1,thena; > 1 = ~;. So we havey; > ~; for all 4, but this implies

JAl = pf - piy [from (@)
Yw(m
> g = m,

which again contradicts the assumption théft < m.
Thus there does not exist an alphabetwhose size is less tham such that each disjoint
component of\;(m) is solvable overA. [ |

Example 6.6. We continue our example network§(6), NV, (27), and N, (100).

e SupposéV,(6) is solvable over an alphabet. SinceN,(2, 3) is solvable overd, we have
2 divides|.A|. Similarly for AV5(3,2), we have thaB divides|.A|. Since6 is the smallest
positive integer that is divisible lyand 3, we havd.A| > 6.

e SupposéV,(27) is solvable over an alphabet whose size is less th&7. Then

— N2(27,1) requires3 | |A|, so|A| € {3,6,9,12,15,18,21, 24}.

— Ni1(2), N1(5), and N+ (7) require | .A| be relatively prime t@, 5, and7,
so|A| ¢ {6,12,15,18,21, 24}.

— N3(3,9) requires|A| /9, so|A| € {3,9}.

ThereforeN(27) is not solvable over any alphabet whose size is less 2fian
e SupposéV,(100) is solvable over an alphabet whose size is less thd0. Then
— N> (4,25) and N5 (25, 4) require 10 | [A|, so|A| € {10,20,...,90}.
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— Ni1(3) andN;(7) require|.A| to be relatively prime t8 and7, so|.A| ¢ {30, 60, 70, 90}.
— N3(2,50) requires|.A| f 50, so|A| € {10,50}.
— N3(5,80) requires|.A| 80, so|A| & {10, 20,40, 80}.

ThereforeN(100) is not solvable over any alphabet whose size is less than

6.2 Linear solvability conditions of NVy(m)

The following theorems show that, (m) is linear solvable if and only ifn is prime.
Theorem 6.7. For each primep, networkN,(p) is scalar linear solvable oveGF (p).

Proof. If p is a prime number, thefi(p) = 1 and the power o is one, so by((7), network/,(p)
consists solely of a copy of netwosG (p, 1). By Lemmd 4.6, network/z(p, 1) has a scalar linear
solution over every finite-field alphabet with charactérigt [ |

Theorem 6.8. For each composite numbet, network\,(m) is not vector linear solvable over
any R-module.

Proof. Let G be a standard-module, and assume a scalar linear solutionNgfm) exists over
G. SinceN,(m) is scalar linear solvable ovét, each disjoint component 8f,(m) is scalar linear
solvable overz. Supposen is a composite number. Thenis a product of two or more (possibly
distinct) primes. We will separately consider the casesriohg@ powers and non-power-of-prime
composite numbers.

For each prime» and integery > 2, by (7), networkN,(p”) contains copies af\5(p7, 1)
and A3 (p, p?~1). Since network\;(p?, 1) is scalar linear solvable oveé¥, by Lemma4.5, the
characteristic of? dividesp?. Since network\; (p, p?~1) is scalar linear solvable ove¥, by
LemmadX5.6, the characteristic &fis relatively prime tg. If the characteristic of? both divides
p” and is relatively prime t@, then the characteristic @t is 1, which only occurs in the trivial ring
(of size one). Thus there is no standd@dnodule over which all components of netwokk (p”)
are scalar linear solvable.

Now supposes(m) > 2. Thenm has prime factorizatiom = p]* - - -p:}“z;’:)), and by [(7), net-
work Ny (m) contains copies of; (p]*, (m/p]")) and network\; (p3?, (m/p3?)). Since network
Ny (plt, (m/p]")) is scalar linear solvable ové¥, by Lemmd 4.5, the characteristic Bfdivides
p;". For primesp; # po, if the characteristic oR? divides bothp]* andpj® then the characteristic
of Ris 1, which only occurs in the trivial ring. Thus there is no startd?-module over which all
components of network/,(m) are scalar linear solvable.

If m is a composite number, then there are no scalar linear sofufor ;(m) over any
standardk?-module, which, by Lemmads 1.3 ahd1.4 implies there are ntovéinear solutions for
Ni(m) over anyR-module. [ |
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6.3 Capacity and linear capacity of\/,(m)

Theorem 6.9. For eachm > 2 network/\,(m) has:
(a) capacity equal td,
(b) linear capacity bounded away frohover all finite-field alphabets, if, is composite.

Proof. For eachm > 2, by Theoreni 64, networlk/,(m) is solvable over an alphabet of size
so its capacity is at leagt Each network\N;, N>, and N3 has capacity equal tb, and N, (m)
consists of disjoint copies 0%/, N>, and\Njs, so its capacity is at modt Thus the capacity of
Ni(m) is equal tol.

For compositen, we will again separately consider the cases of prime poamaision-power-
of-prime composite numbers.

For each prime and integery > 2, by (7), network\,(p”) contains copies al(p”,1) and
N (p, pP~1). By Lemmd4.lr, networkV/s(p?, 1) has linear capacity upper bounded by

1
1—
2p7 + 3

for finite-field alphabets with characteristic other thaBy Lemmd5.8, network/s (p, p~!) has

linear capacity equal to
1

2p7=1 4+ 2p+3
for finite-field alphabets with characterisjic Whether we select a finite-field alphabet with char-
acteristicp or characteristic other than the linear capacity alV,(p”) is bounded away fron,
for fixed p and~.
Now supposev(m) > 2. Thenm has prime factorizatiom = p]* - - -pz)w(;j;), and by [7),
network Ny(m) contains copies o, (p]*, (m/p]")) and Nz (p3?, (m/p3?)). By Lemmal4l,
networkN: (p)*, (m/p]*)) has linear capacity upper bounded by

1
1— :
2m + 2(m/p7) + 1

for finite-field alphabets with characteristic other than Sincep; # p,, whether we select a
finite-field alphabet with characteristig, p,, or neitherp; nor p,, the linear capacity is bounded
away fromli, for fixedm.

Thus for any fixed composite number, the linear capacity of network/,(m) is bounded
away from1 over all finite-field alphabets. |

Calculating the exact linear capacity.®f (m) over every finite-field alphabet is left as an open
problem.

Corollary 6.10. For each composite:, network\,(m) is not asymptotically linear solvable over
any finite-field alphabet.

Proof. This follows directly from the fact that for any fixed compteshumbern, by Theoreni 619,
the linear capacity al;(m) is bounded away from one over all finite-field alphabets. [ |
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6.4 Size of\y(m)

Depending on the prime divisors of, the number of nodes iV;(m) can be dominated by nodes
from N, networks,\, networks, ot\; networks. The following theorem makes use of the func-

tions f(m), u(m, ), andg(m, i) defined in[(4),[(5),L(6).
Theorem 6.11.For eachm > 2, the number of nodes in netwalk,(m) is asymptotically

(&) Q(m),
(b) O(m), whenm is prime,

(c) O (l"“"gm ) whenm is square-free,
oglogm

(d) O (m?/logm), whenm is a prime-power,

logm . R .
(e) O (mloglogm), whenm is neither square-free nor a prime-power.

Proof. By RemarK 3.1, the number of nodesAA(q) is 4q + 7.
By Remark 4.1, the number of nodesAf(m, w) is 4mw + 9w + 2.
By RemarkK5.1L, the number of nodesAfy(my, my) is 4my + 4mgy + 12.
By the construction olV,(m) given in (7), the total number of nodes.Ny(m) is:

w(m) w(m)
> (g+7) |+ (Z(4m+9(m/p/)+2>) + [ Y (Ag(m.i)+4pi+12) | (9)
prime g i=1 i=1

qtm vi>1

q<f(m)

where the first, second, and third terms are the number ofsniode NV, N>, and N5 networks,
respectively. In order to find upper and lower bounds on tha& twumber of nodes i\, (m),
we will first find upper and lower bounds on the number of nodesf\/;, N>, and A5 networks
within My (m).

It is known [25, VII.27a] that

S q=0 (107;‘;) . (10)

primeq
q<m

If m is a square-free number, then we h&\e:) = 1, so in this case, there are no nodes in
N, (m) from N7 networks. Thus for general, we have

> (g+7)>0 (11)

prime q
qfm
q<f(m)
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and
m2
E (4g+7) < E (4q+7)=0(1 ) [from (10} .
prime q primeq ogm
q/m qg<m
q<f(m)

The total number of nodes i (m) from A, networks is

w(m) w(m)

> (4m+9(m/p}) +2) > Z4m Q (w(m)m)

and

w(m) w(m)

> (Am+9(m/pl) +2) < Y (13m+2) = O (w(m)m).

i=1 =1

Foreach = 1,...,w(m) we have

P < py f(m) [from (3))
w(m)
g(m H pd [from (@)
J#Z
w(m)
<p - H pif [from (13)
J#Z
w(m)
< pz - H bj
=p;" f(m )“(m)_Qm [from (@)] .

January 14, 2016

(12)

(13)

(14)

(15)

(16)

If m is square-free, them = 1 for all i, so in this case, there are no nodes\if(m) from A3

networks. Thus for generat, we have

w(m)

> (4g(m,i) + 4p; + 12) > 0.
)
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and

£
2
i
3

(4g(m,i) + 4p; + 12) Z 20g(m, ) [from (G)]

.
N||F1
_

2
V
Y

< 20m, f(m)= (™2 ij [from (18)

< 20m f(m)* (™2 lei [fromab > a + b for all a, b > 2]
= 20m? f(m)~"™?
< 20m*™ = O (m*™) [from ()] . (18)

To prove part (a), consider the lower bounds of each term)ofT{8e total number of nodes in
Ni(m) is lower bounded by:

0+ Q(w(m)m) + 0 = Q(w(m)m) = Q(m) [from (9), (11), (13),[(T17).

where the final equality comes from the fagtn) = Q(1), sincew(m) = 1 whenm is prime.
It follows from [24, Theorem 11] that

w(m) :O( log m ) (19)

log logm

To prove parts (b)-(e), we will consider the upper boundshemiumber of nodes of each term
of (9). However, each term dominates in different casesedeing on the prime factors of.

To prove parts (b) and (c), consider a square-free integer p; - - - p,,om). Sincery; = 1 for
all i, we havef(m) = 1, so there are neithe¥; nor N3 components inV,(m). Thus there are
0 nodes from\; and N3 components. Then by](9) and {14), the number of nodesimn) is
O(w(m)m). If m is prime, thenv(m) = 1, so we have the desired boundnifis not prime, then
the number of nodes i8(w(m) m), which, along with[(1D), yields the desired bound.

To prove part (d), consider a prime power= p”, wherey > 2. We havew (p”) = 1, so by
(14), the number of nodes fro, components i§)(m), and, by [(IB), the number of nodes from
N3 components i$)(m). By (I2), the number of nodes frol; components i) (m?/logm).
Thus the number of nodes i¥;(m) is O(m?/logm).

To prove part (e), consider. which is neither a prime power (se(m) > 2) nor square-free
(so there arg\; components itV (m)). The number of nodes iV, (m) is

0 (o) + O lm)m) +0 (™) from ), (12), (1), (T8)
=0 (m*™) [from w(m) > 2],
which, along with[(1P), yields the desired bound. [
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Example 6.12.We continue our example network§(6), N4(27), and N4(100).
e N,(6) has97 nodes:53 from N3 (2, 3) and44 from N5 (3, 2).

e Ny(27) has256 nodes:15 from Ny (2), 27 from N7 (5), 35 from N (7), 119 from N5 (27, 1),
and60 fromA/3(3,9).

e N,(100) has 1691 nodes: 19 from N;(3), 35 from N;(7), 627 from Ny(4,25), 438 from
N5(25,4), 220 from N3(2, 50), and352 from A3(5, 80).

7 Open Questions

Below are some remaining open questions regarding linehnan-linear solvability:

1. In [7] it was shown that there exists a network which is rextter linear solvable over any
R-module yet is non-linear solvable over an alphabet of $i2&e have shown that for each
composite numbem, there exists a network which is not vector linear solvablerany
R-module yet is non-linear solvable over an alphabet of sizeDo there exist networks
which are not vector linear solvable ovBrmodules but are non-linear solvable over some
alphabet of prime size?

2. There are examples|[6], [22] in the literature of solvatdéworks which are not solvable
over any alphabet whose size is less than somé&or eachn > 2, we have demonstrated
a network which is solvable over an alphabet of gizbut is not solvable over any alphabet
whose size is less than. For eachn > 2 does there exist a network which is solvable over
alphabetA if and only if | .A| > m? Which other “interesting” setS C N have the property
that there exists a network which is solvable aveif and only if | A| € S?

3. Itis not currently known whether there can exist an athaniwhich determines whether a
network is solvable. We have demonstrated a class of s@wetlvorks with no vector linear
solutions (i.e. diabolical networks). Can there exist ayjopathm which detects whether a
network is diabolical?
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Appendix - Proofs of Lemmas

Proofs of Lemmas in Section L
Proof of Lemma_113This follows from the proof ofi[7, Theorem Il1.4]. [

Proof of Lemma_1]41f R is a ring andG is an R-module, then the séet/,.(R) of k& x k matrices
over R with matrix addition and multiplication defined in the uswaly, is a ring and=* is an
My (R)-module. So any vector linear solution over Bamodule is also a scalar linear solution
over some otheRR-module. Thus if no scalar linear solutions exist, no veditoear solutions
exist. [ |

Proof of Lemma_1l5Assumem is invertible inR. Then for alls € R such thatns = 0, if we
multiply both sides of the equation by !, we haves = 0.

To prove the converse, assume = Oz only if s = Og. LetT = {ms : s € R}. For
eachs, s’ € R, we havems = ms’ if and only if m(s — ') = 0g, which impliess = ¢, so, by
assumption|T’| = |R|. Thuslg € T, which impliesm is invertible. [

Proof of Lemma 1]6 Assumechar(R) andm are not relatively prime, so they share a common
factora > 1. Letc andm’ be integers such thabar(R) = ac andm = am’. Then we have

Or = char(R) 1g =m/char(R) g =m'aclg=mclg=m [ 1g+ -+ 13
~——— ——

cadds

Sincea > 1, we havelg + - - - + 1z # Og, SO by Lemma1]5y is not invertible inR.
—_——

cadds

Conversely, assume is not invertible inR. Then by Lemma_1l5, there existsc R\{0gr}
such that
Op=ms=s+---+35
——
m adds

which implies the additive order afdividesm. We also have

S+...+S:Char(R) 5:0R7
N~——
char(R) adds

which implies the additive order of divideschar(R). Sinces # 0Og, the additive order of is
greater thari, and the additive order of divides bothm andchar(R), so they are not relatively
prime. [ |
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Proofs of Lemmas in Sectior 2
Proof of Lemma_2Z]2This lemma follows directly fronl[6, Proposition 3.2]. [

Proof of Lemma 2]3Equating message componentsiayields

1R:di,eci (120,1,,771)
OR:diﬁCj—FdiCi,j (Z,j :O,l,...,mandj #Z)

which implies the following elements dt are invertible:

di,e andCi (Z = 0,1,...,m)
d; andcm- (Z,] :0,1,...,mandj %Z)
The result then follows by solving fa, ;. |

Proof of Lemm@Z2]4Let GG be a standar@®-module. The network/,(m) has the following scalar
linear solution over:

e =P (i=0,1,...,m)

and decoding at each receiver as follows:
Ri: ece =u; (1=0,1,...,m).

A scalar linear solution over a finite-field alphabet is a serase of a scalar linear solution
over a standar@®-module. Therefor@/,(m) is scalar linear solvable over any finite-field alphabet,
so the linear capacity of,(m) for any finite-field alphabet is at leakt The only path for message
xo to reach the receivek, is through the edge connecting nodesndv, so its capacity is at most
1. Thus, both the capacity d¥,,(m) and its linear capacity for any finite-field alphabet are ¢qua
to1. |
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Proofs of Lemmas in Section B

Proof of Lemm&3]2Assume\/; (m) is solvable overtd. Network \;(m) consists of a network
No(m) with the additional receiveR,, so by Lemma 2]2, the edge functions wittiim) must
satisfy Property?(m). Thus, there exists an Abelian group, ©) and permutationsy, y, ..., T,
andoy, o4,..., 0, Oof A, such that the edges carry the symbols:

€; = 0; @ﬂ'j(l’j) (120,1,,m) (20)
=0
i
€= @Wj(xj)
Jj=0

Now suppose to the contrary thatand|.4| share a prime factgs. By Cauchy’s Theorem of
Finite Groups![12, p. 93], there exists a nonzero elementthe groupA whose order i®. Since
p|m, wehaven @ --- @ a = 0.

————

m adds

Define two collections of messages as follows:
Sincea # 0 and eachr; is bijective, it follows that:; # z; for all 5. By PropertyP(m), we have
— = 0 =0,1,... from
ei=o0; |[0®--- D0 a:(0) (1=0,1,...,m) [from (20)

m adds

for the messages), z; . . ., x,,, and

ei=o0;la®---®a| =0(0) (1=0,1,...,m) [from (20)
m adds
for the message®), 7 . . ., z,,. For both collections of messages, the edge symfgols, ..., e,,
are the same, and therefore the decoded vaja¢ R, must be the same. However, this contradicts
the fact thatry # . [ |

Proof of Lemm&3]3By Lemmd1.6;n is invertible in R if and only if char(R) is relatively prime
to m, so it suffices to show that for each and each standaf@moduleG, network \;(m) is
scalar linear solvable ové? if and only if m is invertible in R.

Assume networl; (m) is scalar linear solvable over standdtemoduleGG. The messages are
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drawn fromG, and there exist; ;, ¢; € R, such that the edge symbols can be written as:

€; = é(cm 'Zlfj) (2:0,1,,m) (21)
i
e=EP(c;- ) (22)

o

=

and there exist; ., d;, d,,; € R, such that each receiver can linearly recover its respentessage
from its inputs by:

Ri . zi:(di,e'e)@(di'ei) (Z:O,l,,m) (23)
Rx . Xy = é (dxﬂ . 6i) . (24)
1=0

SinceN;(m) containsNy(m), by Lemmd2.B and(21) £(P23), eachand eachi; is invertible
in R, and

Cij = —dl_l d@e Cj (Z,j = 0, 1, e, m andj % Z) (25)

Equating message componentgiatyields:

1p = Z dyi Cio [from (21), (24)
i=1

== doid; " dicco [from (28) (26)

i=1

and foreachy =1,2,... ,m,
Or = Z Ay Cij [from (21), (24)
=

=— | deid M di | ¢ [from (23) . (27)

=

For eachy = 1,2,..., m, multiplying (27) on the right b)cj‘1 co yields

Op =Y daid; " dieco. [from 27) . (28)
=0
i#j
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By summing[(Z8) ovej = 1,2, ..., m and subtractind (26), we get

=Y dyid;" dicco [from (28), [28)
7=0 =0
7]

m
E -1

=m dxﬂ' dz di,e Cp.
1=0

Thereforem is invertible in R.

To prove the converse, lét be a standar&-module such that: is invertible in R. Define a
scalar linear code ovér by:

elz@xj (1=0,1,...,m)
=0
J#i
m
e = @.TJ
=0

ReceiverR; can linearly recover; from its received edge symbalsande; by:
Rii€@6i:$’i (2:0,1,,m)

and receiverk, can linearly recover, from its received edge symbalg, ey, . .., e, by:

i=0 j=0 j=1
VEa
=Dz oD =
7=0 7j=1
Thus the code is a scalar linear solutionfdr(m). [ |
Proof of Lemma 3161t follows immediately from Gaussian elimination. [

Proof of Lemma_3]7Choose: independent rows ofl, find n — k£ members off” which together
with the k& rows of A form a basis oft™, and let then — £ members be the rows ¢. Since the
rows of A together with the rows af) form a basis of”, there exists an x m matrix C; and an
n x (n — k) matrix Cy such that for allz € "

r = ClA.T + CQQ.T
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The results follow immediately. [ |

Proof of Lemma_3I8Since a scalar linear solution over a finite-field alphabet $pecial case of
a scalar linear solution over a stand@tdnodule, by Lemm&a3l3\/;(m) is scalar linear solvable
over any finite-field alphabet whose characteristic doedivide m, so the network’s linear ca-
pacity for such finite-field alphabets is at ledstBy Lemmal 2.4, network\,(m) has capacity
equal tol, and sinceV; (m) contains\,(m), the capacity ofV;(m) is at mostl. Thus, both the
capacity of\;(m) and its linear capacity for finite-field alphabets whose abtaristic does not
dividem are equal td.

To prove part (c), consider @;,n) fractional linear solution for\;(m) over a finite fieldF
whose characteristic divides. Sincechar(F) |m, we haven = 0in F.

We havex; € F* ande,e; € F”, with n > £, since the capacity is one. There exisk k
coding matrices\/;, M; ; with entries inF, such that the edge vectors can be written as:

ei:ZMi,jxj (7,:0,1,,771) (29)
j=0
JFi

e=Y Mz, (30)
j=0

and there exist x n decoding matrice®), ., D; with entries inl", such that each; can be linearly
decoded aR; from the twon-vectorse ande; by:

RZ'Z xi:DLeejLDiei (120,1,,m) (31)
Since receiveRr, linearly recovers, fromeg, e, ..., e,,, we can write
€05 €1y Cm — Tp. (32)

Foreach = 0,1...,m, ifwe setz; = 0in (31), then we get the following relationship among
the remainingn messages (sineg does not depend or):

OZDZ‘7e Zrn:M] ,Z'j+DZ €; (2:(),1,,m) [from @),@),@D, (33)

7
and thus
e — D, iMj x; (i=1,2,...,m) [from (33) (34)
yo
i M;z; — Dyeg [from (33) . (35)
j=1
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Foreachi = 1,...,m, letQ;. be the matrixQ) in Lemma3.¥ corresponding to whén  is
the matrix A in Lemma[3.7. Similarly, let), be the matrixQ in Lemma[3.V corresponding to
taking A to be D,. Let L be the following list of2m + 1 vector functions ofcy, z1, . . ., z,,:

QO €o,
€, (1=1,2,...,m)
Qi,eZMjl’j (121,2,,771)
§=0
j#i
We have
L— Dy Mz (i=1,2,...,m) [from (33) (36)
=0
i
L— Y M (i=1,2,...,m) [from Lemmd3.V,[(36) (37)
=0
=
and

m
Zijj: 1=1,2,...,m
5=0
J#i

HZZM]'[E]'

i=1 j=0
JF#i
=m Myzg+ (m—1) Zijj
j=1

_ i M; x; [from char(F) ‘m} . (38)
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Thus we have

L3 My, from (37), (38) (39)
j=1
L — Dgeg [from (38), (39) (40)
L — e [from Lemmd& 3.17,[(40) (41)
L — xg [from (32), (41) (42)
Xo, zm: M;z; — e [from (30) (43)
j=1
L—e [from (39), (42), [(4B) (44)
L — x; (1=1,2,...,m) [from (31), (44). (45)

We will now bound the number of independent entries in thellis By equating message
components in equation (31), we have:

Iy =D;. M, (1=0,1,...,m) [from (29), [30), [(31). (46)

Since eaclD; . andM; arek x n andn x k, respectively, and < n, the rank of each matrix
is at mostk, but we also have

min (rank (D;.), rank (M;)) > rank (D; . M;) [from (3)]
=rank (I;) =k [from (46) ,

and sorank (D; .) = rank (M;) = k, which, by Lemm&3]7, implies
rank (Q;c) =n—k (1=1,2,...,m). 47)

Sincerank (My) = k, by Lemmd 3.5, there exists anx n nonsingular matriX/” overF such
that

WM, = Tk . (48)
O(n—k)xk

Partition each of thé x n matrix productsD; .W ! into ak x k blockT; to the left of ak x (n— k)
block U;:

D; W =T, U (49)

and then lel be the followingn x n matrix overF:

Iy Uo
V = ) 50
[ On—ryxt  Ln—k } (50)
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It is easy to verify that

I —U
V= § 0 ] : 51
[ Otn—tyxk  In—k 1)
For eachi = 0,1,...,m, change the network encoding and decoding matrices frrand D, .,
respectively, to
M! = VWM, (52)
D;, = D Wty (53)
We have
TO = D076W_1WM0 = Ik [from @), @), @D (54)
and therefore
I
M= from (@8), (5). (52)
Dy, =[x 0 from (49), [51), [(58),[(54) (55)
In this case,
e = Z MJ' x;
§=0
and for each = 0, 1, ..., m, the messages can be recovered by:
D; ¢ + Die; = D; W'V~ Z VW M, z; + D;e; [from (52), [53)
=0
= Diﬁe -+ Diei =x; [from @), @.) .
Thus, this linear code still provides(&, n) solution.
Partition each of the matrice¥, into ak x k block R; on top of a(n — k) x k block S;:
R;
= ¢ (56)
and let
p=rank([Ry ... Ryl
where[R;, ... R,]isthe concatenation of the matricBsinto ak x mk matrix. Clearlyp < k.
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We have
Dy Z MO,j T; = Dyeg = _DO,e Z Mj Z; [from @), @)
j=1 Jj=1
=— Z Rjx; [from (58), [56).
j=1
This gives us
Do[Moy ... Mym]=—[Ri ... Ry,

which implies

rank (Dg) >rank ([R; ... Rpl])=p [from (3)]
*. rank (Qo) = n —rank (Dy) < n — p. (57)

Since the matriXR, ... R, has rankp, there exists & x k permutation matrixP such
that the firstp rows of P [R; ... R,,] are linearly independent and the remaining p rows
are linear combinations of those figstows. Thus, there exists(@ — p) x k& matrix X, whose
right-mostk — p columns form/;,_,, and such that

XP Ry ... Ryl =04pxm- (58)

X andP are(k — p) x k andk x k respectively, thus the rank of is at most k — p) and the
rank of P is at mostk. Since the right-most columns &f form ,,_,, we haverank (X) = k — p,
and sinceP is a permutation matrix, we havenk (P) = k. SinceX P is (k — p) x k, we have

k —p > rank (XP)
> rank (X) + rank (P) — k [from (2)]
=(k—-—p+k—k=k—p

and thusank (X P) = k — p.
Define a(k — p) x n matrixY” by concatenating the produkt? with an all-zero matrix as follows:
Y =[XP Og_pxm-k]- Foreach =1,2,....,mwe have

R;

YM; = [XP  O@-pyxn—n)] { g

} — O from (8), (58).  (59)
Since, for eachi = 1,2, ...,m, we haveY' M; = 0(;,_,)« and by {(46),D; .M; = I, the rows
of Y and the rows oD, . are linearly independent. (ifis a nontrivial linear combination of rows
of D; ., thenvM; # 0; if v is a nontrivial linear combination of rows &f, thenv'M; = 0, so
v # v'). Therefore, by Lemmia3.7, we may chod@gg. such that its firsk — p rows are the rows
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of Y. By (41), each vector function
Qic > M,z

=0

J#i
in the list L has dimensiom — k, but the firstk — p components of each such vector function can

be written as

Y i M;x; =Y Mz [from (&9 . (60)

=0
J#i

If we view the message vectors, =1, . .., x,, as random variables, each of whdseom-
ponents are independent and uniformly distributed oveffitié I, then we have the following
entropy (using logarithms with ba$g|) upper bounds:

H (Qoeo) <n—p [from (&1
H(ey,...,em) <mn [frome; € F"]

H|Qie Y Mjz; :i=12....m|<mn—k) —(m—1)(k-p) [from@7), [60).

=0
J#i

Therefore, the entropy of all of the vector functions in tisé L is bounded by summing these
bounds:

H(L) < (m(n — k) — (m — 1)(k — p)) + (n — p) +mn
Cm+1n—(m+1)k—(k—p)(m—2)
< (@2m+1)n—(m+ 1)k

[fromp < kandm >2]. (61)

But then we have:

(m+ Dk = H(zg,21,...,7) [from z; € F*]
< H(L) from (42), (45)
<@m+1l)n—(m+1)k [from (61)
LRk amAl
n - 2m+2
Thus the linear capacity of/;(m) for any finite-field alphabet whose characteristic dividess
upper bounded by
1
Yoo

For eachy € F™, let[y|; denote theéth component of;. To show the upper bound on the linear
capacity is tight, consider &g + 1, 2m + 2) fractional linear code fal/; (m) over any finite-field
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alphabet whose characteristic dividesgiven by:

> il

J=0

\

Foreach = 1,2, ...

> el -

=0
17l

,m, we have

Z’Jl—

||M3
Ms

k:ukli
\HCH\O

~

[2obmes + Dol

(l=1,2,...,m)
(l=m+1,....2m+1)
(I =2m+2)
(l=1,2,...,mandl # 1)
(i=1,2,...,m)

(l=m+1,....2m+1)
(Il =2m+2)
(l=1,2,....,m)
(l=m+1,....2m+1)
(Il =2m+2).

[from char(F) |m] .

Z == [al
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Foreach = 1,2,...,m, the receivers withid3(m) can linearly recover allm+1 components
of their respective demands by:

Ry : le]i — [eo]i = [zo]s (l=1,2,....,2m+1)
R; : le], — e, = [zi]i (l=1,2,...,2m+ 1 andl # i)
[€lom v — ed]; = [mili

and the additional receiver can linearly recover all congmis ofx, by:

R:c L [60]l - Z[ei]l = [xO]l (l = ]-7 27 SRR m) [from @j
{=
[e1]1 — [eoamt2 = [Tolm+1
le1—m—1]om+2 = [®oli (l=m+2,...,2m+1).
Thus, the code is in fact a solution faf, (m). |
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Proofs of Lemmas in Section 4

Proof of Lemma4l2Assumew = 1 and letr; andy be identity permutations. For eacte Z,,,,
we have

P(wm(a)) = ¥(a) = a.

Assumew > 1. By the Euclidean Division Theorem, for each integethere exist unique
integersg,, r, such thaty = ¢,m + r, and0 < r, < m. We havewy = w(g,m + r,), which
implies

wy = wr, (modmuw). (63)
For all integerse, y we have

wr =wy (Modmw) <= wr, =wr, (Modmuw) [from (63)
=y =1y [from0 < r,,r, <ml. (64)

For eachu = g,m + r, € Z,,, such that, € {0,1,...,m — 1}, let7, be the unique integer
in {0,1,...,m — 1} such that’, = r, + 1 (modm), and define permutations, 7, ..., 7, Of
Z,,., as follows:

| gm 47, ifg, =1 B _
m(a) = { am+r. otherwise (l=12,...,w—1) (65)
Tw(a) =a = gm+r,. (66)

Note that for alll = 1,2,...,w — 1, the (non-linear) permutationn modifies the remainder, if
q. = | and otherwise acts as the identity permutation. Atspis the identity permutation. Since
a € Ziw, We have) < ¢,, < w.

For eachu € Z,,, we will show the mapping —— (wmi(a), ..., wm,(a)) is injective. For
eacha, b € Z,,,, Suppose

wm(a) = wm(b) (modmuw) (l=1,2,...,w), (67)

wherea = ¢,m + r, andb = gym + r,, with 0 < r,, r, < m and0 < q,, ¢, < w. Then we have

Wy (a) = wmy,(b) (modmuw) [from (67) (68)
Wry = wry, (modmuw) [from (63), [66)(68)
ST =Ty [from (&4) . (69)

Let 7, be the unique integer if0, 1,...,m — 1} such thatt, = r, + 1 (modm). If ¢, # q,
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then without loss of generality;, # 0, so we have:

wmy, (a) = wmy, (b) (modmuw) [from (67) (70)
W = Wi, (modmw) [from (63), (65), [(7D)
e =Te+ 1 (modm) [from (64), [69),

which is a contradiction, so we must haye= ¢,. Thusa = b.

We have showmm(a) = wm(b) (modmw) for all [ if and only if a = b. Thusa can be
uniquely determined from the-tuple (wm(a), wms(a), ..., wr,(a)). Thisimplies the existence
of the claimed mapping. [ |

Proof of Lemmad4l4Let 7y, m, ..., , andy be the permutations and mapping, respectively,
from Lemmd 4.R. Define a code for netwokk (m, w) over the ringZ,,,,, foreachl = 1,2,... w

by:

m—+1

l l
=5
j=1

egl):m(z)%—ny) (i=1,2,...,m+1)

For eachl = 1,2, ..., w, the receivers within eacB" (m + 1) block can recover their respective
messages as follows:

RV W — e = gl (i=1,2,...,m+1).
We have
m+1 m+1
wZe w(m+ 1) m(z +mw2x (l=1,2,...,w)
= wm(2) [from mw = 0 modmuw] . (71)

ReceiverR, can recovet from its inputs as follows:

m+1 m+1
R, ¢<wz e, Z 52,...,w egw)>

=1 1=

= (wm (z), wmra(2), ..., wr,(2)) =2 [from (71) and Lemm@a 4]2
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Thus the network code described above is, in fact, a solfioN; (m, w). |

Proof of Lemma4l5AssumeN,(m, w) is solvable ovetd. For eachl = 1,2,... w, the block
B (m + 1) together with source nodes, 51", 55", ..., 5" forms a copy ofAy(m + 1), so
by Lemma 2.2, the edge functions within blogK" (m + 1) must satisfy Property?(m + 1).

Thus, for each, there exists an Abelian grouypd, @;), with identity 0, € .4, and permutations
0 0 O] 0] O]

o T s e Mot ando—(()l), o,’,...,0.,, Of A, such that the edges carry the symbols:
m+1
l l l l
-t (O ()
j=1
m—+1
) = o | 7))o P (a) (i=1,2,...,m+1) (72)
=1
g

m—+1
0 = n(z) & @D (1),
j=1

where@ in each of the previous three equations denetes
Now suppose to the contrary thatand|.4| are relatively prime. Then by Cauchy’s Theorem,
for each group.A, &,) there are no non-identity elements whose order divide$hat is, for each
@, and eachu € A, we haven @, --- @, a = 0, ifand only ifa = 0;,. So foreach =1,2,...,w
N————

m adds

leta,b € A. We have

a®@a=b@ b= (S b) @ @ (e b) =0, [from (A ) Abeliar]

m adds m?a,dds m adds

< a=0b [from gcd(m, |A]) = 1].

Thus, for eachi the mapping: — a @, - - - @; a is injective on the finite setl and therefore is
N———

m adds

bijective, and its inverse, : A — A satisfies

?l(a’) Dr---Di ¢l(a') =a (l:17277w) (73)

-

m adds

For eachn € A such that # 04, let

fita) == (=" 00) & 7 (=87 (@) ((=2,...,w), (74)
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and define two collections of messages as follows:

xi-” = ““(@(a)» G=12...,m+1)

—1 l:2,,w
O — 207, ( )

A (j=1,2,...,m+1)

) =77 (0y) G=12...,m+1)
t=m"" (a)

(1l H-1 l=2,...,w

2 = 70 (61(fi(0))) ( )

(j=1,2,....m+1).

Sincea # 0, and7r is bijective, it follows that: # 2. By PropertyP(m + 1) and [72), for each
1= 1,2,...,m+1we have:

e,(l) = Ui(l) ibl(a) @1 D1 ¢1(“l - Uz'(l)(a) [from (Z3)
m adds
(l) = O’i() (W(()l) (W(()l)il(Ol))> (l=2,...,w)
for the messages,”, =, and
@ _ ;O (a)
e = o (Wél) <7Tél) ( )) 1 o fia)) @ - - & ol fila)) (=2 w)
m;’dds
= o’ (n) (=" (@) @ fiw)) ffrom (73)
= a) (W(()l) (W(()l)fl(ol))) [from (74 .
for the messages A(l z. For both collections of messages, the edge symtﬁglare the same for
all=1,2,...,w andz' =1,2,...,m + 1, and therefore the decoded valuat R, must be the
same. However, this contradicts the fact that 2. |

Proof of Lemma 4l6For any ring R with multiplicative identity1g, the characteristic of? di-

videsm if and only if m = m 1z = 0y, so it suffices to show that for eaeh,w and each

standardk-moduleG, network\5(m, w) is scalar linear solvable ovét if and only if m = 0g.
Assume networlV(m, w) is scalar linear solvable over standdtemoduleGG. The messages

are drawn frontz, and there exmtw y € R, suchthatforeach=1,2,...,w, the edge symbols
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can be written as:

! RN
D= (&)
j=1

m+1

el = (ds-2) o @ () (=Lt ]
=1
=
m+1

e = <c(()l) z) ® @ <c§l) xgl)>
j=1

(75)

(76)

(77)

and there exist'”, 4\ 4", € R, such that each receiver can linearly recover its respepigssage

267 1) Z’l

from its received edge symbols by:

RV . - (dgg e(l)> ® (dg” eg”) (1=1,2,...,w) (78)
@ . 0 _ (40 (z)) . <z>> (1=12,...,w)
RY . 4 (dl, e} @ (dV - ¢! et ) (79)
w m+1
R oz =PP () (80)
=1 =1
Foreach = 1,2, ..., w, the blockB® (m + 1) together with source nodes, S\, 55", ... s, |

forms a copy of\Vy(m + 1), so by Lemma2]3 and(¥5) E(79), eaé,ﬂ and eachi,(.” is invertible

in R, and

—1 _
O _ (0 OO (1=1,2,...,w)
g = (d" ) dic (i, =0,1,...,m+1andj # 1).

Equating message componentgiatyields:

w m+l

1R_Zde e [from (78), [80)

=1 =1
w m+1l

:_sz“(i) d!) ) [from (81)

=1 i=1

Page 47 of 68

(81)

(82)



Connelly-Zeger January 14, 2016

and foreachi =1,2,..., w,

m+1
Or = Z d% Cgly) (j=12,...,m+1) [from (78), [80)
=
m+1

-1

= 3dY (dg”) d e (j=1,2,...,m+1)  [from@). (83)
=1

i#j

-1
Foreach = 1,2, ..., w, by multiplying (83) by<c§l)) cg), we have

m—+1 1
0= d) (a”) dd (G=1,2,...,m+1) from (83)
=
and by summingover=1,2,...,m + 1 we have
m+1m+1 1
0r =3 > d) () e
j=1 i=1
i#j
m—+1 1
—m Y dl (") dl e (84)
i=1

By summing[(84) ovet = 1,2, ..., w, we have

w m+1

-1
0r=m> > d¥) (dg”) d ) [from (83)

i=1 i=1

S.0p=m [from (82) .

To prove the converse, It be a standard-module such thatn 1z = 0z. Define a scalar
linear code ove(r, foreach = 1,2,...,w, by:

m+1
! !
D - sl
j=1
m+1
) =z PV (i=1,2,...,m+1)
j=1
i
m+1

=20 Pal.
j=1

Page 48 of 68



Connelly-Zeger January 14, 2016
Foreach = 1,2, ..., w, the receivers within eacB” (m + 1) block can linearly recover their
respective messages as follows:

R(l @6(())—2
R(l @6()—1’2(-” (1=1,2,...,m+1).

ReceiverR, can linearly recovet as follows:

m+1 m+1
R, : @651)22@(mz)®<m@x§1)> =2z [fromm = 0g].
i=1 j=1
Thus the code is a scalar linear solution fos(m, w). |

Proof of Lemma_4]7Since a scalar linear solution over a finite-field alphabatdpecial case of a
scalar linear solution over a standaemodule, by LemmBa4l6Y,(m, w) is scalar linear solvable
over any finite-field alphabet whose characteristic divideso the linear capacity for such finite-
field alphabets is at leagt By Lemmal2.4, networwo(m + 1) has capacity equal tb, and
the block BY(m + 1) together with the source nodés, S1 : 2 ). Sfiﬂ forms a copy of
No(m + 1), so the capacity alV,(m, w) is at mostl. Thus both the capacny ot (m, w) and its
linear capacity over any finite-field alphabet whose charastic dividesn arel.

To prove part (c), consider (@&, n) fractional linear solution folN;(m, w) over a finite fieldF
whose characteristic does not divide Sincechar(IF) } m, the integern is invertible inFF.

We havex§.l),z c F* and egl),e(” e ", with n > k, since the capacity is one. There exist
n x k coding matrices\Z\”, M,") overF, such that for each= 1,2, ..., w the edge vectors can
be written as:

m—+1
l l l
EWE
j=1
m—+1

WHZM (i=1,2,...,m+1) (85)

J#z
m+1

=M 2+ MY (86)

j=1

and there exist x n decoding matrice@i(fz andDi(l) overF, such that foreach=1,2,...,w the
message;gl) can be linearly decoded EIE” from then-vectorSef.l) ande® by:

(]

RV : 2" =D e® + DY el (i=1,2,...,m+1). (87)
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Since receiveR?, linearly recovers from its incoming edge vectors, we have
o =12, w
{ei L1 } — Z. (88)

Foreach =1,2,...,wandi =1,2,...,m+1, ifwe setz\” = 0in (87), then, since” does
not depend onl(.l), we get the following relationship among the remaining ragss:

m+1
0=D" [ M2+ > M2 | + DY el from (83), [86),[87)  (89)
=1
=
and thus

= (1=1,2,...,w)

) 0 ) @ Q) =1,2,...,

e — D [ z+Zle o =12 mi1) from @B3).  (90)
‘]:
J#i

For eachl = 1,2,...,w andi = 1,2,...,m + 1, let Q") be the matrixQ in Lemma[3.¥
corresponding to Wheﬁ)i(Q is the matrixA in Lemm&3Y.

Foreach = 1,2,...,w, let L) be the following list of2(m + 1) vector functions of
@ .0 O]
T

2,1, Ty e Ty
m—+1
QU | MY 2+ MY (i=1,2,...,m+1)
=1
i
egl) (1=1,2,...,m+1).

Foreach =1,2,...,w we have

m+1
LY — DO M2+ > MV 2P| (i=1,2,...,m+1) [from (30) (91)
=1
i
m—+1
L0 — MY 2+ MY ) (i=1,2,...,m+1) [from Lemmd3.,[(91)
j=1
J#i

(92)
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and

m—+1
NS SV SV ST
1

j:
J#i

m+1 m—+1

l l l l
— Z Mé)z+ZM;)x§-) —Mé)z
i=1 =1
i
m—+1

=(m+1) Mél) z+m Z M}l) $§l) — Mél) z
j=1

=mel) — @ [from (86) andchar(F) y m]. (93)
We also have
LW LW [from (88) (94)

and foreachi =1,2,...,w

LO, 2 —e® [from (92), [93) (95)
LO 7 —gW (i=1,2,...,m+1) [from (87), [95). (96)
Thus
1) (w) o =12, . w
LW, ... L\ — z, {:cZ Ciola . ml [from (94), (96). (97)

We will now bound the number of independent entries in eastiLi.
By equating message components in equafioh (87), we have:

AO A0 l=12,...
I =D{) M| o1 ) ffrom (85), (86),(8Y)  (98)
Since eacli)§2 is k x n andk < n, the rank of each matrix is at mastbut we also have
rank (Dflz) > rank (Dflg Mf”) =rank ([;) =k [from (3), (98),

and sorank (Df@) — k. By Lemma [3F), this impliesank (Qﬁg) — n — k. Therefore each
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vector function

m+1

0 0 OO, (1=1,2,...,w)
Qir | Mg z+§ le z el mil)
‘]:
JF#i

in the list L) has dimensiom — k.

If we view the messages vectors as random variables, eaclhage# components are in-
dependent and uniformly distributed over the fi€ldthen we have the following entropy (using
logarithms baséF|) upper bounds:

(1) (1) o ol 1=12... w B
H QY | M z+;Mj G i gy | SwetmE D=k (99)
i
o =12, w
H<ei 'i:1,2,...,m+1)§w(m+1)n' (100)
Therefore, the entropy of all of the vector functions in tisedf lists L™V, ..., L(*) is bounded
by summing the bounds i (P9) aid (100):
H(LW,...,L™) <wm+1)n—wm+1)k [from (@9), [100). (101)

But then we have:

(wim+1)+1)k=H (z {xf.” : ijg;‘éﬂ }) [fromz,xy’ € F
<H(LW,. .. LW [from (97)
<2wim+1)n—wm+1)k [from (101)

k < 2w(m + 1)
n = 2wim+1)+1

Thus the linear capacity df’,(m, w) for finite-field alphabets whose characteristic does naddiv

m IS upper bounded by
1

1-— .
2mw + 2w + 1
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Proofs of Lemmas in Sectiorn b

Proof of Lemm&5l]2Define permutations, 7, of Z,,.+1 as follows. For eaclhh € Z,,.+1, let
> o, m'a; denote the base representation of. We define

m(a) = m®ay + Z m'la; (102)
i=1
mo(a) = a = Z m'a;. (103)
i=0

The (non-linear) permutation performs a right-cyclic shift of the base-digits ofa, andr, is the
identity permutation. For eache Z,,.+1, we will show the mapping — (mm;(a), sm*ms(a))
is injective. For each,b € Z,,.+1, Suppose

mmy(a) = mmy(b) (modm**) (104)
sm®mo(a) = smm(b) (modm**) (105)

wherea = Y~ m'a; andb = >"7  m'b;. Then we have

Z m'a; = Z m'b; (modm**) [from (102), (104)
i=1 =1
coa;p = b; (i:1,2,...,06) [fromOSai,bi<m]
and
sm®ag = sm®by (modm®*t) [from (103), [(105)
. m%ay = mby (modm®+t) [from gcd(m, s) = 1]
. ag = by [from 0 < ag, by < m].

Thusa = b.

We have shown thatr (a) = mm; (b) andsm®my(a) = smmy(b) if and only ifa = b. Thusa
can be uniquely determined fromr, (o) andsm®m,(a). This implies the existence of the claimed
mapping. [ |

Proof of Lemma5l4Let 1, m, andvy be the permutations and mapping, respectively, from
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Lemmd5.2. Define a code for the netwavk(m,, m,) over the ringzm(fﬂ, for eachl = 1, 2, by:

my
! !
$ =3

—i—Zx(l (i=1,2,...,m)

J#Z

_71'1 —I—Zl'(l

For eachl = 1, 2, the receivers within the block”) (m;) can recover their respective messages as
follows:

For each = 1,2, we have

my

—mle(()l) + Z eg = —ny Z T + mm + my Z €T
i=0 j=1
= mym/(2). (106)

The receiverR, can recovet from its inputs as follows:

mi m2
ACCTIES SRS 3
i=0 1=0

= (mym(z), mama(2)) [from (106)
= (mym(z), smim(z)) =2 [from my = sm$ and LemmaSR
Thus the network code described above is, in fact, a sol@wiaN; (my, ms). [ |

Proof of Lemm&aBl5AssumeNs(m;, m,) is solvable overd. For each = 1,2 the blockBY (m;)

together with the source nodss, Sfl), Sél), ..., 5% forms a copy ofNy(my), so by Lemma 212,
the edge functions withiB™ (m;) and B?® (m,) must satisfy Property?(m,) and Property
P(ms), respectively. Thus there exist Abelian groups ;) and(.A, &,) with identity elements
0, and0, for the left-hand side and right hand side of the networkpeetively, and permuta-
tionsﬁ”,ﬂ”, . m(f” andaO ,a{”, . aml of A, such that for each= 1, 2 the edges carry the
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symbols:

my
0= (e () o7

j=1
my
e = o | 70 (2) @, P (x§l>) i=1,2,...,m) (108)
=1
T

where@ in each of the previous three equations denates
Now suppose to the contrary thag and|.4| are not relatively prime anjd4| dividesm,. Then,

since( A, @,) is a finite group, for alk € A, we have

a® - Bra=0, [from | A] | ms] . (109)
N————

mo adds

Sincem; and|.A| are not relatively primey; and|.A| share a common facter Sincep||A],

by Cauchy’s Theorem, there exists= .A\{0,} such that the order af is p, and sincep divides
my We havea @, - - - ®; a = 0;. Define two collections of messages as follows:

m1 adds

—1 .
.Z'El) :ﬂ_](l) (01) (] :1,2,,m1)
x§2) _ W](z)fl <7T(()2) <7Tél)71(01)>> (j=1,2,...,my)

iﬁ-” _ W](l)’l(a) (j=1,2,....,mq)
j5_2) _ 7_‘_‘;2)*1 <7r(()2) (W(()l)fl(a») (j=1,2,...,my)
zZ= ﬂ(()l)il(a).

Sincea # 0, andm()l) is bijective, it follows that: # 2. By PropertiesP(m;) and P(m5) and
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(107) and[(10B), we have

62(1) — Uz'(l) 0, B D0, | = gz.(l)(ol) (1=0,1,...,my)
—_——
m1 adds
e® _ 5@ | 72 (Wélrl(ol)) Sy @y 12 (W(glfl(ol)) (i=0,1,...,m)
ms adds
— gl@) (02) [from (209)

for the messagesg.”, z, and

e =6 [a@ - @ia| =0l (0) (i=0,1,...,m)
N———
m1 adds
e@(g) — Ulgz) Wéz) <7T(()1)71(a)> Dy - Do Wéz) (W(()l)*l(a)> (i1=0,1,...,mp)
m adds
— 0% (0,) [from (109)

for the message;%y),é. For both collections of messages, the edge sym&ﬂﬂsef), . .,eﬁ,ﬂ
and e((f), e§2>, - e% are the same, and therefore the decoded valaeR. must be the same.
However, this contradicts the fact that 2. [ |

Proof of LemmaX5Il6For any integersi, b,¢ > 1, we havegcd(a,b,c) = ged(ged(a,b) ,c), SO
by Lemmal1.bgcd(my, my) is invertible in R if and only if gcd(my, my, char(R)) = 1. Thus
it suffices to show that for each,, m, and each standaf@-moduleG, network s (my, my) is
scalar linear solvable ovér if and only if gcd(my, mo) is invertible in R.

Assume network\V3(my,my) is scalar linear solvable over standdénoduleG. The mes-
sages are drawn fro, and there existgfj)-, cg»l) € R, such that for each= 1, 2 the edge symbols
can be written as:

& = B (o) (110
j=1

my

egl) = <c% : z) D @ (cgl]) -xy)) (i=1,...,my) (112)
=1
i
my

e = () ) o @ (d-2) (112)
j=1
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and there exist'”, 4\ ") € R, such that each receiver can linearly recover its respentassage

2,7 1 )z

from its received edge symbols by:

RV : » = (dg}e : e(l)> ® (dg> .eg”) (1=1,2) (113)
RO 2l = (40 e @ (4 o) (=12 (114)
: : he Lo (t=1,...,my)
2 my
R = =@ (d-e"). (115)
=1 =0

For each = 1, 2 the blockB® (m,) together with the source nodss, S\, s\ ..., 5% forms
a copy of\j(my), so by Lemma 2]3 and (1110) E(114), eath and eachi” is invertible in R,
and

O_ (0 0.0 (1=1,2)
i~ (d‘ ) die (i, =0,1,...,myandj # ). (116)

Equating message componentsiatyields:

2 my

ln=>_ > dey [from (L10), (ITL),[(LT19)
=1 i=1
2 my 1
=222 dl (a7) e from (L18) a17)
=1 i=1

and for eacli = 1, 2 we have

my
Op =Y dic) (j=1,2,...,m) [from (I12), (1I0),[(1T9)
=
my ]
— | (@) | G=12m)  (from (I8). (118)
1=0
i#j

1
For each = 1,2, by multiplying (II8) by(cy)) < we have

my 1
0p =y d? (d) alcf) (G=1.2.m) (119)
=0
i#]
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Summing[(1IB) ovet = 1,2 andj = 1,2, ..., m; and subtractind (117), yields

mp my

=SS (i) e

ll]OzO

-1
— Zml Z af) (a) dl el (120)
=1 =0
Equation[(12D) implies there exist, 7, € R such that
lR:m1r1+m2r2. (121)
Sincegcd(my, ms) can be factored out of both terms on the right-hand side ohtau (121), the
ring elemengcd(m,, my) is invertible.

To prove the converse, Iét be a standar@®-module, such thatcd(my, ms) is invertible inR.
Define a scalar linear code ov@rfor NV5(mq, my), for eachl = 1,2, by:

For eachl = 1, 2, the receivers withirB) (m,) can linearly recover their respective messages by:

R ; @eé)—z
R“ e® g el =z (i=1,2,...,m).

Letm| = my/gcd(mq, my) andmi, = my/ged(my, mo). Thenm) andm, are relatively prime, so
there exist,, ny € Z such thatym/ + nom!, = 1. Thus inR we have

(nlm/l) 1R + (ngmlz) 1R = 1R-
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ReceiverR, can linearly recover messages follows:

s @ (st (@ ()

=1

@ nl ged(my, mo)” 1) - (my z))

=1
= (nym] 2) @ (namy 2) = ((nym}) 1g + (namy) 1g) 2z = 2.

Thus the code is a scalar linear solution.fdy(my, ms).
[ |

Proof of Lemma5I8By Lemmd’.6, networlVs(my, m») is scalar linear solvable over any finite-
field alphabet whose characteristic is relatively primeitoor m., so the network’s linear capacity
for such finite-field alphabets is at ledst By Lemma 2.4, networkV,(m,) has capacity equal
to 1, the block B (m;) together with the source nodés, Sfl), Sél), o Sﬁf forms a copy of
No(my), so the capacity al3(mq, ms) is at mostl. Thus both the capacity df;(m,, mo) and its
linear capacity over any finite-field alphabet whose chargstic is relatively prime ton; or ms
arel.

To prove part (c), consider (@, n) fractional linear solution foA;(m1, m5) over a finite field
F whose characteristic divides botty, andm,. Sincechar(TF) \ my andchar(F) \ me, We have
mi=mg =20 inTF.

We havexy),z c F* and egl),e(” e ", with n > k, since the capacity is one. There exist
n x k coding matricesMJ(”, Mi(fj) with entries inFF, such that for each= 1, 2 the edge vectors can
be written as:

my

N ST 122
7j=1

my

e =M 2+ M) o) (i=1,2,...,m) (123)
=1
i#i
my

V=M e+ MY (124)
j=1

and there exist x n decoding matrice@fle, DZ@ with entries inF, such that for each= 1, 2 the
receivers within the block (m;) can recover their respective messages from their recedlgel e
vectors by:

Rg> . 2 =D e® 4 D el (125)

6

R" . Df’ D§l etV (i=1,2,...,m). (126)
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Since the receiveR, recovers messagslinearly from its incoming edge vectors, we have

o (=1,2
{ei 'i:O,l,...,ml}—>Z' (227)

By settingz = 0 in (125), for each = 1, 2 we have

0=Df) ZM“ "+ D el [from (122), (124),[(125)

7j=1

Z MY 20— DY e, (128)

and similarly, by setting:z(” = 0in (I28) forl = 1,2 we have

my

0=00 [ M2+ S MY | + D0 e (i=1.2,...,m) [from (I23), (124),[129)
j=1
J#i

my
el — DO MY e+ M a (i=1,2,....,m). (129)
j=1
=
Asin Lemmd3.8B, for each= 1,2 andi = 1,2,...,my, letQY be the matrixQ in Lemmd3.y
corresponding to Wheﬂ(” is the matrixA in the lemma, and I&Df.g be the matrix) correspond-
ing to WhenD . is the matrixA.

Let LU andL(2 be the lists from Lemmia 3.8 (wheteplays the role of:), corresponding to
the Ieft hand side and right-hand side of the network, retpay. Specifically, for each = 1, 2,
let L) be the list

Qo 60
el (i=1,2,...,m)
Q" | My z+ZM“ (i=1,2,...,m).

J#Z
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For each = 1,2 we have

my
LY — DY | MY 2+ M 2 [from (129)
=1
i#i
my
LO — M 2+ MY 2 [from Lemmd3.7 [(130)
j=1
J#

For each = 1,2 we also have

my
S S

ce=1,2,...,my
j=1
J#i
— ) - 0.0
—_— Z MO Z+ Z Mj xj
i=1 J=1
J#i
my
—m, Mo(z) . (m1 _ 1) ZMJ(D xy)
j=1
my
==Y MO [from char (F) | m]
j=1
and so
my
10— MO 0 [from (132), [131)
j=1
LO — DY O [from (128), (138)
LO W [from Lemmd3.77,[(134)
We have

[from (127), (135).
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For each = 1,2 we also have

my
2,y MUl — e [from (122) (137)

7j=1
LW, 2z — e [from (133), (13V) (138)
LO, 2 — W (i=1,2,....,m) [from (128), [138). (139)

Thus
L {xg” : if . } ifrom (L38), [139). (140)
— Ly4, .. 1Y

We haveL" corresponding to the same set of vector functions as the. lfstr A/} (m;) in
Lemma 3.8 (with a slight change of labeling). Thus the boumdhe entropy of the list in (61)
in Lemma 3.8 can be used to bound the entropy of the.lidt L(2):

H (LD, L®) < (2my + 2my + 2)n — (mq +my + 2) k [from (61) . (141)

But then we have

_ o =12 W) ¢ pk
(ml—l—m2+1)k—H<z, {952 i 12. . m }) [fromz,xi eF

< H(Ly, Lo) [from (140)

<(2my+2me+2)n—(my+mo+2)k [from (141)

n T 2mg +2me + 37

Thus the linear capacity of/3(m;y, m-) for finite-field alphabets whose characteristic divides
bothm; andm, is upper bounded by

1

1— .
2m1 + 2m2 +3

Consider &2m; + 2msy + 2,2my + 2my + 3) fractional linear code faN5(my, my) over any
finite-field alphabet whose characteristic divides bathandm,, described below.
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The edges symbols on the left-hand side\@fm,, m,) are given by:

(

[ (]
Z i,
=1
A
<[]
2 [,
j=1
mi1
RE
=2 7
< [
[z]l+z [:cj ]l
7j=1
i
Al
mi .
s+ o]
i=1 ’
i
[
(2] +Z [xj ]z
7j=1
i
[Z]m1+i+1
[
35,
j=1
G
my
(1)
(2] +Z [xj ]1
7=1
mi )
e+ |24
j=1

(l:1,2,...,m1)

(l=my+1,...,2my + 2my + 2)

(l = 2m1 + 277’l2 + 3)

(l=my+1,...,2mq + 2my + 2)

(l = 2m1 + 2m2 + 3)

(l:m1+1,,2m1+2m2+2)

(l = 2m1 + 2m2 + 3)
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For brevity, letd = 2m; +ms +2 = n — (mg + 1). The edges symbols on the right-hand side

of N3(my, ms) are given by:

( f:[xﬂl (I=1,2,....0)
j=1
[egﬂl: 22 [I§2)]z (I=6+1,...,6+m)
s
= [ @) _
\ ;[szhﬂ- (I=6+my+1)
( m2
2+ o] (1=1,2,...,0)
=
[2]s + i Mw] . (I=05+1)
[elz)L - = (i=1,2,...,m)
“ [=6+1,....64m
(2 + ; [555'2)]1 ( andl # 6 + i 2 )
Jrind
L [2)omy 1144 (Il=0+my+1)
( pﬁfj W l (1=1,2,...,0)
j=1
@] ={ [+ 22 [a:f)]l (I=6+1,...,6+m)
s
[ @) _
\ [Z]”;[‘Tﬁ]aﬂ (l=6+my+1).
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Connelly-Zeger

mi

(m1 —1) [z]i + (m1 = 2) Z [xgl)]z
g

2],

[zl —2 [ef?]

January 14, 2016

[from char(F) ‘ml} (142)
(l:5—|—1,,5+m2)
[from char(F) | ms] . (143)

Each of the receivers can linearly recover each of2ihe + 2m, + 2 components of its de-
manded message from its received vectors by:

Rt()l) : [6(1)L - [

RO 0], - [62(1)} = [xﬁ”], (i=1,2...

..,2m1+277’l2+23.ndl7£7;)

e(()l)L:[z]l (l=12,...
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,2m1—|—2m2—|—2)

..,mg)

,2m1+2m2+2andl#5+z)



B (1)} _
] 1 [60 2m1+2mo—+3 [Z]m1+l
[ 2

€ omi—1

(1)

_6l—m1—l = [Z]l

2mi+2mo+3 -
= [zl

i| 5+m1 +1

][]
-61 0+1 “

= [2]s
21+2mo+3

Thus the code is in fact a linear solution 8% (m, m.).

Connelly-Zeger January 14, 2016

(1=1,2,...,m) [from (142)

(l=mi+2,...,2m; + 1)

(l=2m;+2,...,2m; +mg+ 1)

(0 =2my +my +2)

(l=d0+1,....,0 +my) [from (143) .
|
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