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Abstract

We consider a system, comprising a library of N files (e.g., movies) and a wireless network with KT transmitters, each
equipped with a local cache of size of MT files, and KR receivers, each equipped with a local cache of size of MR files. Each
receiver will ask for one of the N files in the library, which needs to be delivered. The objective is to design the cache placement
(without prior knowledge of receivers’ future requests) and the communication scheme to maximize the throughput of the delivery.
In this setting, we show that the sum degrees-of-freedom (sum-DoF) of min

{
KTMT+KRMR

N
,KR

}
is achievable, and this is

within a factor of 2 of the optimum, under one-shot linear schemes. This result shows that (i) the one-shot sum-DoF scales linearly
with the aggregate cache size in the network (i.e., the cumulative memory available at all nodes), (ii) the transmitters’ caches and
receivers’ caches contribute equally in the one-shot sum-DoF, and (iii) caching can offer a throughput gain that scales linearly
with the size of the network.

To prove the result, we propose an achievable scheme that exploits the redundancy of the content at transmitters’ caches to
cooperatively zero-force some outgoing interference, and availability of the unintended content at the receivers’ caches to cancel
(subtract) some of the incoming interference. We develop a particular pattern for cache placement that maximizes the overall gains
of cache-aided transmit and receive interference cancellations. For the converse, we present an integer optimization problem which
minimizes the number of communication blocks needed to deliver any set of requested files to the receivers. We then provide a
lower bound on the value of this optimization problem, hence leading to an upper bound on the linear one-shot sum-DoF of the
network, which is within a factor of 2 of the achievable sum-DoF.

I. INTRODUCTION

Over the last decade, video delivery has emerged as the main driving factor of the wireless traffic. In this context, there
is often a large library of pre-recorded content (e.g. movies), out of which, users may request to receive a specific file. One
way to reduce the burden of this traffic is to employ memories distributed across the networks and closer to the end users to
prefetch some of the popular content. This can help system to deliver the content with higher throughput and less delay.

As a result, there have been significant interests in both academia and industry in characterizing the impact of caching on the
performance of communication networks (see, e.g. [1–13]). In particular, in a network with only one transmitter broadcasting
to several receivers, it was shown in [2] that local delivery attains only a small fraction of the gain that caching can offer, and
by designing a particular pattern in cache placement at the users and exploiting coding in delivery, a significantly larger global
throughput gain can be achieved, which is a function of the entire cache throughout the network. This also demonstrates that
the gain of caching scales with the size of the network. As a follow-up, this work has been extended to the case of multiple
transmitters in [3], where it was shown that the gain of caching can be improved if several transmitters have access to the entire
library of files. Caching at the transmitters was also considered in [4, 5] and used to induce collaboration between transmitters
in the network. It is also shown in [7] that caches at the transmitters can improve load balancing and increase the opportunities
for interference alignment. More recently, the authors in [8] evaluated the performance of cellular networks with edge caching
via a hypergraph coloring problem. Furthermore, in [9], the authors studied the problem of maximizing the delivery rate of a
fog radio access network for arbitrary prefetching strategies.

In this paper, we consider a general network setting with caches at both transmitters and receivers, and demonstrate how
one can utilize caches at both transmitters and receivers to manage the interference and enhance the system performance in the
physical layer. In particular, we consider a library of N files and a wireless network with KT transmitters and KR receivers, in
which each transmitter and each receiver is equipped with a cache memory of a certain size. In particular, each transmitter and
each receiver can cache up to MT and MR files, respectively. The system operates in two phases. The first phase is called the
prefetching phase, where each cache is populated up to its limited size from the content of the library. This phase is followed
by a delivery phase, where each user reveals its request for a file in the library. The transmitters then need to deliver the
requested files to the receivers. Note that in the prefetching phase, the system is still unaware of the files that the receivers will
request in the delivery phase. The goal is to design the cache contents in the prefetching phase and communication scheme
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in the delivery phase to achieve the maximum throughput for arbitrary set of requested files. Due to their practical appeal, in
this work we focus on one-shot linear delivery strategies. Interestingly, many of the previous works on caching have relied on
one-shot schemes for content delivery (see, e.g. [4, 8]).

Our main result in this paper is the characterization of the one-shot linear sum degrees-of-freedom (sum-DoF) of the network,
i.e., number of the receivers that can be served interference-free simultaneously, within a factor of 2 for all system parameters.
In fact, we show that the one-shot linear sum-DoF of min

{
KTMT+KRMR

N ,KR

}
is achievable, and this is within a factor of 2

of the optimum. This result shows that the one-shot linear sum-DoF of the network grows linearly with the aggregate cache
size in the network (i.e., the cumulative memory available at all nodes). It also implies that caches at the transmitters’ side
are equally valuable as the caches on the receivers’ side in the one-shot linear sum-DoF of the network. Our result, therefore,
establishes a fundamental limit on the performance of one-shot delivery schemes for cache-aided interference management.

To achieve the aforementioned sum-DoF, we propose a particular pattern in cache placement so that each piece of each file
in the library is available in the caches of KTMT

N transmitters and KRMR

N receivers. Once caching is done this way, we can
show that for delivering any set of requested contents to the receivers, min

{
KTMT+KRMR

N ,KR

}
of the receivers can be served

at each time, interference-free. This gain is achieved by simultaneously exploiting the opportunity of collaborative interference
cancellation (i.e. zero-forcing) at the transmitters’ side and opportunity of eliminating known interference contributions at the
receivers’ side. The first opportunity is created by caching the pieces of each file at several transmitters. The second opportunity
is available since pieces of a file requested by one user has been cached at some other receivers, and thus do not impose
interference at those receivers effectively. Our proposed cache placement pattern maximizes the overall gain achieved by these
opportunities for any arbitrary set of receiver requests and this gain can be achieved even with a simple one-shot linear delivery
scheme.

Moreover, we demonstrate that our achievable sum-DoF is within a factor of 2 of the optimal sum-DoF for one-shot linear
schemes. To prove the outer bound, we take a four-step approach in order to lower bound the number of communication blocks
needed to deliver any set of requested files to the receivers. First, we show that the network can be converted to a virtual MISO
interference channel in each block of communication. Using this conversion, we next write an integer optimization problem
for the minimum number of communication blocks needed to deliver a fixed set of requests for a given caching realization. We
then show how we can focus on average demands instead of the worst-case demands to derive an outer optimization problem
on the number of communication blocks optimized over the caching realizations. Finally, we present a lower bound on the
value of the aforementioned optimization problem, which leads to the desired upper bound on the one-shot linear sum-DoF of
the network. This result illustrates that in this setting, caches at transmitters’ side are equally valuable as caches at receivers’
side. It also shows that caching offers a throughput gain that scales linearly with the size of the network.

The rest of the paper is organized as follows. We present the problem formulation in Section II. We state the main result in
Section III. We prove the achievability of our main result in Section IV and the converse in Section V. Finally, we conclude
the paper in Section VI.

II. PROBLEM FORMULATION

In this section, we first provide a high-level description of the problem setting and the main parameters in the system model,
and then we present a detailed description of the problem formulation.

A. Problem Overview

Consider a wireless network, as illustrated in Figure 1, with KT transmitters and KR receivers, and also a library of N
files, each of which contains F packets, where each packet is a vector of B bits. Each node in the network is equipped with a
local cache memory of a certain size that can be used to cache contents arbitrarily from the library before the receivers reveal
their requests and communication begins. In particular, each transmitter and each receiver is equipped with a cache of size
MTF and MRF packets, respectively.

We assume that the system operates in two phases, namely the prefetching phase and the delivery phase. In the prefetching
phase, each node can cache contents arbitrarily from the library subject to its cache size constraint. In particular, each transmitter
selects up to MTF packets out of the entire library to store in its cache, and each receiver selects up to MRF packets out
of the entire library to store in its cache. In the delivery phase, each receiver requests an arbitrary file from the library. Since
each receiver may have cached parts of its desired file in the prefetching phase, the transmitters need to deliver the rest of the
requested packets to the receivers over the wireless channel.

We assume that at each time, the transmitters employ a one-shot linear scheme, where a subset of requested packets are
selected to be delivered interference-free to a corresponding subset of receivers. Each transmitter transmits a linear combination
of the subset of the selected packets which it has cached in the prefetching phase. The interference is cancelled with the aid of
cached contents as follows. Since each requested packet may be cached at multiple transmitters, the transmitters can collaborate
in order to zero-force the outgoing interference of that packet at some of the unintended receivers. Moreover, the receivers can
also use their cached packets as side information to eliminate the remaining incoming interference from to undesired packets.
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Fig. 1. Wireless network with KT transmitters and KR receivers, where each transmitter and each receiver caches up to MTF packets and MRF packets,
respectively, from a library of N files, each composed of F packets.

Our objective is to design a cache placement scheme and a delivery scheme which maximize the number of packets that can
be delivered at each time interference-free.

In this setting, we define the one-shot linear sum-degrees of freedom as the ratio of the number of delivered packets over
the number of blocks needed for communicating those packets for any set of receiver demands. Finally, we define the one-shot
linear sum-DoF of the network, denoted by DoF∗L,sum(N,MT ,MR), as the maximum achievable one-shot linear sum-DoF over
all caching realizations.

B. Detailed Problem Description

We consider a discrete-time additive white Gaussian noise channel, as illustrated in Figure 1, with KT transmitters denoted
by {Txi}KTi=1 and KR receivers denoted by {Rxi}KRi=1. The communication at time t over this channel is modeled by

Yj(t) =

KT∑
i=1

hjiXi(t) + Zj(t), (1)

where Xi(t) ∈ C denotes the signal transmitted by Txi, i ∈ [KT ] , {1, ...,KT } and Yj(t) denotes the receive signal by
Rxj , j ∈ [KR]. Moreover, hji ∈ C denotes the channel gain from Txi to Rxj , assumed to stay fixed over the course of
communication, and Zj(t) denotes the additive white Gaussian noise at Rxj at time slot t, distributed as CN (0, 1). The
transmit signal at Txi, i ∈ [KT ] , {1, ...,KT } is subject to the power constraint E

[
|Xi(t)|2

]
≤ P .

We assume that each receiver will request an arbitrary file out of a library of N files {Wn}Nn=1, which should be delivered
by the transmitters. Each file Wn in the library contains F packets {wn,f}Ff=1, where each packet is a vector of B bits; i.e.,
wn,f ∈ FB2 . Furthermore, we assume that each node in the network is equipped with a cache memory of a certain size that
can be used to cache arbitrary contents from the library before the receivers reveal their requests and communication begins.
In particular, each transmitter and each receiver is equipped with a cache of size MTF and MRF packets, respectively.

We assume that the network operates in two phases, namely the prefetching phase and the delivery phase, which are described
in more detail as follows.

Prefetching Phase: In this phase, each node can store an arbitrary subset of the packets from the files in the library up to its
cache size. In particular, each transmitter Txi chooses a subset Pi of the NF packets in the library, where |Pi| ≤ MTF , to
store in its cache. Likewise, each receiver Rxi stores a subset Qi of the packets in the library, where |Qi| ≤ MRF . Caching
is done at the level of whole packets and we do not allow breaking the packets into smaller subpackets. Also, this phase takes
place unaware of the receivers’ future requests.

Delivery Phase: In this phase, each receiver Rxj , j ∈ [KR], reveals its request for an arbitrary file Wdj from the library
for some dj ∈ [N ]. We let d = [d1 ... dKR ]T denote the demand vector. Depending on the demand vector d and the cache
contents, each receiver has already cached some packets of its desired file and there is no need to deliver them. The transmitters
will be responsible for delivering the rest of the requested packets to the receivers. In order to make sure that any piece of
content in the library is stored at the cache of at least one transmitter in the network, we assume that the transmitter cache
size satisfies KTMT ≥ N .

Each transmitter first employs a random Gaussian coding scheme ψ : FB2 → CB̃ of rate logP+o(logP ) to encode each of its
cached packets into a coded packet composed of B̃ complex symbols, so that each coded packet carries one degree-of-freedom
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(DoF). We denote the coded version of each packet wn,f in the library by w̃n,f , ψ(wn,f ). Afterwards, the communication
takes place over H blocks, each of length B̃ time slots. In each block m ∈ [H], the goal is to deliver a subset of the requested
packets, denoted by Dm, to a subset of receivers, denoted by Rm, such that each packet in Dm is intended to exactly one of
the receivers in Rm. In addition, the set of transmitted packets in all blocks and the cache contents of the receivers should
satisfy

{wdj ,f}Ff=1 ⊂
(

H⋃
m=1

Dm
)
∪Qj , ∀j ∈ [KR], (2)

which implies that for any receiver Rxj , j ∈ [KR], each of its requested packets should be either transmitted in one of the
blocks or already stored in its own cache.

In each block m ∈ [H], we assume a one-shot linear scheme where each transmitter transmits an arbitrary linear combination
of a subset of the coded packets in Dm that it has cached. Particularly, Txi, i ∈ [KT ] transmits xi[m] ∈ CB̃ , where

xi[m] =
∑

(n,f):
wn,f∈Pi∩Dm

vi,n,f [m] w̃n,f , (3)

and vi,n,f [m]’s denote the complex beamforming coefficients that Txi uses to linearly combine its coded packets in block m.
On the receivers’ side, the received signal of each receiver Rxj ∈ Rm in block m, denoted by yj [m] ∈ CB̃ , can be written

as

yj [m] =

KT∑
i=1

hjixi[m] + zj [m], (4)

where zj [m] ∈ CB̃ denotes the noise vector at Rxj in block m. Then, receiver Rxj will use the contents of its cache to
cancel (subtract out) the interference of some of undesired packets in Dm, if they exist in its cache. In particular, each receiver
Rxj ∈ Rm, forms a linear combination Lj,m, as

Lj,m(yj [m], Q̃j) (5)

to recover w̃dj ,f ∈ Dm, where Q̃j denotes the set of coded packets cached at receiver Rxj .
The communication in block m ∈ H to transmit the packets in Dm is successful, if there exist linear combinations (3) at

the transmitters’ side and (5) at receivers’ side, such that for all Rxj ∈ Rm,

Lj,m(yj [m], Q̃j) = w̃dj ,f + zj [m]. (6)

The channel created in (6) is a point-to-point channel, whose capacity is logP + o(logP ). Hence, since each coded packet
w̃dj ,f is coded with rate logP + o(logP ), it can be decoded with vanishing error probability as B increases. We assume that
the communication continues for H blocks until all the desired packets are successfully delivered to all receivers.

Since each packet carries one degree-of-freedom, the one-shot linear sum-degrees-of-freedom (sum-DoF) of |Dm| is achiev-
able in each block m ∈ [H]. This implies that throughout the H blocks of communication, the one-shot linear sum-DoF of
|⋃Hm=1Dm|

H is achievable. Therefore, for a given caching realization, we define the one-shot linear sum-DoF to be maximum
achievable one-shot linear sum-DoF for the worst case demands; i.e.,

DoF

(
{Pi}

KT
i=1,{Qi}

KR
i=1

)
L,sum = inf

d

sup
H,{Dm}Hm=1

∣∣∣∣ H⋃
m=1
Dm
∣∣∣∣

H
. (7)

This leads us to the definition of the one-shot linear sum-DoF of the network as follows.

Definition 1. For a network with a library N files, each containing F packets, and cache size of MT and MR files at
each transmitter and receiver, respectively, we define the one-shot linear sum-DoF of the network as the maximum achievable
one-shot linear sum-DoF over all caching realizations; i.e.,

DoF∗L,sum(N,MT ,MR) = sup
{Pi}

KT
i=1,{Qi}

KR
i=1

DoF

(
{Pi}

KT
i=1,{Qi}

KR
i=1

)
L,sum (8)

s.t. |Pi| ≤MTF, ∀i ∈ [KT ] (9)
|Qi| ≤MRF, ∀i ∈ [KR], (10)

where DoF

(
{Pi}

KT
i=1,{Qi}

KR
i=1

)
L,sum is defined in (7).
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III. MAIN RESULT AND ITS IMPLICATIONS

In this section, we present our main result on the one-shot linear sum-DoF of the network and its implications.

Theorem 1. For a network with a library of N files, each containing F packets, and cache size of MT and MR files at each
transmitter and each receiver, respectively, the one-shot linear sum-DoF of the network, as defined in Definition 1, satisfies

min

{
KTMT +KRMR

N
,KR

}
≤ DoF∗L,sum(N,MT ,MR) ≤ min

{
2
KTMT +KRMR

N
,KR

}
, (11)

for sufficiently large F .

In the following, we highlight the implications of Theorem 1 and its connections to some prior works:
1) (Within a factor of 2 characterization) The upper bound in (11) is within a factor of 2 of the lower bound in (11).

Therefore, Theorem 1 characterizes the one-shot linear sum-DoF of a cache-aided wireless network to within a factor of
2, for all system parameters.

2) (Aggregate cache size matters) The one-shot linear sum-DoF characterized in Theorem 1 is proportional to the aggregate
cache size that is available throughout the network, even-though these caches are isolated.

3) (Equal contribution of transmitter and receiver caches) Perhaps interestingly, the caches at both sides of the network,
i.e., the transmitters’ side and the receivers’ side, are equally valuable in the achievable one-shot linear sum-DoF of the
network. Note that in practice, size of each transmitter’s cache, MT , could be large. However, the number of transmitters
(e.g., base stations) KT is often small. On the other hand, size of the cache MR at the receivers (e.g., cellphones) is
small, whereas the number of receivers KR is large. Therefore KTMT could be comparable with KRMR. Our result in
Theorem 1 shows that neither caches at the transmitters nor caches at the receivers should be ignored.

4) (Linear scaling of DoF with network size) Letting KT = KR = K, we observe that the one-shot linear sum-DoF scales
linearly with the number of users in a fully-connected interference channel. Note that without caches, the one-shot linear
sum-DoF of a fully-connected interference channel is bounded by 2, as shown in [14]. Hence, caching enables linear
growth of the DoF without the need for more complex physical layer schemes.

5) (Role of transmitter and receiver caches) As we will show in Section IV, in (11), KTMT

N represents the contribution of
collaborative zero-forcing at the transmitters’ side, and KRMR

N represents the gain of canceling the known interference at
the receivers’ side.

6) (Connection to single-server coded caching [2]) A special case of our network model is the case with a single transmitter,
which was previously considered in [2]. In this case, it can be shown that a sum-DoF of min

{
1 + KRMR

N ,KR

}
is

achievable, which is equivalent to the global caching gain introduced in [2], indicating the number of receivers in the
network that can be served simultaneously, interference-free. Hence, our result subsumes the result of [2] by generalizing
it for the case of multiple transmitters.

7) (Connection to multi-server coded caching [3]) Another special case of our network model is the case where each
transmitter has space to cache the entire library; i.e., MT = N . This case was previously considered in [3] and it can be
verified that in this case, a sum-DoF of min

{
KT + KRMR

N ,KR

}
is achievable. Hence, our result can also be viewed as

a generalization of the result in [3] where the cache size of each transmitter may be arbitrarily smaller than the entire
library size.

Remark 1. In practice, the files in the library have nonuniform demands and some of them are more popular than the rest.
In this case, our algorithm can be used to cache and deliver the N most popular files. If a user requests one of the remaining
less popular files, it can be directly served by a central base station. The parameter N can be tuned, based on the popularity
pattern of the contents, in order to attain the best average performance.

Example 1. As an illustrative example, consider a cellular network with 5 base stations as transmitters, each with a 10 TB
memory and 100 cellphones as receivers, each with a 32 GB memory. Moreover, consider a library of the 1000 most popular
movie titles on Netflix, each with size of 5 GB. Then, Theorem 1 implies that at each time, around 11 cellphones can be
served simultaneously interference-free, no matter what their demands are, in contrast to the naive time-sharing scheme, where
at each time only 1 cellphone can be served.

The rest of the paper is devoted to the proof of Theorem 1. In particular, we illustrate the achievable scheme in Section IV
and we present the converse argument in Section V.

IV. ACHIEVABLE SCHEME

In this section, we prove the achievability of Theorem 1 by presenting an achievable scheme which utilizes the caches at the
transmitters and receivers efficiently to exploit the zero-forcing and interference cancellation opportunities at the transmitters’
and receivers’ sides, respectively. In particular, we introduce a prefetching strategy which maximizes the gains attained by the
aforementioned opportunities in the delivery phase, no matter what the receiver demands are.



6

We first explain our achievable scheme through a simple, illustrative example and then proceed to mention our general
achievable scheme.

A. Description of the Achievable Scheme via an Example

Consider a system with KT = 3 transmitters and KR = 3 receivers, where each transmitter has space to cache MT = 2
files and each receiver has space to cache MR = 1 file. The library has N = 3 files W1 = A, W2 = B, and W3 = C, each
consisting of F packets.

In the following, we will describe the prefetching and delivery phases in detail.
Prefetching Phase: In this phase, each file Wn, n ∈ [3] in the library is broken into

(
3
2

)(
3
1

)
= 9 disjoint subfiles Wn,T ,R for

any T ⊆ [KT ] = [3] and R ⊆ [KR] = [3] such that |T | = 2 and |R| = 1, where each subfile consists of F/9 packets. Each
subfile Wn,T ,R is then stored at the caches of the two transmitters in T and the single receiver in R. For example, file A is
broken into 9 subfiles as follows:

A12,1, A12,2, A12,3, A13,1, A13,2, A13,3, A23,1, A23,2, A23,3,

where A12,1 is stored at transmitters Tx1 and Tx2 as well as receiver Rx1, A12,2 is stored at transmitters Tx1 and Tx2 as well
as receiver Rx2, etc. We do the same partitioning for files B and C, as well.

It is easy to verify that each transmitter caches 6 subfiles of each file, hence the total size of its cached content is 3∗(6∗F/9) =
2F packets which satisfies its memory constraint. Also, each receiver caches 3 subfiles of each file and its total cached content
has size 3∗(3∗F/9) = F packets, hence satisfying its memory constraint. Note that in this phase, we are unaware of receivers’
future requests.

Delivery Phase: In this phase, each receiver reveals its request for a file in the library. Without loss of generality, assume
that receivers Rx1, Rx2 and Rx3 request files Wd1 = A, Wd2 = B and Wd3 = C, respectively. Note that each receiver has
already stored 3 subfiles of its desired file in its own cache, and therefore the transmitters need to deliver the 6 remaining
subfiles of each requested file. In particular, the following 18 subfiles need to be delivered by the transmitters to the requesting
receivers:

A12,2, A12,3, A13,2, A13,3, A23,2, A23,3 to receiver Rx1,

B23,3, B13,1, B12,3, B23,1, B13,3, B12,1 to receiver Rx2, (12)
C13,1, C23,2, C23,1, C12,2, C12,1, C13,2 to receiver Rx3.

We now show that we can break the 18 subfiles in (12) into 6 sets, each containing 3 subfiles, such that the subfiles in each
set can be delivered simultaneously to the receivers, interference-free. Such a partitioning is illustrated through the 6 steps in
Figure 2, where each step takes F

9 blocks. In each step, 3 subfiles are delivered to all the receivers simultaneously, while all
the inter-user interference can be eliminated. For example, in the first step, as in Figure 2–(a), subfiles A12,2, B23,3, C13,1 are
respectively delivered to receivers Rx1, Rx2, and Rx3 at the same time. In Figure 3, we show in detail how the interference
is cancelled in this step. The transmit signals of transmitters Tx1, Tx2 and Tx3 can be respectively written as

X1 = −h32Ã12,2 + h23C̃13,1,

X2 = h31Ã12,2 − h13B̃23,3,

X3 = −h21C̃13,1 + h12B̃23,3,

where for any subfile Wn,T ,R, W̃n,T ,R denotes its coded version. For simplicity, in this example, we ignore the power constraint
at the transmitters. On the other hand, the received signals by receivers Rx1, Rx2 and Rx3 can be respectively written as

Y1 = (h12h31 − h11h32)Ã12,2 + (h11h23 − h13h21)C̃13,1 + Z1,

Y2 = (h23h12 − h22h13)B̃23,3 + (h22h31 − h21h32)Ã12,2 + Z2,

Y3 = (h31h23 − h33h21)C̃13,1 + (h33h12 − h32h13)B̃23,3 + Z3.

Now, note that receivers Rx1, Rx2 and Rx3 can cancel the interference due to C13,1, A12,2, and B23,3, respectively, since
they already have each respective subfile in their own cache. Therefore, all the interference in the network can be effectively
eliminated and the receivers will be able to decode their desired subfiles. Likewise, one can verify that all the receivers can
receive their desired subfiles interference-free in all the 6 steps of communication depicted in Figure 2.

Consequently, the 18 subfiles in (12), each of which consists of F/9 packets, are delivered to the receivers in 6 steps, each
consisting of F/9 blocks. Note that our particular file splitting pattern in the prefetching phase and the particular scheduling
pattern in the delivery phase allows us to maximally exploit the two gains of zero-forcing the outgoing interference on the
transmitters’ side and canceling the known interference on the receivers’ side, no matter what the receiver demands are in the
delivery phase. Therefore, the sum-DoF of 18∗F/9

6∗F/9 = 3 = min
{
KTMT+KRMR

N ,KR

}
is achievable in this network.
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(d)(c)
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X2 = L(B̃12,3, C̃23,1)
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X2 = L(Ã23,2, C̃12,1)

X1 = L(B̃13,3, C̃12,1)

X1 = L(Ã12,2, C̃13,1)

X2 = L(Ã12,2, B̃23,3)

X3 = L(B̃23,3, C̃13,1)
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Rx3
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Rx1
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Tx3

Tx2

Tx1

Tx3

Tx2

Tx1

Rx3
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Rx3
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Rx1A12,2Decoder

C13,1

B23,3Decoder

A12,2

C13,1Decoder

B23,3
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C23,1

Decoder

A13,2

Decoder

B12,3

Decoder

C12,1

Decoder

A23,2

Decoder

B13,3

Decoder

B13,1

Decoder

C23,2

Decoder

A12,3

Decoder

B23,1

Decoder

C12,2

Decoder

A13,3

Decoder

B12,1

Decoder

C13,2

Decoder

A23,3

Fig. 2. Delivery phase for the example in Section IV-A for respective requests of files A, B and C by receivers Rx1, Rx2 and Rx3, where L(α, β)
denotes some linear combination of α and β. In every step, each pair of transmitters collaborate to zero-force the interference due to a specific subfile at a
certain undesired receiver. Moreover, each receiver also uses its cache contents to cancel the interference due to the other interfering packet. Therefore, the
communication is interference-free in all 6 steps.

A12,2

Rx3

Rx2

Rx1

Tx3

Tx2

Tx1
h11

h21

X1 = (−h32 × Ã12,2) + ( h23 × C̃13,1)

X2 = ( h31 × Ã12,2) + (−h13 × B̃23,3)

ZF at Rx3 ZF at Rx2 ZF at Rx1

Decoder

C13,1

B23,3Decoder

A12,2

C13,1Decoder

B23,3

X3 = (−h21 × C̃13,1) + ( h12 × B̃23,3)

Fig. 3. More detailed description of the linear encoding and decoding schemes used in the delivery phase step in Figure 2–(a). In this step, Tx1 and Tx2
zero-force A12,2 at Rx3, Tx1 and Tx3 zero-force C13,1 at Rx2, and Tx2 and Tx3 zero-force B23,3 at Rx1. Moreover, Rx1, Rx2 and Rx3 can cancel the
interference due to C13,1, A12,2, and B23,3, respectively, since they already have each respective subfile in their own cache.

B. Description of the General Achievable Scheme

Our general achievable scheme is given in Algorithm 1. In this algorithm, we use the notation

tT ,
KTMT

N
, tR ,

KRMR

N
, (13)

and for now, we assume that tT and tR are integers. Recall that in the example in Section IV-A, tT = 2 and tR = 1.
In the following, we will describe the prefetching and delivery phases in more detail.
1) Prefetching Phase: For any file Wn in the library, n ∈ [N ], we partition it into

(
KT
tT

)(
KR
tR

)
disjoint subfiles of equal

sizes1, denoted by

Wn =
{
Wn,T ,R

}
T ⊆[KT ]:|T |=tT
R⊆[KR]:|R|=tR

. (14)

Based on the above partitioning, in the prefetching phase, each transmitter Txi stores a subset Pi of the packets in the

1Due to the assumption that F is sufficiently large, we can assume that it is an integer multiple of
(KT
tT

)(KR
tR

)
.
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Algorithm 1 Achievable scheme for Theorem 1
Prefetching Phase:

1: for n = 1, ..., N
2: Partition Wn into

(
KT
tT

)(
KR
tR

)
disjoint subfiles {Wn,T ,R}T ⊆[KT ],|T |=tT ,R⊆[KR],|R|=tR of equal sizes.

3: end
4: for i = 1, ...,KT

5: Txi caches all Wn,T ,R for which i ∈ T .
6: end
7: for j = 1, ...,KR

8: Rxj caches all Wn,T ,R for which j ∈ R.
9: end

Delivery Phase:
10: for j ∈ [KR]
11: for T ⊆ [KT ] s.t. |T | = tT
12: for R ⊆ [KR] \ {j} s.t. |R| = tR

13: partition Wdj ,T ,R to tR![KR−(tR+1)]!
[KR−(tR+tT )]! disjoint subfiles

{
Wdj ,T ,π,π′

}
π∈ΠR
π′∈Π[KR]\(R∪{j}),tT−1

of equal sizes.

14: end
15: end
16: end
17: for T ⊆ [KT ] s.t. |T | = tT
18: for R ⊆ [KR] s.t. |R| = tT + tR
19: for π ∈ Πcirc

R
20: Each transmitter Txi transmits a linear combination of the coded subfiles as in

Xi = Li,T ,π
({
W̃dπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] : l ∈ [tT + tR], i ∈ T ⊕KT (l − 1)

})
using the linear combinations shown in Lemma 2 such that the subfiles{
Wdπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] : l ∈ [tT + tR]

}
are simultaneously delivered to the receivers in R interference-free.

21: end
22: end
23: end

library as described below.

Pi = {Wn,T ,R : i ∈ T } . (15)

Illustration. For instance, in the example network considered in Section IV-A, transmitter Tx3 stores the following subset of
packets in its cache.

P3 = {W1,13,1,W1,13,2,W1,13,3,W1,23,1,W1,23,2,W1,23,3,

W2,13,1,W2,13,2,W2,13,3,W2,23,1,W2,23,2,W2,23,3,

W3,13,1,W3,13,2,W3,13,3,W3,23,1,W3,23,2,W3,23,3}
= {A13,1, A13,2, A13,3, A23,1, A23,2, A23,3,

B13,1, B13,2, B13,3, B23,1, B23,2, B23,3,

C13,1, C13,2, C13,3, C23,1, C23,2, C23,3}.
Based on the above caching strategy, we can verify that the total number of packets cached by transmitter Txi equals

N

(
KT − 1

tT − 1

)(
KR

tR

)
F(

KT
tT

)(
KR
tR

) = NF
tT
KT

= MTF packets,

hence satisfying its memory size constraint, where
(
KT−1
tT−1

)
is the number of subsets T ⊆ [KT ] of size tT which include the

transmitter index i.
Likewise, in the prefetching phase, each receiver Rxj stores a subset Qj of the packets in the library as described below.

Qj = {Wn,T ,R : j ∈ R} . (16)

Illustration. For instance, in the example network considered in Section IV-A, receiver Rx2 stores the following subset of
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packets in its cache.

Q2 = {W1,12,2,W1,13,2,W1,23,2,W2,12,2,W2,13,2,W2,23,2,W3,12,2,W3,13,2,W3,23,2}
= {A12,2, A13,2, A23,2, B12,2, B13,2, B23,2, C12,2, C13,2, C23,2}.

This suggests that the total number of packets cached by receiver Rxj is equal to

N

(
KT

tT

)(
KR − 1

tR − 1

)
F(

KT
tT

)(
KR
tR

) = NF
tR
KR

= MRF packets,

which also satisfies its memory size constraint.
2) Delivery Phase: In this section, we first describe the delivery phase for the case where tT + tR ≤ KR, so that the first

term in the lower bound in (11) is dominant. We will later show how to deal with the case where tT + tR > KR.
In the delivery phase, the receiver requests are revealed, and in particular, each receiver Rxj , j ∈ [KR] requests a file Wdj

from the library and the transmitters need to deliver the subfiles in

{Wdj ,T ,R : j /∈ R}
to receiver Rxj ; i.e., the subfiles of file Wdj which have not been already stored in the cache of receiver Rxj .

In the following, our goal is to show that the set of packets which need to be delivered to the receivers can be partitioned
into subsets of size tT + tR such that the packets in each subset can be scheduled together. To this end, we need to further
break each subfile to smaller subfiles. In particular, for any j ∈ [KR], T ⊆ [KT ] s.t. |T | = tT ,R ⊆ [KR] \ {j} s.t. |R| = tR,
we partition Wdj ,T ,R to tR![KR−(tR+1)]!

[KR−(tR+tT )]! smaller disjoint subfiles of equal sizes denoted by

Wdj ,T ,R =
{
Wdj ,T ,π,π′

}
π∈ΠR
π′∈Π[KR]\(R∪{j}),tT−1

, (17)

where for a set S, ΠS denotes the set of permutations of S, and for any t ∈ {1, ..., |S|}, ΠS,t denotes the set of all permutations
of all subsets of S of size t; i.e.,

ΠS,t =
⋃

A⊆S,|A|=t

ΠA.

Remark 2. Note that in the example setting discussed in Section IV-A, tR![KR−(tR+1)]!
[KR−(tR+tT )]! = 1, which implies that further

partitioning of the subfiles is not needed.

The advantage of further breakdown of the subfiles in (17) is that we can now partition the set of the subfiles which need to
be delivered to the receivers into certain subsets of size tT + tR such that each subfile Wdj ,T ,π,π′ intended for receiver Rxj is
zero-forced at the receivers with indices in π′. Moreover, since this subfile is also already cached at the receivers with indices
in π, the communication will be interference-free for each set of the tT + tR subfiles.

We show how to do such a partitioning in Lemma 1. In this lemma, we use the following notation: For a set R, we let Πcirc
R

denote the set of (|R| − 1)! circular permutations of R.2 Moreover, for a set S, a permutation π ∈ ΠS and two integers i, j
satisfying j ≥ i, we define π[i : j] as

π[i : j] = [π(i ⊕|S| 0) π(i ⊕|S| 1) π(i ⊕|S| 2) ... π(i ⊕|S| (j − i))],
where for an integer m, i ⊕m j is defined as

i ⊕m j = 1 + (i+ j − 1 mod m). (18)

Finally, for a set T and an integer j, we let T ⊕m j denote entry-wise addition of elements of T with j modulo m, as
defined in (18).

Lemma 1. Given the prefetching phase in Section IV-B1, for any receivers’ demand vector d, the set of subfiles which need
to be delivered to the receivers can be partitioned into disjoint subsets of size tT + tR as⋃

T ⊆[KT ]:|T |=tT
R⊆[KR]:|R|=tT+tR

π∈Πcirc
R

{
Wdπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] : l ∈ [tT + tR]

}
. (19)

Proof. See Appendix A.

2A circular permutation of a set R is a way of arranging the elements of R around a fixed circle. The number of distinct circular permutations of a set R
is equal to (|R| − 1)!. For example, if R = {1, 2, 3}, then Πcirc

R = {[1, 2, 3], [1, 3, 2]}.
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Illustration. For the example network mentioned in Section IV-A, the set of 18 subfiles which need to be delivered to the
receivers, as in (12), can be partitioned to the following 6 sets.

{A12,2, B23,3, C13,1} ∪ {A12,3, B13,1, C23,2} ∪ {A13,2, B12,3, C23,1}
∪ {A13,3, B23,1, C12,2} ∪ {A23,2, B13,3, C12,1} ∪ {A23,3, B12,1, C13,2}. (20)

Based on the partitioning of the small subfiles that need to be delivered to the receivers in Lemma 1, we will have(
KT
tT

)(
KR

tT+tR

)
(tT + tR − 1)! steps of communication, where at each step, specific sets T and R and a permutation π are fixed

as in (19), and each transmitter Txi will transmit a linear combination of the coded subfiles for which i ∈ T ⊕KT (l− 1); i.e.,

Xi = Li,T ,π
({
W̃dπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] : l ∈ [tT + tR], i ∈ T ⊕KT (l − 1)

})
, (21)

where for any subfile Wdj ,T ,π,π′ , W̃dj ,T ,π,π′ denotes the corresponding coded subfile containing PHY coded symbols, and
Li,T ,π(.) represents the linear combination that transmitter Txi chooses for sending the subfiles in (21).

We will next show that under such a delivery scheme, there always exists a choice of linear combinations at the transmitters
so that at each step, the communication will be interference-free and all the tT + tR receivers in R can decode their desired
packets, as we also showed in the example setting in Section IV-A.

Lemma 2. For any subset of tT transmitters T ⊆ [KT ], any subset of tT + tR receivers R ⊆ [KR], and any circular
permutation π ∈ Πcirc

R , there exists a choice of the linear combinations {Li,T ,π(.)}KTi=1 in (21) such that the set of tT + tR
subfiles in {

Wdπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] : l ∈ [tT + tR]
}
, (22)

can be delivered simultaneously and interference-free by the transmitters in
⋃

l∈[tT+tR]

(
T ⊕KT (l − 1)

)
to the receivers in R.

Proof. For ease of notation and without loss of generality, assume

T = {1, ..., tT }, T ⊕KT (l − 1) = {l, ..., tT + l},R = {1, ..., tT + tR}, π = [1, ..., tT + tR].

First, we need to determine the subset of the subfiles which is available at each transmitter. It is easy to verify that
• If i ∈ {1, ..., tT − 1}, then transmitter Txi has subfiles{

W̃dπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] : l ∈ {1, ..., i}
}

; (23)

• If i ∈ {tT , ..., tT + tR}, then transmitter Txi has subfiles{
W̃dπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] : l ∈ {i− tT + 1, ..., i}

}
; (24)

• and if i ∈ {tT + tR + 1, ..., 2tT + tR − 1}, then transmitter Txi has subfiles{
W̃dπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] : l ∈ {i− tT + 1, ..., tT + tR}

}
. (25)

Since each transmitter sends a linear combination of the subfiles that it has, the transmit signal of transmitter Txi can be
written as

Xi =



i∑
l=1

vi,lW̃dl,{l,...,tT+l},{l+1,...,l+tR},{l+tR+1,...,l+tR+tT−1}, if i ∈ {1, ..., tT − 1}
i∑

l=i−tT+1

vi,lW̃dl,{l,...,tT+l},{l+1,...,l+tR},{l+tR+1,...,l+tR+tT−1}, if i ∈ {tT , ..., tT + tR}
tT+tR∑

l=i−tT+1

vi,lW̃dl,{l,...,tT+l},{l+1,...,l+tR},{l+tR+1,...,l+tR+tT−1}, if i ∈ {tT + tR + 1, ..., 2tT + tR − 1}

. (26)

This implies that the received signal at receiver Rxj , j ∈ {1, ..., tT + tR} can be written as

Yj =

2tT+tR−1∑
i=1

hjiXi + Zj (27)

=

tT+j∑
i=j

hjivi,jW̃dj ,{j,...,tT+j},{j+1,...,j+tR},{j+tR+1,...,j+tR+tT−1}

+

j+tT−1∑
l=j+1

tT+l∑
i=l

hjivi,lW̃dl,{l,...,tT+l},{l+1,...,l+tR},{l+tR+1,...,l+tR+tT−1}
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+

j−1∑
l=j−tR

tT+l∑
i=l

hjivi,lW̃dl,{l,...,tT+l},{l+1,...,l+tR},{l+tR+1,...,l+tR+tT−1} + Zj . (28)

Now, note that in (28), the first term corresponds to the desired subfile of receiver Rxj , while the second and third terms
correspond to the undesired subfiles whose interference needs to be canceled at this receiver. However, note that the subfiles
in the third term are already cached at receiver Rxj and hence it is able to cancel their incoming interference. Hence, in
order for all receivers Rxj , j ∈ {1, ..., tT + tR} to receive their subfiles interference-free, there should exist a choice of linear
combination coefficients {vi,l} such that

tT+j∑
i=j

hjivi,j = 1,∀j ∈ {1, ..., tT + tR} (29)

tT+l∑
i=l

hjivi,l = 0,∀j ∈ {1, ..., tT + tR},∀l ∈ {j + 1, ..., j + tT − 1}. (30)

Equations (29)-(30) introduce a system of tT (tT + tR) linear equations. On the other hand, the number of variables {vi,l}
is also equal to tT (tT + tR). This indicates that there always exists a choice of linear combination coefficients {vi,l} such that
(29)-(30) are satisfied. Finally, note that by scaling all the transmit signals by a large enough factor, the power constraint at
all the transmitters can also be satisfied. Hence the proof is complete.

Remark 3. As mentioned in Section II, we assume that the channel gains remain constant over the course of communication.
However, for the delivery scheme presented in the proof of Lemma 2, this assumption can be relaxed, since we only need the
channel gains to remain unchanged for each block of communication and they can be allowed to vary among different blocks.

Remark 4. In the delivery scheme presented in the proof of Lemma 2, we only used zero-forcing at the transmitters in order
to cancel their outgoing interference, which is DoF-optimal. However, in general one can use any scheme that exploits the
collaboration among the transmitters in order to optimize the actual rates in the finite-SNR regime (such as the schemes suited
for the MIMO broadcast channels [15]).

C. Analysis of the Sum-DoF of the Proposed Achievable Scheme

As a result of Lemmas 1 and 2, it is clear that for any set of receiver demands in the delivery phase, we can schedule all
the requested subfiles in groups of size tT + tR. Now, if tT and/or tR are not integers, we can split the memories and the
files proportionally so that for each new partition, the aforementioned scheme can be applied for updated tT and tR which are
integers. Hence, combining the schemes over different partitions allows us to serve tT + tR simultaneously, interference-free,
for any values of tT and tR such that tT + tR ≤ KR.3

Finally, if tT + tR > KR, then since we cannot serve more than KR receivers, we can neglect some of the caches at either
the transmitters’ side or the receivers’ side and use a fraction of the caches with new sizes N

KT
≤M ′T ≤MT and M ′R ≤MR

so that KTM
′
T+KRM

′
R

N = KR. We can then use Algorithm 1 to serve all the KR receivers simultaneously without interference.
As we showed in Section IV-B1, our prefetching phase respects the cache size constraint of all the transmitters and receivers.

Moreover, given our prefetching phase, each receiver Rxj caches
(
KT
tT

)(
KR−1
tR−1

)
F

(KTtT )(KRtR )
= MR

N F packets of each file in the

library. Hence, for each set of requested files by the receivers, a total of KR

(
1− MR

N

)
F packets need to be delivered by the

transmitters to the receivers.
Therefore, based on the delivery phase mentioned in Section IV-B, the number of blocks required to deliver all the

KR

(
1− MR

N

)
F packets to the receivers is equal to

KR
(

1−MRN
)
F

min{tT+tR,KR} . This suggests that for any set of receiver demands,
sum-DoF of

KR

(
1− MR

N

)
F

KR
(

1−MRN
)
F

min{tT+tR,KR}

= min{tT + tR,KR} = min

{
KTMT +KRMR

N
,KR

}

is achievable, hence completing the proof of achievability of Theorem 1.

V. CONVERSE

In this section, we prove the converse of Theorem 1. In particular, we show that the lower bound on the one-shot linear
sum-DoF in (11) is within a factor of 2 of the optimal one-shot linear sum-DoF. In order to prove the converse, we take four
steps as detailed in the following sections. First, we demonstrate how in each block of communication, the network can be
converted into a virtual MISO interference channel. Second, we use this conversion to write an integer optimization problem

3In [2], this method is referred to as memory-sharing, which resembles time-sharing in network information theory.
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for the minimum number of communication blocks needed to deliver a set of receiver demands for a given caching realization.
Third, we show how we can focus on average demands instead of the worst-case demands to derive an outer optimization
problem on the number of communication blocks optimized over the caching realizations. Finally, we present a lower bound
on the value of the aforementioned outer optimization problem, which leads to the desired upper bound on the one-shot linear
sum-DoF of the network.

A. Conversion to a Virtual MISO Interference Channel

Consider any caching realization
(
{Pi}KTi=1, {Qi}KRi=1

)
and any demand vector d. As discussed in Section II, in each

communication blocks a subset of requested packets are selected to be sent to a corresponding subset of distinct receivers.
Now, we can state the following lemma, which bounds the number of packets that can be scheduled together in a single
communication block using a one-shot linear scheme.

Lemma 3. Consider a single communication block where a set {wnl,fl}Ll=1 of L packets are scheduled to be transmitted
together to L distinct receivers. In order for each receiver to successfully decode its desired packet, the number of these
concurrently-scheduled packets should be bounded by

L ≤ min
l∈[L]
|Tl|+ |Rl|, (31)

where for any l ∈ [L], Tl and Rl denote the set of transmitters and receivers which have cached the packet wnl,fl , respectively.

Proof. For ease of notation and without loss of generality, suppose that in the considered block, L packets {w1,1, ...,wL,1}
are scheduled to be sent to L receivers {Rx1, ...,RxL}, respectively. Each transmitter Txi, i ∈ [KT ] will transmit

xi =
∑
l: i∈Tl

vi,l,1 w̃l,1, (32)

where we have dropped the dependency on the block index, since we are focusing on a single block. On the other hand, the
received signal of receiver Rxj , j ∈ [L] can be written as

yj =

KT∑
i=1

hjixi (33)

=

KT∑
i=1

hji
∑
l: i∈Tl

vi,l,1 w̃l,1 (34)

=

L∑
l=1

∑
i∈Tl

hji vi,l,1 w̃l,1. (35)

Therefore, (35) implies that we can effectively convert the network into a new MISO interference channel with L virtual
transmitters {T̂xl}Ll=1, where T̂xl is equipped with |Tl| antennas, and L single-antenna receivers {Rxj}Lj=1, in which each
virtual transmitter T̂xl intends to send the coded packet w̃l,1 to receiver Rxl. Each antenna in the new network corresponds to
a transmitter in the original network. Hence, the channel vectors are correlated in the new network. In fact, as (35) suggests, all
the antennas corresponding to the same transmitter in the original network have the same channel gain vectors to the receivers
in the new network.

In the constructed MISO interference channel, we take a similar approach as in [14] in order to bound the one-shot linear
sum-DoF of the network. Each virtual transmitter T̂xl in the constructed MISO network will select a beamforming vector
vl ∈ C|Tl|×1 (which consists of the coefficients chosen by the original transmitters corresponding to its antennas) to transmit
its desired symbol. Denoting the channel gain vector between transmitter T̂xl and receiver Rxj as hjl ∈ C|Tl|×1, the decodability
conditions can be written as

hTjlvl = 0, ∀l 6= j s.t. j /∈ Rl (36)

hTjjvj 6= 0, ∀j ∈ [L]. (37)

Now, each of the vectors vl, l ∈ [L] can be written as

vl = qlPl

[
1
v̄l

]
, (38)
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where ql is a non-zero scalar, Pl is a |Tl| × |Tl| permutation matrix and v̄l is a vector of size (|Tl| − 1)× 1. Also, for any two
distinct pairs l 6= j, the channel gain vector hjl can be permuted as h̄jl = P−1

l hjl, and we can partition h̄jl as

h̄jl =

[
h̄

(1)
jl

h̄
(2)
jl

]
, (39)

where h̄(1)
jl is a scalar and h̄

(2)
jl is of size (|Tl| − 1)× 1. Therefore, the nulling condition in (36) can be rewritten as[

h̄
(1)
jl h̄

(2)
jl

] [
1
v̄l

]
= 0⇔ h̄

(1)
jl + h̄

(2)T
jl v̄l = 0. (40)

Now, since the packet sent by the virtual transmitter T̂xl is available in the caches of at most |Rl| receivers in the network,
the interference of each transmitter should be nulled at least at L − |Rl| − 1 unintended receivers. This implies that the free
beamforming variables at transmitter l, i.e., v̄l, should satisfy at least L− |Rl| − 1 linear equations in the form of (40). This
is not possible unless the number of equations is no greater than the number of variables, or

L− |Rl| − 1 ≤ |Tl| − 1⇒ L ≤ |Tl|+ |Rl|. (41)

Since the above inequality holds for all l ∈ [L], the proof is complete.

B. Integer Program Formulation

Equipped with Lemma 3, we define a set of packets Dm selected to be transmitted at block m to be feasible if its size
satisfies condition (31) in Lemma 3. We can then write the following integer program (P1) to minimize the number of required
communication blocks for any given caching realization and set of receiver demands:

min H (P1-1)

s.t.
H⋃
m=1

Dm =

KR⋃
j=1

(
Wdj \ Qj

)
(P1-2)

Dm is feasible, ∀m ∈ [H], (P1-3)

where (P1-2) states that all the demanded packets that are not cached at the requesting receivers need to be delivered by the
transmitters over the H blocks of communication.

C. Relaxing Worst-Case Demands to Average Demands and Optimizing over Caching Realizations

We can now write an optimization problem to minimize the number of communication blocks required for delivering the
worst-case demands optimized over the caching realizations. However, before that, we need to introduce some notation.

Given any caching realization
(
{Pi}KTi=1, {Qi}KRi=1

)
, we can break each file Wn, n ∈ [N ], in the library into (2KT −1)(2KR)

subfiles {Wn,T ,R}T ⊆∅[KT ],R⊆[KR], where Wn,T ,R denotes the subfile of Wn exclusively stored in the caches of the transmitters
in T and receivers in R, and we use the shorthand notation T ⊆∅ [KT ] to denote T ⊆ [KT ], T 6= ∅. We define an,T ,R as the
number of packets in Wn,T ,R.

Denoting the answer to the optimization problem (P1) by H∗
(
{Pi}KTi=1, {Qi}KRi=1,d

)
, the below optimization problem yields

the number of communication blocks required for delivering the worst-case demands, minimized over all caching realizations:

min
{Pi}

KT
i=1,{Qi}

KR
i=1

max
d

H∗
(
{Pi}KTi=1, {Qi}KRi=1,d

)
(P2-1)

s.t.
∑

T ⊆∅[KT ]

∑
R⊆[KR]

an,T ,R = F, ∀n ∈ [N ] (P2-2)

N∑
n=1

∑
R⊆[KR]

∑
T ⊆[KT ]:
i∈T

an,T ,R ≤MTF,∀i ∈ [KT ] (P2-3)

N∑
n=1

∑
T ⊆∅[KT ]

∑
R⊆[KR]:
j∈R

an,T ,R ≤MRF,∀j ∈ [KR] (P2-4)

an,T ,R ≥ 0,∀n ∈ [N ],∀T ⊆∅ [KT ],∀R ⊆ [KR]. (P2-5)



14

To lower bound the value of the above optimization problem, we can write the following optimization problem, which yields
the number of communication blocks averaged over all the π(N,KR) = N !

(N−KR)! permutations of distinct receiver demands,
denoted by PN,KR :

min
{Pi}

KT
i=1,{Qi}

KR
i=1

1

π(N,KR)

∑
d∈PN,KR

H∗
(
{Pi}KTi=1, {Qi}KRi=1,d

)
(P3-1)

s.t.
∑

T ⊆∅[KT ]

∑
R⊆[KR]

an,T ,R = F, ∀n ∈ [N ] (P3-2)

N∑
n=1

∑
R⊆[KR]

∑
T ⊆[KT ]:
i∈T

an,T ,R ≤MTF,∀i ∈ [KT ] (P3-3)

N∑
n=1

∑
T ⊆∅[KT ]

∑
R⊆[KR]:
j∈R

an,T ,R ≤MRF,∀j ∈ [KR] (P3-4)

an,T ,R ≥ 0,∀n ∈ [N ],∀T ⊆∅ [KT ],∀R ⊆ [KR]. (P3-5)

D. Lower Bound on the Number of Communication Blocks

Having the optimization problem in (P3), we now present the following lemma which provides a lower bound on the value
of (P3).

Lemma 4. The value of the optimization problem (P3) is bounded from below by
KRNF

(
1−MRN

)2

KTMT+KRMR
.

Proof. See Appendix B.

Since the total number of packets delivered over the channel is KR

(
1− MR

N

)
F in the optimization problem (P3), Lemma

4 immediately yields the following upper bound on the one-shot linear sum-DoF:

DoF∗L,sum(N,MT ,MR) ≤ KR

(
1− MR

N

)
F

KRNF
(

1−MRN
)2

KTMT+KRMR

=
KTMT +KRMR

N −MR
.

Combining the above bound with the trivial bound on the one-shot linear sum-DoF which is the number of receivers, KR,
we have

DoF∗L,sum(N,MT ,MR) ≤ min

{
KTMT +KRMR

N −MR
,KR

}
. (42)

Now, consider the following two cases:
• MR ≤ N

2 : In this case, (42) implies that

DoF∗L,sum(N,MT ,MR)≤ min

{
KTMT +KRMR

N − N
2

,KR

}

≤ min

{
2
KTMT +KRMR

N
,KR

}
.

• MR >
N
2 : In this case, (11) implies that one-shot linear sum-DoF of

DoFL,sum(N,MT ,MR) > min

{
KTMT +KR

N
2

N
,KR

}
>
KR

2
,

can be achieved, while the upper bound in (42) implies that DoF∗L,sum(N,MT ,MR) ≤ KR.
Therefore, in both cases, the inner bound in (11) is within a factor of 2 of the outer bound in (11), which completes the

proof of the converse of Theorem 1.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this work, we considered a wireless network setting with arbitrary numbers of transmitters and receivers, where all
transmitters and receivers in the network are equipped with cache memories of specific sizes. We characterized the one-shot
linear sum-DoF of the network to within a gap of 2. In particular, we showed that the one-shot linear sum-DoF of the network
is proportional to the aggregate cache size in the network, even though the cache of each node is isolated from all the other
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nodes. We presented an achievable scheme which loads the caches carefully in order to maximize the opportunity for zero-
forcing the outgoing interference from the transmitters and interference cancellation due to previously-cached content at the
receivers. We also demonstrated that the achievable one-shot linear sum-DoF of our scheme is within a multiplicative factor
of 2 of the optimal one-shot linear sum-DoF by bounding the number of communication blocks required to deliver any set of
requested files to the receivers using an integer programming approach.

There are several interesting directions following this work. First, in this work we assumed all the links in the network to be
present in the network topology. However, due to fading effects, some links between certain transmitter-receiver pairs might be
absent from the network topology. It would be interesting to study what type of caching strategies are optimal in this case and
to explore its connections to the index coding problem [16–18]. Another direction would be to combine caching with more
sophisticated interference management schemes. Some initial results have been reported in [19], in which the authors used
the replication in the cache contents at the transmitters in order to improve the system performance using the ITLinQ scheme
[20–22]. It would be interesting to study the role of transmitter and receiver caches illustrated in this work in improving the
achievable system throughput that more sophisticated delivery schemes such as ITLinQ can provide.

APPENDIX A
PROOF OF LEMMA 1

For any T ⊆ [KT ] s.t. |T | = tT and for any l ∈ [tT + tR], it is clear that the set T ⊕KT (l − 1) is of size tT . Also, for
any R ⊆ [KR] s.t. |R| = tT + tR, and for any permutation π ∈ Πcirc

R , the vector π[l + 1 : l + tR] is of size tR and the vector
π[l + tR + 1 : l + tR + tT − 1] is of size tT − 1.

Furthermore, note that Wdπ(l),T ⊕KT (l−1),π[l+1:l+tR],π[l+tR+1:l+tR+tT−1] is a subfile of the file Wdπ(l)
requested by receiver

Rxπ(l). However, since π(l) /∈ π[l + 1 : l + tR], receiver Rxπ(l) has not stored the packets in this subfile in its cache and
therefore, this subfile needs to be delivered to this receiver.

Finally, each set inside the union in (19) is composed of tT + tR subfiles. The number of such sets is equal to(
KT

tT

)(
KR

tT + tR

)
(tT + tR − 1)!. (43)

Hence, the total number of subfiles in (19) is equal to(
KT

tT

)(
KR

tT + tR

)
(tT + tR − 1)!(tT + tR) =

(
KT

tT

)(
KR

tT + tR

)
(tT + tR)!. (44)

On the other hand, each receiver Rxj has already cached
(
KT
tT

)(
KR−1
tR−1

)
subfiles as in (16) in its cache, and needs the rest

of the subfiles of its requested file, i.e.,
(
KT
tT

)(
KR−1
tR

)
subfiles, where each subfile is further partitioned into tR![KR−(tR+1)]!

[KR−(tR+tT )]!
smaller subfiles. Hence, the total number of small subfiles that need to be delivered to all the receivers is equal to

KR

[(
KT

tT

)(
KR − 1

tR

)][
tR![KR − (tR + 1)]!

[KR − (tR + tT )]!

]
=

(
KT

tT

)(
KR

tT + tR

)
(tT + tR)!, (45)

which equals the total number of small subfiles in (19), calculated in (44). Consequently, the set of requested subfiles which
are not cached at the corresponding receivers can be partitioned as in (19), hence the proof is complete.

APPENDIX B
PROOF OF LEMMA 4

According to the constraint (31), each of the packets of order s, which are available at s nodes, either on the transmitter
side or the receiver side, can be scheduled with at most s − 1 packets of the same order. Therefore, for any given caching
realization and set of demands, we have the lower bound

H∗
(
{Pi}KTi=1,{Qi}KRi=1,d

)
≥
KT+KR∑
s=KR

KR∑
j=1

∑
T ⊆[KT ]:
|T |∈[s]

∑
R⊆[KR]:
|R|=s−|ST |

j /∈R

adj ,T ,R

KR
+

KR−1∑
s=1

KR∑
j=1

∑
T ⊆[KT ]:
|T |∈[s]

∑
R⊆[KR]:
|R|=s−|ST |

j /∈R

adj ,T ,R

s

≥
KT+KR∑
s=1

KR∑
j=1

∑
T ⊆[KT ]:
|T |∈[s]

∑
R⊆[KR]:
|R|=s−|ST |

j /∈R

adj ,T ,R

s
. (46)
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Now, denoting the objective function in (P3-1) by H̄
(
{Pi}KTi=1, {Qi}KRi=1

)
, we have

H̄

(
{Pi}KTi=1, {Qi}KRi=1

)
≥ 1

π(N,KR)

KT+KR∑
s=1

1

s

KR∑
j=1

∑
T ⊆[KT ]:
|T |∈[s]

∑
R⊆[KR]:
|R|=s−|ST |

j /∈R

π(N − 1,KR − 1)

N∑
n=1

an,T ,R

=
1

N

KT+KR∑
s=1

1

s

KR∑
j=1

∑
T ⊆[KT ]:
|T |∈[s]

∑
R⊆[KR]:
|R|=s−|ST |

j /∈R

N∑
n=1

an,T ,R

=
1

N

KT∑
r=1

KR∑
r′=0

1

r + r′

KR∑
j=1

∑
T ⊆[KT ]:
|T |=r

∑
R⊆[KR]:
|R|=r′
j /∈R

N∑
n=1

an,T ,R

=
1

N

KT∑
r=1

KR∑
r′=0

KR − r′
r + r′

∑
T ⊆[KT ]:
|T |=r

∑
R⊆[KR]:
|R|=r′

N∑
n=1

an,T ,R

=
1

N

KT∑
r=1

KR−1∑
r′=0

br,r′

r + r′
, (47)

where for any r ∈ [KT ] and r′ ∈ [KR − 1] ∪ {0}, we define

br,r′ ,
KR∑
j=1

∑
T ⊆[KT ]:
|T |=r

∑
R⊆[KR]:
|R|=r′
j /∈R

N∑
n=1

an,T ,R = (KR − r′)
∑

T ⊆[KT ]:
|T |=r

∑
R⊆[KR]:
|R|=r′

N∑
n=1

an,T ,R. (48)

Moreover, adding the constraint in (P3-3) over all transmitters yields

KTMTF ≥
KT∑
i=1

N∑
n=1

∑
R⊆[KR]

∑
T ⊆[KT ]:
i∈T

an,T ,R (49)

=

N∑
n=1

∑
R⊆[KR]

KT∑
i=1

∑
T ⊆[KT ]:
i∈T

an,T ,R (50)

=

N∑
n=1

∑
R⊆[KR]

KT∑
r=1

r
∑

T ⊆[KT ]:
|T |=r

an,T ,R. (51)

Likewise, adding the constraint in (P3-4) over all receivers yields

KRMRF ≥
KR∑
j=1

N∑
n=1

∑
T ⊆∅[KT ]

∑
R⊆[KR]:
j∈R

an,T ,R (52)

=

N∑
n=1

∑
T ⊆∅[KT ]

KR∑
j=1

∑
R⊆[KR]:
j∈R

an,T ,R (53)

=

N∑
n=1

∑
T ⊆∅[KT ]

KR∑
r′=0

r′
∑

R⊆[KR]:
|R|=r′

an,T ,R, (54)
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and from (51) and (54), we have

(KTMT +KRMR)F ≥
N∑
n=1

 ∑
R⊆[KR]

KT∑
r=1

r
∑

T ⊆[KT ]:
|T |=r

an,T ,R +
∑
T ⊆[KT ]

KR∑
r′=0

r′
∑

R⊆[KR]:
|R|=r′

an,T ,R

 (55)

=

KT∑
r=1

KR∑
r′=0

(r + r′)
∑

T ⊆[KT ]:
|T |=r

∑
R⊆[KR]:
|R|=r′

N∑
n=1

an,T ,R (56)

≥
KT∑
r=1

KR−1∑
r′=0

r + r′

KR − r′
br,r′ . (57)

Now, using the Cauchy-Schwarz inequality, we can write

KR−1∑
r′=0

br,r′ ≤

√√√√KR−1∑
r′=0

r + r′

KR − r′
br,r′

√√√√KR−1∑
r′=0

KR − r′
r + r′

br,r′ . (58)

Summing the above inequality over r yields

KT∑
r=1

KR−1∑
r′=0

br,r′ ≤
KT∑
r=1


√√√√KR−1∑

r′=0

r + r′

KR − r′
br,r′

√√√√KR−1∑
r′=0

KR − r′
r + r′

br,r′

 (59)

≤

√√√√KT∑
r=1

KR−1∑
r′=0

r + r′

KR − r′
br,r′

√√√√KT∑
r=1

KR−1∑
r′=0

KR − r′
r + r′

br,r′ (60)

≤
√

(KTMT +KRMR)F

√√√√KT∑
r=1

KR−1∑
r′=0

KR − r′
r + r′

br,r′ , (61)

where in (60) we have invoked the Cauchy-Schwarz inequality again and (61) follows from (57). On the other hand, we have
KT∑
r=1

KR−1∑
r′=0

br,r′ =

KT∑
r=1

KR−1∑
r′=0

KR∑
j=1

∑
T ⊆[KT ]:
|T |=r

∑
R⊆[KR]:
|R|=r′
j /∈R

N∑
n=1

an,T ,R (62)

=

KT∑
r=1

KR∑
r′=0

KR∑
j=1


 ∑
T ⊆[KT ]:
|T |=r

∑
R⊆[KR]:
|R|=r′

N∑
n=1

an,T ,R

−


∑
T ⊆[KT ]:
|T |=r

∑
R⊆[KR]:
|R|=r′
j∈R

N∑
n=1

an,T ,R



 (63)

= KR

 N∑
n=1

∑
T ⊆∅[KT ]

∑
R⊆[KR]

an,T ,R

− KR∑
j=1

N∑
n=1

∑
T ⊆∅[KT ]

∑
R⊆[KR]:
j∈R

an,T ,R (64)

≥ KR(N −MR)F, (65)

where the inequality is due to (P3-2) and (52). Therefore, we can continue (47) to bound the objective function in (P3-1) as

H̄
(
{Pi}KTi=1, {Qi}KRi=1

)
≥ 1

N

KT∑
r=1

KR−1∑
r′=0

br,r′

r + r′
(66)

≥ 1

KRN

KT∑
r=1

KR−1∑
r′=0

(KR − r′)br,r′
r + r′

(67)

≥ 1

KRNF (KTMT +KRMR)

(
KT∑
r=1

KR−1∑
r′=0

br,r′

)2

(68)
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≥ 1

KRNF (KTMT +KRMR)

(
KR(N −MR)F

)2

(69)

=
KRNF

(
1− MR

N

)2
KTMT +KRMR

, (70)

where (68) and (69) follow from (61) and (65), respectively. This completes the proof.
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