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Abstract—This paper characterizes the secret message capacity
of three networks where two unicast sessions share some of
the communication resources. Each network consists of erasure
channels with state feedback. A passive eavesdropper is assumed
to wiretap any one of the links. The capacity achieving schemes as
well as the outer bounds are formulated as linear programs. The
proposed strategies are then numerically evaluated and shown to
achieve higher rate performances (up to a double single- or sum-
rate) with respect to alternative strategies, where the network
resources are time-shared among the two sessions. These results
represent a step towards the secure capacity characterization for
general networks. They also show that, even in configurations
for which network coding does not offer benefits in absence of
security, it can become beneficial under security constraints.

I. I NTRODUCTION

Secure network coding has well established the benefits
of network coding for secure multicast transmission. We are
here interested in a different type of traffic where we have
two independent unicast sessions and we seek to answer the
following question: what are the benefits that ‘network coding’
type operations offer?

We consider the three networks in Fig. 1, namely the Y-
network, the Reverse Y (RY)-network and the X-network. In
the Y-network two sources (able to generate randomness at
infinite rate) wish to communicate two independent messages
to a common destination, via an intermediate node (unable to
generate randomness). In the RY-network one source (able to
generate randomness at finite rate) aims to communicate two
independent messages to two different receivers, through an
intermediate node (unable to generate randomness). Finally,
in the X-network two sources (able to generate randomness
at infinite rate) seek to communicate two independent mes-
sages to two different receivers, via two intermediate nodes
(unable to generate randomness). In our network model, the
transmissions take place over orthogonal erasure channels;
although this being a simplistic assumption, yet it captures
some intrinsic properties of the wireless medium (such as its
lossy nature). A passive eavesdropper wiretaps any one of the
communication links, but the information about which one
is not available1. Public feedback, which in [1] was shown
to increase the secrecy capacity, is used, i.e., each of the
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1This assumption is equivalent to have one eavesdropper on every link, but
these eavesdroppers do not cooperate among themselves.
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Fig. 1: The Y-network in (a), the RY-network in (b) and the
X-network in (c).

legitimate nodes involved in the communication sends an
acknowledgment after each transmission; this is received by
all nodes in the network as well as by the eavesdropper.

We characterize the secret message capacity for the three
networks in Fig. 1. The capacity-achieving schemes in-
volve two phases: the key-sharing phase and the message-
transmission phase. In particular, first a secret key is created
between two consecutive legitimate nodes (link-by-link key
generation); then, these keys are used to encrypt and transmit
the message like in the one-time pad [2]. For each of the
analyzed networks, the capacity is given as the solution of
a Linear Program (LP). We also show, through numerical
simulations, the benefits of our schemes compared to two
alternative strategies where (a) the two sessions are time-
shared and (b) the shared link is time-shared among the two
sessions. We prove that ‘network coding’ type operations are
beneficial for the three networks in Fig. 1. This is because
random packets transmitted by different sources can be mixed
to create the key to be used on the shared link. Similarly, the
same set of random packets can be used to generate secret
keys for different destinations. This result is surprisingsince,
in absence of security considerations, network coding is not
beneficial for the networks in Fig. 1.
Related Work. The characterization of the secret capacity for
wireless networks is a long-standing open problem. Relevant
work includes [3], where the author derived the secret message
capacity of the wiretap channel without feedback, and [4],
where it was shown that secure network coding is optimal for
wireless networks with error-free and unit capacity channels.
The work presented in this paper follows a line of research
which was pioneered by the authors in [5], where the secret
capacity of the point-to-point channel was characterized and
expressed as the solution of an LP. In particular, the capacity-
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achieving scheme proposed by the authors consists of two
phases, namely the key-sharing and the message-transmission
phases. The same authors extended this approach to char-
acterize the secret capacity of more complex networks, for
example: (i) the parallel channel network where a source
seeks to securely communicate a message to a destination
through a number of independent parallel channels [6], and
(ii) the V-network where two sources, which share a common
randomness, aim to convey the same message to a common
destination [6]. By using a similar approach, in [7] the authors
derived the secret message capacity of the line network when
the eavesdropper wiretaps one channel as well as all the
channels. Recently, in [8] the authors considered a general
network and designed two polynomial-time secure transmis-
sion schemes. Although the two schemes were not proven to
be capacity-achieving, the work in [8] represents an attempt
to characterize the secrecy capacity of an arbitrary network.
Contrary to all these works, where a single unicast session was
considered, here we study the case where two unicast sessions
take place simultaneously and share part of the resources.
Paper Organization. Section II describes the three networks
of interest, namely the Y-, the RY- and the X-network. Sec-
tion III presents our main results, i.e., it characterizes the secret
message capacity and it presents comparisons with alternative
strategies. Finally, Section IV concludes the paper.

II. SYSTEM MODEL AND MAIN RESULTS

Notation. With [n1 : n2] we denote the set of integers from
n1 to n2 ≥ n1. For an index setA we letYA = {Yj : j ∈ A};
A\B is the set of elements that belong toA but not toB. Y i

is a vector of lengthi with components(Y1, . . . , Yi).
We consider the three networks in Fig. 1, namely (i) the

Y-network in Fig. 1(a) where two sourcesS1 and S2 aim to
communicate two independent messagesW1 andW2 to a com-
mon destinationD; (ii) the RY-network in Fig. 1(b) where one
sourceS has a messageW1 for destinationD1 and a message
W2 for destinationD2; both in the Y- and in the RY-network
the communication occurs through an intermediate/relay node
M; finally, we study (iii) the X-network in Fig. 1(c) where
two sourcesS1 andS2 seek to communicate two independent
messagesW1 andW2 to two different destinationsD1 andD2

via two intermediate nodesM1 andM2.
Each communication link is an independent erasure chan-

nel with one legitimate receiver and one possible passive
eavesdropper. In each network, the eavesdropper wiretaps
one channel, which one exactly is not known. The erasure
probabilities are denoted asδj and δjE, with j ∈ [1 : 3] for
the Y- and the RY-network andj ∈ [1 : 5] for the X-network2.

The j-th channel input at time instanti, with i ∈ [1 : n]
(where n is the total number of transmissions), is denoted
as Xji ∈ F

L
q and referred to as a packet. Without loss of

generality, in what follows we letL log (q) = 1, i.e., we
express the rate in terms of packets. Similarly,Yji and Zji

2Index j enumerates the channel, e.g., for the RY-network in Fig. 1(b) the
channels fromS to M, from M to D1 and fromM to D2 are referred to as
channels3, 1 and2, respectively.

denote the outputs at the legitimate receiver and at the passive
eavesdropper, respectively, on channelj at time i.

For the three scenarios in Fig. 1 we assume public state
feedback, i.e., each legitimate node sends an acknowledgment
whether the packet transmission was successful, which is
received by all other nodes as well as by the eavesdropper. We
denote withFji the feedback of the transmission on channel
j at time i. For the X-network in Fig. 1(c) we have3

Pr
{

Y[1:5]i, Z[1:5]i |X[1:5]i

}

=

5
∏

j=1

Pr {Yji |Xji}Pr {Zji |Xji},

Pr {Yji |Xji} =

{

1− δj , Yji = Xji

δj , Yji = ⊥
,

Pr {Zji |Xji} =

{

1− δjE, Zji = Xji

δjE, Zji = ⊥
,

where with⊥ we denote the symbol of erasure.
We assume that the intermediate nodes are unable to gen-

erate private randomness4. For the Y- and the X-network the
sourcesS1 andS2 can generate private randomnessΘ1 andΘ2

at infinite rate. Differently, for the RY-network the sourceS can
generate private randomness at a finite rateD0. The messages
W1 andW2 consist ofN1 andN2 packets, respectively, and
have to be reliably and securely decoded at the legitimate
receiver.

Definition 1. For the X-network in Fig. 1(c) a secure coding
scheme with parameters(N1, N2, n, ǫ) consists of5 encoding
functionsfji, j ∈ [1 : 5] for eachi ∈ [1 : n] such that

Xji =







fji
(

Wj ,Θj, F
i−1
A

)

if j ∈ [1 : 2]

fji
(

Y i−1
1 , Y i−1

2 , F i−1
A

)

if j = 3

fji
(

Y i−1
3 , F i−1

A

)

if j ∈ [4 : 5]

,

where A = [1 : 5], and of 2 decoding functionsφj such
that Dj , j ∈ [1 : 2], can decode the messageWj with
high probability, i.e.,Pr

{

φj

(

Y n
j+3

)

6= Wj

}

< ǫ. Moreover,
the messagesW1 and W2 have to remain secret from the
eavesdropper, i.e.,I (W1,W2;Z

n
k , F

n
A) < ǫ, ∀k ∈ [1 : 5]. A

non-negative rate pair(R1, R2) is securely achievable if, for
anyǫ > 0, there exists a secure coding scheme with parameters
(N1, N2, n, ǫ) such thatRj <

1
n
Nj − ǫ, ∀j ∈ [1 : 2].

The main contribution of this paper is the characterization
of the secret message capacity region (the largest securely
achievable rate pair(R1, R2)) for the three networks in Fig. 1
as described in the next three theorems.

Theorem 1. The secret message capacity region of the Y-
network in Fig. 1(a) with unlimited private randomness at the
sourcesS1 and S2 and no private randomness at the relay

3Although definitions are given only for the X-network, they straightfor-
wardly extend to the Y- and the RY-network.

4 The results here presented readily extend to the case when intermediate
nodes can generate private randomness at finite rate. If intermediate nodes can
generate randomness at infinite rate a naive link-by-link time sharing strategy
would be capacity-achieving.



nodeM, is the feasible region of the following LP,

max g(R1, R2)

s.t. kj ≥ Rj
1−δjE

1−δjδjE
, j ∈ [1 : 2]

k3 ≥ (R1 + R2)
1−δ3E

1−δ3δ3E
Rj

1−δj
+

kj

(1−δj)δjE
≤ 1, j ∈ [1 : 2]

R1+R2

1−δ3
+ k3

(1−δ3)δ3E
≤ 1

k3 ≤
(

k1

δ1E
+ k2

δ2E

)

(1−δ3)δ3E

1−δ3δ3E

Ri, kj ≥ 0, i ∈ [1 : 2], j ∈ [1 : 3],

whereg(R1, R2) can be any linear function of(R1, R2).

Theorem 2. The secret message capacity region of the RY-
network in Fig. 1(b) with limited private randomness of rate
D0 at the sourceS and no private randomness at the relay
nodeM, is the feasible region of the following LP,

max g(R1, R2)

s.t. k3 + e
(1−δ3)δ3E

1−δ3δ3E
≥ (R1 +R2)

1−δ3E
1−δ3δ3E

kj ≥ Rj
1−δjE

1−δjδjE
, j ∈ [1 : 2]

R1+R2

1−δ3
+ k3

(1−δ3)δ3E
+ e

1−δ3
≤ 1

Rj

1−δj
+

kj

(1−δj)δjE
≤ 1, j ∈ [1 : 2]

k3 ≤ (D0 − e) (1−δ3)δ3E

1−δ3δ3E

kj ≤ (e+ k3

δ3E
)
(1−δj)δjE

1−δjδjE
, j ∈ [1 : 2]

Ri, e, kj ≥ 0, i ∈ [1 : 2], j ∈ [1 : 3],

whereg(R1, R2) can be any linear function of(R1, R2).

Theorem 3. The secret message capacity region of the X-
network in Fig. 1(c) with unlimited private randomness at the
sourcesS1 and S2 and no private randomness at the relay
nodesM1 andM2, is the feasible region of the following LP,

max g(R1, R2)

s.t. kj ≥ Rj
1−δjE

1−δjδjE
, j ∈ [1 : 2]

k3 + e
(1−δ3)δ3E

1−δ3δ3E
≥ (R1 +R2)

1−δ3E
1−δ3δ3E

kj ≥ Rj−3
1−δjE

1−δjδjE
, j ∈ [4 : 5]

Rj

1−δj
+

kj

(1−δj)δjE
≤ 1, j ∈ [1 : 2]

Rj−3

1−δj
+

kj

(1−δj)δjE
≤ 1, j ∈ [4 : 5]

R1+R2

1−δ3
+ k3

(1−δ3)δ3E
+ e

1−δ3
≤ 1

k3 ≤ ( k1

δ1E
+ k2

δ2E
− e) (1−δ3)δ3E

1−δ3δ3E

kj ≤ (e+ k3

δ3E
)
(1−δj)δjE

1−δjδjE
, j ∈ [4 : 5]

Ri, e, kj ≥ 0, i ∈ [1 : 2], j ∈ [1 : 5],

whereg(R1, R2) can be any linear function of(R1, R2).

III. SECURE CAPACITY CHARACTERIZATION

We here describe the secure coding schemes5 and the outer
bounds and formulate them as LPs. We then show through
numerical evaluations the benefits (in terms of achievable
secure rate) of our scheme with respect to two naive strategies:
(i) path sharing, i.e., the whole communication resources are

5 Schemes consider the expected number of transmissions needed. Similar
to [5], it can be shown that the number of transmissions needed concentrates
exponentially fast around the average enabling to achieve expected rate values.

time-shared among the two sessions and (ii)link sharing, i.e.,
the shared link is time-shared among the two sessions.

A. Achievability

Our secure coding schemes for the networks in Fig. 1 con-
sist of two phases, namely the key-sharing and the message-
transmission. In what follows we describe these two phases
and explain how these relate to the LPs in Theorems 1-3.

1) The Y-network:On channelj ∈ [1 : 2], sourceSj
sends kj

(1−δj)δjE
independent random packets generated from

her private randomness (assumed to be infinite). Out of these,
a total of kj packets are received by the relay nodeM, but
not by the possible eavesdropper. We do not know exactly
which packets, out of thekj

δjE
ones received byM, are also

received by the possible eavesdropper. However, out of the
packets received byM, we can always createkj independent
packets, which are also independent of the packets received
by the possible eavesdropper. We do this by multiplying the
kj

δjE
packets ofM by an MDS code matrix of dimension

[

kj

δjE

]

× [kj ]. Thus, without loss of generality, we can assume
that we always know which packets are received by the
legitimate node and not by the possible eavesdropper, if we
know their amount [7]. All these packets are used to generate
a secret keyon channelj ∈ [1 : 2] between nodesSj and
M (key-sharingphase). These packets are then expanded by
means of an MDS code matrix of size[kj ]×[Rj ] and used as in
the one-time pad [2] to encryptRj message packets, which are
sent using the ARQ protocol (message-transmissionphase).

At the intermediate nodeM (assumed to be unable to
generate any randomness) there are

(

k1

δ1E

)

+
(

k2

δ2E

)

available
random packets (received fromS1 andS2 on channels1 and2,
respectively). By means of an MDS code these random packets
are first expanded by a factor 1

1−δ3δ3E
and then only k3

(1−δ3)δ3E

of them are sent to nodeD. With this, the number of random
packets received byD, but not by the possible eavesdropper
is k3. These random packets are used to generate asecret key
on channel3 between nodesM and D (key-sharingphase).
Similar to channels1 and2, also for channel3 we expand these
k3 packets by means of an MDS code matrix of dimension
[k3] × [R1 +R2] and then we use them to encryptR1 + R2

message packets as in the one-time pad [2]. These message
packets are finally transmitted by using the ARQ protocol
(message-transmissionphase).

The scheme described above is equivalent to the LP in
Theorem 1, where the variablesRi andkj , with i ∈ [1 : 2] and
j ∈ [1 : 3], represent the message rate for the pairSi −D and
the key created on channelj, respectively. In particular: (i) the
first andsecondinequalities are security constraints, i.e., they
ensure that the key that is generated is greater than the key
which is consumed6; (ii) the third and fourth inequalities are
time constraints, i.e., the length of the key generation phase

6Since the encrypted packets are sent by using the ARQ protocol, the key
consumed on channelj ∈ [1 : 3] (i.e., the number of packets received by the
possible eavesdropper on that channel) isRj

1−δjE
1−δjδjE

, with R3 = R1 +R2.



plus the length of the message sending phase cannot exceed
the total available time; (iii) thefifth inequality follows since
nodeM has zero randomness and so the key that it can create
is constrained by the randomness received fromS1 andS2.

2) The RY-network:In [7], the authors showed that, in a
line network where a node has limited randomness and the
next node can generate randomness based on the one received
from the previous node(s), a combination of ARQ and MDS
coding is needed for optimally generating the key. Following
this, on channel3 of the RY-network, the sourceS transmits
e independent random packets using the ARQ protocol. These
packets are all received by the relay nodeM, while the possible
eavesdropper receives a fraction1−δ3E

1−δ3δ3E
of them. By means

of an MDS code, the remaining(D0 − e) random packets at
the sourceS are expanded by a factor 1

1−δ3δ3E
and then only

k3

(1−δ3)δ3E
of them are sent to nodeM. Thus, the total number

of packets received by the intermediate nodeM, but not by
the possible eavesdropper isk3+e

(1−δ3)δ3E

1−δ3δ3E
. Similar to the Y-

network, from thee+ k3

δ3E
independent random packets received

by M, we generatek3 + e
(1−δ3)δ3E

1−δ3δ3E
packets. All these packets

are used to generate asecret keyon channel3 between nodesS
andM (key-sharingphase). They are then expanded by means
of an MDS code matrix of size

[

k3 + e
(1−δ3)δ3E

1−δ3δ3E

]

× [R1 +R2]

and used as in the one-time pad [2] to encryptR1+R2 message
packets, which are sent using the ARQ protocol (message-
transmissionphase).

At the relay nodeM (assumed unable to generate any
randomness) there are

(

k3

δ3E
+ e
)

available random packets
(received fromS on channel3). By means of an MDS code
these random packets∀j ∈ [1 : 2] are first expanded by a
factor 1

1−δjδjE
and then only kj

(1−δj)δjE
of them are sent to node

Dj on channelj. With this, the number of random packets
received byDj , but not by the possible eavesdropper iskj .
These packets are used to generate asecret keyon channel
j between nodesM and Dj (key-sharingphase). Thesekj
packets are then expanded by means of an MDS code matrix of
dimension[kj ]×[Rj ] and used to encryptRj message packets
as in the one-time pad [2]. These message packets are finally
transmitted using ARQ (message-transmissionphase).

Similar to the Y-network, also for the RY-network the
secure transmission strategy above is equivalent to the LP in
Theorem 2. The variablesRi, kj and e, with i ∈ [1 : 2] and
j ∈ [1 : 3], represent the message rate for the pairS − Di,
the key created on channelj, and the extra randomness (in
addition to the one sent for generating the keyk3) sent from
the sourceS, respectively. In particular: (i) thefirst andsecond
inequalities are security constraints; (ii) thethird and thefourth
inequalities are time constraints; (iii) thefifth (respectively,
sixth) inequality is due to the fact that the key that node
S (respectively,M) can create is constrained by its limited
randomness (respectively, the randomness that it gets fromS).

3) The X-network:The secure transmission strategy here
proposed for the X-network in Fig. 1(c) consists of a mix
of the two schemes designed for the Y- and the RY-network.
In particular, on channels1 and 2 we use exactly the same

operations used on channels1 and2 of the Y-network, while
on channels3-5 the same strategy proposed for the RY-network
applies, with the small difference that the available finite
randomness at nodeS of the RY-network (nodeM1 in the
X-network) is now replaced byD0 =

(

k1

δ1E

)

+
(

k2

δ2E

)

.

B. Converse

We here highlight the main steps to derive an outer bound on
the secure capacity for the networks in Fig. 1 and to formulate
it as an LP; the complete proof can be found in the Appendix.
Step 1.We prove and make use of the following lemma (see
Appendix A for the details), which is a generalization of those
in [7] for the line network.

Lemma 4. For any j ∈ A, we have

(1− δj) δjE

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j ,WB, F

n
A\j

)

−

(1− δjE)

n
∑

i=1

I
(

Y i−1
j , F i−1

j ;Xji | Z
i−1
j , F i−1

j ,WB, F
n
A\j

)

= H
(

Y n
j | WB, F

n
A, Z

n
j

)

, (1a)

(1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , F i−1

j ,WB, F
n
A\j

)

= H
(

Y n
j | WB, F

n
A

)

, (1b)
n
∑

i=1

I
(

WB;Xji | F
n
A\j , Z

i−1
j , F i−1

j

)

<
ǫ

1− δjE
, (1c)

n
∑

i=1

I
(

WB;Xji | Y
i−1
j , Zi−1

j , F i−1
j , Fn

A\j

)

≥
nRj

1−δjEδj
, (1d)

where: (i) for the Y-networkA = [1 : 3], B = {j}, W3 =
W[1:2] andR3 = R1+R2; (ii) for the RY-networkA = [1 : 3],
B = [1 : 2] andR3 = R1 + R2; (iii) for the X-networkA =
[1 : 5], B = {j}, W3 = W4 = W5 = W[1:2], R3 = R1 + R2,
R4 = R1 and R5 = R2. Moreover, for nodeD in the Y-
network we have

nR3≤(1−δ3)
n
∑

i=1

I
(

W1,W2;X3i | F
n
A\3, Y

i−1
3 , F i−1

3

)

, (1e)

for nodeDj , j ∈ [1 : 2] in the RY-network, we have

nRj≤(1−δj)

n
∑

i=1

I
(

Wj ;Xji | F
n
A\j , Y

i−1
j , F i−1

j

)

, (1f)

and for nodeDj , j ∈ [1 : 2] in the X-network, we have

nRj≤(1−δj+3)

n
∑

i=1

I
(

Wj ;Xj+3i |F
n
A\j+3, Y

i−1
j+3 , F

i−1
j+3

)

.

(1g)

Step 2.We use the correspondences between the terms in (2) at
the top of the next page with: (i)A=[1 : 3], κ=3, λ∈ [1 : 2]
andW3 = W[1:2] for the Y-network; (ii)A = [1 : 3], j = 3,
κ ∈ [1 : 2], B = [1 : 2], W3 =W[1:2] and e3 = e for the RY-
network; (iii) A=[1 : 5], j=3, λ∈ [1 : 2], κ∈ [4 : 5], B={j},
W3=W4=W5=W[1:2] ande3=e for the X-network. All the



nkj ↔
δjE(1− δj)

δj(1− δjE)

(

(1− δjδjE)
n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j ,WB, F

n
A\j

)

−H
(

Y n
j |WB, F

n
A

)

)

, (2a)

nej ↔
1− δjδjE

δj(1 − δjE)

(

H
(

Y n
j |WB, F

n
A

)

− (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , Fn
A\j , F

i−1
j ,WB

)

)

, (2b)

nkκ ↔ δκE (1− δκ)

n
∑

i=1

H
(

Xκi | Y
i−1
κ , Zi−1

κ , F i−1
κ ,W1,W2, F

n
A\κ

)

, (2c)

nkλ ↔ δλE (1− δλ)
n
∑

i=1

H
(

Xλi | Y
i−1
λ , F i−1

λ ,Wλ, F
n
A\λ

)

. (2d)
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(a) Y-network:(δ1, δ1E)=(0.2, 0.05), (δ2, δ2E)=
(0.3, 0.05), (δ3, δ3E)=(0.25, 0.05).
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(b) RY-network: (δ1, δ1E) = (0.1, 0.1),
(δ2, δ2E) = (0.2, 0.05), (δ3, δ3E) = (0.3, 0.15),
D0=0.4.
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(c) X-network: (δ1, δ1E)=(0.1, 0.1), (δ2, δ2E)=
(0.2, 0.05), (δ3, δ3E) = (0.3, 0.15), (δ4, δ4E) =
(0.4, 0.35), (δ5, δ5E)=(0.5, 0.2).

Fig. 2: Numerical evaluations for the three networks in Fig.1.

quantities in (2) are non-negative (see Appendix B-D for the
details).
Step 3. By using the correspondences in (2), Lemma 4 and
information theoretic properties we derive an outer bound on
the secure capacity (see Appendices B-D for the details). Each
constraint in the LPs in Theorems 1-3 is proved to match an
outer bound.

C. Numerical Evaluations

We here compare the secrecy capacity performance of our
schemes in Theorems 1-3 with respect to two naive strategies,
i.e., thepath sharingand thelink sharing. In thepath sharing
the whole communication resources, at each time instant, are
used only by one session; for example, for the X-network we
have a time-sharing betweenS1-M1-M2-D1 and S2-M1-M2-
D2. Differently, in the link sharing strategy only the shared
communication link is time-shared among the two unicast
sessions; for example, in the X-network only theM1-M2 link
is time-shared. For both these strategies we do not allow
the source node that does not participate to act as a source
of randomness, e.g., for the X-network the random packets
sent byS1 cannot be used to encrypt the message packets of
S2. Fig. 2 shows the performance (in terms of secrecy capacity
region) of these two time-sharing strategies and of our schemes
in Theorems 1-3. From Fig. 2 we observe that our schemes in
Theorems 1-3 (solid line) achieve higher rates compared to the
two time-sharing strategies. Large rate gains are attainedwhen,
for each channel, the eavesdropper receives almost everything
and the legitimate node receives almost no information. Under

these channel conditions, for the Y-network the individualrates
are double than those achieved by the link-sharing strategy; for
the RY- and X-network the sum-rate is twice than that of the
link-sharing scheme. In general, these gains follow since:(i)
in the Y-networkS1 and S2 transmit random packets toM
and these can be mixed to create a key on the shared link;
(ii) in the RY-network the same set of random packets can
be used to generate keys for both theM-D1 andM-D2 links.
These factors decrease the number of random packets required
to be sent from the source(s) and implies that more message
packets can be carried. Finally, (iii) in the X-network we have
the benefits of both the Y- and RY-network.

IV. CONCLUSIONS

We characterized the secret capacity for networks where
two unicast sessions share one communication link. This was
attained by designing schemes and by deriving outer bounds
which were formulated as LPs. Through numerical evaluations
we showed that our transmission strategies achieve higher rates
compared to schemes where the communication resources are
time-shared among the two sessions. These results show that,
even in network configurations for which network coding
does not offer benefits in absence of security, it can become
beneficial under security constraints.

APPENDIX A
PROOF OFLEMMA 4

We here prove the result in Lemma 4. We start by analyzing
the Y-network. We have,∀j ∈ A = [1 : 3] and withW3 =



W[1:2],

H
(

Y n
j |Wj , F

n
A, Z

n
j

)

= H
(

Y n
j , Fn

j |Wj , F
n
A, Z

n
j

)

(a)
= H

(

Y n−1
j , Fn−1

j |Wj , F
n
A, Z

n
j

)

+H
(

Yjn, Fjn|Wj , F
n
A, Z

n
j , Y

n−1
j

)

(b)
= H

(

Y n−1
j , Fn−1

j |Wj , F
n
A\j , Z

n−1
j , Fn−1

j

)

− I
(

Y n−1
j , Fn−1

j ;Zjn, Fjn|Wj , F
n
A\j , Z

n−1
j , Fn−1

j

)

+H
(

Yjn|Wj , F
n
A, Z

n
j , Y

n−1
j

)

(c)
= H

(

Y n−1
j , Fn−1

j |Wj , F
n
A\j , Z

n−1
j , Fn−1

j

)

− I
(

Y n−1
j , Fn−1

j ;Zjn|Wj , F
n
A\j , Z

n−1
j , Fn−1

j , Fjn

)

+H
(

Yjn|Wj , F
n
A, Z

n
j , Y

n−1
j

)

= H
(

Y n−1
j , Fn−1

j |Wj , F
n
A\j , Z

n−1
j , Fn−1

j

)

− (1− δjE) I
(

Y n−1
j , Fn−1

j ;Xjn|Wj , F
n
A\j , Z

n−1
j , Fn−1

j

)

+ (1− δj) δjEH
(

Xjn|Wj , F
n
A\j , F

n−1
j , Zn−1

j , Y n−1
j

)

,

where: (i) the equality in(a) follows from the chain rule
of the entropy; (ii) the equality in(b) is due to the defini-
tion of mutual information; (iii) finally, the equality in(c)
is becauseFjn is independent of the rest of the random
variables. By recursively proceeding in the same way for
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)

, we get the result
in (1a). We now prove (1b) which is similar to (1a).

We have,∀j ∈ A = [1 : 3] and withW3 = W[1:2],
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where: (i) the equality in(a) follows from the chain rule
of the entropy; (ii) the equality in(b) is due to the defini-
tion of mutual information; (iii) finally, the equality in(c)
is becauseFjn is independent of the rest of the random
variables. By recursively proceeding in the same way for
H
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)

, we get the result in (1b).

By means of similar steps, it is not difficult to prove the
result in (1a) and (1b) for the RY- and X-network.

We have,∀j ∈ A = [1 : 3] and withW3 = W[1:2],
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where: (i) the inequality in(a) is due to the security con-
straints; (ii) the equality in(b) follows from the independence
of Wj on Fn

A\j ; (iii) the equality in (c) is due to the chain
rule of the mutual information; (iv) finally, the equality in(d)
is due to the independence ofWj onFji. This proves (1c) for
the Y-network. By means of similar steps, it is not difficult to
prove the result in (1c) for the RY- and X-network.

We then have,∀j ∈ A = [1 : 3], with W3 = W[1:2] and
R3 = R1 + R2,
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where: (i) the inequality in(a) is due to the Fano’s inequality;
(ii) the inequality in(b) follows from the Markov chainWj−
Y n
j , Fn

A − Y n
3 for j ∈ [1 : 2]; (iii) the equality in (c) is due

to the chain rule of the mutual information; (iv) the inequality
in (d) is because the mutual information is a non-negative
quantity; (v) the equality in(e) follows from the independence
of Wj andFn

A\j ; (vi) the equality in(f) is due to the chain
rule of the mutual information; (vii) finally, the equality in (g)
follows from the independence ofWj onFji. This proves (1d)
for the Y-network. By means of similar steps, it is not difficult
to prove the result in (1d) for the RY- and X-network.

Finally, for nodeD in the Y-network we have
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where: (i) the inequality in(a) is due to the Fano’s inequality;
(ii) the equality in(b) follows from the independence of the
pair (W1,W2) on Fn

A\3; (iii) the equality in (c) is due to the
chain rule of the mutual information; (iv) finally, the equality
in (d) follows from the independence of the pair(W1,W2) on
F3i. This proves (1e) for the Y-network. By means of similar
steps, it is not difficult to prove the results in (1f) and in (1g)
for the RY- and X-network, respectively.

APPENDIX B
PROOF OF THE CONVERSE OFTHEOREM 1

For the Y-network, in (2) we setA = [1 : 3], κ = 3 and
λ ∈ [1 : 2]. We use (2c) and (2d) for proving the converse of
Theorem 1. The RHS of these two expressions is positive as
the entropy of a discrete random variable is positive.
First constraint. From (2d) we have
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where: (i) the inequality in(a) follows since the entropy of
a discrete random variable is positive; (ii) the equality in(b)
is due to (1a) in Lemma 4; (iii) the equality in(c) is due
to the definition of mutual information; (iv) the equality in
(d) follows from the definition of mutual information; (v)
the inequality in(e) follows from the ‘conditioning reduces
the entropy’ principle; (vi) the equality in(f) is due to the
definition of mutual information; (vii) finally, the inequality
in (g) follows by means of (1c) and (1d) in Lemma 4.
Second constraint.From (2c) withW[1:2] = W3 , we have
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where: (i) the inequality in(a) follows since the entropy of
a discrete random variable is positive; (ii) the equality in(b)
is due to (1a) in Lemma 4; (iii) the equality in(c) is due
to the definition of mutual information; (iv) the equality in
(d) follows from the definition of mutual information; (v)
the inequality in(e) follows from the ‘conditioning reduces
the entropy’ principle; (vi) the equality in(f) is due to the
definition of mutual information; (vii) finally, the inequality
in (g) follows by means of (1c) and (1d) in Lemma 4 with
R3 = R1 +R2.
Third constraint. From (2d) we get
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Using this and Fano’s inequality withλ ∈ [1 : 2] we have
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3 , ∀λ ∈ [1 : 2]; (ii) the equality
in (b) follows because of the independence betweenFn

A and
Wλ; (iii) the equality in (c) follows from the definition of
mutual information; (iv) finally, the inequality in(d) follows
since nodeM receives at mostn (1− δλ) packets on channel
λ ∈ [1 : 2].
Fourth constraint. From (1e) in Lemma 4 we have
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where: (i) the equality in(a) follows from the definition of
mutual information; (ii) the inequality in(b) is due to the
fact thatH (X3i) ≤ 1; (iii) the inequality in (c) is due to the
‘conditioning reduces the entropy’ principle; (iv) finally, the
equality in (d) follows from (2c).
Fifth constraint. From (1b) and (2d) we have
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(

Y n
1 , Y n

2 ;Y n
3 , Zn

3 |W[1,2], F
n
A

) (1 − δ3)δ3E

1− δ3δ3E

(d)
=

(1− δ3)δ3E

1− δ3δ3E
·

n
∑

i=1

I
(

Y n
1 , Y n

2 ;Y3i, Z3i | W[1,2], F
n
A, Y

i−1
3 , Zi−1

3

)

= (1− δ3)δ3E·
n
∑

i=1

I
(

Y n
1 , Y n

2 ;X3i | W[1,2], F
n
A\3, Y

i−1
3 , F i−1

3 , Zi−1
3 , Fn

3i

)

(e)
= (1− δ3)δ3E·
n
∑

i=1

H
(

X3i | W[1,2], F
n
A\3, Y

i−1
3 , F i−1

3 , Zi−1
3 , Fn

3i

)

(f)
= (1−δ3)δ3E

n
∑

i=1

H
(

X3i | W[1,2], F
n
A\3, Y

i−1
3 , F i−1

3 , Zi−1
3

)

(g)
= nk3,

where: (i) the inequality in(a) is due to the ‘conditioning
reduces the entropy’ principle; (ii) the inequality in(b) follows
since H (X,Y ) ≤ H(X) + H(Y ); (iii) the inequality in
(c) follows since the entropy of a discrete random variable
is a positive quantity; (iv) the equality in(d) is due to the
chain rule of the mutual information; (v) the equality in(e)
follows since nodeM does not have any randomness and
so X3i is uniquely determined by knowing(Y n

1 , Y n
2 , Fn

A);
(vi) the equality in (f) is due to the Markov chainX3i −



W1,W2, F
n
A\3, Y

i−1
3 , F i−1

3 , Zi−1
3 −Fn

3i; (vii) finally, the equal-
ity in (g) follows from (2c).

APPENDIX C
PROOF OF THE CONVERSE OFTHEOREM 2

For the RY-network, in (2) we setA = [1 : 3], j = 3,
κ ∈ [1 : 2], B = [1 : 2] ande3 = e. We start by proving that the
Righ-Hand Side (RHS) of the quantities in (2) is positive. We
use (2a), (2b) and (2c) for proving the converse of Theorem 2.
The RHS of (2c) is positive as the entropy of a discrete random
variable is positive. For the RHS of (2a), we have

(1− δ3δ3E)
n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , F i−1
3 ,W[1:2], F

n
A\3

)

−H
(

Y n
3 |W[1:2], F

n
A

)

(a)
=

n
∑

i=1

H
(

Y3i, Z3i | Y
i−1
3 , Zi−1

3 , Fn
3 ,W[1:2], F

n
A\3

)

−H
(

Y n
3 |W[1:2], F

n
A

)

(b)
= H

(

Y n
3 , Zn

3 | Fn
3 ,W[1:2], F

n
A\3

)

−H
(

Y n
3 |W[1:2], F

n
A

)

= H
(

Y n
3 , Zn

3 | W[1:2], F
n
A

)

−H
(

Y n
3 |W[1:2], F

n
A

)

≥ 0,

where: (i) the equality in(a) follows because givenF3i, the
pair (Y3i, Z3i) is equal toX3i with probability (1− δ3δ3E)
and null otherwise and because of the Markov chainX3i −
W[1:2], F

n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3 −Fn

3i; (ii) finally, the equality
in (b) is due to the chain rule of entropy.

For the RHS of (2b), we have

H
(

Y n
3 |W[1:2], F

n
A

)

− (1− δ3)

n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , Fn
A\3, F

i−1
3 ,W[1:2]

)

(a)
=

n
∑

i=1

H
(

Y3i|W[1:2], F
n
A, Y

i−1
3

)

− (1− δ3)
n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , Fn
A\3, F

i−1
3 ,W[1:2]

)

(b)

≥

n
∑

i=1

H
(

Y3i|W[1:2], F
n
A, Y

i−1
3 , Zi−1

3

)

− (1− δ3)

n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , Fn
A\3, F

i−1
3 ,W[1:2]

)

=(1−δ3)

[

n
∑

i=1

H
(

X3i|W[1:2], F
n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3 , Fn

3i

)

−

n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , Fn
A\3, F

i−1
3 ,W[1:2]

)

]

(c)
= (1− δ3)

[

n
∑

i=1

H
(

X3i|W[1:2], F
n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3

)

−

n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , Fn
A\3, F

i−1
3 ,W[1:2]

)

]

= 0,

where: (i) the equality in(a) follows from the chain rule
of the entropy; (ii) the inequality in(b) is due to the
conditioning reduces the entropy principle; (iii) finally,the
equality in (c) follows because of the Markov chainX3i −
W[1:2], F

n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3 − Fn

3i.
First constraints. From (2a) and (2b) we have

nk3 + ne
(1− δ3)δ3E

1− δ3δ3E

= δ3E (1− δ3)

n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , F i−1
3 ,W[1:2], F

n
A\3

)

(a)

≥ δ3E (1−δ3)

n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , F i−1
3 ,W[1:2], F

n
A\3

)

−H
(

Y n
3 | W[1:2], F

n
A, Z

n
3

)

(b)
= (1− δ3E) ·
n
∑

i=1

I
(

Y i−1
3 , F i−1

3 ;X3i | Z
i−1
3 , F i−1

3 ,W[1:2], F
n
A\3

)

(c)
= (1− δ3E)

[

n
∑

i=1

H
(

X3i | Z
i−1
3 , F i−1

3 ,W[1:2], F
n
A\3

)

−

n
∑

i=1

H
(

X3i | Z
i−1
3 , F i−1

3 ,W[1:2], F
n
A\3, Y

i−1
3

)

]

(d)
= (1− δ3E)

[

n
∑

i=1

H
(

X3i | Z
i−1
3 , F i−1

3 , Fn
A\3

)

−

n
∑

i=1

I
(

X3i;W[1:2]|Z
i−1
3 , F i−1

3 , Fn
A\3

)

−
n
∑

i=1

H
(

X3i | Z
i−1
3 , F i−1

3 ,W[1:2], F
n
A\3, Y

i−1
3

)

]

(e)

≥ (1− δ3E)

[

n
∑

i=1

H
(

X3i | Y
i−1
3 , Zi−1

3 , F i−1
3 , Fn

A\3

)

−

n
∑

i=1

I
(

X3i;W[1:2]|Z
i−1
3 , F i−1

3 , Fn
A\3

)

−

n
∑

i=1

H
(

X3i | Z
i−1
3 , F i−1

3 ,W[1:2], F
n
A\3, Y

i−1
3

)

]

(f)
= (1− δ3E)

[

n
∑

i=1

I
(

X3i;W[1:2] | Y
i−1
3 , Zi−1

3 , F i−1
3 , Fn

A\3

)

−
n
∑

i=1

I
(

X3i;W[1:2]|Z
i−1
3 , F i−1

3 , Fn
A\3

)

]

(g)

≥ n(R1 +R2)
1− δ3E

1− δ3Eδ3
− ǫ,

where: (i) the inequality in(a) follows since the entropy of
a discrete random variable is positive; (ii) the equality in(b)
is due to (1a) in Lemma 4; (iii) the equality in(c) is due
to the definition of mutual information; (iv) the equality in
(d) follows from the definition of mutual information; (v)
the inequality in(e) follows from the ‘conditioning reduces



the entropy’ principle; (vi) the equality in(f) is due to the
definition of mutual information; (vii) finally, the inequality
in (g) follows by means of (1c) and (1d) in Lemma 4.
Second constraints.From (2c) we have

nkκ

= δκE (1−δκ)

n
∑

i=1

H
(

Xκi | Y
i−1
κ , Zi−1

κ , F i−1
κ ,W[1:2], F

n
A\κ

)

(a)

≥ δκE (1−δκ)

n
∑

i=1

H
(

Xκi | Y
i−1
κ , Zi−1

κ , F i−1
κ ,W[1:2], F

n
A\κ

)

−H
(

Y n
κ | W[1:2], F

n
A, Z

n
κ

)

(b)
= (1− δκE)
n
∑

i=1

I
(

Y i−1
κ , F i−1

κ ;Xκi | Z
i−1
κ , F i−1

κ ,W[1:2], F
n
A\κ

)

(c)
= (1− δκE)

[

n
∑

i=1

H
(

Xκi | Z
i−1
κ , F i−1

κ ,W[1:2], F
n
A\κ

)

−

n
∑

i=1

H
(

Xκi | Z
i−1
κ , F i−1

κ ,W[1:2], F
n
A\κ, Y

i−1
κ

)

]

(d)
= (1− δκE)

[

n
∑

i=1

H
(

Xκi | Z
i−1
κ , F i−1

κ , Fn
A\κ

)

−
n
∑

i=1

I
(

Xκi;W[1:2]|Z
i−1
κ , F i−1

κ , Fn
A\κ

)

−

n
∑

i=1

H
(

Xκi | Z
i−1
κ , F i−1

κ ,W[1:2], F
n
A\κ, Y

i−1
κ

)

]

(e)

≥ (1− δκE)

[

n
∑

i=1

H
(

Xκi | Y
i−1
κ , Zi−1

κ , F i−1
κ , Fn

A\κ

)

−

n
∑

i=1

I
(

Xκi;W[1:2]|Z
i−1
κ , F i−1

κ , Fn
A\κ

)

−

n
∑

i=1

H
(

Xκi | Z
i−1
κ , F i−1

κ ,W[1:2], F
n
A\κ, Y

i−1
κ

)

]

(f)
= (1− δκE)

[

n
∑

i=1

I
(

Xκi;W[1:2] | Y
i−1
κ , Zi−1

κ , F i−1
κ , Fn

A\κ

)

−

n
∑

i=1

I
(

Xκi;W[1:2]|Z
i−1
κ , F i−1

κ , Fn
A\κ

)

]

(g)

≥ nRκ

1− δκE

1− δκEδκ
− ǫ,

where: (i) the inequality in(a) follows since the entropy of
a discrete random variable is positive; (ii) the equality in(b)
is due to (1a) in Lemma 4; (iii) the equality in(c) is due
to the definition of mutual information; (iv) the equality in
(d) follows from the definition of mutual information; (v)
the inequality in(e) follows from the ‘conditioning reduces
the entropy’ principle; (vi) the equality in(f) is due to the
definition of mutual information; (vii) finally, the inequality in
(g) follows by means by means of (1c) and (1d) in Lemma 4.

Third constraint. From (2a) and (2b) we getne + nk3

δ3E

= H
(

Y n
3 |W[1:2], F

n
A

)

. Now, with this and by using Fano’s
inequality (keeping in mind that the messages are independent)
we have

n (R1 +R2) + ne+
nk3

δ3E

≤ I
(

W[1:2];Y
n
1 , Y n

2 , Fn
A

)

+H
(

Y n
3 |W[1:2], F

n
A

)

+ nǫ

(a)

≤ I
(

W[1:2];Y
n
3 , Fn

A

)

+H
(

Y n
3 |W[1:2], F

n
A

)

+ nǫ

(b)
= I

(

W[1:2];Y
n
3 | Fn

A

)

+H
(

Y n
3 |W[1:2], F

n
A

)

+ nǫ

(c)
= H (Y n

3 | Fn
A) + nǫ

(d)

≤ n (1− δ3) + nǫ,

where: (i) the inequality in(a) follows because of the Markov
chainW[1:2]−Y n

3 , Fn
A−Y n

1 , Y n
2 ; (ii) the equality in(b) follows

because of the independence betweenFn
A and(W1,W2); (iii)

the equality in (c) follows from the definition of mutual
information; (iv) finally, the inequality in(d) follows since
nodeM receives at mostn (1− δ3) packets.
Fourth constraint. From (1f) in Lemma 4 we have

nRκ ≤ (1− δκ)

n
∑

i=1

I
(

Wκ;Xκi | F
n
A\κ, Y

i−1
κ , F i−1

κ

)

(a)
= (1− δκ)

[

n
∑

i=1

H
(

Xκi | F
n
A\κ, Y

i−1
κ , F i−1

κ

)

−
n
∑

i=1

H
(

Xκi | F
n
A\κ, Y

i−1
κ , F i−1

κ ,Wκ

)

]

(b)

≤ (1− δκ)n

− (1− δκ)

n
∑

i=1

H
(

Xκi | F
n
A\κ, Y

i−1
κ , F i−1

κ ,Wκ

)

(c)

≤ (1− δκ)n

− (1− δκ)

n
∑

i=1

H
(

Xκi | F
n
A\κ, Y

i−1
κ , F i−1

κ ,W[1:2], Z
i−1
κ

)

(d)
= (1− δκ)n−

kκ

δκE
n,

where: (i) the equality in(a) follows from the definition of
mutual information; (ii) the inequality in(b) is due to the
fact thatH (Xκi) ≤ 1; (iii) the inequality in (c) is due to the
‘conditioning reduces the entropy’ principle; (iv) finally, the
equality in (d) follows from (2c).
Fifth constraint. The nodeS has a discrete source of random-
nessU0 such that

nD0 = H (U0)

(a)
= H

(

U0 | W[1:2], F
n
A\3

)

(b)

≥ I
(

U0;Y
n
3 , Zn

3 , F
n
3 | W[1:2], F

n
A\3

)



(c)
=

n
∑

i=1

I
(

U0;Y3i, Z3i, F3i | W[1:2], F
n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3

)

(d)
=

n
∑

i=1

I
(

U0;Y3i, Z3i | W[1:2], F
n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3 , F3i

)

= (1− δ3Eδ3) ·
n
∑

i=1

I
(

U0;X3i | W[1:2], F
n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3

)

(e)
= (1−δ3Eδ3)

n
∑

i=1

H
(

X3i | W[1:2], F
n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3

)

(f)
=

1− δ3Eδ3

δ3E (1− δ3)

(

nk3 + ne
(1− δ3)δ3E

1− δ3δ3E

)

=
1− δ3Eδ3

δ3E (1− δ3)
nk3 + ne,

where: (i) the equality in(a) is due to independence ofU0

on the rest of the random variables; (ii) the inequality in
(b) follows since the entropy of a discrete random variable
is positive; (iii) the equality in(c) is due to the chain rule
of the mutual information; (iv) the equality in(d) follows
because of the independence betweenF3i and U0; (v) the
equality in (e) follows becauseX3i is uniquely determined
given

(

U0,W1,W2, F
i−1
A

)

; (vi) finally, the equality in (f)
follows from (2a) and (2b).
Sixth constraint. From (2a) and (2b) we have

n

(

e+
k3

δ3E

)

(1− δκ)δκE

1− δκδκE

=
(1− δκ)δκE

1− δκδκE
H
(

Y n
3 |W[1:2], F

n
A

)

(a)

≥
(1− δκ)δκE

1− δκδκE
I
(

Y n
3 ;Zn

κ , Y
n
κ |W[1:2], F

n
A

)

(b)
=

(1− δκ)δκE

1− δκδκE

n
∑

i=1

I
(

Y n
3 ;Zκi, Yκi|W[1:2], F

n
A, Z

i−1
κ , Y i−1

κ

)

=
(1− δκ)δκE

1− δκδκE
(1− δκEδκ) ·

n
∑

i=1

I
(

Y n
3 ;Xκi|W[1:2], F

n
A\κ, Z

i−1
κ , Y i−1

κ , F i−1
κ , Fn

κi

)

(c)
=

(1− δκ)δκE

1− δκδκE
(1− δκEδκ) ·

n
∑

i=1

H
(

Xκi|W[1:2], F
n
A\κ, Z

i−1
κ , Y i−1

κ , F i−1
κ , Fn

κi

)

(d)
=

(1− δκ)δκE

1− δκδκE
(1− δκEδκ) ·

n
∑

i=1

H
(

Xκi|W[1:2], F
n
A\κ, Z

i−1
κ , Y i−1

κ , F i−1
κ

)

(e)
= nkκ,

where: (i) the inequality in(a) follows since the entropy
of a discrete random variable is positive; (ii) the equal-
ity in (b) is due to the chain rule of the mutual infor-

mation; (iii) the equality in (c) follows since Xκi (with
κ ∈ [1 : 2]) is uniquely determined given(Y n

3 , Fn
A); (iv)

the equality in (d) follows because of the Markov chain
Xκi − W[1:2], F

n
A\κ, Y

i−1
κ , Zi−1

κ , F i−1
κ − Fn

κi; (v) finally, the
equality in (e) follows from (2c).

APPENDIX D
PROOF OF THE CONVERSE OFTHEOREM 3

For the X-network, in (2) we setA = [1 : 5], λ ∈ [1 : 2],
j = 3, κ ∈ [4 : 5], B = {j}, W3 = W4 = W5 = W[1:2] and
e3 = e. We start by proving that the Righ-Hand Side (RHS)
of the quantities in (2) is positive. It is straightforward to see
that the RHS of (2c) and (2d) is positive as the entropy of a
discrete random variable is positive. For the RHS of (2a) we
have

(1− δjδjE)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j ,Wj , F

n
A\j

)

−H
(

Y n
j |Wj , F

n
A

)

(a)
=

n
∑

i=1

H
(

Yji, Zji | Y
i−1
j , Zi−1

j , Fn
j ,Wj , F

n
A\j

)

−H
(

Y n
j |Wj , F

n
A

)

(b)
= H

(

Y n
j , Zn

j | Fn
j ,Wj , F

n
A\j

)

−H
(

Y n
j |Wj , F

n
A

)

= H
(

Y n
j , Zn

j | Wj , F
n
A

)

−H
(

Y n
j |Wj , F

n
A

)

≥ 0,

where: (i) the equality in(a) follows because givenFji,
(Yji, Zji) is equal toXji with probability (1− δjδjE) and
null otherwise and because of the Markov chainXji −
Wj , F

n
A\j , Y

i−1
j , Zi−1

j , F i−1
j −Fn

ji; (ii) finally, the equality in
(b) is due to the chain rule of entropy.

For the RHS of (2b) we have

H
(

Y n
j |Wj , F

n
A

)

− (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , Fn
A\j , F

i−1
j ,Wj

)

(a)
=

n
∑

i=1

H
(

Yji|Wj , F
n
A, Y

i−1
j

)

− (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , Fn
A\j , F

i−1
j ,Wj

)

(b)

≥
n
∑

i=1

H
(

Yji|Wj , F
n
A, Y

i−1
j , Zi−1

j

)

− (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , Fn
A\j , F

i−1
j ,Wj

)

= (1− δj)

[

n
∑

i=1

H
(

Xji|Wj , F
n
A\j , Y

i−1
j , Zi−1

j , F i−1
j , Fn

ji

)

−

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , Fn
A\j , F

i−1
j ,Wj

)

]

(c)
= (1− δj)

[

n
∑

i=1

H
(

Xji|Wj , F
n
A\j , Y

i−1
j , Zi−1

j , F i−1
j

)



−
n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , Fn
A\j , F

i−1
j ,Wj

)

]

= 0,

where: (i) the equality in(a) follows from the chain rule
of the entropy; (ii) the inequality in(b) is due to the
‘conditioning reduces the entropy’ principle; (iii) finally, the
equality in (c) follows because of the Markov chainXji −
Wj , F

n
A\j , Y

i−1
j , Zi−1

j , F i−1
j − Fn

ji.
First to third constraints. From (2d),∀j ∈ [1 : 2]

nkj

= δjE (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , F i−1

j ,Wj , F
n
A\j

)

≥ δjE (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j ,Wj , F

n
A\j

)

,

where the inequality follows from the ‘conditioning reduces
the entropy’ principle. From (2c),∀j ∈ [4 : 5]

nkj

= δjE (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j ,Wj , F

n
A\j

)

.

From (2a) and (2b) withj = 3

nkj + nej
(1 − δj)δjE

1− δjδjE

= δjE (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j ,Wj , F

n
A\j

)

.

Thus,∀j ∈ [1 : 5] with R3 = R1 + R2, R4 = R1, R5 = R2

ande1 = e2 = e4 = e5 = 0, we have

nkj + nej
(1− δj)δjE

1− δjδjE

≥ δjE (1− δj)

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j ,Wj , F

n
A\j

)

(a)

≥ δjE (1− δj)
n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j ,Wj , F

n
A\j

)

−H
(

Y n
j | Wj , F

n
A, Z

n
j

)

(b)
= (1−δjE)

n
∑

i=1

I
(

Y i−1
j , F i−1

j ;Xji | Z
i−1
j , F i−1

j ,Wj , F
n
A\j

)

(c)
= (1− δjE)

[

n
∑

i=1

H
(

Xji | Z
i−1
j , F i−1

j ,Wj , F
n
A\j

)

−

n
∑

i=1

H
(

Xji | Z
i−1
j , F i−1

j ,Wj , F
n
A\j , Y

i−1
j

)

]

(d)
= (1− δjE)

[

n
∑

i=1

H
(

Xji | Z
i−1
j , F i−1

j , Fn
A\j

)

−

n
∑

i=1

I
(

Xji;Wj |Z
i−1
j , F i−1

j , Fn
A\j

)

−

n
∑

i=1

H
(

Xji | Z
i−1
j , F i−1

j ,Wj , F
n
A\j , Y

i−1
j

)

]

(e)

≥ (1− δjE)

[

n
∑

i=1

H
(

Xji | Y
i−1
j , Zi−1

j , F i−1
j , Fn

A\j

)

−

n
∑

i=1

I
(

Xji;Wj |Z
i−1
j , F i−1

j , Fn
A\j

)

−

n
∑

i=1

H
(

Xji | Z
i−1
j , F i−1

j ,Wj , F
n
A\j , Y

i−1
j

)

]

(f)
= (1− δjE)

[

n
∑

i=1

I
(

Xji;Wj | Y
i−1
j , Zi−1

j , F i−1
j , Fn

A\j

)

−

n
∑

i=1

I
(

Xji;Wj |Z
i−1
j , F i−1

j , Fn
A\j

)

]

(g)

≥ nRj

1− δjE

1− δjEδj
− ǫ,

where: (i) the inequality in(a) follows since the entropy of
a discrete random variable is positive; (ii) the equality in(b)
is due to (1a) in Lemma 4; (iii) the equality in(c) is due
to the definition of mutual information; (iv) the equality in
(d) follows from the definition of mutual information; (v)
the inequality in(e) follows from the ‘conditioning reduces
the entropy’ principle; (vi) the equality in(f) is due to the
definition of mutual information; (vii) finally, the inequality
in (g) follows by means of (1c) and (1d) in Lemma 4.
Fourth constraint. From (2d) and (1b), we havenkλ

δλE
=

H (Y n
λ |Wλ, F

n
A). By using this and Fano’s inequality we have

nRλ +
nkλ

δλE
≤ I

(

Wλ;Y
n
λ+3, F

n
A

)

+H (Y n
λ |Wλ, F

n
A)

(a)

≤ I (Wλ;Y
n
3 , Fn

A) +H (Y n
λ |Wλ, F

n
A) + nǫ

(b)

≤ I (Wλ;Y
n
λ , Fn

A) +H (Y n
λ |Wλ, F

n
A) + nǫ

(c)
= I (Wλ;Y

n
λ | Fn

A) +H (Y n
λ |Wλ, F

n
A) + nǫ

(d)
= H (Y n

λ | Fn
A) + nǫ

(e)

≤ n (1− δλ) + nǫ,

where: (i) the inequality in(a) follows because of the Markov
chainWλ − Y n

3 , Fn
A − Y n

λ+3; (ii) the inequality in(b) follows
because of the Markov chainWλ − Y n

λ , Fn
A − Y n

3 ; (iii) the
equality in (c) follows because of the independence between
Fn
A andWλ; (iv) the equality in(d) follows from the definition

of mutual information; (v) finally, the inequality in(e) follows
since nodeM1 receives at mostn (1− δλ) packets on channel
λ ∈ [1 : 2].
Fifth constraint. By means of (1g) in Lemma 4 we obtain

nRλ

≤ (1− δλ+3)

n
∑

i=1

I
(

Wλ;Xλ+3i | F
n
A\λ+3, Y

i−1
λ+3 , F

i−1
λ+3

)

(a)
= (1− δλ+3)

[

n
∑

i=1

H
(

Xλ+3i | F
n
A\λ+3, Y

i−1
λ+3 , F

i−1
λ+3

)



−
n
∑

i=1

H
(

Xλ+3i | F
n
A\λ+3, Y

i−1
λ+3 , F

i−1
λ+3,Wλ

)

]

(b)

≤ (1− δλ+3) [n

−

n
∑

i=1

H
(

Xλ+3i | F
n
A\λ+3, Y

i−1
λ+3 , F

i−1
λ+3,Wλ+3, Z

i−1
λ+3

)

]

(c)
= (1− δλ+3)n−

nkλ+3

δλ+3E
,

where: (i) the equality in(a) follows from the definition
of mutual information; (ii) the inequality in(b) is because
H (Xλ+3i) ≤ 1 and because of the ‘conditioning reduces the
entropy’ principle; (iii) finally, the equality in(c) follows by
using (2c).
Sixth constraint. From (2a) and (2b) we havene3 + nk3

δ3E
=

H
(

Y n
3 |W[1:2], F

n
A

)

. By using this and Fano’s inequality we
have

n (R1 +R2) + ne3 +
nk3

δ3E

≤ I
(

W[1:2];Y
n
4 , Y n

5 , Fn
A

)

+H
(

Y n
3 |W[1:2], F

n
A

)

+ nǫ

(a)

≤ I
(

W[1:2];Y
n
3 , Fn

A

)

+H
(

Y n
3 |W[1:2], F

n
A

)

+ nǫ

(b)
= I

(

W[1:2];Y
n
3 | Fn

A

)

+H
(

Y n
3 |W[1:2], F

n
A

)

+ nǫ

(c)
= H (Y n

3 | Fn
A) + nǫ

(d)

≤ n (1− δ3) + nǫ,

where: (i) the inequality in(a) follows because of the Markov
chainW1,W2−Y n

3 , Fn
A−Y n

4 , Y n
5 ; (ii) the equality in(b) fol-

lows because of the independence betweenFn
A and(W1,W2);

(iii) the equality in (c) follows from the definition of mutual
information; (iv) finally, the inequality in(d) follows since
nodeM2 receives at mostn (1− δ3) packets.
Seventh constraint.From (2d) and (1b) we have

n

(

k1

δ1E
+

k2

δ2E

)

(1− δ3)δ3E

1− δ3δ3E

=
(1− δ3)δ3E

1− δ3δ3E
[H (Y n

1 |W1, F
n
A) +H (Y n

2 |W2, F
n
A)]

(a)

≥
(1 − δ3)δ3E

1− δ3δ3E

[

H
(

Y n
1 |W[1:2], F

n
A

)

+H
(

Y n
2 |W[1:2], F

n
A

)]

(b)

≥
(1− δ3)δ3E

1− δ3δ3E
H
(

Y n
1 , Y n

2 |W[1:2], F
n
A

)

(c)

≥
(1− δ3)δ3E

1− δ3δ3E
I
(

Y n
1 , Y n

2 ;Zn
3 , Y

n
3 |W[1:2], F

n
A

)

(d)
=

(1− δ3)δ3E

1− δ3δ3E
·

n
∑

i=1

I
(

Y n
1 , Y n

2 ;Z3i, Y3i|W[1:2], F
n
A, Z

i−1
3 , Y i−1

3

)

=
(1− δ3)δ3E

1− δ3δ3E
(1− δ3Eδ3) ·

n
∑

i=1

I
(

Y n
1 , Y n

2 ;X3i|W[1:2], F
n
A\3, Z

i−1
3 , Y i−1

3 , F i−1
3 , Fn

3i

)

(e)
=

(1− δ3)δ3E

1− δ3δ3E
(1− δ3Eδ3) ·

n
∑

i=1

H
(

X3i|W[1:2], F
n
A\3, Z

i−1
3 , Y i−1

3 , F i−1
3

)

(f)
= nk3 + ne3

(1− δ3)δ3E

1− δ3δ3E
,

where: (i) the inequality in(a) is due to the ‘conditioning
reduces the entropy’ principle; (ii) the inequality in(b) is
becauseH (A,B) ≤ H (A) + H (B); (iii) the inequality in
(c) follows since the entropy of a discrete random variable is
positive; (iv) the equality in(d) is due to the chain rule of the
mutual information; (v) the equality in(e) follows sinceX3i is
uniquely determined given(Y n

1 , Y n
2 , Fn

A) and because of the
Markov chainX3i −W1,W2, F

n
A\3, Y

i−1
3 , Zi−1

3 , F i−1
3 − Fn

3i;
(vi) finally, the equality in(f) follows from (2a) and (2b).
Eighth constraint. From (2a) and (2b) we have

n

(

e3 +
k3

δ3E

)

(1 − δκ)δκE

1− δκδκE

=
(1 − δκ)δκE

1− δκδκE
H
(

Y n
3 |W[1:2], F

n
A

)

(a)

≥
(1− δκ)δκE

1− δκδκE
I
(

Y n
3 ;Zn

κ , Y
n
κ |W[1:2], F

n
A

)

(b)
=

(1−δκ)δκE

1−δκδκE

n
∑

i=1

I
(

Y n
3 ;Zκi, Yκi|W[1:2], F

n
A, Z

i−1
κ , Y i−1

κ

)

=
(1 − δκ)δκE

1− δκδκE
(1− δκEδκ) ·

n
∑

i=1

I
(

Y n
3 ;Xκi|W[1:2], F

n
A\κ, Z

i−1
κ , Y i−1

κ , F i−1
κ , Fn

κi

)

(c)
=

(1 − δκ)δκE

1− δκδκE
(1− δκEδκ) ·

n
∑

i=1

H
(

Xκi|W[1:2], F
n
A\κ, Z

i−1
κ , Y i−1

κ , F i−1
κ , Fn

κi

)

(d)
=

(1 − δκ)δκE

1− δκδκE
(1− δκEδκ) ·

n
∑

i=1

H
(

Xκi|W[1:2], F
n
A\κ, Z

i−1
κ , Y i−1

κ , F i−1
κ

)

(e)
= nkκ,

where: (i) the inequality in(a) follows since the entropy
of a discrete random variable is positive; (ii) the equal-
ity in (b) is due to the chain rule of the mutual infor-
mation; (iii) the equality in (c) follows since Xκi (with
κ ∈ [4 : 5]) is uniquely determined given(Y n

3 , Fn
A); (iv)

the equality in (d) follows because of the Markov chain
Xκi − W[1:2], F

n
A\κ, Y

i−1
κ , Zi−1

κ , F i−1
κ − Fn

κi; (v) finally, the
equality in (e) follows from (2c).
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