Linear Network Coding Capacity Region of The Smart Repeater with Broadcast Erasure Channels

Jaemin Han and Chih-Chun Wang
School of Electrical and Computer Engineering, Purdue University, USA
\{han83,chihw\}@purdue.edu

Abstract

This work considers the smart repeater network where a single source s wants to send two independent packet streams to destinations $\left\{d_{1}, d_{2}\right\}$ with the help of relay r. The transmission from s or r is modeled by packet erasure channels: For each time slot, a packet transmitted by s may be received, with some probabilities, by a random subset of $\left\{d_{1}, d_{2}, r\right\}$; and those transmitted by r will be received by a random subset of $\left\{d_{1}, d_{2}\right\}$. Interference is avoided by allowing at most one of $\{s, r\}$ to transmit in each time slot. One example of this model is any cellular network that supports two cell-edge users when a relay in the middle uses the same downlink resources for throughput/safety enhancement.

In this setting, we study the capacity region of $\left(R_{1}, R_{2}\right)$ when allowing linear network coding (LNC). The proposed LNC inner bound introduces more advanced packing-mixing operations other than the previously well-known butterfly-style XOR operation on overheard packets of two co-existing flows. A new LNC outer bound is derived by exploring the inherent algebraic structure of the LNC problem. Numerical results show that, with more than 85% of the experiments, the relative sum-rate gap between the proposed outer and inner bounds is smaller than 0.08% under the strong-relaying setting and $\mathbf{0 . 0 4 \%}$ under arbitrary distributions, thus effectively bracketing the LNC capacity of the smart repeater problem.

Index Terms—Packet Erasure Networks, Channel Capacity, Network Coding

I. Introduction

Increasing throughput/connectivity within scarce resources has been the main motivation for modern wireless communications. Among the various proposed techniques, the concept of relaying has attracted much attention as a cost-effective enabler to extend the network coverage and capacity. In recent 5G discussions, relaying became one of the core parts for the future cellular architecture including techniques of small cell managements and device-to-device communications between users [1].

In network information theory, many intelligent and cooperative relaying strategies have been devised such as decode-and-forward/compress-and-forward for relay networks [2], [3], network coding for noiseless networks [4], [5], and general noisy network coding for discrete memoryless networks [6]. Among them, network coding has emerged as a promising technique for a practical wireless networking solution, which models the underlying wireless channels by a simple but nontrivial random packet erasure network. That is, each node is associated with its own broadcast packet erasure channel (PEC). Namely, each node can choose a symbol $X \in \mathbb{F}_{q}$ from some finite field \mathbb{F}_{q}, transmits X, and a random subset of

Fig. 1: The 2 -flow Smart Repeater Network and its subset scenarios
receivers will receive the packet. In this setting, [7] proved that the linear network coding (LNC), operating only by "linear" packet-mixings, suffices to achieve the single-multicast capacity. Moreover, recent wireless testbeds have also demonstrated substantial LNC throughput gain for multiple-unicasts over the traditional store-and-forward 802.11 routing protocols [8], [9].

Motivated by these results, we are interested in finding an optimal or near-optimal LNC strategy for wireless relaying networks. To simplify the analysis, we consider a 4-node 2hop network with one source s, two destinations $\left\{d_{1}, d_{2}\right\}$, and a common relay r inter-connected by two broadcast PECs. See Fig. 1(a-b) for details. We assume time-sharing between s and r so that interference is fully avoided, and assume the causal packet ACKnowledgment feedback [8]-[22]. In this way, we can concentrate on how the relay r and source s can jointly exploit the broadcast channel diversity within the network.

When relay r is not present, Fig. 1(b) collapses to Fig. 1(c), the 2 -receiver broadcast PEC. It was shown in [10] that a simple LNC scheme is capacity-achieving. The idea is to exploit the wireless diversity created by random packet erasures, i.e., overhearing packets of other flows. Whenever a packet X intended for d_{1} is received only by d_{2} and a packet Y intended for d_{2} is received only by d_{1}, s can transmit their linear mixture $[X+Y]$ to benefit both receivers simultaneously. This simple but elegant "butterfly-style" LNC operation achieves the Shannon capacity of Fig. 1(c) [10]. Another related scenario is a 2 -flow wireless butterfly network in Fig. 1(d) that contains two separate sources s_{1} and s_{2} instead of a single source s as in our setting. In this butterfly scenario, two separate sources are not coordinating with each other and thus each source can only mix packets of their own flow. [18] showed that the same butterfly-style LNC is
no longer optimal but very close to optimal. In contrast, in our setting of Fig. 1(b), the two flows are originating from the same source s. Therefore, s can perform "inter-flow NC" to further improve the performance. As we will see, relay r should not just "forward" the packets it has received and need to actively perform coding in order to approach the capacity. This is why we call such a scenario the smart repeater problem.

Contributions: This work investigates the LNC capacity region $\left(R_{1}, R_{2}\right)$ of the smart repeater network. The outer bound is proposed by leveraging upon the algebraic structure of the underlying LNC problem. For the achievability scheme, we show that the classic butterfly-style is far from optimality and propose new LNC operations that lead to close-to-optimal performance. By numerical simulations, we demonstrate that the proposed outer/inner bounds are very close, thus effectively bracketing the LNC capacity of the smart repeater problem.

II. Problem Definition And Useful Notations

A. Problem Formation for The Smart Repeater Network

The 2-flow wireless smart repeater network with broadcast PECs, see Fig. 1(b), can be modeled as follows. Consider two traffic rates $\left(R_{1}, R_{2}\right)$ and assume slotted transmissions. Within a total budget of n time slots, source s would like to send $n R_{k}$ packets, denoted by a row vector \mathbf{W}_{k}, to destination d_{k} for all $k \in\{1,2\}$ with the help of relay r. Each packet is chosen uniformly randomly from a finite field \mathbb{F}_{q} with size $q>0$. To that end, we denote $\mathbf{W} \triangleq\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right)$ as an $n\left(R_{1}+R_{2}\right)$ dimensional row vector of all the packets, and define the linear space $\Omega \triangleq\left(\mathbb{F}_{q}\right)^{n\left(R_{1}+R_{2}\right)}$ as the overall message/coding space.

To represent the reception status, for any time slot $t \in$ $\{1, \cdots, n\}$, we define two channel reception status vectors:

$$
\begin{aligned}
& \mathbf{Z}_{s}(t)=\left(Z_{s \rightarrow d_{1}}(t), Z_{s \rightarrow d_{2}}(t), Z_{s \rightarrow r}(t)\right) \in\{1, *\}^{3} \\
& \mathbf{Z}_{r}(t)=\left(Z_{r \rightarrow d_{1}}(t), Z_{r \rightarrow d_{2}}(t)\right) \in\{1, *\}^{2}
\end{aligned}
$$

where " 1 " and "*" represent successful reception and erasure, respectively. For example, $Z_{s \rightarrow d_{1}}(t)=1$ and $*$ represents whether d_{1} can receive the transmission from source s or not at time slot t. We then use $\mathbf{Z}(t) \triangleq\left(\mathbf{Z}_{s}(t), \mathbf{Z}_{r}(t)\right)$ to describe the 5 -dimensional channel reception status vector of the entire network. We also assume that $\mathbf{Z}(t)$ is memoryless and stationary, i.e., $\mathbf{Z}(t)$ is independently and identically distributed over the time axis t.

We assume that either source s or relay r can transmit at each time slot, and express the scheduling decision by $\sigma(t) \in$ $\{s, r\}$. For example, if $\sigma(t)=s$, then source s transmits a packet $X_{s}(t) \in \mathbb{F}_{q}$; and only when $Z_{s \rightarrow h}(t)=1$, node h (one of $\left\{d_{1}, d_{2}, r\right\}$) will receive $Y_{s \rightarrow h}(t)=X_{s}(t)$. In all other cases, node h receives an erasure $Y_{s \rightarrow h}(t)=*$. The reception $Y_{r \rightarrow h}(t)$ of relay r 's transmission is defined similarly.

Assuming that the 5 -bit $\mathbf{Z}(t)$ vector is broadcast to both s and r after each packet transmission through a separate control channel, a linear network code contains n scheduling functions

$$
\begin{equation*}
\forall t \in\{1, \cdots, n\}, \quad \sigma(t)=f_{\sigma, t}\left([\mathbf{Z}]_{1}^{t-1}\right) \tag{1}
\end{equation*}
$$

where we use brackets $[\cdot]_{1}^{\tau}$ to denote the collection from time 1 to τ. Namely, at every time t, scheduling is decided based on the network-wide channel state information (CSI) up to
time $(t-1)$. If source s is scheduled, then it can send a linear combination of any packets. That is,

$$
\begin{equation*}
\text { If } \sigma(t)=s, \text { then } X_{s}(t)=\mathbf{c}_{t} \mathbf{W}^{\top} \text { for some } \mathbf{c}_{t} \in \Omega \tag{2}
\end{equation*}
$$

where \mathbf{c}_{t} is a row coding vector in Ω. The choice of \mathbf{c}_{t} depends on the past CSI vectors $[\mathbf{Z}]_{1}^{t-1}$, and we assume that \mathbf{c}_{t} is known causally to the entire network. ${ }^{1}$ Therefore, decoding can be performed by simple Gaussian elimination.

We now define two important linear space concepts: The individual message subspace and the knowledge subspace. To that end, we first define \mathbf{e}_{l} as an $n\left(R_{1}+R_{2}\right)$-dimensional elementary row vector with its l-th coordinate being one and all the other coordinates being zero. Recall that the $n\left(R_{1}+R_{2}\right)$ coordinates of a vector in Ω can be divided into 2 consecutive "intervals", each of them corresponds to the information packets \mathbf{W}_{k} for each flow from source to destination d_{k}. We then define the individual message subspace Ω_{k} :

$$
\begin{equation*}
\Omega_{k} \triangleq \operatorname{span}\left\{\mathbf{e}_{l}: l \in \text { "interval" associated to } \mathbf{W}_{k}\right\} \tag{3}
\end{equation*}
$$

That is, Ω_{k} is a linear subspace corresponding to any linear combination of \mathbf{W}_{k} packets. By (3), each Ω_{k} is a linear subspace of the overall message space Ω and $\operatorname{rank}\left(\Omega_{k}\right)=n R_{k}$.

We define the knowledge space for $\left\{d_{1}, d_{2}, r\right\}$. The knowledge space $S_{h}(t)$ in the end of time t is defined by

$$
\begin{align*}
S_{h}(t) \triangleq & \text { span }\left\{\mathbf{c}_{\tau}: \forall \tau \leq t \text { s.t. node } h\right. \text { receives the linear } \\
& \text { combination } \left.\left(\mathbf{c}_{\tau} \cdot \mathbf{W}^{\top}\right) \text { successfully in time } \tau\right\} \tag{4}
\end{align*}
$$

where $h \in\left\{d_{1}, d_{2}, r\right\}$. For example, $S_{r}(t)$ is the linear space spanned by the packets successfully delivered from source to relay up to time $t . S_{d_{1}}(t)$ is the linear space spanned by the packets received at destination d_{1} up to time t, either transmitted by source or by relay.

For shorthand, we use $S_{1}(t)$ and $S_{2}(t)$ instead of $S_{d_{1}}(t)$ and $S_{d_{2}}(t)$, respectively. Then, by the above definitions, we quickly have that destination d_{k} can decode the desired packets \mathbf{W}_{k} as long as $S_{k}(n) \supseteq \Omega_{k}$. That is, when the knowledge space in the end of time n contains the desired message space.

With the above linear space concepts, we now can describe the packet transmission from relay. Recall that, unlike the source where the packets are originated, relay can only send a linear mixture of the packets that it has known. Therefore, the encoder description from relay can be expressed by

$$
\begin{equation*}
\text { If } \sigma(t)=r \text {, then } X_{r}(t)=\mathbf{c}_{t} \mathbf{W}^{\top} \text { for some } \mathbf{c}_{t} \in S_{r}(t-1) \tag{5}
\end{equation*}
$$

For comparison, in (2), the source s chooses \mathbf{c}_{t} from Ω. We can now define the LNC capacity region.
Definition 1. Fix the distribution of $\mathbf{Z}(t)$ and finite field \mathbb{F}_{q}. A rate vector $\left(R_{1}, R_{2}\right)$ is achievable by LNC if for any $\epsilon>0$ there exists a joint scheduling and LNC scheme with sufficiently large n such that $\operatorname{Prob}\left(S_{k}(n) \supseteq \Omega_{k}\right)>1-\epsilon$ for all $k \in\{1,2\}$. The LNC capacity region is the closure of all LNC-achievable (R_{1}, R_{2}).

[^0]
B. A Useful Notation

In our network model, there are two broadcast PECs associated with s and r. For shorthand, we call those PECs the s-PEC and the r-PEC, respectively. The distribution of the network-wide channel status vector $\mathbf{Z}(t)=\left(\mathbf{Z}_{s}(t), \mathbf{Z}_{r}(t)\right)$ can be described by the probabilities $p_{s \rightarrow T} \overline{\overline{\left.d_{1}, d_{2}, r\right\}} \backslash T}$ for all $T \subseteq\left\{d_{1}, d_{2}, r\right\}$, and $p_{r \rightarrow U} \overline{\left\{d_{1}, d_{2}\right\} \backslash U}$ for all $U \subseteq\left\{d_{1}, d_{2}\right\}$. In total, there are $8+4=12$ channel parameters. ${ }^{2}$

For notational simplicity, we also define the following two probability functions $p_{s}(\cdot)$ and $p_{r}(\cdot)$, one for each PEC. The input argument of p_{s} is a collection of the elements in $\left\{d_{1}, d_{2}, r, \overline{d_{1}}, \overline{d_{2}}, \bar{r}\right\}$. The function $p_{s}(\cdot)$ outputs the probability that the reception event is compatible to the specified collection of $\left\{d_{1}, d_{2}, r, \overline{d_{1}}, \overline{d_{2}}, \bar{r}\right\}$. For example,

$$
\begin{equation*}
p_{s}\left(d_{2} \bar{r}\right)=p_{s \rightarrow \overline{d_{1}} d_{2} \bar{r}}+p_{s \rightarrow d_{1} d_{2} \bar{r}} \tag{6}
\end{equation*}
$$

is the probability that the input of the source-PEC is successfully received by d_{2} but not by r. Herein, d_{1} is a dont-care receiver and $p_{s}\left(d_{2} \bar{r}\right)$ thus sums two joint probabilities together (d_{1} receives it or not) as described in (6). Another example is $p_{r}\left(d_{2}\right)=p_{r \rightarrow d_{1} d_{2}}+p_{r \rightarrow \overline{d_{1}} d_{2}}$, which is the marginal success probability that a packet sent by r is heard by d_{2}. To slightly abuse the notation, we further allow $p_{s}(\cdot)$ and $p_{r}(\cdot)$ to take multiple input arguments separated by commas. With this new notation, they can represent the probability that the reception event is compatible to at least one of the input arguments. For example,

$$
\begin{aligned}
p_{s}\left(d_{1} \overline{d_{2}}, r\right)= & p_{s \rightarrow d_{1} \overline{d_{2} r}}+p_{s \rightarrow d_{1} \overline{d_{2}} r}+p_{s \rightarrow d_{1} d_{2} r} \\
& +p_{s \rightarrow \overline{d_{1}} d_{2} r}+p_{s \rightarrow \overline{d_{1} d_{2}} r} .
\end{aligned}
$$

That is, $p_{s}\left(d_{1} \overline{d_{2}}, r\right)$ represents the probability that $\left(Z_{s \rightarrow d_{1}}\right.$, $Z_{s \rightarrow d_{2}}, Z_{s \rightarrow r}$) equals one of the following 5 vectors $(1, *, *)$, $(1, *, 1),(1,1,1),(*, 1,1)$, and $(*, *, 1)$. Note that these 5 vectors are compatible to either $d_{1} \overline{d_{2}}$ or r or both. Another example of this $p_{s}(\cdot)$ notation is $p_{s}\left(d_{1}, d_{2}, r\right)$, which represents the probability that a packet sent by s is received by at least one of the three nodes d_{1}, d_{2}, and r.

The indicator function and taking expectation is denoted by $1_{\{\cdot\}}$ and $\mathbb{E}[\cdot]$, respectively.

III. LNC Capacity Outer Bound

Since the coding vector \mathbf{c}_{t} has $n\left(R_{1}+R_{2}\right)$ number of coordinates, there are exponentially many ways of jointly designing the scheduling $\sigma(t)$ and the coding vector \mathbf{c}_{t} choices over time when sufficiently large n and \mathbb{F}_{q} are used. Therefore, we will first simplify the aforementioned design choices by comparing \mathbf{c}_{t} to the knowledge spaces $S_{h}(t-1), h \in\left\{d_{1}, d_{2}, r\right\}$. Such a simplification allows us to derive Proposition 1, which uses a linear programming (LP) solver to exhaustively search over the entire coding and scheduling choices and thus computes an LNC capacity outer bound.

[^1]To that end, we use S_{k} as shorthand for $S_{k}(t-1)$, the knowledge space of destination d_{k} in the end of time $t-1$. We first define the following 7 linear subspaces of Ω.

$$
\begin{array}{ll}
A_{1}(t) \triangleq S_{1}, & A_{2}(t) \triangleq S_{2} \\
A_{3}(t) \triangleq S_{1} \oplus \Omega_{1}, & A_{4}(t) \triangleq S_{2} \oplus \Omega_{2} \\
A_{5}(t) \triangleq S_{1} \oplus S_{2}, & \\
A_{6}(t) \triangleq S_{1} \oplus S_{2} \oplus \Omega_{1}, & A_{7}(t) \triangleq S_{1} \oplus S_{2} \oplus \Omega_{2}
\end{array}
$$

where $A \oplus B \triangleq \operatorname{span}\{\mathbf{v}: \mathbf{v} \in A \cup B\}$ is the sum space of any $A, B \subseteq \Omega$. In addition, we also define the following eight additional subspaces involving $S_{r}(t-1)$:

$$
\begin{align*}
A_{i+7}(t) & \triangleq A_{i}(t) \oplus S_{r} \quad \text { for all } i=1, \cdots, 7 \tag{11}\\
A_{15}(t) & \triangleq S_{r} \tag{12}
\end{align*}
$$

where S_{r} is a shorthand notation for $S_{r}(t-1)$, the knowledge space of relay r in the end of time $t-1$.

In total, there are $7+8=15$ linear subspaces of Ω. We then partition the overall message space Ω into 2^{15} disjoint subsets by the Venn diagram generated by these 15 subspaces. That is, at any time t, we can place any coding vector \mathbf{c}_{t} in exactly one of the 2^{15} disjoint subsets by testing whether it belongs to which A-subspaces. In the following discussion, we often drop the input argument " (t) " when the time instant of interest is clear in the context.

We now use 15 bits to represent each disjoint subset in Ω. For any 15 -bit string $\mathbf{b}=b_{1} b_{2} \cdots b_{15}$, we define "the coding type-b" by

$$
\begin{equation*}
\operatorname{TYPE}_{\mathbf{b}}^{(s)} \triangleq\left(\bigcap_{l: b_{l}=1} A_{l}\right) \backslash\left(\bigcup_{l: b_{l}=0} A_{l}\right) \tag{13}
\end{equation*}
$$

where the regions of these 2^{15} disjoint coding types may vary at every time instant as the $15 A$-subspaces defined in (7) to (12) will evolve over the course of time. The superscript "(s)" indicates the source, meaning that s can send \mathbf{c}_{t} in any coding type since source s knows all \mathbf{W}_{1} and \mathbf{W}_{2} packets to begin with. Note that not all 2^{15} disjoint subsets are feasible. For example, any $\mathrm{TYPE}_{\mathbf{b}}^{(s)}$ with $b_{7}=1$ but $b_{14}=0$ is always empty because any coding vector that lies in $A_{7}=S_{1} \oplus S_{2} \oplus \Omega_{2}$ cannot lie outside the larger $A_{14}=S_{1} \oplus S_{2} \oplus S_{r} \oplus \Omega_{2}$, see (10) and (11), respectively. We say those always empty subsets infeasible coding types and the rest is called feasible coding types (FTs). By exhaustive computer search, we can prove that out of $2^{15}=32768$ subsets, only 154 of them are feasible. Namely, the entire coding space Ω can be viewed as a union of 154 disjoint coding types. Source s can choose a coding vector \mathbf{c}_{t} from one of these 154 types. See (2).

For coding vectors that relay r can choose, we can further reduce the number of possible placements of \mathbf{c}_{t} in the following way. By (5), we know that when $\sigma(t)=r$, the \mathbf{c}_{t} sent by relay must belong to its knowledge space $S_{r}(t-1)$. Hence, such \mathbf{c}_{t} must always lie in $S_{r}(t-1)$, which is $A_{15}(t)$, see (12). As a result, any coding vector \mathbf{c}_{t} sent by relay r must lie in those 154 subsets FTs that satisfy:

$$
\begin{equation*}
\operatorname{TYPE}_{\mathbf{b}}^{(r)} \triangleq\left\{\operatorname{TYPE}_{\mathbf{b}}^{(s)}: \mathbf{b} \in \mathrm{FT}_{\mathrm{s}} \text { such that } b_{15}=1\right\} \tag{14}
\end{equation*}
$$

Again by computer search, there are 18 such coding types out of 154 subsets FTs. We call those 18 subsets as relay's feasible coding types ($r \mathrm{FT}$). Obviously, $r \mathrm{FT} s \subseteq$ FTs. See Appendix A for the enumeration of those FTs and $r \mathrm{FT}$.

We can then derive the following upper bound.
Proposition 1. A rate vector $\left(R_{1}, R_{2}\right)$ is in the LNC capacity region only if there exists 154 non-negative variables $x_{\mathbf{b}}^{(s)}$ for all $\mathbf{b} \in \mathrm{FT}, 18$ non-negative variables $x_{\mathbf{b}}^{(r)}$ for all $\mathbf{b} \in r \mathrm{FT}$, and 14 non-negative y-variables, y_{1} to y_{14}, such that jointly they satisfy the following three groups of linear conditions:

- Group 1, termed the time-sharing condition, has 1 inequality:

$$
\begin{equation*}
\left(\sum_{\forall \mathbf{b} \in \mathrm{FT} s} x_{\mathbf{b}}^{(s)}\right)+\left(\sum_{\forall \mathbf{b} \in r \mathrm{FT}} x_{\mathbf{b}}^{(r)}\right) \leq 1 \tag{15}
\end{equation*}
$$

- Group 2, termed the rank-conversion conditions, has 14 equalities:

$$
\begin{equation*}
y_{7}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. }} x_{\mathbf{b}}^{(s)} \cdot p_{\boldsymbol{7}}\left(d_{1}, d_{2}\right)\right)+\left(\sum_{\forall \mathbf{b} \in r \text { FTs s.t. } b_{7}=0} x_{\mathbf{b}}^{(r)} \cdot p_{r}\left(d_{1}, d_{2}\right)\right)+R_{2}, \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
y_{8}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{8}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{1}, r\right)\right), \quad y_{9}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{9}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{2}, r\right)\right), \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
y_{10}=\left(\sum_{\forall \mathbf{b} \in \text { FT }_{\text {s s.t. }} b_{10}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{1}, r\right)\right)+R_{1} \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
y_{11}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{11}=0} x_{\mathbf{b}}^{(s)} \cdot p_{2}\left(d_{2}, r\right)\right)+R_{2} \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
y_{12}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{12}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{1}, d_{2}, r\right)\right) \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
y_{13}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{13}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{1}, d_{2}, r\right)\right)+R_{1} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
y_{14}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{14}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{1}, d_{2}, r\right)\right)+R_{2} \tag{27}
\end{equation*}
$$

$$
\begin{align*}
& y_{1}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{1}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{1}\right)\right)+\left(\sum_{\forall \mathbf{b} \in r \text { FTs s.t. } b_{1}=0} x_{\mathbf{b}}^{(r)} \cdot p_{r}\left(d_{1}\right)\right), \tag{16}\\
& y_{2}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{2}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{2}\right)\right)+\left(\sum_{\forall \mathbf{b} \in r \text { FTs s.t. } b_{2}=0} x_{\mathbf{b}}^{(r)} \cdot p_{r}\left(d_{2}\right)\right), \tag{17}\\
& y_{3}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{3}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{1}\right)\right)+\left(\sum_{\forall \mathbf{b} \in \text { rFTs s.t. } b_{3}=0} x_{\mathbf{b}}^{(r)} \cdot p_{r}\left(d_{1}\right)\right)+R_{1} \text {, } \tag{18}\\
& y_{4}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{4}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{2}\right)\right)+\left(\sum_{\forall \mathbf{b} \in r \text { FTs s.t. } b_{4}=0} x_{\mathbf{b}}^{(r)} \cdot p_{r}\left(d_{2}\right)\right)+R_{2}, \tag{19}\\
& y_{5}=\left(\sum_{\forall \mathbf{b} \in \text { FT }} x_{\mathbf{s} \text { s.t. } b_{5}=0}^{(s)} \cdot p_{s}\left(d_{1}, d_{2}\right)\right)+\left(\sum_{\forall \mathbf{b} \in r \text { FTs s.t. } b_{5}=0} x_{\mathbf{b}}^{(r)} \cdot p_{r}\left(d_{1}, d_{2}\right)\right) \text {, } \tag{20}\\
& y_{6}=\left(\sum_{\forall \mathbf{b} \in \text { FTs s.t. } b_{6}=0} x_{\mathbf{b}}^{(s)} \cdot p_{s}\left(d_{1}, d_{2}\right)\right)+\left(\sum_{\forall \mathbf{b} \in r \text { FTs s.t. } b_{6}=0} x_{\mathbf{b}}^{(r)} \cdot p_{r}\left(d_{1}, d_{2}\right)\right)+R_{1},
\end{align*}
$$

- Group 3, termed the decodability conditions, has 5 equalities:

$$
\begin{align*}
& y_{1}=y_{3}, \quad y_{2}=y_{4}, \quad y_{8}=y_{11}, \quad y_{9}=y_{11} \tag{29}\\
& y_{5}=y_{6}=y_{7}=y_{12}=y_{13}=y_{14}=\left(R_{1}+R_{2}\right) \tag{30}
\end{align*}
$$

The intuition is as follows. Since we are partitioning Ω (the entire coding space) and S_{r} (the knowledge space of r) into 154 feasible coding types FTs and 18 subsets r FTs, any LNC scheme can be classified as either s or r sending a coding vector \mathbf{c}_{t} in certain coding type at each time instant. More specifically, consider an achievable rate vector $\left(R_{1}, R_{2}\right)$ and the associated LNC scheme. In the beginning of any time t, we can always compute the knowledge spaces $S_{1}(t-1), S_{2}(t-1)$, and $S_{r}(t-1)$ by (4) and use them to compute the A-subspaces in (7)-(12). Then suppose that for some specific time τ, the given scheme chooses the source s to transmit a coding vector \mathbf{c}_{τ}. By the previous discussions, we can classify which coding type $\operatorname{TYPE}_{\mathbf{b}}^{(s)}$ this \mathbf{c}_{τ} belongs to, by comparing it to those computed $15 A$-subspaces. After running the given scheme from time 1 to n, we can thus compute the variable $x_{\mathbf{b}}^{(s)} \triangleq$ $\frac{1}{n} \mathbb{E}\left[\sum_{t=1}^{n} 1_{\left\{\mathbf{c}_{t} \in \operatorname{TYPE}_{\mathbf{b}}^{(s)}\right\}}\right]$ for each $\mathbf{b} \in \mathrm{FT}_{\mathrm{s}}$ as the frequency of scheduling source s with the chosen coding vectors being in $\operatorname{TYPE}_{\mathbf{b}}^{(s)}$. Similarly for the relay r, we can compute the variable $x_{\mathbf{b}}^{(r)} \triangleq \frac{1}{n} \mathbb{E}\left[\sum_{t=1}^{n} 1_{\left\{\mathbf{c}_{t} \in \operatorname{TYPE}_{\mathbf{b}}^{(r)}\right\}}\right]$ for each $\mathbf{b} \in r \mathrm{FTs}$ as the frequency of scheduling relay r with the chosen coding vectors being in $\mathrm{TYPE}_{\mathrm{b}}^{(r)}$. Obviously, the computed variables $\left\{x_{\mathbf{b}}^{(s)}, x_{\mathbf{b}}^{(r)}\right\}$ satisfy the time-sharing inequality (15).

We then compute the y-variables by

$$
\begin{equation*}
y_{l} \triangleq \frac{1}{n} \mathbb{E}\left[\operatorname{rank}\left(A_{l}(n)\right)\right], \forall l \in\{1,2, \cdots, 14\} \tag{31}
\end{equation*}
$$

as the normalized expected ranks of A-subspaces in the end of time n. We now claim that these variables satisfy (16) to (30). This claim implies that for any LNC-achievable $\left(R_{1}, R_{2}\right)$, there exists $x_{\mathbf{b}}^{(s)}, x_{\mathbf{b}}^{(r)}$, and y-variables satisfying Proposition 1 , thus constituting an outer bound on the LNC capacity.

To prove that (16) to (28) are true, ${ }^{3}$ consider an A-subspace, say $A_{3}(t)=S_{1}(t-1) \oplus \Omega_{1}$ as defined in (8) and (4). In the beginning of time 1 , destination d_{1} has not received any packet yet, i.e., $S_{1}(0)=\{\mathbf{0}\}$. Thus the rank of $A_{3}(1)$ is $\operatorname{rank}\left(\Omega_{1}\right)=$ $n R_{1}$.

The fact that $S_{1}(t-1)$ contributes to $A_{3}(t)$ implies that $\operatorname{rank}\left(A_{3}(t)\right)$ will increase by one whenever the destination d_{1} receives a packet $\mathbf{c}_{t} \mathbf{W}^{\top}$ satisfying $\mathbf{c}_{t} \notin A_{3}(t)$. Specifically, whenever source s sends a \mathbf{c}_{t} in $\mathrm{TYPE}_{\mathrm{b}}^{(s)}$ with $b_{3}=0$, such \mathbf{c}_{t} is not in $A_{3}(t)$, and whenever d_{1} receives it, $\operatorname{rank}\left(A_{3}(t)\right)$ increases by 1. Moreover, whenever relay r sends a \mathbf{c}_{t} in $\mathrm{TYPE}_{\mathrm{b}}^{(r)}$ with $b_{3}=0$ and d_{1} receives it, $\operatorname{rank}\left(A_{3}(t)\right)$ also

[^2]increases by 1 . Therefore, in the end of time n, we have
\[

\left.$$
\begin{array}{rl}
\operatorname{rank}\left(A_{3}(n)\right) & =\sum_{t=1}^{n} 1_{\left\{\begin{array}{c}
\text { source } s \text { sends } \mathbf{c}_{t} \in \operatorname{TYPE}_{b}^{(s)} \text { with } b_{3}=0, \\
\text { and destination } d_{1} \text { receives it }
\end{array}\right\}} \\
& +\sum_{t=1}^{n} 1_{\left\{\begin{array}{c}
\text { relay } r \text { sends } \mathbf{c}_{t} \in \operatorname{TYPE} \\
\text { and destination } d_{1} \text { receives it }
\end{array}\right\}} \text { with } b_{3}=0, \tag{32}\\
\text { res }
\end{array}
$$\right\}
\]

Taking the normalized expectation of (32), we have proven (18). By similar rank-conversion arguments, (16) to (28) can be shown to be true.

In the end of time n, since the given scheme is "decodable" (i.e., both d_{1} and d_{2} can decode the desired packets \mathbf{W}_{1} and \mathbf{W}_{2}, respectively), we must have $S_{1}(n) \supseteq \Omega_{1}$ and $S_{2}(n) \supseteq$ Ω_{2}, or equivalently $S_{k}(n)=S_{k}(n) \oplus \Omega_{k}$ for all $k \in\{1,2\}$. This implies that the ranks of $A_{1}(n)$ and $A_{3}(n)$, and the ranks of $A_{2}(n)$ and $A_{4}(n)$ are equal, respectively. Together with (31), we thus have the first two equalities in (29). Similarly, one can prove that the remaining equalities in (29) and (30) are satisfied as well. The claim is thus proven.

IV. LNC CAPACITY INNER BOUND

A. LNC Inner Bound of the Strong-Relaying Scenario

In the smart repeater problem, s can always take over relay's operations, and thus r becomes useless when the r PEC is weaker than the s-PEC. To fully fetch the coding and diversity benefits using relay, we first focus on the following assumption.
Definition 2. The smart repeater network with $\left\{d_{1}, d_{2}\right\}$ is strong-relaying if $p_{r}\left(T \overline{\left\{d_{1}, d_{2}\right\} \backslash T}\right)>p_{s}\left(T \overline{\left\{d_{1}, d_{2}\right\} \backslash T}\right)$ for all $T \subseteq\left\{d_{1}, d_{2}\right\} \backslash \emptyset$. That is, the given r-PEC is stronger than the given s-PEC for all non-empty subsets of $\left\{d_{1}, d_{2}\right\}$.

We describe our capacity-approaching achievability scheme based on the strong-relaying scenario. The general inner bound that works in arbitrary s-PEC and r-PEC distributions, and introduces more advanced LNC operations will be described in Proposition 3.
Proposition 2. A rate vector $\left(R_{1}, R_{2}\right)$ is LNC-achievable if there exist 2 non-negative variables t_{s} and $t_{r},(6 \times 2+8)$ non-negative s-variables:

$$
\begin{aligned}
& \left\{s_{\mathrm{UC}}^{k}, s_{\mathrm{PM} 1}^{k}, s_{\mathrm{PM} 2}^{k}, s_{\mathrm{RC}}^{k}, s_{\mathrm{DX}}^{k}, s_{\mathrm{DX}}^{(k)}: \text { for all } k \in\{1,2\}\right\}, \\
& \left\{s_{\mathrm{CX} ; l}(l=1, \cdots, 8)\right\},
\end{aligned}
$$

and $(3 \times 2+3)$ non-negative r-variables:

$$
\left\{r_{\mathrm{UC}}^{k}, r_{\mathrm{DT}}^{(k)}, r_{\mathrm{DT}}^{[k]}: \text { for all } k \in\{1,2\}\right\}, \quad\left\{r_{\mathrm{RC}}, r_{\mathrm{XT}}, r_{\mathrm{CX}}\right\}
$$

such that jointly they satisfy the following five groups of linear conditions:

- Group 1, termed the time-sharing conditions, has 3 inequal-
ities:

$$
\begin{align*}
& 1>t_{s}+t_{r} \tag{33}\\
& t_{s} \geq \sum_{k \in\{1,2\}}\left(s_{\mathrm{UC}}^{k}+s_{\mathrm{PM} 1}^{k}+s_{\mathrm{PM} 2}^{k}+s_{\mathrm{RC}}^{k}+s_{\mathrm{DX}}^{k}+s_{\mathrm{DX}}^{(k)}\right)+\sum_{l=1}^{8} s_{\mathrm{CX} ; l} \tag{34}\\
& t_{r} \geq \sum_{k \in\{1,2\}}\left(r_{\mathrm{UC}}^{k}+r_{\mathrm{DT}}^{(k)}+r_{\mathrm{DT}}^{[k]}\right)+r_{\mathrm{RC}}+r_{\mathrm{XT}}+r_{\mathrm{CX}} \tag{35}
\end{align*}
$$

- Group 2, termed the packets-originating condition, has 2 inequalities: Consider any $i, j \in\{1,2\}$ satisfying $i \neq j$. For each (i, j) pair (out of the two choices $(1,2)$ and $(2,1)$),

$$
\begin{equation*}
R_{i} \geq\left(s_{\mathrm{UC}}^{i}+s_{\mathrm{PM} 1}^{i}\right) \cdot p_{s}\left(d_{i}, d_{j}, r\right) \tag{E}
\end{equation*}
$$

- Group 3, termed the packets-mixing condition, has 4 inequalities: For each (i, j) pair,

$$
\begin{align*}
\left(s_{\mathrm{UC}}^{i}+s_{\mathrm{PM} 1}^{i}\right) \cdot p_{s \rightarrow \overline{d_{i} d_{j}} r} \geq & \left(s_{\mathrm{PM} 1}^{j}+s_{\mathrm{PM} 2}^{i}\right) \cdot p_{s}\left(d_{i}, d_{j}\right) \tag{A}\\
& +r_{\mathrm{UC}}^{i} \cdot p_{r}\left(d_{i}, d_{j}\right) \\
s_{\mathrm{PM} 1}^{i} \cdot p_{s \rightarrow \overline{d_{i}} d_{j} \bar{r}} \geq & s_{\mathrm{RC}}^{i} \cdot p_{s}\left(d_{i}, d_{j}, r\right) \tag{B}
\end{align*}
$$

and the following one inequality:
$s_{\mathrm{PM} 1}^{1} \cdot p_{s}\left(d_{1}, d_{2} r\right)+s_{\mathrm{PM} 1}^{2} \cdot p_{s}\left(d_{2}, d_{1} r\right)+s_{\mathrm{PM} 2}^{1} \cdot p_{s}\left(\overline{d_{1}} d_{2}\right)+$
$s_{\mathrm{PM} 2}^{2} \cdot p_{s}\left(d_{1} \overline{d_{2}}\right)+\left(s_{\mathrm{RC}}^{1}+s_{\mathrm{RC}}^{2}\right) \cdot p_{s \rightarrow \overline{d_{1} d_{2}} r} \geq r_{\mathrm{RC}} \cdot p_{r}\left(d_{1}, d_{2}\right)$.

- Group 4, termed the classic XOR condition by source only, has 4 inequalities: For each (i, j) pair,

$$
\begin{align*}
& \left(s_{\mathrm{UC}}^{i}+s_{\mathrm{RC}}^{i}\right) p_{s \rightarrow \overline{d_{i}} d_{j} \bar{r}} \geq\left(s_{\mathrm{PM} 2}^{j}+s_{\mathrm{DX}}^{i}\right) \cdot p_{s}\left(d_{i}, r\right)+ \\
& \quad\left(s_{\mathrm{CX} ; 1}+s_{\mathrm{CX} ; 1+i}\right) \cdot p_{s}\left(d_{i}, r\right)+s_{\mathrm{CX} ; 4+i} \cdot p_{s}\left(d_{i}, r\right), \tag{S}\\
& s_{\mathrm{RC}}^{j} \cdot p_{s \rightarrow \overline{d_{i}} d_{j} \bar{r}} \geq s_{\mathrm{DX}}^{(i)} \cdot p_{s}\left(d_{i}, r\right)+r_{\mathrm{DT}}^{(i)} \cdot p_{r}\left(d_{i}, d_{j}\right)+ \\
& \quad\left(s_{\mathrm{CX} ; 1+j}+s_{\mathrm{CX} ; 4}\right) \cdot p_{s}\left(d_{i}, r\right)+s_{\mathrm{CX} ; 6+i} \cdot p_{s}\left(d_{i}, r\right) . \tag{T}
\end{align*}
$$

- Group 5, termed the XOR condition, has 3 inequalities:

$$
\begin{equation*}
\sum_{l=1}^{4} s_{\mathrm{CX} ; l} \cdot p_{s \rightarrow \overline{d_{1} d_{2}} r} \geq r_{\mathrm{XT}} \cdot p_{r}\left(d_{1}, d_{2}\right) \tag{X0}
\end{equation*}
$$

and for each (i, j) pair,

$$
\begin{align*}
& s_{\mathrm{PM} 2}^{j} \cdot p_{s}\left(d_{i} d_{j}, \overline{d_{i}} r\right)+\left(s_{\mathrm{UC}}^{i}+s_{\mathrm{RC}}^{i}+s_{\mathrm{RC}}^{j}+\sum_{l=1}^{4} s_{\mathrm{CX} ; l}\right) \cdot p_{s \rightarrow \overline{d_{i}} d_{j} r} \\
& +\left(s_{\mathrm{CX} ; 4+i}+s_{\mathrm{CX} ; 6+i}+s_{\mathrm{DX}}^{i}+s_{\mathrm{DX}}^{(i)}\right) \cdot p_{s}\left(\overline{d_{i}} r\right) \\
& +\left(r_{\mathrm{UC}}^{i}+r_{\mathrm{RC}}+r_{\mathrm{DT}}^{(i)}+r_{\mathrm{XT}}\right) \cdot p_{r \rightarrow \overline{d_{i}} d_{j}} \\
& \geq\left(s_{\mathrm{CX} ; 7-i}+s_{\mathrm{CX} ; 9-i}\right) \cdot p_{s}\left(d_{i}\right)+\left(r_{\mathrm{CX}}+r_{\mathrm{DT}}^{[i]}\right) \cdot p_{r}\left(d_{i}\right) . \quad(\mathrm{X}) \tag{X}
\end{align*}
$$

- Group 6, termed the decodability condition, has 2 inequalities: For each (i, j) pair,

$$
\begin{align*}
& \left(s_{\mathrm{UC}}^{i}+s_{\mathrm{PM} 2}^{j}+\sum_{k \in\{1,2\}} s_{\mathrm{RC}}^{k}+\sum_{l=1}^{8} s_{\mathrm{CX} ; l}+s_{\mathrm{DX}}^{i}+s_{\mathrm{DX}}^{(i)}\right) \cdot p_{s}\left(d_{i}\right)+ \\
& \left(r_{\mathrm{UC}}^{i}+r_{\mathrm{RC}}+r_{\mathrm{XT}}+r_{\mathrm{CX}}+r_{\mathrm{DT}}^{(i)}+r_{\mathrm{DT}}^{[i]}\right) \cdot p_{r}\left(d_{i}\right) \geq R_{i} . \quad \text { (D) } \tag{D}
\end{align*}
$$

The intuition is as follows. Proposition 2 can be described based on packet movements in a queueing network, governed
by the proposed LNC operations. Each s - and r-variable (except t-variables for time-sharing) is associated with a specific LNC operation performed by the source s and the relay r, respectively. The inequalities (E) to (D) then describe the queueing process, where LHS and RHS of each inequality implies the packet insertion and removal condition of a queue. For the notational convenience, we define the following queue notations associated with these 14 inequalities (E) to (D):

TABLE I
Queue denominations for the inequalities (E) to (D)

(E1): Q_{ϕ}^{1}	(B1): $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$	(S1): $Q_{\left\{d_{2}\right\}}^{1}$	(X0): $Q_{\{r\}}^{m \mathrm{cx}}$
(E2): Q_{ϕ}^{2}	(B2): $Q_{\left\{d_{1}\right\} \mid\{r\}}^{m \mid 1}$	(T1): $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$	(X1): $Q_{\left\{r d_{2}\right\}}^{[1]}$
(A1): $Q_{\{r\}}^{1}$	(M): $Q_{\text {mix }}$	(S2): $Q_{\left\{d_{1}\right\}}^{2}$	(X2): $Q_{\left\{r d_{1}\right\}}^{[2]}$
(A2): $Q_{\{r\}}^{2}$		(T2): $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$	(D1): $Q_{\text {dec }}^{1}$
			(D2): $Q_{\text {dec }}^{2}$

where we use the index-after-reference to distinguish the session (i.e. flow) of focus of an inequality. For example, (E1) and (E2) are to denote the inequality (E) when $(i, j)=(1,2)$ and $(i, j)=(2,1)$, respectively.

For example, suppose that $\mathbf{W}_{1}=\left(X_{1}, \cdots, X_{n R_{1}}\right)$ packets and $\mathbf{W}_{2}=\left(Y_{1}, \cdots, Y_{n R_{2}}\right)$ packets are initially stored in queues Q_{ϕ}^{1} and Q_{ϕ}^{2}, respectively, at source s. The superscript $k \in\{1,2\}$ indicates that the queue is for the packets intended to destination d_{k}. The subscript indicates that those packets have not been heard by any of $\left\{d_{1}, d_{2}, r\right\}$. The LNC operation corresponding to the variable s_{UC}^{1} (resp. s_{UC}^{2}) is to send a session-1 packet X_{i} (resp. a session-2 packet Y_{j}) uncodedly. Then the inequality (E1) (resp. (E2)) implies that whenever it is received by at least one of $\left\{d_{1}, d_{2}, r\right\}$, this packet is removed from the queue of Q_{ϕ}^{1} (resp. Q_{ϕ}^{2}).

Depending on the reception status, a packet will either be moved to another queue or remain in the same queue. For example, the use of the s_{UC}^{1}-operation (sending $X_{i} \in \mathbf{W}_{1}$ uncodedly from source) will take X_{i} from Q_{ϕ}^{1} and insert it into Q_{dec}^{1} as long as $Z_{s \rightarrow d_{1}}(t)=1$ in the reception status $\mathbf{Z}_{s}(t)$, i.e., when the intended destination d_{1} correctly receives it. Similarly, when the reception status is $Z_{s \rightarrow d_{1}}(t)=Z_{s \rightarrow d_{2}}(t)=$ 0 but $Z_{s \rightarrow r}(t)=1$, this packet will be inserted to the queue $Q_{\{r\}}^{1}$ according to the packet movement rule of (A1); inserted to $Q_{\left\{d_{2}\right\}}^{1}$ when $Z_{s \rightarrow d_{1}}(t)=Z_{s \rightarrow r}(t)=0$ but $Z_{s \rightarrow d_{2}}(t)=1$ by (S1); and inserted to $Q_{\left\{r d_{2}\right\}}^{[1]}$ when $Z_{s \rightarrow d_{1}}(t)=0$ but $Z_{s \rightarrow d_{2}}(t)=$ $Z_{s \rightarrow r}(t)=1$ by (X1). Obviously when none of $\left\{d_{1}, d_{2}, r\right\}$ has received it, the packet X_{l} simply remains in Q_{ϕ}^{1}.

Fig. 2 illustrates the proposed queueing network and movement process represented by Proposition 2. The full/detailed descriptions of the LNC operations and the corresponding packet movement process following the inequalities in Proposition 2 are relegated to Appendix B.

B. The Properties of Queues and The Correctness Proof

Each queue in the queueing network, see Fig. 2, is carefully designed to store packets in a specific format such that the queue itself can represent a specific scenario to be beneficial. In this subsection, we highlight the properties of the queues,
which later will be used to prove the correctness of our achievability scheme of Proposition 2.

To that end, we first describe the properties of $Q_{\phi}^{1}, Q_{\mathrm{dec}}^{1}$, $Q_{\{r\}}^{1}$, and $Q_{\left\{d_{2}\right\}}^{1}$ since their purpose is clear in the sense that these queues collect pure session-1 packets (indicated by the superscript), but heard only by the nodes (in the subscript $\{\cdot\}$) or correctly decoded by the desired destination d_{1} (by the subscript dec). After that, we describe the properties of $Q_{\text {mix }}$, and then explain $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}, Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, and $Q_{\left\{r d_{2}\right\}}^{[1]}$ focusing on the queues of session-1. For example, $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$ implies the queue that contains the packet mixtures (the superscript m), each of session- 1 and session-2, where such mixtures are known by d_{2} and those session-2 packets used for mixtures related to a session-1 packet that is mixed with a session-2 packet, where such mixture is known by d_{2} but the session-2 packet is known by r as well. The properties of the queues related to the session-2 packets, i.e., $Q_{\phi}^{2}, Q_{\text {dec }}^{2}, Q_{\{r\}}^{2}, Q_{\left\{d_{1}\right\}}^{2}, Q_{\left\{d_{1}\right\} \mid\{r\}}^{m \mid 1}, Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$, and $Q_{\left\{r d_{1}\right\}}^{[2]}$, will be symmetrically explained by simultaneously swapping (a) session-1 and session-2 in the superscript; (b) X and Y; (c) i and j; and (d) d_{1} and d_{2}, if applicable. The property of $Q_{\{r\}}^{m_{c x}}$ will be followed at last.

To help aid the explanations, we also define for each node in $\left\{d_{1}, d_{2}, r\right\}$, the reception list $\mathrm{RL}_{\left\{d_{1}\right\}}, \mathrm{RL}_{\left\{d_{2}\right\}}$, and $\mathrm{RL}_{\{r\}}$, respectively, that records how the received packet is constituted. The reception list is a binary matrix of its column size fixed to $n\left(R_{1}+R_{2}\right)$ but its row size being the number of received packets and thus variable (increasing) over the course of total time slots. For example, suppose that d_{1} has received a pure session-1 packet X_{1}, a self-mixture $\left[X_{1}+X_{2}\right]$, and a cross-mixture $\left[X_{3}+Y_{1}\right]$. Then $\mathrm{RL}_{\left\{d_{1}\right\}}$ will be

$n R_{1}$	$n R_{2}$
10....	$00 \ldots$
110.	$00 \cdots$
0010	10

such that the first row vector represents the pure X_{1} received, the second row vector represents the mixture $\left[X_{1}+X_{2}\right]$ received, and the third row vector represents the mixture [$\left.X_{3}+Y_{1}\right]$ received, all in a binary format. Namely, whenever a node receives a packet, whether such packet is pure or not, a new $n\left(R_{1}+R_{2}\right)$-dimensional row vector is inserted into the reception list by marking the corresponding entries of X_{i} or Y_{j} as flagged (" 1 ") or not flagged ("0") accordingly. From the previous example, $\left[X_{1}+X_{2}\right]$ in the reception list $\mathrm{RL}_{\left\{d_{1}\right\}}$ means that the list contains a $n\left(R_{1}+R_{2}\right)$-dimensional row vector of exactly $\{1,1,0, \cdots, 0\}$. We then say that a pure packet is not flagged in the reception list, if the column of the corresponding entry contains all zeros. From the previous example, the pure session-2 packet Y_{2} is not flagged in $\mathrm{RL}_{\left\{d_{1}\right\}}$, meaning that d_{1} has neither received Y_{2} nor any mixture involving this Y_{2}. Note that "not flagged" is a stronger definition than "unknown". From the previous example, the pure session-1 packet X_{3} is unknown to d_{1} but still flagged in $\mathrm{RL}_{\left\{d_{1}\right\}}$ as d_{1} has received the mixture $\left[X_{3}+Y_{1}\right]$ involving this X_{3}. Another example is the pure X_{2} that is flagged in $\mathrm{RL}_{\left\{d_{1}\right\}}$ but d_{1} knows this X_{2} as it can use the received X_{1} and the mixture $\left[X_{1}+X_{2}\right]$ to extract X_{2}. We sometimes abuse the reception list notation to denote the collective reception list by RL_{T} for some non-empty subset

Fig. 2: Illustrations of The Queueing Network described by the inequalities (E1) to (D2) in Proposition 2. The upper-side-open rectangle represents the queue, and the circle represents LNC encoding operation, where the blue means the encoding by the source s and the red means the encoding by the relay r. The black outgoing arrows from a LNC operation (or from a set of LNC operations grouped by a curly brace) represent the packet movements process depending on the reception status, where the southwest and southeast dashed arrows are especially for into Q_{dec}^{1} and into Q_{dec}^{2}, respectively.
$T \subseteq\left\{d_{1}, d_{2}, r\right\}$. For example, $\mathrm{RL}_{\left\{d_{1}, d_{2}, r\right\}}$ implies the vertical concatenation of all $\mathrm{RL}_{\left\{d_{1}\right\}}, \mathrm{RL}_{\left\{d_{2}\right\}}$, and $\mathrm{RL}_{\{r\}}$.
We now describe the properties of the queues.

- Q_{ϕ}^{1} : \quad Every packet in this queue is of a pure session1 and unknown to any of $\left\{d_{1}, d_{2}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, d_{2}, r\right\}}$. Initially, this queue contains all the session-1 packets \mathbf{W}_{1}, and will be empty in the end.
- Q_{dec}^{1} : \quad Every packet in this queue is of a pure session- 1 and known to d_{1}. Initially, this queue is empty but will contain all the session- 1 packets \mathbf{W}_{1} in the end.
- $Q_{\{r\}}^{1}$: \quad Every packet in this queue is of a pure session-1 and known by r but unknown to any of $\left\{d_{1}, d_{2}\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, d_{2}\right\}}$.
- $Q_{\left\{d_{2}\right\}}^{1}$: Every packet in this queue is of a pure session-1 and known by d_{2} but unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, r\right\}}$.
- $Q_{\text {mix }}$: Every packet in this queue is of a linear sum $\left[X_{i}+\right.$ Y_{j}] from a session-1 packet X_{i} and a session-2 packet Y_{j} such that at least one of the following conditions hold:
(a) $\left[X_{i}+Y_{j}\right]$ is in $\mathrm{RL}_{\left\{d_{1}\right\}} ; X_{i}$ is unknown to d_{1}; and Y_{j} is known by r but unknown to d_{2}.
(b) $\left[X_{i}+Y_{j}\right]$ is in $\mathrm{RL}_{\left\{d_{2}\right\}} ; X_{i}$ is known by r but unknown to d_{1}; and Y_{j} is unknown to d_{2}.

The detailed clarifications are as follows. For a NC designer, one important consideration is to generate as many "all-happy" scenarios as possible in an efficient manner so that single transmission benefits both destination simultaneously. One famous example is the classic XOR operation that a sender transmits a linear sum $\left[X_{i}+Y_{j}\right]$ when a session-1 packet X_{i} is not yet delivered to d_{1} but overheard by d_{2} and a session2 packet Y_{j} is not yet delivered to d_{2} but overheard by d_{1}. Namely, the source s can perform such classic butterfly-style operation of sending the linear mixture $\left[X_{i}+Y_{j}\right]$ whenever such pair of X_{i} and Y_{j} is available. Similarly, $Q_{\text {mix }}$ represents such an "all-happy" scenario that the relay r can benefit both destinations simultaneously by sending either X_{i} or Y_{j}. For example, suppose that the source s has transmitted a packet mixture $\left[X_{i}+Y_{j}\right]$ and it is received by d_{2} only. And assume that r already knows the individual X_{i} and Y_{j} but X_{i} is unknown to d_{1}, see Fig. 3(a). This example scenario falls into the second condition of $Q_{\text {mix }}$ above. Then sending X_{i} from the relay r simultaneously enables d_{1} to receive the desired X_{i} and d_{2} to decode the desired Y_{j} by subtracting the received X_{i} from the known $\left[X_{i}+Y_{j}\right] . Q_{\text {mix }}$ collects such all-happy mixtures $\left[X_{i}+Y_{j}\right]$ that has been received by either d_{1} or d_{2} or both. In the same scenario, however, notice that r cannot benefit both destinations simultaneously, if r sends Y_{j}, instead of X_{i}. As a result, we use the notation $\left[X_{i}+Y_{j}\right]: W$ to denote the specific packet W (known by r) that r can send to benefit both destinations. In this second condition scenario of Fig. 3(a), $Q_{\text {mix }}$ is storing $\left[X_{i}+Y_{j}\right]: X_{i}$.

- $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$: Every packet in this queue is of a linear sum $\left[X_{i}+Y_{j}\right]$ from a session-1 packet X_{i} and a session-2 packet Y_{j} such that they jointly satisfy the following conditions simultaneously.
(a) $\left[X_{i}+Y_{j}\right]$ is in $\mathrm{RL}_{\left\{d_{2}\right\}}$.
$X_{i}, Y_{j} \quad d_{1}$

$$
\text { (d2) }\left[X_{i}+Y_{j}\right]
$$

(a) Example scenario for $Q_{\text {mix }}$

(d2) X_{i}
(c) Case 1: $X_{i} \in Q_{\left\{r d_{2}\right\}}^{[1]}$

(e) Case 3: $\left[W_{i}+W_{j}\right] \in Q_{\left\{r d_{2}\right\}}^{[1]}$
X_{i} (d) $\left[X_{i}+Y_{i}\right]$
(d2) Y_{i}
(b) Scenario for $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ It must be $Y_{i} \in Q_{\text {dec }}^{2}$
Y_{i} d $d_{1}\left[X_{i}+Y_{i}\right]$
r)
(d $)_{2} Y_{i}$
(d) Case 2: $Y_{i} \in Q_{\left\{r d_{2}\right\}}^{[1]}$

It must be $Y_{i} \in Q_{\text {dec }}^{2}$

(f) Scenario for $\left[W_{i}+W_{j}\right] \in Q_{\{r\}}^{m_{\mathrm{cx}}}$

Fig. 3: Illustrations of Scenarios of the Queues.
(b) X_{i} is unknown to any of $\left\{d_{1}, d_{2}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, r\right\}}$.
(c) Y_{j} is known by r but unknown to any of $\left\{d_{1}, d_{2}\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}\right\}}$.
The scenario is the same as in Fig. 3(a) when r not having X_{i}. In this scenario, we have observed that r cannot benefit both destinations by sending the known $Y_{j} . Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$ collects such unpromising $\left[X_{i}+Y_{j}\right]$ mixtures.

- $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$: Every packet in this queue is of a pure session-2 packet Y_{i} such that there exists a pure session-1 packet X_{i} that Y_{i} is information equivalent to, and they jointly satisfy the following conditions simultaneously.
(a) $\left[X_{i}+Y_{i}\right]$ is in $\mathrm{RL}_{\left\{d_{1}\right\}}$.
(b) X_{i} is known by r but unknown to any of $\left\{d_{1}, d_{2}\right\}$.
(c) Y_{i} is known by d_{2} (i.e. already in Q_{dec}^{2}) but unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\{r\}}$.
The concrete explanations are as follows. The main purpose of this queue is basically the same as $Q_{\left\{d_{2}\right\}}^{1}$, i.e., to store session1 packet overheard by d_{2}, so as to be used by the source s for the classic XOR operation with the session-2 counterparts (e.g., any packet in $Q_{\left\{d_{1}\right\}}^{2}$). Notice that any $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ is unknown to r and thus r cannot generate the corresponding linear mixture with the counterpart. However, because X_{i} is unknown to the relay, r cannot even naively deliver X_{i} to the desired destination d_{1}. On the other hand, the queue $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ here not only allows s to perform the classic XOR operation but also admits naive delivery from r. To that end, consider the scenario in Fig. 3(b). Here, d_{1} has received a linear sum $\left[X_{i}+Y_{i}\right]$. Whenever d_{1} receives Y_{i} (session-2 packet), d_{1} can use Y_{i} and the known $\left[X_{i}+Y_{i}\right]$ to decode the desired X_{i}. This Y_{i} is also known by d_{2} (i.e., already in Q_{dec}^{2}), meaning that Y_{i} is no more different than a session-1 packet overheard by d_{2} but not yet delivered to d_{1}. Namely, such Y_{i} can be treated as information equivalent to X_{i}. That is, using this
session-2 packet Y_{i} for the sake of session-1 does not incur any information duplicity because Y_{i} is already received by the desired destination $d_{2} .{ }^{4}$ For shorthand, we denote such Y_{i} as $Y_{i} \equiv X_{i}$. As a result, the source s can use this Y_{i} as for session-1 when performing the classic XOR operation with a session-2 counterpart. Moreover, r also knows the pure X_{i} and thus relay can perform naive delivery for d_{1} as well.
- $Q_{\left\{r d_{2}\right\}}^{[1]}$: Every packet in this queue is of either a pure or a mixed packet \bar{W} satisfying the following conditions simultaneously.
(a) \bar{W} is known by both r and d_{2} but unknown to d_{1}.
(b) d_{1} can extract a desired session-1 packet when \bar{W} is further received.
Specifically, there are three possible cases based on how the packet $\bar{W} \in Q_{\left\{r d_{2}\right\}}^{[1]}$ is constituted:
Case 1: \bar{W} is a pure session-1 packet X_{i}. That is, X_{i} is known by both r and d_{2} but unknown to d_{1} as in Fig. 3(c). Obviously, d_{1} acquires this new X_{i} when it is further delivered to d_{1}.
Case 2: \bar{W} is a pure session-2 packet $Y_{i} \in Q_{\text {dec }}^{2}$. That is, Y_{i} is already received by d_{2} and known by r as well but unknown to d_{1}. For such Y_{i}, as similar to the discussions of $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, there exists a session-1 packet X_{i} still unknown to d_{1} where $X_{i} \equiv Y_{i}$, and their mixture [$\left.X_{i}+Y_{i}\right]$ is in $\mathrm{RL}_{\left\{d_{1}\right\}}$, see Fig. 3(d). One can easily see that when d_{1} further receives this Y_{i}, d_{1} can use the received Y_{i} and the known $\left[X_{i}+Y_{i}\right]$ to decode the desired X_{i}.
Case 3: \bar{W} is a mixed packet of the form $\left[W_{i}+W_{j}\right]$ where W_{i} and W_{j} are pure but generic that can be either a session-1 or a session-2 packet. That is, the linear sum [$W_{i}+W_{j}$] is known by both r and d_{2} but unknown to d_{1}. In this case, W_{i} is still unknown to d_{1} but W_{j} is already received by d_{1} so that whenever $\left[W_{i}+W_{j}\right]$ is delivered to d_{1}, W_{i} can further be decoded. See Fig. 3(e) for details. Specifically, there are two possible subcases depending on whether W_{i} is of a pure session- 1 or of a pure session-2:
- W_{i} is a session- 1 packet X_{i}. As discussed above, X_{i} is unknown to d_{1} and it is obvious that d_{1} can decode the desired X_{i} whenever $\left[W_{i}+W_{j}\right]$ is delivered to d_{1}.
- W_{i} is a session-2 packet $Y_{i} \in Q_{\text {dec }}^{2}$. In this subcase, there exists a session-1 packet X_{i} (other than W_{j} in the above Case 3 discussions) still unknown to d_{1} where $X_{i} \equiv Y_{i}$. Moreover, $\left[X_{i}+Y_{i}\right]$ is already in $\mathrm{RL}_{\left\{d_{1}\right\}}$. As a result, d_{1} can decode the desired X_{i} whenever [$\left.W_{i}+W_{j}\right]$ is delivered to d_{1}.
The concrete explanations are as follows. The main purpose of this queue is basically the same as $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ but the queue $Q_{\left\{r d_{2}\right\}}^{[1]}$ here allows not only the source s but also the relay r to perform the classic XOR operation. As elaborated above, we have three possible cases depending on the form of the packet $\bar{W} \in Q_{\left\{r d_{2}\right\}}^{[1]}$. Specifically, either a pure session-1 packet $X_{i} \notin$ $Q_{\text {dec }}^{1}$ (Case 1) or a pure session-2 packet $Y_{i} \in Q_{\text {dec }}^{2}$ (Case 2)

[^3]or a mixture $\left[W_{i}+W_{j}\right]$ (Case 3) will be used when either s or r performs the classic XOR operation with a session2 counterpart. For example, suppose that we have a packet $X \in Q_{\left\{r d_{1}\right\}}^{[2]}$ (Case 2) as a session-2 counterpart. Symmetrically following the Case 2 scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ in Fig. 3(d), we know that X has been received by both r and d_{1}. There also exists a session-2 packet Y still unknown to d_{2} where $Y \equiv X$, of which their mixture $[X+Y]$ is already in $\mathrm{RL}_{\left\{d_{2}\right\}}$. For this session-2 counterpart X, consider any packet \bar{W} in $Q_{\left\{r d_{2}\right\}}^{[1]}$. Obviously, the relay r knows both \bar{W} and X by assumption. As a result, either s or r can send their linear sum $[\bar{W}+X]$ as per the classic pairwise XOR operation. Since d_{1} already knows X by assumption, such mixture $[\bar{W}+X]$, when received by d_{1}, can be used to decode \bar{W} and further decode a desired session-1 packet as discussed above. Moreover, if d_{2} receives $[\bar{W}+X]$, then d_{2} can use the known \bar{W} to extract X and further decode the desired Y since $[X+Y]$ is already in $\mathrm{RL}_{\left\{d_{2}\right\}}$ by assumption.

- $Q_{\{r\}}^{m c x}$: Every packet in this queue is of a linear sum $\left[W_{i}+\right.$ W_{j}] that satisfies the following conditions simultaneously.
(a) $\left[W_{i}+W_{j}\right]$ is in $\mathrm{RL}_{\{r\}}$.
(b) W_{i} is known by d_{2} but unknown to any of $\left\{d_{1}, r\right\}$.
(c) W_{j} is known by d_{1} but unknown to any of $\left\{d_{2}, r\right\}$.
where W_{i} and W_{j} are pure but generic that can be either a session-1 or a session-2 packet. Specifically, there are four possible cases based on the types of W_{i} and W_{j} packets:
Case 1: W_{i} is a pure session-1 packet X_{i} and W_{j} is a pure session-2 packet Y_{j}.
Case 2: W_{i} is a pure session-1 packet X_{i} and W_{j} is a pure session-1 packet $X_{j} \in Q_{\text {dec }}^{1}$. For the latter X_{j} packet, as similar to the discussions of $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, there also exists a pure session-2 packet Y_{j} still unknown to d_{2} where $Y_{j} \equiv X_{j}$ and their mixture $\left[X_{j}+Y_{j}\right]$ is already in $\mathrm{RL}_{\left\{d_{2}\right\}}$. As a result, later when d_{2} decodes this X_{j}, d_{2} can use X_{j} and the known $\left[X_{j}+Y_{j}\right]$ to decode the desired Y_{j}.
Case 3: W_{i} is a pure session-2 packet $Y_{i} \in Q_{\text {dec }}^{2}$ and W_{j} is a pure session-2 packet Y_{j}. For the former Y_{i} packet, there also exists a pure session-1 packet X_{i} still unknown to d_{1} where $X_{i} \equiv Y_{i}$ and $\left[X_{i}+Y_{i}\right]$ is already in $\mathrm{RL}_{\left\{d_{1}\right\}}$. As a result, later when d_{1} decodes this Y_{i}, d_{1} can use Y_{i} and the known $\left[X_{i}+Y_{i}\right]$ to decode the desired X_{i}.
Case 3: W_{i} is a pure session-2 packet $Y_{i} \in Q_{\text {dec }}^{2}$ and W_{j} is a pure session-1 packet $X_{j} \in Q_{\mathrm{dec}}^{1}$. For the former Y_{i} and the latter X_{j} packets, the discussions follow the Case 3 and Case 2 above, respectively.
The concrete explanations are as follows. This queue represents the "all-happy" scenario as similar to the butterflystyle operation by the relay r, i.e., sending a linear mixture $\left[W_{i}+W_{j}\right]$ using W_{i} heard by d_{2} and W_{j} heard by d_{1}. Originally, r must have known both individuals packets W_{i} and W_{j} to generate their linear sum. However, the sender in fact does not need to know both individuals to perform this classic XOR operation. The sender can still do the same operation even though it knows the linear sum $\left[W_{i}+W_{j}\right]$ only. This possibility only applies to the relay r as all the messages including both individual packets are originated

TABLE II
Summary of the associated LNC operations that moves packets into and takes packets out of.

LNC operations \mapsto	Queue	\mapsto LNC operations
	Q_{ϕ}^{1}	$s_{\mathrm{UC}}^{1}, s_{\mathrm{PM} 1}^{1}$
$s_{\mathrm{UC}}^{1}, s_{\mathrm{PM} 1}^{1}$	$Q_{\{r\}}^{1}$	$s_{\mathrm{PM} 1}^{2}, s_{\mathrm{PM} 2}^{1}, r_{\mathrm{UC}}^{1}$
$s_{\text {PM1 }}^{1}$	$Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$	$s_{\text {RC }}^{1}$
$s_{\text {UC }}^{1}, s_{\text {RC }}^{1}$	$Q_{\left\{d_{2}\right\}}^{1}$	$\begin{gathered} s_{\mathrm{PM} 2}^{2}, s_{\mathrm{DX}}^{1} \\ s_{\mathrm{CX} ; 1}, s_{\mathrm{CX} ; 2}, s_{\mathrm{CX} ; 5} \end{gathered}$
$s_{\text {RC }}^{2}$	$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$	$\begin{gathered} s_{\mathrm{DX}}^{(1)}, s_{\mathrm{CX} ; 3} \\ s_{\mathrm{CX} ; 4}, s_{\mathrm{CX} ; 7}, r_{\mathrm{DT}}^{(1)} \end{gathered}$
$\begin{aligned} & s_{\mathrm{UC}}^{1}, s_{\mathrm{PM} 2}^{2}, s_{\mathrm{RC}}^{1}, s_{\mathrm{DX}}^{1} \\ & s_{\mathrm{CX} ; 5}, r_{\mathrm{UC}}^{1}, r_{\mathrm{DT}}^{(1)}, r_{\mathrm{RC}} \end{aligned}$	$Q_{\left\{r d_{2}\right\}}^{[1]}($ Case 1)	$\begin{gathered} s_{\mathrm{CX} ; 6}, s_{\mathrm{CX} ; 8} \\ r_{\mathrm{DT}}^{[1]}, r_{\mathrm{CX}} \end{gathered}$
$\begin{gathered} s_{\mathrm{PM} 2}^{2}, s_{\mathrm{RC}}^{2}, s_{\mathrm{DX}}^{(1)} \\ s_{\mathrm{CX} ; 7}, r_{\mathrm{RC}} \end{gathered}$	$Q_{\left\{r d_{2}\right\}}^{[1]}($ Case 2)	
$\begin{gathered} s_{\mathrm{CX} ; 1}, s_{\mathrm{CX} ; 2} \\ s_{\mathrm{CX} ; 3}, s_{\mathrm{CX} ; 4}, r_{\mathrm{XT}} \end{gathered}$	$Q_{\left\{r d_{2}\right\}}^{[1]}$ (Case 3)	
$\begin{gathered} s_{\mathrm{UC}}^{1}, s_{\mathrm{PM} 2}^{1}, s_{\mathrm{RC}}^{1}, s_{\mathrm{RC}}^{2} \\ s_{\mathrm{DX}}^{1}, s_{\mathrm{DX}}^{(1)},\left\{s_{\mathrm{CX} ; 1} \text { to } s_{\mathrm{CX} ; 8}\right\} \\ r_{\mathrm{UC}}^{1}, r_{\mathrm{DT}}^{(1)}, r_{\mathrm{DT}}^{[1]} \\ r_{\mathrm{RC}}, r_{\mathrm{XT}}, r_{\mathrm{CX}} \end{gathered}$	$Q_{\text {dec }}^{1}$	
$\begin{gathered} s_{\mathrm{PM} 1}^{1}, s_{\mathrm{PM} 1}^{2}, s_{\mathrm{PM} 2}^{1}, s_{\mathrm{PM} 2}^{2} \\ s_{\mathrm{RC}}^{1}, s_{\mathrm{RC}}^{2} \end{gathered}$	$Q_{\text {mix }}$	$r_{\text {RC }}$
$s_{\text {CX; }} 1, s_{\text {CX; }} 2, s_{\text {CX; }} 3, s_{\text {CX; }} 4$	$Q_{\{r\}}^{m \mathrm{CX}}$	${ }^{\text {XT }}$
	Q_{ϕ}^{2}	$s_{\mathrm{UC}}^{2}, s_{\mathrm{PM} 1}^{2}$
$s_{\mathrm{UC}}^{2}, s_{\mathrm{PM} 1}^{2}$	$Q_{\{r\}}^{2}$	$s_{\mathrm{PM} 1}^{1}, s_{\mathrm{PM} 2}^{2}, r_{\mathrm{UC}}^{2}$
$s_{\text {PM1 }}^{2}$	$Q_{\left\{d_{1}\right\} \mid\{r\}}^{m \mid 1}$	$s_{\text {RC }}^{2}$
$s_{\mathrm{UC}}^{2}, s_{\text {RC }}^{2}$	$Q_{\left\{d_{1}\right\}}^{2}$	$\begin{gathered} s_{\mathrm{PM} 2}^{1}, s_{\mathrm{DX}}^{2} \\ s_{\mathrm{CX} ; 1}, s_{\mathrm{CX} ; 3}, s_{\mathrm{CX} ; 6} \end{gathered}$
$s_{\text {RC }}^{1}$	$Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$	$\begin{gathered} s_{\mathrm{DX}}^{(2)}, s_{\mathrm{CX} ; 2} \\ s_{\mathrm{CX} ; 4}, s_{\mathrm{CX} ; 8}, r_{\mathrm{DT}}^{(2)} \end{gathered}$
$\begin{aligned} & s_{\mathrm{UC}}^{2}, s_{\mathrm{PM} 2}^{1}, s_{\mathrm{RC}}^{2}, s_{\mathrm{DX}}^{2} \\ & s_{\mathrm{CX} ; 6}, r_{\mathrm{UC}}^{2}, r_{\mathrm{DT}}^{(2)}, r_{\mathrm{RC}} \end{aligned}$	$Q_{\left\{r d_{1}\right\}}^{[2]}($ Case 1)	$\begin{gathered} s_{\mathrm{CX} ; 5}, s_{\mathrm{CX} ; 7} \\ r_{\mathrm{DT}}^{[2]}, r_{\mathrm{CX}} \end{gathered}$
$\begin{gathered} s_{\mathrm{PM} 2}^{1}, s_{\mathrm{RC}}^{1}, s_{\mathrm{DX}}^{(2)} \\ s_{\mathrm{CX} ; 8}, r_{\mathrm{RC}} \end{gathered}$	$Q_{\left\{r d_{1}\right\}}^{[2]}$ (Case 2)	
$\begin{gathered} s_{\mathrm{CX} ; 1}, s_{\mathrm{CX} ; 2} \\ s_{\mathrm{CX} ; 3}, s_{\mathrm{CX} ; 4}, r_{\mathrm{XT}} \end{gathered}$	$Q_{\left\{r d_{1}\right\}}^{[2]}($ Case 3)	
$\begin{gathered} s_{\mathrm{UC}}^{2}, s_{\mathrm{PM} 2}^{2}, s_{\mathrm{RC}}^{1}, s_{\mathrm{RC}}^{2} \\ s_{\mathrm{DX}}^{2}, s_{\mathrm{DX}}^{(2)},\left\{s_{\mathrm{CX} ; 1} \text { to } s_{\mathrm{CX} ; 8}\right\} \\ r_{\mathrm{UC}}^{2}, r_{\mathrm{DT}}^{(2)}, r_{\mathrm{DT}}^{[2]} \\ r_{\mathrm{RC}}, r_{\mathrm{XT}}, r_{\mathrm{CX}} \end{gathered}$	$Q_{\text {dec }}^{2}$	

from the source s. As a result, this queue represents such scenario that the relay r only knows the linear sum instead of individuals, as in Fig. 3(f). More precisely, Cases 1 to 4 happen when the source s performed one of four classic XOR operations $s_{\mathrm{CX} ; 1}$ to $s_{\mathrm{CX} ; 4}$, respectively, and the corresponding linear sum is received only by r, see Appendix B for details.

Based on the properties of queues, we now describe the correctness of Proposition 2, our LNC inner bound. To that end, we first investigate all the LNC operations involved in Proposition 2 and prove the "Queue Invariance", i.e., the queue
properties explained above remains invariant regardless of an LNC operation chosen. Such long and tedious investigations are relegated to Appendix B. Then, the decodability condition (D), jointly with the Queue Invariance, imply that $Q_{\text {dec }}^{1}$ and $Q_{\text {dec }}^{2}$ will contain at least $n R_{1}$ and $n R_{2}$ number of pure session-1 and pure session-2 packets, respectively, in the end. This further means that, given a rate vector $\left(R_{1}, R_{2}\right)$, any t , s-, and r-variables that satisfy the inequalities (E) to (D) in Proposition 2 will be achievable. The correctness proof of Proposition 2 is thus complete.

For readability, we also describe for each queue, the associated LNC operations that moves packet into and takes packets out of, see Table II.

C. The General LNC Inner Bound

The LNC inner bound in Proposition 2 has focused on the strong-relaying scenario and has considered mostly on cross-packets-mixing operations (i.e., mixing packets from different sessions when benefiting both destinations simultaneously). We now describe the general LNC inner bound that works in arbitrary s-PEC and r-PEC distributions, and also introduces self-packets-mixing operations (i.e., mixing packets from the same session for further benefits).
Proposition 3. A rate vector $\left(R_{1}, R_{2}\right)$ is LNC-achievable if there exist 2 non-negative variables t_{s} and $t_{r},(6 \times 2+8+3 \times 2)$ non-negative s-variables:

$$
\begin{aligned}
& \left\{s_{\mathrm{UC}}^{k}, s_{\mathrm{PM} 1}^{k}, s_{\mathrm{PM} 2}^{k}, s_{\mathrm{RC}}^{k}, s_{\mathrm{DX}}^{k}, s_{\mathrm{DX}}^{(k)}, \text { for all } k \in\{1,2\}\right\}, \\
& \left\{s_{\mathrm{CX} ; l}(l=1, \cdots, 8)\right\}, \\
& \left\{s_{\mathrm{SX} ; l}^{k}(l=1,2,3) \text { for all } k \in\{1,2\}\right\}
\end{aligned}
$$

and $(2 \times(3 \times 2+3))$ non-negative w-variables: For all $h \in$ $\{s, r\}$,

$$
\begin{aligned}
& \left\{w_{\mathrm{UC}}^{(h): k}, w_{\mathrm{DT}}^{(h):(k)}, w_{\mathrm{DT}}^{(h):[k]}: \text { for all } k \in\{1,2\}\right\}, \\
& \left\{w_{\mathrm{RC}}^{(h)}, w_{\mathrm{XT}}^{(h)}, w_{\mathrm{CX}}^{(h)}\right\},
\end{aligned}
$$

such that jointly they satisfy the following five groups of linear conditions:

- Group 1, termed the time-sharing condition, has 3 inequalities:

$$
\begin{align*}
1 \geq & t_{s}+t_{r} \tag{36}\\
t_{s} \geq & \sum_{k \in\{1,2\}}\left(s_{\mathrm{UC}}^{k}+s_{\mathrm{PM} 1}^{k}+s_{\mathrm{PM} 2}^{k}+s_{\mathrm{RC}}^{k}+s_{\mathrm{DX}}^{k}+s_{\mathrm{DX}}^{(k)}\right) \\
& +\sum_{l=1}^{8} s_{\mathrm{CX} ; l}+\sum_{k \in\{1,2\}}\left(s_{\mathrm{SX} ; 1}^{k}+s_{\mathrm{SX} ; 2}^{k}+s_{\mathrm{SX} ; 3}^{k}\right) \\
& +\sum_{k \in\{1,2\}}\left(w_{\mathrm{UC}}^{(s): k}+w_{\mathrm{DT}}^{(s):(k)}+w_{\mathrm{DT}}^{(s):[k]}\right) \\
& +w_{\mathrm{RC}}^{(s)}+w_{\mathrm{XT}}^{(s)}+w_{\mathrm{CX}}^{(s)}, \tag{37}\\
t_{r} \geq & \sum_{k \in\{1,2\}}\left(w_{\mathrm{UC}}^{(r): k}+w_{\mathrm{DT}}^{(r):(k)}+w_{\mathrm{DT}}^{(r):[k]}\right)+w_{\mathrm{RC}}^{(r)}+w_{\mathrm{XT}}^{(r)}+w_{\mathrm{CX}}^{(r)} \tag{38}
\end{align*}
$$

- Group 2, termed the packets-originating condition, has 2 inequalities: Consider any $i, j \in\{1,2\}$ satisfying $i \neq j$. For each (i, j) pair (out of the two choices $(1,2)$ and $(2,1)$),

$$
\begin{equation*}
R_{i} \geq\left(s_{\mathrm{UC}}^{i}+s_{\mathrm{PM} 1}^{i}\right) \cdot p_{s}\left(d_{i}, d_{j}, r\right) \tag{39}
\end{equation*}
$$

where (39) is the same to (E) in Proposition 2.

- Group 3, termed the packets-mixing condition, has 4 inequalities: For each (i, j) pair,

$$
\begin{aligned}
& \left(s_{\mathrm{UC}}^{i}+s_{\mathrm{PM} 1}^{i}\right) \cdot p_{s \rightarrow \overline{d_{i} d_{j}} r} \geq\left(s_{\mathrm{PM} 1}^{j}+s_{\mathrm{PM} 2}^{i}\right) \cdot p_{s}\left(d_{i}, d_{j}\right) \\
& \quad+\left(s_{\mathrm{SX} ; 1}^{i}+s_{\mathrm{SX} ; 2}^{i}\right) \cdot p_{s}\left(d_{i}, d_{j}\right)+\sum_{h \in\{s, r\}} w_{\mathrm{UC}}^{(h): i} \cdot p_{h}\left(d_{i}, d_{j}\right)
\end{aligned}
$$

$$
\begin{equation*}
s_{\mathrm{PM} 1}^{i} \cdot p_{s \rightarrow \overline{d_{i}} d_{j} \bar{r}} \geq s_{\mathrm{RC}}^{i} \cdot p_{s}\left(d_{i}, d_{j}, r\right) \tag{40}
\end{equation*}
$$

and the following one inequality:

$$
\begin{align*}
& s_{\mathrm{PM} 1}^{1} \cdot p_{s}\left(d_{1}, d_{2} r\right)+s_{\mathrm{PM} 1}^{2} \cdot p_{s}\left(d_{2}, d_{1} r\right)+s_{\mathrm{PM} 2}^{1} \cdot p_{s}\left(\overline{d_{1}} d_{2}\right)+ \\
& s_{\mathrm{PM} 2}^{2} \cdot p_{s}\left(d_{1} \overline{d_{2}}\right)+\left(s_{\mathrm{RC}}^{1}+s_{\mathrm{RC}}^{2}\right) \cdot p_{s \rightarrow \overline{d_{1} d_{2}} r} \geq \sum_{h \in\{s, r\}} w_{\mathrm{RC}}^{(h)} \cdot p_{h}\left(d_{1}, d_{2}\right) . \tag{42}
\end{align*}
$$

where (41) is the same to (B) in Proposition 2.

- Group 4, termed the classic XOR condition by source only, has 4 inequalities:

$$
\begin{align*}
& \left(s_{\mathrm{UC}}^{i}+s_{\mathrm{RC}}^{i}\right) p_{s \rightarrow \overline{d_{i}} d_{j} \bar{r}} \geq\left(s_{\mathrm{PM} 2}^{j}+s_{\mathrm{DX}}^{i}\right) \cdot p_{s}\left(d_{i}, r\right)+ \\
& \quad\left(s_{\mathrm{CX} ; 1}+s_{\mathrm{CX} ; 1+i}\right) \cdot p_{s}\left(d_{i}, r\right)+s_{\mathrm{CX} ; 4+i} \cdot p_{s}\left(d_{i}, r\right)+ \\
& \quad\left(s_{\mathrm{SX} ; 1}^{i}+s_{\mathrm{SX} ; 3}^{i}\right) \cdot p_{s}\left(d_{i}, r\right), \tag{43}\\
& s_{\mathrm{RC}}^{j} \cdot p_{s \rightarrow \overline{d_{i}} d_{j} \bar{r}}+s_{\mathrm{SX} ; 1}^{i} \cdot p_{s \rightarrow d_{i} \overline{d_{j} r}} \geq s_{\mathrm{DX}}^{(i)} \cdot p_{s}\left(d_{i}, r\right)+ \\
& \sum_{h \in\{s, r\}} w_{\mathrm{DT}}^{(h):(i)} \cdot p_{h}\left(d_{i}, d_{j}\right)+\left(s_{\mathrm{CX} ; 1+j}+s_{\mathrm{CX} ; 4}\right) \cdot p_{s}\left(d_{i}, r\right)+ \\
& s_{\mathrm{CX} ; 6+i} \cdot p_{s}\left(d_{i}, r\right)+s_{\mathrm{SX} ; 2}^{i} \cdot p_{s}\left(d_{i} d_{j}, r\right)+s_{\mathrm{SX} ; 3}^{i} \cdot p_{s}\left(d_{i} r, d_{j}\right) . \tag{44}
\end{align*}
$$

- Group 5, termed the XOR condition, has 3 inequalities:

$$
\begin{equation*}
\sum_{l=1}^{4} s_{\mathrm{CX} ; l} \cdot p_{s \rightarrow \overline{d_{1} d_{2}} r} \geq \sum_{h \in\{s, r\}} w_{\mathrm{XT}}^{(h)} \cdot p_{h}\left(d_{1}, d_{2}\right) \tag{45}
\end{equation*}
$$

and for each (i, j) pair,

$$
\begin{align*}
& s_{\mathrm{PM} 2}^{j} \cdot p_{s}\left(d_{i} d_{j}, \overline{d_{i}} r\right)+\left(s_{\mathrm{UC}}^{i}+s_{\mathrm{RC}}^{i}+s_{\mathrm{RC}}^{j}+\sum_{l=1}^{4} s_{\mathrm{CX} ; l}\right) \cdot p_{s \rightarrow \bar{d}_{i}} d_{j} r \\
& +\left(s_{\mathrm{CX} ; 4+i}+s_{\mathrm{CX} ; 6+i}+s_{\mathrm{DX}}^{i}+s_{\mathrm{DX}}^{(i)}\right) \cdot p_{s}\left(\overline{d_{i}} r\right) \\
& +\left(s_{\mathrm{SX} ; 1}^{i}+s_{\mathrm{SX} ; 2}^{i}+s_{\mathrm{SX} ; 3}^{i}\right) \cdot\left(p_{s}\left(d_{j}\right)+p_{s}(r)-p_{s \rightarrow d_{i} d_{j} r}\right) \\
& +\sum_{h \in\{s, r\}}\left(w_{\mathrm{UC}}^{(h): i}+w_{\mathrm{RC}}^{(h)}+w_{\mathrm{DT}}^{(h):(i)}+w_{\mathrm{XT}}^{(h)}\right) \cdot p_{h}\left(\overline{d_{i}} d_{j}\right) \\
& \geq\left(s_{\mathrm{CX} ; 7-i}+s_{\mathrm{CX} ; 9-i}\right) \cdot p_{s}\left(d_{i}\right) \\
& \quad+\sum_{h \in\{s, r\}}\left(w_{\mathrm{CX}}^{(h)}+w_{\mathrm{DT}}^{(h):[i]}\right) \cdot p_{h}\left(d_{i}\right) . \tag{46}
\end{align*}
$$

- Group 6, termed the decodability condition, has 2 inequalities: For each (i, j) pair,

$$
\begin{align*}
& \left(s_{\mathrm{UC}}^{i}+s_{\mathrm{PM} 2}^{j}+\sum_{k \in\{1,2\}} s_{\mathrm{RC}}^{k}+\sum_{l=1}^{8} s_{\mathrm{CX} ; l}+s_{\mathrm{DX}}^{i}+s_{\mathrm{DX}}^{(i)}\right) \cdot p_{s}\left(d_{i}\right) \\
& \quad+\left(s_{\mathrm{SX} ; 1}^{i}+s_{\mathrm{SX} ; 2}^{i}+s_{\mathrm{SX} ; 3}^{i}\right) \cdot p_{s}\left(d_{i}\right) \\
& \quad+\sum_{h \in\{s, r\}}\left(w_{\mathrm{UC}}^{(h): i}+w_{\mathrm{RC}}^{(h)}+w_{\mathrm{XT}}^{(h)}+w_{\mathrm{CX}}^{(h)}\right) \cdot p_{h}\left(d_{i}\right) \\
& \quad+\sum_{h \in\{s, r\}}\left(w_{\mathrm{DT}}^{(h):(i)}+w_{\mathrm{DT}}^{(h):[i]}\right) \cdot p_{h}\left(d_{i}\right) \geq R_{i} \tag{47}
\end{align*}
$$

The main difference to Proposition 2 (for the strong-relaying scenario) can be summarized as follows. Recall that all the messages $\mathbf{W}=\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right)$ are originated from the source s and the knowledge space of the relay r at time t, i.e., $S_{r}(t)$ always satisfies $\Omega \supseteq S_{r}(t)$. As a result, s can always mimic any LNC encoding operation that r can perform regardless of any time $t \in\{1, \cdots, n\}$. Therefore, we allow s to mimic the same encoding operations that r does and thus the r-variables in Proposition 2 is now replaced by the w-variables associated with both s and r, where the performer is distinguished by the superscript $(h), h \in\{s, r\}$. For that, the conditions (A), (T), (X0), and (X) that are associated with r-variables has changed to (40), (44), (46), and (46), respectively, by replacing r variables into w-variables with the superscript $(h), h \in\{s, r\}$. The r-PEC probabilities are also replaced by a generic notation $p_{h}(\cdot), h \in\{s, r\}$. On the other hand, the other conditions that are associated only with s-variables, i.e., (E), (B), (M), and (S) remain the same as before by (39), (41), (42), and (43), respectively. In addition to the above systematic changes, we also consider the more advanced LNC encoding operations that the source s can do, i.e., self-packets-mixing operations $\left\{s_{\mathrm{S} \times ; l}^{k}(l=1,2,3)\right.$: for all $\left.k \in\{1,2\}\right\}$. By these newly added $6 s$-variables, (40), (43) to (44), and (46) to (47) are updated accordingly.

The queueing network described in Section IV-B remains the same as before, but we have additional self-packets-mixing operations $\left\{s_{\mathrm{SX} ; l}^{k}(l=1,2,3):\right.$ for all $\left.k \in\{1,2\}\right\}$ for the general LNC inner bound. The LNC encoding operations and the packet movement process of the newly added s-variables $s_{\mathrm{SX} ; l}^{k}$ can also be found in Appendix C.

V. Numerical Evaluation

Consider a smart repeater network with marginal channel success probabilities: (a) s-PEC: $p_{s}\left(d_{1}\right)=0.15, p_{s}\left(d_{2}\right)=$ 0.25 , and $p_{s}(r)=0.8$; and (b) r-PEC: $p_{r}\left(d_{1}\right)=0.75$ and $p_{r}\left(d_{2}\right)=0.85$. And we assume that all the erasure events are independent. We will use the results in Propositions 1 and 2 to find the largest (R_{1}, R_{2}) value for this example scenario.

Fig. 4 compares the LNC capacity outer bound (Proposition 1) and the LNC inner bound (Proposition 2) with different achievability schemes. The smallest rate region is achieved by simply performing uncoded direct transmission without using the relay r. The second achievability scheme is the 2-receiver broadcast channel LNC from the source s in [10] while still not exploiting r at all. The third and fourth schemes always use r for any packet delivery. Namely, both schemes do not

Fig. 4: Comparison of LNC regions with different achievable rates

Fig. 5: The cumulative distribution of the relative gap between the outer and the inner bounds. The LNC outer bound is described in Proposition 1, and the inner bounds are described in Propositions 2 and 3, respectively.
allow 2-hop delivery from s. Then r in the third scheme uses pure routing while r performs the 2-user broadcast channel LNC in the fourth scheme. The fifth scheme performs the time-shared transmission between s and r, while allowing only intra-flow network coding. The sixth scheme is derived from using only the classic butterfly-style LNCs corresponding to $s_{\mathrm{CX} ; l}(l=1, \cdots, 8), r_{\mathrm{CX}}$, and r_{XT}. That is, we do not allow s to perform fancy operations such as $s_{\mathrm{PM} 1}^{k}, s_{\mathrm{PM} 2}^{k}, s_{\mathrm{RC}}^{k}$, and r_{RC}. One can see that the result is strictly suboptimal.

In summary, one can see that our proposed LNC inner bound closely approaches to the LNC capacity outer bound in all angles. This shows that the newly-identified LNC operations other than the classic butterfly-style LNCs are critical in approaching the LNC capacity. The detailed rate region description of each sub-optimal achievability scheme can be found in Appendix D.

Fig. 5 examines the relative gaps between the outer bound and two inner bounds by choosing the channel parameters $p_{s}(\cdot)$ and $p_{r}(\cdot)$ uniformly randomly while obeying (a) the strong-relaying condition in Definition 2 when using Proposition 2; and (b) the arbitrary s-PEC and r-PEC distributions when using Proposition 3. For any chosen parameter instance, we use a linear programming solver to find the largest sum rate $\left(R_{1}+R_{2}\right)$ of the LNC outer bound in Proposition 1, which is denoted by $R_{\text {sum.outer }}$. Similarly, we find the largest sum rate $\left(R_{1}+R_{2}\right)$ that satisfies the LNC inner bound in Proposition 2 (resp. Proposition 3) and denote it by $R_{\text {sum.inner. We then }}$
compute the relative gap per each experiment, $\left(R_{\text {sum.outer }}-\right.$ $\left.R_{\text {sum.inner }}\right) / R_{\text {sum.outer }}$, and then repeat the experiment 10000 times, and plot the cumulative distribution function (cdf) in unit of percentage. We can see that with more than 85% of the experiments, the relative gap between the outer and inner bound is smaller than 0.08% for Case (a) and 0.04% for Case (b).

VI. Conclusion

This work studies the LNC capacity of the smart repeater packet erasure network for two unicast flows. The capacity region has been effectively characterized by the proposed linear-subspace-based outer bound, and the capacity-approaching LNC scheme with newly identified LNC operations other than the previously well-known classic butterfly-style operations.

Appendix A List of Coding Types for FTs and r FTs

We enumerate the 154 Feasible Types (FTs) defined in (13) that the source s can transmit in the following way:
$\mathrm{FT} s \triangleq\{00000,00010,00020,00030,00070,00110$, 00130, 00170, 00220, 00230, 00270, 00330, 00370, 00570, 00770, 00A70, 00B70, 00F70, 00F71, 01010, 01030, 01070, 01110, 01130, 01170, 01230, 01270, 01330, 01370, 01570, 01770, 01A70, 01B70, 01F70, 01F71, 02020, 02030, 02070, 02130, 02170, 02220, 02230, 02270, 02330, 02370, 02570, 02770, 02A70, 02B70, 02F70, 02F71, 03030, 03070, 03130, 03170, 03230, 03270, 03330, 03370, 03570, 03770, 03A70, 03B70, 03F70, 03F71, 07070, 07170, 07270, 07370, 07570, 07770, 07A70, 07B70, 07F70, 07F71, 11110, 11130, 11170, 11330, 11370, 11570, 11770, 11B70, 11F70, 11F71, 13130, 13170, 13330, 13370, 13570, 13770, 13B70, 13F70, 13F71, 17170, 17370, 17570, 17770, 17B70, 17F70, 17F71, 22220, 22230, 22270, 22330, 22370, 22770, 22A70, 22B70, 22F70, 22F71, 23230, 23270, 23330, 23370, 23770, 23A70, 23B70, 23F70, 23F71, 27270, 27370, 27770, 27A70, 27B70, 27F70, 27F71, 33330, 33370, 33770, 33B70, 33F70, 33F71, 37370, 37770, 37B70, 37F70, 37F71, 57570, 57770, 57F70, 57F71, 77770, 77F70, 77F71, A7A70, A7B70, A7F70, A7F71, B7B70, B7F70, B7F71, F7F70, F7F71\},
where each 5 -digit index $\overline{\mathbf{b}}_{1} \overline{\mathbf{b}}_{2} \overline{\mathbf{b}}_{3} \overline{\mathbf{b}}_{4} \overline{\mathbf{b}}_{5}$ represent a 15 -bitstring \mathbf{b} of which $\overline{\mathbf{b}}_{1}$ is a hexadecimal of first four bits, $\overline{\mathbf{b}}_{2}$ is a octal of the next three bits, $\overline{\mathbf{b}}_{3}$ is a hexadecimal of the next four bits, $\overline{\mathbf{b}}_{4}$ is a octal of the next three bits, and $\overline{\mathbf{b}}_{5}$ is binary of
the last bit. The subset of FTs that the relay r can transmit, i.e., r FTs are listed separately in the following:

```
rFTs}\triangleq{00F71,01F71, 02F71,03F71, 07F71, 11F71
    13F71, 17F71, 22F71, 23F71, 27F71, 33F71,
    37F71, 57F71, 77F71, A7F71, B7F71, F7F71},
```

Recall that the b_{15} of a 15 -bitstring \mathbf{b} represents whether the coding subset belongs to $A_{15}(t)$ or not, and $A_{15}(t) \triangleq S_{r}(t-1)$ by definition (12). As a result, any coding type with $b_{15}=1$ implies that it lies in the knowledge space of the relay r. The enumerated $r \mathrm{FT}$ in the above is thus a collection of such coding subsets in FTs with $\overline{\mathrm{b}}_{5}=1$.

Appendix B

LNC encoding operations, Packet Movement

Process, and Queue Invariance in Proposition 2
In the following, we will describe all the LNC encoding operations and the corresponding packet movement process of Proposition 2 one by one, and then prove that the Queue Invariance explained in Section IV-B always holds.

To simplify the analysis, we will ignore the null reception, i.e., none of $\left\{d_{1}, d_{2}, r\right\}$ receives a transmitted packet, because nothing will happen in the queueing network. Moreover, we exploit the following symmetry: For those variables whose superscript indicates the session information $k \in\{1,2\}$ (either session-1 or session-2), here we describe session-1 $(k=1)$ only. Those variables with $k=2$ in the superscript will be symmetrically explained by simultaneously swapping (a) session-1 and session-2 in the superscript; (b) X and Y; (c) i and j; and (d) d_{1} and d_{2}, if applicable.

- s_{UC}^{1} : The source s transmits $X_{i} \in Q_{\phi}^{1}$. Depending on the reception status, the packet movement process following the inequalities in Proposition 2 is summarized as follows.

Departure	$\begin{gathered} \hline \text { Reception } \\ \text { Status } \end{gathered}$	Insertion
$Q_{\phi}^{1} \xrightarrow{X_{i}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow{X_{i}} Q_{\{r\}}^{1}$
	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{X_{i}} Q_{\left\{d_{2}\right\}}^{1}$
	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case } 1]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
	$d_{1} d_{2} \bar{r}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
	$d_{1} d_{2} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$

- Departure: One property for $X_{i} \in Q_{\phi}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, d_{2}, r\right\}$. As a result, whenever X_{i} is received by any of them, X_{i} must be removed from Q_{ϕ}^{1} for the Queue Invariance.
- Insertion: One can easily verify that the queue properties for $Q_{\{r\}}^{1}, Q_{\left\{d_{2}\right\}}^{1}, Q_{\text {dec }}^{1}$, and $Q_{\left\{r d_{2}\right\}}^{[1]}$ hold for the corresponding insertions.
- s_{UC}^{2} : s transmits $Y_{j} \in Q_{\phi}^{2}$. The movement process is symmetric to s_{UC}^{1}.
- $s_{\mathrm{PM} 1}^{1}: s$ transmits a mixture $\left[X_{i}+Y_{j}\right]$ from $X_{i} \in Q_{\phi}^{1}$ and $Y_{j} \in Q_{\{r\}}^{2}$. The movement process is as follows.

$Q_{\phi}^{1} \xrightarrow{X_{i}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow{X_{i}} Q_{\text {[r }}^{1}$
$Q_{\phi}^{1} \xrightarrow{X_{i}}, Q_{\{r\}}^{2} \xrightarrow{Y_{j}}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{\left[X_{i}+Y_{j}\right]} Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$
	$d_{1} \overline{d_{2} r}$	$\xrightarrow{\left[X_{i}+Y_{j}\right]: Y_{j}} Q_{\text {mix }}$
	$\overline{d_{1}} d_{2} r$	$\xrightarrow{\left[X_{i}+Y_{j}\right]: X_{i}} Q_{\text {mix }}$
	$\frac{d_{1} \overline{d_{2}} r}{d_{1} d_{2} \bar{r}}$	$\xrightarrow{\left[X_{i}+Y_{j}\right]: Y_{j}} Q_{\text {mix }}$
	$d_{1} d_{2} r$	$\xrightarrow{\left[X_{i}+Y_{j}\right] \text { : either } X_{i} \text { or } Y_{j}} Q_{\text {mix }}$

- Departure: The property for $X_{i} \in Q_{\phi}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, d_{2}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, d_{2}, r\right\}}$. As a result, whenever the mixture $\left[X_{i}+Y_{j}\right]$ is received by any of $\left\{d_{1}, d_{2}, r\right\}, X_{i}$ must be removed from Q_{ϕ}^{1}. Similarly, the property for $Y_{j} \in Q_{\{r\}}^{2}$ is that Y_{j} must be unknown to any of $\left\{d_{1}, d_{2}\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, d_{2}\right\}}$. Therefore, whenever the mixture is received by any of $\left\{d_{1}, d_{2}\right\}, Y_{j}$ must be removed from $Q_{\{r\}}^{2}$.
- Insertion: When only r receives the mixture, r can use the known Y_{j} and the received $\left[X_{i}+Y_{j}\right]$ to extract the pure X_{i}. As a result, we can insert X_{i} to $Q_{\{r\}}^{1}$ as it is not flagged in $\mathrm{RL}_{\left\{d_{1}, d_{2}\right\}}$. The case when only d_{2} receives the mixture satisfies the properties of $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$ as r knows the pure Y_{j} only while d_{2} knows the mixture $\left[X_{i}+Y_{j}\right]$ only. As a result, we can insert $\left[X_{i}+Y_{j}\right]$ to $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$. The remaining reception cases fall into at least one of two conditions of $Q_{\text {mix }}$. For example when only d_{1} receives the mixture, now $\left[X_{i}+Y_{j}\right]$ is in $\mathrm{RL}_{\left\{d_{1}\right\}}$ while Y_{j} is still known by r only. This corresponds to the first condition of $Q_{\text {mix }}$. One can easily verify that other cases satisfy either one of or both properties of $Q_{\text {mix }}$. Following the packet format for $Q_{\text {mix }}$, we insert $\left[X_{i}+Y_{j}\right]: W$ into $Q_{\text {mix }}$ where W denotes the packet in r that can benefit both destinations when transmitted. From the previous example when only d_{1} receives the mixture, we insert $\left[X_{i}+Y_{j}\right]: Y_{j}$ into $Q_{\text {mix }}$ as sending the known Y_{j} from r simultaneously enables d_{2} to receive the desired Y_{j} and d_{1} to decode the desired X_{i} by subtracting Y_{j} from the received $\left[X_{i}+Y_{j}\right]$.
- $s_{\mathrm{PM} 1}^{2}: s$ transmits a mixture $\left[X_{i}+Y_{j}\right]$ from $X_{i} \in Q_{\{r\}}^{1}$ and $Y_{j} \in Q_{\phi}^{2}$. The movement process is symmetric to $s_{\mathrm{PM} 1}^{1}$.
- $s_{\mathrm{PM} 2}^{1}: s$ transmits a mixture $\left[X_{i}+Y_{j}\right]$ from $X_{i} \in Q_{\{r\}}^{1}$ and $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$. The movement process is as follows.

$Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y_{j}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow[\text { Case 1 }]{Y_{j}} Q_{\left\{r d_{1}\right\}}^{[2]}$
$Q_{\{r\}}^{1} \xrightarrow{X_{i}}, Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y_{j}}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{\left[X_{i}+Y_{j}\right]: X_{i}} Q_{\text {mix }}$
$Q_{\{r\}}^{1} \xrightarrow{X_{i}}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
$Q_{\{r\}}^{1} \xrightarrow{X_{i}}, Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y_{j}}$	$\overline{d_{1}} d_{2} r$	$\xrightarrow{\left[X_{i}+Y_{j}\right]: X_{i}} Q_{\text {mix }}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case } 1]{Y_{j}} Q_{\left\{r d_{1}\right\}}^{[2]}$
	$d_{1} d_{2} \bar{r}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case 2 }]{X_{i}\left(\equiv Y_{j}\right)} Q_{\left\{r d_{1}\right\}}^{[2]}$
	$d_{1} d_{2} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case } 1]{Y_{j}} Q_{\left\{r d_{1}\right\}}^{[2]}$

- Departure: The property for $X_{i} \in Q_{\{r\}}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, d_{2}\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, d_{2}\right\}}$. As a result, whenever the mixture $\left[X_{i}+Y_{j}\right]$ is received by any of $\left\{d_{1}, d_{2}\right\}, X_{i}$ must be removed from $Q_{\{r\}}^{1}$. Similarly, the property for $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$ is that Y_{j} must be unknown to any of $\left\{d_{2}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{2}, r\right\}}$. Therefore, whenever the mixture is received by any of $\left\{d_{2}, r\right\}, Y_{j}$ must be removed from $Q_{\left\{d_{1}\right\}}^{2}$.
- Insertion: Whenever d_{1} receives the mixture, d_{1} can use the known Y_{j} and the received $\left[X_{i}+Y_{j}\right]$ to extract the pure/desired X_{i}. As a result, we can insert X_{i} into $Q_{\text {dec }}^{1}$ whenever d_{1} receives. The cases when d_{2} receives but d_{1} does not fall into the second condition of $Q_{\text {mix }}$ as [$\left.X_{i}+Y_{j}\right]$ is in $\mathrm{RL}_{\left\{d_{2}\right\}}$ and X_{i} is known by r only. Namely, r can benefit both destinations simultaneously by sending the known X_{i}. For those two reception status $\overline{d_{1}} d_{2} \bar{r}$ and $\overline{d_{1}} d_{2} r$, we can thus insert this mixture into $Q_{\text {mix }}$ as $\left[X_{i}+\right.$ $\left.Y_{j}\right]: X_{i}$. Whenever r receives the mixture, r can use the known X_{i} and the received $\left[X_{i}+Y_{j}\right.$] to extract the pure Y_{j}. Now Y_{j} is known by both r and d_{1} but still unknown to d_{2} even if d_{2} receives this mixture $\left[X_{i}+Y_{j}\right]$ as well. As a result, Y_{j} can be moved to $Q_{\left\{r d_{1}\right\}}^{[2]}$ as the Case 1 insertion. But for the reception status of $\overline{d_{1}} d_{2} r$, note from the previous discussion that we can insert the mixture into $Q_{\text {mix }}$ since d_{2} receives the mixture but d_{1} does not. In this case, we chose to use more efficient $Q_{\text {mix }}$ that can handle both sessions simultaneously. Finally when the reception status is $d_{1} d_{2} \bar{r}$, we have that X_{i} is known by both r and d_{1} while the mixture $\left[X_{i}+Y_{j}\right]$ is received by d_{2}. Namely, X_{i} is still unknown to d_{2} but when it is delivered, d_{2} can use X_{i} and the received $\left[X_{i}+Y_{j}\right]$ to extract a desired session-2 packet Y_{j}. Moreover, X_{i} is already in $Q_{\text {dec }}^{1}$ and thus can be used as an information-equivalent packet for Y_{j}. This scenario is exactly the same as the Case 2 of $Q_{\left\{r d_{1}\right\}}^{[2]}$ and thus we can move X_{i} into $Q_{\left\{r d_{1}\right\}}^{[2]}$ as the Case 2 insertion.
- $s_{\mathrm{PM} 2}^{2}: s$ transmits a mixture $\left[X_{i}+Y_{j}\right]$ from $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and $Y_{j} \in Q_{\{r\}}^{2}$. The movement process is symmetric to $s_{\mathrm{PM} 2}^{1}$.
- s_{RC}^{1} : s transmits X_{i} of the mixture $\left[X_{i}+Y_{j}\right]$ in $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$. The movement process is as follows.

$Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}\left[X_{i}\right.$	$\overline{d_{1} d_{2}} r$	$\xrightarrow{\left[X_{i}+Y_{j}\right]: X_{i}} Q_{\text {mix }}$
	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{X_{i}} Q_{\left\{d_{2}\right\}}^{1}, \xrightarrow{Y_{j}} Q_{\text {dec }}^{2}$
	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1} \xrightarrow{X_{i}} Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$
	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow{Y_{j}} Q_{\mathrm{dec}}^{2}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case 2 }]{X_{i}\left(\equiv Y_{j}\right)} Q_{\left\{r d_{1}\right\}}^{[2]}$
	$d_{1} d_{2} \bar{r}$	$\xrightarrow{X_{i}} Q^{1} \xrightarrow{Y_{j}} Q^{2}$
	$d_{1} d_{2} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \longrightarrow Q_{\text {dec }}^{2}$

- Departure: One condition for $\left[X_{i}+Y_{j}\right] \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$ is that X_{i} is unknown to any of $\left\{d_{1}, d_{2}, r\right\}$. As a result, whenever X_{i} is received by any of $\left\{d_{1}, d_{2}, r\right\}$, the mixture $\left[X_{i}+Y_{j}\right]$ must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$.
- Insertion: From the conditions of $Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$, we know that X_{i} is unknown to d_{1} and Y_{j} is known only by r. As
a result, whenever d_{1} receives X_{i}, d_{1} receives the new session-1 packet and thus we can insert X_{i} into $Q_{\text {dec }}^{1}$. Whenever d_{2} receives X_{i}, d_{2} can use the known $\left[X_{i}+\right.$ Y_{j}] and the received X_{i} to subtract the pure Y_{j}. We can thus insert Y_{j} into $Q_{\text {dec }}^{2}$. The case when only r receives X_{i} falls into the first condition of $Q_{\text {mix }}$ as $\left[X_{i}+Y_{j}\right]$ is in $\mathrm{RL}_{\left\{d_{2}\right\}}$ and X_{i} is known by r only. In this case, r can benefit both destinations simultaneously by sending the received X_{i}. For this reception status of $\overline{d_{1} d_{2}} r$, we thus insert the mixture into $Q_{\text {mix }}$ as $\left[X_{i}+Y_{j}\right]: X_{i}$. The remaining reception status to consider are $\overline{d_{1}} d_{2} \bar{r}, d_{1} \overline{d_{2} r}$, $\overline{d_{1}} d_{2} r$, and $d_{1} \overline{d_{2}} r$. The first when only d_{2} receives X_{i} falls into the property of $Q_{\left\{d_{2}\right\}}^{1}$ as X_{i} is known only by d_{2} and not flagged in $\mathrm{RL}_{\left\{d_{1}, r\right\}}$. Thus we can insert X_{i} into $Q_{\left\{d_{2}\right\}}^{1}$. Obviously, d_{2} can decode Y_{j} from the previous discussion. For the second when only d_{1} receives X_{i}, we first have $X_{i} \in Q_{\mathrm{dec}}^{1}$ while X_{i} is unknown to any of $\left\{d_{2}, r\right\}$. Moreover, Y_{j} is known by r only and $\left[X_{i}+Y_{j}\right]$ is in $\mathrm{RL}_{\left\{d_{2}\right\}}$. This scenario falls exactly into $Q_{\left\{d_{1}\right\}}^{2}$ and thus we can insert X_{i} into $Q_{\left\{d_{1}\right\}}^{2}$. The third case when both d_{2} and r receive X_{i} falls exactly into Case 1 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ as X_{i} is now known by both d_{2} and r but still unknown to d_{1}. And obviously, d_{2} can decode Y_{j} from the previous discussion. For the fourth case when both d_{1} and r receive X_{i}, we now have that r contains $\left\{X_{i}, Y_{j}\right\} ; d_{1}$ contains X_{i}; and d_{2} contains $\left[X_{i}+Y_{j}\right]$. That is, X_{i} is already in $Q_{\text {dec }}^{1}$ and known by r as well but still unknown to d_{2}. Moreover, d_{2} can decode the desired session-2 packet Y_{j} when it receives X_{i} further. As a result, X_{i} can be used as an information-equivalent packet for Y_{j} and can be moved into $Q_{\left\{r d_{1}\right\}}^{[2]}$ as the Case 2 insertion.
- $s_{\mathrm{RC}}^{2}: \quad s$ transmits Y_{j} of $\left[X_{i}+Y_{j}\right] \in Q_{\left\{d_{1}| |\{r\}\right.}^{m \mid 1}$. The movement process is symmetric to s_{RC}^{1}.
- s_{DX}^{1} : $\quad s$ transmits $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$. The movement process is as follows.

$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
do nothing	$\overline{d_{1}} d_{2} \bar{r}$	do nothing
$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
	$d_{1} d_{2} \bar{r}$	
	$d_{1} d_{2} r$	

- Departure: One condition for $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, r\right\}$. As a result, X_{i} must be removed from $Q_{\left\{d_{2}\right\}}^{1}$ whenever it is received by any of $\left\{d_{1}, r\right\}$.
- Insertion: Whenever d_{1} receives X_{i}, it receives a new session-1 packet and thus we can insert X_{i} into Q_{dec}^{1}. If X_{i} is received by r but not by d_{1}, then X_{i} will be known by both d_{2} and r (since d_{2} already knows X_{i}) but still unknown to d_{1}. This falls exactly into the first-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we can move X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion.
- s_{DX}^{2} : s transmits $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$. The movement process is symmetric to s_{DX}^{1}.
- $s_{\mathrm{DX}}^{(1)}: \quad s$ transmits $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. The movement process is as follows.

$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow[\text { Case 2 }]{Y_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
do nothing	$\overline{d_{1}} d_{2} \bar{r}$	do nothing
$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\text {dec }}^{1}$
	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case 2 }]{Y_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\text {dec }}^{1}$
	$\frac{d_{1} d_{2} \bar{r}}{d_{1} d_{2} r}$	

- Departure: One property for $Y_{i} \in Q_{\left.\left\{d_{2}\right\} \mid\{r\}\right\}}^{(1) \mid 1}$ is that Y_{i} must be unknown to any of $\left\{d_{1}, r\right\}$. As a result, whenever Y_{i} is received by any of $\left\{d_{1}, r\right\}, Y_{i}$ must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$.
- Insertion: From the property of $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, we know that $Y_{i} \in Q_{\text {dec }}^{2}$; there exists a session-1 packet X_{i} still unknown to d_{1} where $X_{i} \equiv Y_{i}$; and $\left[X_{i}+Y_{i}\right]$ is in $\mathrm{RL}_{\left\{d_{1}\right\}}$. As a result, whenever d_{1} receives Y_{i}, d_{1} can use the received Y_{i} and the known $\left[X_{i}+Y_{i}\right]$ to extract X_{i} and thus we can insert X_{i} into $Q_{\text {dec }}^{1}$. If Y_{i} is received by r but not by d_{1}, then Y_{i} will be known by both d_{2} and r but unknown to d_{1}, where $\left[X_{i}+Y_{i}\right]$ is in $\mathrm{RL}_{\left\{d_{1}\right\}}$. Thus when d_{1} receives Y_{i}, d_{1} can further decode the desired X_{i}. Moreover, Y_{i} is already in $Q_{\text {dec }}^{2}$. As a result, we can move Y_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion.
- $s_{\mathrm{DX}}^{(2)}: \quad s$ transmits $X_{j} \in Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. The movement process is symmetric to $s_{\mathrm{DX}}^{(1)}$.
- $s_{\mathrm{CX} ; 1}: s$ transmits $\left[X_{i}+Y_{j}\right]$ from $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$. The movement process is as follows.

$\begin{aligned} & Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}, \\ & Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y} \end{aligned}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow{\left[X_{i}+Y_{j}\right]} Q_{\{r\}}^{m_{\mathrm{CX}}}$
$Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y_{j}}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{Y_{j}} Q_{\text {dec }}^{2}$
$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}, \\ & Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y_{j}} \end{aligned}$	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case 3 }]{\left[X_{i}+Y_{j}\right]} Q_{\left\{r d_{2}\right\}}^{[1]}, \xrightarrow{Y_{j}} Q_{\text {dec }}^{2}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case } 3]{\left[X_{i}+Y_{j}\right]} Q_{\left\{r d_{1}\right\}}^{[2]}$
	$\frac{d_{1} d_{2} \bar{r}}{d_{1} d_{2} r}$	$\xrightarrow{X_{i}} Q_{\mathrm{dec}}^{1} \xrightarrow{Y_{j}} Q_{\mathrm{dec}}^{2}$

- Departure: One condition for $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, r\right\}}$. As a result, whenever the mixture is received by any of $\left\{d_{1}, r\right\}, X_{i}$ must be removed from $Q_{\left\{d_{2}\right\}}^{1}$. Symmetrically for $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$, whenever the mixture is received by any of $\left\{d_{2}, r\right\}, Y_{j}$ must be removed from $Q_{\left\{d_{1}\right\}}^{2}$.
- Insertion: Whenever d_{1} receives the mixture $\left[X_{i}+Y_{j}\right], d_{1}$ can use the known $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$ and the received $\left[X_{i}+Y_{j}\right]$ to extract the desired X_{i} and thus we can insert X_{i} into $Q_{\text {dec }}^{1}$. Similarly, whenever d_{2} receives this mixture, d_{2} can use the known $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and the received $\left[X_{i}+Y_{j}\right]$ to extract the desired Y_{j} and thus we can insert $Y_{\underline{j}}$ into $Q_{\text {dec }}^{2}$. The remaining reception status are $\overline{d_{1} d_{2}} r, \overline{d_{1}} d_{2} r$, and $d_{2} \overline{d_{2}} r$. The first when only r receives the mixture exactly
falls into the first-case scenario of $Q_{\{r\}}^{m_{\mathrm{cx}}}$ as $\left[X_{i}+Y_{j}\right]$ is in $\mathrm{RL}_{\{r\}} ; X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ is known by d_{2} only; and $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$ is known by d_{1} only. As a result, r can then send this mixture $\left[X_{i}+Y_{j}\right]$ to benefit both destinations. The second case when both d_{2} and r receive the mixture, jointly with the assumption $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$, falls exactly into the third-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where W_{i} is a pure session-1 packet. As a result, we can move $\left[X_{i}+Y_{j}\right]$ into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 3 insertion. (And obviously, d_{2} can decode Y_{j} from the previous discussion.) The third case when both d_{1} and r receive the mixture follows symmetrically to the second case of $\overline{d_{1}} d_{2} r$ and thus we can insert $\left[X_{i}+Y_{j}\right]$ into $Q_{\left\{r d_{1}\right\}}^{[2]}$ as the Case 3 insertion.
- $s_{\mathrm{CX} ; 2}$: s transmits $\left[X_{i}+X_{j}\right]$ from $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and $X_{j} \in$ $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. The movement process is as follows.

$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$, $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2} \xrightarrow{X_{j}}$		$\overline{d_{1} d_{2} r}$

- Departure: One condition for $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, r\right\}}$. As a result, whenever the mixture $\left[X_{i}+X_{j}\right]$ is received by any of $\left\{d_{1}, r\right\}, X_{i}$ must be removed from $Q_{\left\{d_{2}\right\}}^{1}$. From the property for $X_{j} \in Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$, we know that X_{j} is unknown to any of $\left\{d_{2}, r\right\}$, even not flagged in $\mathrm{RL}_{\{r\}}$. As a result, whenever r receives the mixture $\left[X_{i}+X_{j}\right], X_{j}$ must be removed from $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. Moreover, whenever d_{2} receives this mixture, d_{2} can use the known $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and the received $\left[X_{i}+X_{j}\right]$ to decode X_{j} and thus X_{j} must be removed from $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$
- Insertion: From the properties of $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and $X_{j} \in$ $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$, we know that r contains Y_{j} (still unknown to d_{2} and $\left.Y_{j} \equiv X_{j}\right) ; d_{1}$ contains X_{j}; and d_{2} contains $\left\{X_{i},\left[Y_{j}+X_{j}\right]\right\}$ already. Therefore, whenever d_{1} receives the mixture $\left[X_{i}+X_{j}\right], d_{1}$ can use the known X_{j} and the received $\left[X_{i}+X_{j}\right]$ to extract the desired X_{i} and thus we can insert X_{i} into $Q_{\text {dec }}^{1}$. Similarly, whenever d_{2} receives this mixture, d_{2} can use the known $\left\{X_{i},\left[Y_{j}+X_{j}\right]\right\}$ and the received $\left[X_{i}+X_{j}\right]$ to extract the desired Y_{j}, and thus we can insert $\frac{Y_{j}}{}$ into $Q_{\text {dec }}^{2}$. The remaining reception status are $\overline{d_{1} d_{2}} r, \overline{d_{1}} d_{2} r$, and $d_{2} \overline{d_{2}} r$. One can see that the case when only r receives the mixture exactly falls into the Case 2 scenario of $Q_{\{r\}}^{m c x}$. For the second case when both d_{2} and r receive the mixture, now r contains $\left\{Y_{j},\left[X_{i}+X_{j}\right]\right\} ; d_{1}$ contained X_{j} before; and d_{2} contains $\left\{X_{i},\left[Y_{j}+X_{j}\right],\left[X_{i}+X_{j}\right]\right\}$. This falls exactly into the third-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where W_{i} is a pure session-1
packet X_{i}. As a result, we can move $\left[X_{i}+X_{j}\right]$ into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 3 insertion. (And obviously, d_{2} can decode the desired Y_{j} from the previous discussion.) For the third case when both d_{1} and r receive the mixture, now r contains $\left\{Y_{j},\left[X_{i}+X_{j}\right]\right\} ; d_{1}$ contains $\left\{X_{j},\left[X_{i}+X_{j}\right]\right\}$; and d_{2} contained $\left\{X_{i},\left[Y_{j}+X_{j}\right]\right\}$ before, where we now have $X_{i} \in Q_{\text {dec }}^{1}$ from the previous discussion. This falls exactly into the third-case scenario of $Q_{\left\{r d_{1}\right\}}^{[2]}$ where W_{j} is a pure session-1 packet $X_{j} \in Q_{\text {dec }}^{1}$. Note that delivering $\left[X_{i}+X_{j}\right]$ will enable d_{2} to further decode the desired Y_{j}. Thus we can move $\left[X_{i}+X_{j}\right]$ into $Q_{\left\{r d_{1}\right\}}^{[2]}$ as the Case 3 insertion.
- $s_{\mathrm{CX} ; 3}: s$ transmits $\left[Y_{i}+Y_{j}\right]$ from $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ and $Y_{j} \in$ $Q_{\left\{d_{1}\right\}}^{2}$. The movement process is as follows.

$\begin{aligned} & Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}, \\ & Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y_{j}} \end{aligned}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow{\left[Y_{i}+Y_{j}\right]} Q_{\{r\}}^{m_{\mathrm{CX}}}$
$Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y_{j}}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{Y_{j}} Q_{\text {dec }}^{2}$
$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}, \\ & Q_{\left\{d_{1}\right\}}^{2} \xrightarrow{Y_{j}} \end{aligned}$	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case } 3]{\left[Y_{i}+Y_{j}\right]} Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow{Y_{j}} Q_{\text {dec }}^{2}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case } 3]{\left[Y_{i}+Y_{j}\right]} Q_{\left\{r d_{1}\right\}}^{[2]}$
	$\frac{d_{1} d_{2} \bar{r}}{d_{1} d_{2} r}$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\mathrm{dec}}^{1} \xrightarrow{Y_{j}} Q_{\mathrm{dec}}^{2}$

- Departure: From the property for $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, we know that Y_{i} is unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\{r\}}$. As a result, whenever r receives the mixture $\left[Y_{i}+Y_{j}\right], Y_{i}$ must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. Moreover, whenever d_{1} receives this mixture, d_{1} can use the known $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$ and the received $\left[Y_{i}+Y_{j}\right]$ to decode Y_{i} and thus Y_{i} must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. One condition for $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$ is that Y_{j} must be unknown to any of $\left\{d_{2}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{2}, r\right\}}$. As a result, whenever the mixture $\left[Y_{i}+Y_{j}\right]$ is received by any of $\left\{d_{2}, r\right\}, Y_{j}$ must be removed from $Q_{\left\{d_{1}\right\}}^{2}$.
- Insertion: From the properties of $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ and $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$, we know that r contains X_{i} (still unknown to d_{1} and $\left.X_{i} \equiv Y_{i}\right) ; d_{1}$ contains $\left\{Y_{j},\left[X_{i}+Y_{i}\right]\right\}$; and d_{2} contains Y_{i} already. Therefore, whenever d_{1} receives the mixture $\left[Y_{i}+Y_{j}\right], d_{1}$ can use the known $\left\{Y_{j},\left[X_{i}+Y_{i}\right]\right\}$ and the received $\left[Y_{i}+Y_{j}\right]$ to extract the desired X_{i} and thus we can insert X_{i} into $Q_{\text {dec }}^{1}$. Similarly, whenever d_{2} receives this mixture, d_{2} can use the known Y_{i} and the received $\left[Y_{i}+Y_{j}\right]$ to extract the desired Y_{j}, and thus we can insert Y_{j} into Q_{dec}^{2}. The remaining reception status are $\overline{d_{1} d_{2}} r, \overline{d_{1}} d_{2} r$, and $d_{2} \overline{d_{2}} r$. One can see that the first case when only r receives the mixture exactly falls into the Case 3 scenario of $Q_{\{r\}}^{m c x}$. For the second case when both d_{2} and r receive the mixture, now r contains $\left\{X_{i},\left[Y_{i}+Y_{j}\right]\right\} ; d_{1}$ contained $\left\{Y_{j},\left[X_{i}+Y_{i}\right]\right\}$ before; and d_{2} contains $\left\{Y_{i},\left[Y_{i}+Y_{j}\right]\right\}$, where we now have $Y_{j} \in Q_{\text {dec }}^{2}$ from the previous discussion. This falls exactly into the third-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where W_{i} is a pure session-2 packet Y_{i}. Note that delivering $\left[Y_{i}+Y_{j}\right]$ will enable d_{1} to
further decode the desired X_{i}. Thus we can move $\left[Y_{i}+Y_{j}\right]$ into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 3 insertion. For the third case when both d_{1} and r receive the mixture, now r contains $\left\{X_{i},\left[Y_{i}+Y_{j}\right]\right\} ; d_{1}$ contains $\left\{Y_{j},\left[X_{i}+Y_{i}\right],\left[Y_{i}+Y_{j}\right]\right\}$; and d_{2} contained Y_{i} before. This falls exactly into the third-case scenario of $Q_{\left\{r d_{1}\right\}}^{[2]}$ where W_{j} is a pure session2 packet Y_{j}. As a result, we can move $\left[Y_{i}+Y_{j}\right]$ into $Q_{\left\{r d_{1}\right\}}^{[2]}$ as the Case 3 insertion. (And obviously, d_{1} can decode the desired X_{i} from the previous discussion.)
- $s_{\mathrm{CX} ; 4}: s$ transmits $\left[Y_{i}+X_{j}\right]$ from $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ and $X_{j} \in$ $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. The movement process is as follows.

$\begin{aligned} & Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}, \\ & Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2} \xrightarrow{X_{j}} \end{aligned}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow{\left[Y_{i}+X_{j}\right]} Q_{\{r\}}^{m_{\mathrm{Cx}}}$
$Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2} \xrightarrow{X_{j}}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{Y_{j}\left(\equiv X_{j}\right)} Q_{\text {dec }}^{2}$
$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}, \\ & Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2} \xrightarrow{X_{j}} \end{aligned}$	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case } 3]{\left[Y_{i}+X_{j}\right]} Q_{\left\{r d_{2}\right\}}^{[1]}, \xrightarrow{Y_{j}\left(\equiv X_{j}\right)} Q_{\text {dec }}^{2}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\text {dec }}^{1} \xrightarrow{\left[Y_{i}+X_{j}\right]}$ Case $3^{\text {a }} Q_{\left\{r d_{1}\right\}}^{[2]}$
	$\frac{d_{1} d_{2} \bar{r}}{d_{1} d_{2} r}$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\mathrm{dec}}^{1}, \xrightarrow{Y_{j}\left(\equiv X_{j}\right)} Q_{\mathrm{dec}}^{2}$

- Departure: From the property for $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, we know that Y_{i} is unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\{r\}}$. As a result, whenever r receives the mixture $\left[Y_{i}+X_{j}\right], Y_{i}$ must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. Moreover, $X_{j} \in Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$ is known by d_{1}. As a result, whenever d_{1} receives the mixture, d_{1} can use the known X_{j} and the received $\left[Y_{i}+X_{j}\right]$ to decode Y_{i} and thus Y_{i} must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. Symmetrically for $X_{j} \in Q_{\left\{d_{1}\right\} \mid\{\mid\{ \}}^{(2) \mid 2}$, whenever the mixture is received by any of $\left\{d_{2}, r\right\}, X_{j}$ must be removed from $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$.
- Insertion: From the properties of $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ and $X_{j} \in Q_{\left\{d_{1}\right\} \mid\{\underset{\}}{(2) \mid}, ~ w e ~ k n o w ~ t h a t ~} r$ contains $\left\{X_{i}, Y_{j}\right\}$ where X_{i} (resp. Y_{j}) is still unknown to d_{1} (resp. d_{2}) and $X_{i} \equiv Y_{i}\left(\right.$ resp. $\left.Y_{j} \equiv X_{j}\right) ; d_{1}$ contains $\left\{\left[X_{i}+Y_{i}\right], X_{j}\right\}$; and d_{2} contains $\left\{Y_{i},\left[Y_{j}+X_{j}\right]\right\}$ already. Therefore, whenever d_{1} receives the mixture $\left[Y_{i}+X_{j}\right], d_{1}$ can use the known $\left\{\left[X_{i}+Y_{i}\right], X_{j}\right\}$ and the received $\left[Y_{i}+X_{j}\right]$ to extract the desired X_{i} and thus we can insert X_{i} into $Q_{\text {dec }}^{1}$. Similarly, whenever d_{2} receives this mixture, d_{2} can use the known $\left\{Y_{i},\left[Y_{j}+X_{j}\right]\right\}$ and the received $\left[Y_{i}+X_{j}\right]$ to extract the desired Y_{j}, and thus we can insert Y_{j} into $Q_{\text {dec }}^{2}$. The remaining reception status are $\overline{d_{1} d_{2}} r, \overline{d_{1}} d_{2} r$, and $d_{2} \overline{d_{2}} r$. One can see that the first case when only r receives the mixture exactly falls into the Case 4 scenario of $Q_{\{r\}}^{m_{c x}}$. For the second case when both d_{2} and r receive the mixture, now r contains $\left\{X_{i}, Y_{j},\left[Y_{i}+X_{j}\right]\right\} ; d_{1}$ contained $\left\{\left[X_{i}+Y_{i}\right], X_{j}\right\}$ before; and d_{2} contains $\left\{Y_{i},\left[Y_{j}+X_{j}\right],\left[Y_{i}+X_{j}\right]\right\}$ where we now have $X_{j} \in Q_{\text {dec }}^{1}$ from the previous discussion. This falls exactly into the third-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where W_{i} is a pure session-2 packet Y_{i}. Note that delivering $\left[Y_{i}+X_{j}\right]$ will enable d_{1} to further decode the desired X_{i}. Thus we can move $\left[Y_{i}+X_{j}\right]$ into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the

Case 3 insertion. For the third case when both d_{1} and r receive the mixture, now r contains $\left\{X_{i}, Y_{j},\left[Y_{i}+X_{j}\right]\right\}$; d_{1} contains $\left\{\left[X_{i}+Y_{i}\right], X_{j},\left[Y_{i}+X_{j}\right]\right\}$; and d_{2} contained $\left\{Y_{i},\left[Y_{j}+X_{j}\right]\right\}$ before, where we now have $Y_{i} \in Q_{\text {dec }}^{2}$ from the previous discussion. This falls exactly into the third-case scenario of $Q_{\left\{r d_{1}\right\}}^{[2]}$ where W_{j} is a pure session2 packet X_{j}. Note that delivering $\left[Y_{i}+X_{j}\right]$ will enable d_{2} to further decode the desired Y_{j}. Thus we can move $\left[Y_{i}+X_{j}\right]$ into $Q_{\left\{r d_{1}\right\}}^{[2]}$ as the Case 3 insertion.

- $s_{\mathrm{CX} ; 5}: s$ transmits $\left[X_{i}+\bar{W}_{j}\right]$ from $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and $\bar{W}_{j} \in$ $Q_{\left\{r d_{1}\right\}}^{[2]}$. The movement process is as follows.

$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
$Q_{\left\{r d_{1}\right\}}^{[2]} \xrightarrow{\bar{W}_{j}}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{Y_{j}\left(\equiv \bar{W}_{j}\right)} Q_{\text {dec }}^{2}$
$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}, \\ & Q_{\left\{r d_{1}\right\}}^{[2]}{ }^{\left[\bar{W}_{j}\right.} \end{aligned}$	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case } 1]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow{Y_{j}\left(\equiv \bar{W}_{j}\right)} Q_{\mathrm{dec}}^{2}$
$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}, \\ & Q_{\left\{r d_{1}\right\}}^{[2]} \stackrel{\bar{W}_{j}}{\longrightarrow} \end{aligned}$	$d_{1} d_{2} \bar{r}$ $d_{1} d_{2} r$	$\xrightarrow{X_{i}} Q_{\mathrm{dec}}^{1} \xrightarrow{Y_{j}\left(\equiv \bar{W}_{j}\right)} Q_{\mathrm{dec}}^{2}$

- Departure: The property for $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, r\right\}}$. As a result, whenever the mixture $\left[X_{i}+\bar{W}_{j}\right]$ is received by any of $\left\{d_{1}, r\right\}, X_{i}$ must be removed from $\frac{Q_{\left\{d_{2}\right\}}^{1}}{W_{j}}$. Similarly, one condition for $\bar{W}_{j} \in Q_{\left\{r d_{1}\right\}}^{[2]}$ is that \bar{W}_{j} must be unknown to d_{2}. However when d_{2} receives the mixture, d_{2} can use the known $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and the received $\left[X_{i}+\bar{W}_{j}\right]$ to decode \bar{W}_{j}. Thus \bar{W}_{j} must be removed from $Q_{\left\{r d_{1}\right\}}^{[2]}$ whenever d_{2} receives.
- Insertion: From the properties of $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and $\bar{W}_{j} \in$ $Q_{\left\{r d_{1}\right\}}^{[2]}$, we know that r contains $\bar{W}_{j} ; d_{1}$ contains \bar{W}_{j}; and d_{2} contains X_{i} already. Therefore, whenever d_{1} receives this mixture, d_{1} can use the known \bar{W}_{j} and the received $\left[X_{i}+\bar{W}_{j}\right]$ to extract the desired X_{i} and thus we can insert X_{i} into $Q_{\text {dec }}^{1}$. Similarly, whenever d_{2} receives this mixture, d_{2} can use the known X_{i} and the received $\left[X_{i}+\right.$ $\left.\bar{W}_{j}\right]$ to extract \bar{W}_{j}. We now need to consider case by case when \bar{W}_{j} was inserted into $Q_{\left\{r d_{1}\right\}}^{[2]}$. If it was the Case 1 insertion, then \bar{W}_{j} is a pure session- 2 packet Y_{j} and thus we can simply insert Y_{j} into $Q_{\text {dec }}^{2}$. If it was the Case 2 insertion, then \bar{W}_{j} is a pure session- 2 packet $X_{j} \in Q_{\text {dec }}^{1}$ and there exists a session-2 packet Y_{j} still unknown to d_{2} where $Y_{j} \equiv X_{j}$. Moreover, d_{2} has received $\left[Y_{j}+X_{j}\right]$. As a result, d_{2} can further decode Y_{j} and thus we can insert Y_{j} into $Q_{\text {dec }}^{2}$. If it was the Case 3 insertion, then \bar{W}_{j} is a mixed form of [$W_{i}+W_{j}$] where W_{i} is already known by d_{2} but W_{j} is not. As a result, d_{2} can decode W_{j} upon receiving $\bar{W}_{j}=\left[W_{i}+W_{j}\right]$. Note that W_{j} in the Case 3 insertion $\bar{W}_{j}=\left[W_{i}+W_{j}\right] \in Q_{\left\{r d_{1}\right\}}^{[2]}$ comes from either $Q_{\left\{d_{1}\right\}}^{2}$ or $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. If W_{j} was coming from $Q_{\left\{d_{1}\right\}}^{2}$, then W_{j} is a session-2 packet Y_{j} and we can simply insert Y_{j}
into Q_{dec}^{2}. If W_{j} was coming from $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$, then W_{j} is a session-1 packet X_{j} and there also exists a session-2 packet Y_{j} still unknown to d_{2} where $Y_{j} \equiv X_{j}$. Moreover, d_{2} has received $\left[Y_{j}+X_{j}\right]$. As a result, d_{2} can further use the known $\left[Y_{j}+X_{j}\right]$ and the extracted X_{j} to decode Y_{j} and thus we can insert Y_{j} into $Q_{\text {dec }}^{2}$. In a nutshell, whenever d_{2} receives the mixture $\left[X_{i}+\bar{W}_{j}\right]$, a session-2 packet Y_{j} that was unknown to d_{2} can be newly decoded. The remaining reception status are $\overline{d_{1} d_{2}} r$ and $\overline{d_{1}} d_{2} r$. For both cases when r receives the mixture but d_{1} does not, r can use the known \bar{W}_{j} and the received $\left[X_{i}+\bar{W}_{j}\right]$ to extract X_{i}. Since X_{i} is now known by both r and d_{2} but unknown to d_{1}, we can thus move X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion.
- $s_{\mathrm{CX} ; 6}: s$ transmits $\left[\bar{W}_{i}+Y_{j}\right]$ from $\bar{W}_{i} \in Q_{\left\{r d_{2}\right\}}^{[1]}$ and $Y_{j} \in$ $Q_{\left\{d_{1}\right\}}^{2}$. The movement process is symmetric to $s_{\mathrm{CX} ; 5}$.
- $s_{\mathrm{CX} ; 7}: s$ transmits $\left[Y_{i}+\bar{W}_{j}\right]$ from $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ and $\bar{W}_{j} \in$ $Q_{\left\{r d_{1}\right\}}^{[2]}$. The movement process is as follows.

$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow[\text { Case 2 }]{\stackrel{Y_{i}}{\longrightarrow}} Q_{\left\{r d_{2}\right\}}^{[1]}$
$Q_{\left\{r d_{1}\right\}}^{[2]} \xrightarrow{\bar{W}_{j}}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow{Y_{j}\left(\equiv \bar{W}_{j}\right)} Q_{\text {dec }}^{2}$
$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y}, \\ & Q_{\left\{r d_{1}\right\}}^{[2]} \xrightarrow{\bar{W}_{j}}, \end{aligned}$	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case 2 }]{Y_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}, \xrightarrow{Y_{j}\left(\equiv \bar{W}_{j}\right)} Q_{\text {dec }}^{2}$
$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}$	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{Y_{i}}, \\ & Q_{\left\{r d_{1}\right\}}^{[2]} \xrightarrow{\bar{W}_{j}}, \end{aligned}$	$d_{1} d_{2} \bar{r}$ $d_{1} d_{2} r$	$\begin{aligned} & \xrightarrow{X_{i}\left(\equiv Y_{i}\right)} Q_{\mathrm{dec}}^{1}, \\ & \xrightarrow{Y_{j}\left(\equiv \bar{W}_{j}\right)} Q_{\mathrm{dec}}^{2} \end{aligned}$

- Departure: From the property for $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, we know that Y_{i} is unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\{r\}}$. As a result, whenever r receives the mixture $\left[Y_{i}+\right.$ $\left.\bar{W}_{j}\right], Y_{i}$ must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. Moreover, $\bar{W}_{j} \in$ $Q_{\left\{r d_{1}\right\}}^{[2]}$ is known by d_{1}. As a result, whenever d_{1} receives the mixture, d_{1} can use the known \bar{W}_{j} and the received $\left[Y_{i}+\bar{W}_{j}\right]$ to decode Y_{i} and thus Y_{i} must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1)}$. Similarly, one condition for $\bar{W}_{j} \in Q_{\left\{r d_{1}\right\}}^{[2]}$ is that \bar{W}_{j} must be unknown to d_{2}. However when d_{2} receives the mixture, d_{2} can use the known $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ and the received $\left[Y_{i}+\bar{W}_{j}\right]$ to decode \bar{W}_{j}. Thus \bar{W}_{j} must be removed from $Q_{\left\{r d_{1}\right\}}^{[2]}$ whenever d_{2} receives.
- Insertion: From the properties of $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ and $\bar{W}_{j} \in$ $Q_{\left\{r d_{1}\right\}}^{[2]}$, we know that r contains $\left\{X_{i}, \bar{W}_{j}\right\} ; d_{1}$ contains $\left\{\left[X_{i}+Y_{i}\right], \bar{W}_{j}\right\}$; and d_{2} contains Y_{i} already. Therefore, whenever d_{1} receives this mixture, d_{1} can use the known $\left\{\left[X_{i}+Y_{i}\right], \bar{W}_{j}\right\}$ and the received $\left[Y_{i}+\bar{W}_{j}\right]$ to extract the desired X_{i} and thus we can insert X_{i} into $Q_{\text {dec }}^{1}$. Similarly, whenever d_{2} receives this mixture, d_{2} can use the known Y_{i} and the received $\left[Y_{i}+\bar{W}_{j}\right]$ to extract \bar{W}_{j}. We now need to consider case by case when \bar{W}_{j} was inserted into $Q_{\left\{r d_{1}\right\}}^{[2]}$. If it was the Case 1 insertion, then \bar{W}_{j} is a pure session-2 packet Y_{j} and thus we can simply insert
Y_{j} into Q_{dec}^{2}. If it was the Case 2 insertion, then \bar{W}_{j} is a pure session-1 packet $X_{j} \in Q_{\mathrm{dec}}^{1}$ and there exists a session-2 packet Y_{j} still unknown to d_{2} where $Y_{j} \equiv X_{j}$. Moreover, d_{2} has received $\left[Y_{j}+X_{j}\right]$. As a result, d_{2} can further decode Y_{j} and thus we can insert Y_{j} into $Q_{\text {dec }}^{2}$. If it was the Case 3 insertion, then \bar{W}_{j} is a mixed form of [$\left.W_{i}+W_{j}\right]$ where W_{i} is already known by d_{2} but W_{j} is not. As a result, d_{2} can decode W_{j} upon receiving $\bar{W}_{j}=$ $\left[W_{i}+W_{j}\right]$. Note that W_{j} in the Case 3 insertion $\bar{W}_{j}=$ $\left[W_{i}+W_{j}\right] \in Q_{\left\{r d_{1}\right\}}^{[2]}$ comes from either $Q_{\left\{d_{1}\right\}}^{2}$ or $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. If W_{j} was coming from $Q_{\left\{d_{1}\right\}}^{2}$, then W_{j} is a session2 packet Y_{j} and we can simply insert Y_{j} into $Q_{\text {dec }}^{2}$. If W_{j} was coming from $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$, then W_{j} is a session-1 packet X_{j} and there also exists a session-2 packet Y_{j} still unknown to d_{2} where $Y_{j} \equiv X_{j}$. Moreover, d_{2} has received $\left[Y_{j}+X_{j}\right]$. As a result, d_{2} can further use the known $\left[Y_{j}+X_{j}\right]$ and the extracted X_{j} to decode Y_{j} and thus we can insert Y_{j} into $Q_{\text {dec }}^{2}$. In a nutshell, whenever d_{2} receives the mixture $\left[Y_{i}+\bar{W}_{j}\right]$, a session- 2 packet Y_{j} that was unknown to d_{2} can be newly decoded. The remaining reception status are $\overline{d_{1} d_{2}} r$ and $\overline{d_{1}} d_{2} r$. For both cases when r receives the mixture but d_{1} does not, r can use the known \bar{W}_{j} and the received $\left[Y_{i}+\bar{W}_{j}\right]$ to extract Y_{i}. Since Y_{i} is now known by both r and d_{2} but $\left[X_{i}+Y_{i}\right]$ is in $\mathrm{RL}_{\left\{d_{1}\right\}}$, we can thus move Y_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion.
- $s_{\mathrm{CX} ; 8}: s$ transmits $\left[\bar{W}_{i}+X_{j}\right]$ from $\bar{W}_{i} \in Q_{\left\{r d_{2}\right\}}^{[1]}$ and $X_{j} \in$ $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. The movement process is symmetric to $s_{\mathrm{CX} ; 7}$.
- r_{UC}^{1} : r transmits X_{i} from $X_{i} \in Q_{\{r\}}^{1}$. The movement process is as follows.

\[

\]

- Departure: One condition for $X_{i} \in Q_{\{r\}}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, d_{2}\right\}$. As a result, whenever X_{i} is received by any of $\left\{d_{1}, d_{2}\right\}, X_{i}$ must be removed from $Q_{\{r\}}^{1}$.
- Insertion: From the above discussion, we know that X_{i} is unknown to d_{1}. As a result, whenever X_{i} is received by d_{1}, we can insert X_{i} to $Q_{\text {dec }}^{1}$. If X_{i} is received by d_{2} but not by d_{1}, then X_{i} is now known by both d_{2} and r but still unknown to d_{1}. This exactly falls into the firstcase scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we can move X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion.
- r_{UC}^{2} : $\quad r$ transmits Y_{j} from $Y_{j} \in Q_{\{r\}}^{2}$. The movement process is symmetric to r_{UC}^{1}.
- $r_{\mathrm{DT}}^{(1)}$: $\quad r$ transmits X_{i} that is known by r only and information equivalent from $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. The movement process is as follows.

\[

\]

- Departure: From the property for $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, we know that there exists an information-equivalent session1 packet X_{i} that is known by r but unknown to any of $\left\{d_{1}, d_{2}\right\}$. As a result, whenever X_{i} is received by any of $\left\{d_{1}, d_{2}\right\}, Y_{i}$ must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$.
- Insertion: From the above discussion, we know that X_{i} is unknown to d_{1} and thus we can insert X_{i} to Q_{dec}^{1} whenever X_{i} is received by d_{1}. If X_{i} is received by d_{2} but not by d_{1}, then X_{i} is now known by both d_{2} and r but still unknown to d_{1}. This exactly falls into the firstcase scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we can move X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion.
- $r_{\mathrm{DT}}^{(2)}: \quad r$ transmits Y_{j} that is known by r only and information equivalent from $X_{j} \in Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. The movement process is symmetric to $r_{\mathrm{DT}}^{(1)}$.
- r_{RC} : $\quad r$ transmits W known by r for the packet of the form $\left[X_{i}+Y_{j}\right]: W \in Q_{\text {mix }}$. The movement process is as follows.

$Q_{\text {mix }} \xrightarrow{\left[X_{i}+Y_{j}\right]: W}$	$\overline{d_{1}} d_{2}$	$\begin{aligned} & \text { either } \xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]} \text { or } \xrightarrow[\text { Case } 2]{Y_{j}} Q_{\left\{r d_{2}\right\}}^{[1]}, \\ & \xrightarrow{Y_{j}} Q_{\text {dec }}^{2} \end{aligned}$
	$d_{1} \overline{d_{2}}$	$\begin{aligned} & \xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \\ & \text { either } \xrightarrow[\text { Case 1 }]{Y_{j}} Q_{\left\{r d_{1}\right\}}^{[2]} \text { or } \xrightarrow[\text { Case } 2]{X_{i}} Q_{\left\{r d_{1}\right\}}^{[2]} \end{aligned}$
	$d_{1} d_{2}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow{Y_{j}} Q_{\text {dec }}^{2}$

Departure: From the conditions of $\left[X_{i}+Y_{j}\right]: W \in Q_{\text {mix }}$, we know that $Q_{\text {mix }}$ is designed to benefit both destinations simultaneously when r transmits W. That is, whenever d_{1} (resp. d_{2}) receives W, d_{1} (resp. d_{2}) can decode the desired X_{i} (resp. Y_{j}), regardless whether the packet W is of a session-1 or of a session-2. However from the conditions of $Q_{\text {mix }}$, we know that X_{i} is unknown to d_{1} and Y_{j} is unknown to d_{2}. Therefore, whenever W is received by any of $\left\{d_{1}, d_{2}\right\},\left[X_{i}+Y_{j}\right]: W$ must be removed from $Q_{\left\{r d_{2}\right\}}^{[1]}$.
Insertion: From the above discussions, we know that d_{1} (resp. d_{2}) can decode the desired X_{i} (resp. Y_{j}) when W is received by $d_{1}\left(\right.$ resp. $\left.d_{2}\right)$. As a result, we can insert X_{i} into $Q_{\text {dec }}^{1}$ (resp. Y_{j} into $Q_{\text {dec }}^{2}$) when d_{1} (resp. $\underline{d_{2}}$) receives \underline{W}. We now consider two reception status $\overline{d_{1}} d_{2}$ and $d_{1} \overline{d_{2}}$. From the conditions of $Q_{\text {mix }}$, note that W is always known by r and can be either X_{i} or Y_{j}. Moreover, X_{i} (resp. Y_{j}) is unknown to d_{1} (resp. d_{2}). For the first reception case $\overline{d_{1}} d_{2}$, if X_{i} was chosen as W to benefit both destinations, then X_{i} is now known by both d_{2} and r but still unknown to d_{1}. This exactly falls into the first-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we move X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion. On the other hand, if Y_{j} was chosen as W to benefit both destinations, then we know that Y_{j} is now known by both d_{2} and r, and that $\left[X_{i}+Y_{j}\right]$ is already in $\mathrm{RL}_{\left\{d_{1}\right\}}$. This exactly falls into the second-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we can move $Y_{j} \in Q_{\text {dec }}^{2}$ into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion. The second reception case $d_{1} \overline{d_{2}}$ will follow the the previous arguments symmetrically.

- $r_{\mathrm{XT}}: r$ transmits $\left[W_{i}+W_{j}\right] \in Q_{\{r\}}^{m_{\mathrm{Cx}}}$. The movement process is as follows.

$Q_{\{r\}}^{m_{\mathrm{Cx}}} \xrightarrow{\left[W_{i}+W_{j}\right]}$	$\overline{d_{1}} d_{2}$	$\begin{aligned} & \stackrel{\left[W_{i}+W_{j}\right]}{\text { Case } 3} Q_{\left\{r d_{2}\right\}}^{[1]} \\ & \xrightarrow{Y_{j}\left(\equiv W_{j}\right)} Q_{\text {dec }}^{2} \end{aligned}$
	$d_{1} \overline{d_{2}}$	$\begin{aligned} & \xrightarrow[\text { Case } 3]{X_{i}\left(\equiv W_{i}\right)} Q_{\text {dec }}^{1}, \\ & \stackrel{\left[W_{i}+W_{1}\right]}{[2]} \end{aligned}$
	$d_{1} d_{2}$	$\begin{aligned} & \xrightarrow{X_{i}\left(\equiv W_{i}\right)} Q_{\mathrm{dec}}^{1}, \\ & \xrightarrow{Y_{j}\left(\equiv W_{j}\right)} Q_{\mathrm{dec}}^{2} \end{aligned}$

- Departure: From the property for $\left[W_{i}+W_{j}\right] \in Q_{\{r\}}^{m c x}$, we know that W_{i} is known only by d_{2} and that W_{j} is only known by d_{1}. As a result, whenever d_{1} receives this mixture, d_{1} can use the known W_{j} and the received $\left[W_{i}+\right.$ $\left.W_{j}\right]$ to extract W_{i} and thus the mixture must be removed from $Q_{\{r\}}^{m_{c x}}$. Similarly, whenever d_{2} receives this mixture, d_{2} can use the known W_{i} and the received $\left[W_{i}+W_{j}\right.$] to extract W_{j} and thus the mixture must be removed from $Q_{\{r\}}^{m_{c x}}$.
- Insertion: From the above discussions, we have observed that whenever d_{1} (resp. d_{2}) receives the mixture, d_{1} (resp. d_{2}) can extract W_{i} (resp. W_{j}). From the four cases study of $Q_{\{r\}}^{m c x}$, we know that d_{1} (resp. d_{2}) can decode a desired session-1 packet X_{i} (resp. session- 2 packet Y_{j}) whenever d_{1} (resp. d_{2}) receives the mixture, and thus we can insert $X_{i}\left(\right.$ resp. $\left.Y_{j}\right)$ into $Q_{\text {dec }}^{1}$ (resp. $\left.Q_{\text {dec }}^{2}\right)$. We now consider the reception status $\overline{d_{1}} d_{2}$ and $d_{1} \overline{d_{2}}$. If d_{2} receives the mixture but d_{1} does not, then d_{1} contained W_{j} and d_{2} now contains $\left[W_{i}+W_{j}\right]$. Moreover, $\left[W_{i}+W_{j}\right]$ was transmitted from r. This falls exactly into the third-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$. As a result, we can move $\left[W_{i}+W_{j}\right]$ into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 3 insertion. The case when the reception status is $d_{1} \overline{d_{2}}$ can be symmetrically followed such that we can move $\left[W_{i}+W_{j}\right]$ into $Q_{\left\{r d_{1}\right\}}^{[2]}$ as the Case 3 insertion.
- $r_{\mathrm{DT}}^{[1]}$: r transmits $\bar{W}_{i} \in Q_{\left\{r d_{2}\right\}}^{[1]}$. The movement process is as follows.

do nothing	$\overline{d_{1}} d_{2}$	do nothing
$Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow{\bar{W}_{i}}$	$d_{1} \overline{d_{2}}$	$X_{i}\left(\equiv \bar{W}_{i}\right)$
	$d_{1} d_{2}$	

- Departure: One condition for $\bar{W}_{i} \in Q_{\left\{r d_{2}\right\}}^{[1]}$ is that \bar{W}_{i} is known by d_{2} unknown to d_{1}. As a result, whenever d_{1} receives, \bar{W}_{i} must be removed from $Q_{\left\{r d_{2}\right\}}^{[1]}$. Since $\bar{W}_{i} \in$ $Q_{\left\{r d_{2}\right\}}^{[1]}$ is already known by d_{2}, nothing happens if it is received by d_{2}.
- Insertion: From the previous observation, we only need to consider the reception status when d_{1} receives \bar{W}_{i}. For those $d_{1} \overline{d_{2}}$ and $d_{1} d_{2}$, we need to consider case by case when \bar{W}_{i} was inserted into $Q_{\left\{r d_{2}\right\}}^{[1]}$. If it was the Case 1 insertion, then \bar{W}_{i} is a pure session- 1 packet X_{i} and thus we can simply insert X_{i} into $Q_{\text {dec }}^{1}$. If it was the Case 2 insertion, then \bar{W}_{i} is a pure session- 2 packet $Y_{i} \in Q_{\text {dec }}^{2}$ and there exists a session-1 packet X_{i} still unknown to d_{1} where $X_{i} \equiv Y_{i}$. Moreover, d_{1} has received $\left[X_{i}+Y_{i}\right]$. As a result, d_{1} can further decode X_{i} and thus we can
insert X_{i} into $Q_{\text {dec }}^{1}$. If it was the Case 3 insertion, then \bar{W}_{i} is a mixed form of $\left[W_{i}+W_{j}\right]$ where W_{j} is already known by d_{1} but W_{i} is not. As a result, d_{1} can decode W_{i} upon receiving $\bar{W}_{i}=\left[W_{i}+W_{j}\right]$. Note that W_{i} in the Case 3 insertion $\bar{W}_{i}=\left[W_{i}+W_{j}\right] \in Q_{\left\{r d_{2}\right\}}^{[1]}$ comes from either $Q_{\left\{d_{2}\right\}}^{1}$ or $Q_{\left\{d_{2}\right\}\{\{r\}}^{(1) \mid 1}$. If W_{i} was coming from $Q_{\left\{d_{2}\right\}}^{1}$, then W_{i} is a session-1 packet X_{i} and we can simply insert X_{i} into $Q_{\text {dec }}^{1}$. If W_{i} was coming from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, then W_{i} is a session-2 packet Y_{i} and there also exists a session-1 packet X_{i} still unknown to d_{1} where $X_{i} \equiv Y_{i}$. Moreover, d_{1} has received $\left[X_{i}+Y_{i}\right]$. As a result, d_{1} can further use the known $\left[X_{i}+Y_{i}\right]$ and the extracted Y_{i} to decode X_{i} and thus we can insert X_{i} into Q_{dec}^{1}. In a nutshell, whenever d_{1} receives \bar{W}_{i}, a session-1 packet X_{i} that was unknown to d_{1} can be newly decoded.
- $r_{\mathrm{DT}}^{[2]}: \quad r$ transmits $\bar{W}_{j} \in Q_{\left\{r d_{1}\right\}}^{[2]}$. The movement process is symmetric to $r_{\mathrm{DT}}^{[1]}$.
- $r_{\mathrm{CX}}: \quad r$ transmits $\left[\bar{W}_{i}+\bar{W}_{j}\right]$ from $\bar{W}_{i} \in Q_{\left\{r d_{2}\right\}}^{[1]}$ and $\bar{W}_{j} \in$ $Q_{\left\{r d_{1}\right\}}^{[2]}$. The movement process is as follows.

$Q_{\left\{r d_{1}\right\}}^{[2]} \xrightarrow{\bar{W}_{j}}$	$\overline{d_{1}} d_{2}$	$\xrightarrow{Y_{j}\left(\equiv \bar{W}_{j}\right)} Q_{\text {dec }}^{2}$
$Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow{\bar{W}_{i}}$	$d_{1} \overline{d_{2}}$	$\xrightarrow{X_{i}\left(\equiv \bar{W}_{i}\right)} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow{\bar{W}_{i}}, \\ & Q_{\left\{r d_{1}\right\}}^{[2]} \xrightarrow{\bar{W}_{j}} \end{aligned}$	$d_{1} d_{2}$	$\begin{aligned} & \xrightarrow{X_{i}\left(\equiv \bar{W}_{i}\right)} Q_{\mathrm{dec}}^{1}, \\ & \xrightarrow{Y_{j}\left(\equiv \bar{W}_{j}\right)} Q_{\mathrm{dec}}^{2} \end{aligned}$

- Departure: From the property for $\bar{W}_{i} \in Q_{\left\{r d_{2}\right\}}^{[1]}$, we know that \bar{W}_{i} is known by d_{2} but unknown to d_{1}. Symmetrically, $\bar{W}_{j} \in Q_{\left\{r d_{1}\right\}}^{[2]}$ is known by d_{1} but unknown to d_{2}. As result, whenever d_{1} (resp. d_{2}) receives the mixture, d_{1} (resp. d_{2}) can use the known \bar{W}_{j} (resp. \bar{W}_{i}) and the received $\left[\bar{W}_{i}+\bar{W}_{j}\right]$ to extract $\bar{W}_{i}\left(\right.$ resp. $\left.\bar{W}_{j}\right)$. Therefore, we must remove \bar{W}_{i} from $Q_{\left\{r d_{2}\right\}}^{[1]}$ whenever d_{1} the mixture and remove \bar{W}_{j} from $Q_{\left\{r d_{1}\right\}}^{[2]}$ whenever d_{2} receives.
- Insertion: From the above discussions, we have observed that whenever d_{1} (resp. d_{2}) receives the mixture, d_{1} (resp. d_{2}) can extract \bar{W}_{i} (resp. \bar{W}_{j}). We first focus on the case when d_{1} receives the mixture. For those $d_{1} \overline{d_{2}}$ and $d_{1} d_{2}$, we can use the same arguments for \bar{W}_{i} as described in the Insertion process of $r_{\mathrm{DT}}^{[1]}$. Following these case studies, one can see that a session-1 packet X_{i} that was unknown to d_{1} can be newly decoded whenever d_{1} receives \bar{W}_{i}. The reception status when d_{2} receives the mixture can be followed symmetrically such that d_{2} can always decode a new session-2 packet Y_{j} that was unknown before.

Appendix C

LNC encoding operations, Packet Movement

Process, and Queue Invariance for newly added s-VARIABLES $s_{\mathrm{SX} ; l}^{k}$ IN PROPOSITION 3
In the following, we will describe the newly added 6 self-packets-XOR operations and the corresponding packet movement process of Proposition 3 one by one, and then prove
that the Queue Invariance explained in Section IV-B always holds.

Again, to simplify the analysis, we will ignore the null reception and we will exploit the following symmetry: For those variables $s_{\mathrm{SX} ; l}^{k}$ whose superscript indicates the session information $k \in\{1,2\}$ (either session-1 or session-2), here we describe session-1 ($k=1$) only. Those variables with $k=2$ in the superscript will be symmetrically explained by simultaneously swapping (a) session-1 and session-2 in the superscript; (b) X and Y; (c) i and j; and (d) d_{1} and d_{2}, if applicable.

- $s_{\mathrm{SX} ; 1}^{1}$: The source s transmits $\left[X+X_{i}\right]$ from $X \in Q_{\{r\}}^{1}$ and $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$. The movement process is as follows.

$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
$Q_{\{r\}}^{1} \xrightarrow{X}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow[\text { Case } 1]{X} Q_{\left\{r d_{2}\right\}}^{[1]}$
$\begin{aligned} & Q_{\{r\}}^{1} \xrightarrow{X} \\ & Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}} \end{aligned}$	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X_{i}} Q_{\mathrm{dec}}^{1}, \xrightarrow{X_{i}} Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$
	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case 1 }]{X} Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case 2 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}}$
	$d_{1} d_{2} \bar{r}$	$\xrightarrow{X} Q_{\text {dec }}^{1}, \frac{X}{\text { Case 2 }} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} d_{2} r$	$\begin{aligned} & \text { if } \xrightarrow{X} Q_{\text {dec }}^{1} \text {, then } \xrightarrow[\text { Case 2 }]{X} Q_{\left\{r d_{2}\right\}}^{[1]}, \\ & \text { if } \xrightarrow{X_{i}} Q_{\text {dec }}^{1} \text {, then } \xrightarrow[\text { Case 2 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]} \end{aligned}$

- Departure: The property for $X \in Q_{\{r\}}^{1}$ is that X must be unknown to any of $\left\{d_{1}, d_{2}\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, d_{2}\right\}}$. As a result, whenever the mixture $\left[X+X_{i}\right]$ is received by any of $\left\{d_{1}, d_{2}\right\}, X$ must be removed from $Q_{\{r\}}^{1}$. Similarly, the property for $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, r\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, r\right\}}$. As a result, whenever the mixture is received by any of $\left\{d_{1}, r\right\}, X_{i}$ must be removed from $Q_{\left\{d_{2}\right\}}^{1}$.
- Insertion: Whenever r receives the mixture, r can use the known X and the received $\left[X+X_{i}\right]$ to extract X_{i}. Moreover, whenever d_{2} receives the mixture, d_{2} can use the known X_{i} and the received $\left[X+X_{i}\right]$ to extract X. From the above observations, we describe one by one for each reception status. When the reception status is $\overline{d_{1} d_{2}} r$, now X_{i} is known by both d_{2} and r but still unknown to d_{1} while X is still at r. This X_{i} falls exactly into the first-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we move X_{i} into $Q_{\left\{r \frac{\left.d_{2}\right\}}{[1]}\right.}^{[1]}$ as the Case 1 insertion. When the reception status is $\overline{d_{1}} d_{2} \bar{r}$, now X is known by both d_{2} and r but still unknown to d_{1} while X_{i} is still at d_{2}. As a result, we can move X into $Q_{\left\{r \underline{\left.d_{2}\right\}}\right.}^{[1]}$ as the Case 1 insertion. When the reception status is $\overline{d_{1}} \overline{d_{2} r}$, we now have X at $r ;\left[X+X_{i}\right]$ at d_{1}; and X_{i} at d_{2}. In this case, whenever X_{i} or X is further delivered, d_{1} can decode both X and X_{i} simultaneously. We can thus treat X_{i} as information-equivalent to X or vice versa. But since X_{i} is overheard by d_{2}, we chose to treat X_{i} as already decoded "in advance"; insert X_{i} into $Q_{\text {dec }}^{1}$; and treat X as not-yet decoded by d_{1}. For such X, note that now r can perform the naive delivery to d_{1}. This exactly falls into the scenario of $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ when we substitute Y_{i} by X_{i}. Originally, $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ holds packets of
pure session-2 where such a session-2 packet $Y_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ is information equivalent to a session-1 packet not yet delivered to $d_{1} . X_{i}$ here plays the same role as Y_{i} as we treat $X \equiv X_{i}$ and that X is not yet delivered to d_{1}. As a result, we move X_{i} into $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. When the reception status is $\overline{d_{1}} d_{2} r$, we have both X and X_{i} known by both d_{2} and r but still unknown to d_{1}. As a result, we can move both X and X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion. When the reception status is $d_{1} \overline{d_{2}} r$, we now have $\left\{X, X_{i}\right\}$ at $r ;\left[X+X_{i}\right]$ at d_{1}; and X_{i} at d_{2}. Following the discussion when $d_{1} \overline{d_{2} r}$, we can treat either X or X_{i} as already decoded. But here we choose to treat X_{i} as already decoded since X_{i} is known by both d_{2} and r. Such X_{i} falls exactly into the second-case scenario of $Q_{\left\{r d_{2}\right\}}^{[1]}$ when we substitute Y_{i} by X_{i}. As a result, we move X_{i} into Q_{dec}^{1}, and also into $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ as the Case 2 insertion. When the reception status is $d_{1} d_{2} \bar{r}$, we now have X at $r ;\left[X+X_{i}\right]$ at d_{1}; and $\left\{X, X_{i}\right\}$ at d_{2}. Similarly following the discussion when $d_{1} \overline{d_{2} r}$, here we choose to treat X as already decoded since X is known by both d_{2} and r. Similarly following the above discussions, we move X into $Q_{\text {dec }}^{1}$, and also into $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ as the Case 2 insertion. Finally when the reception status is $d_{1} d_{2} r$, we now have $\left\{X, X_{i}\right\}$ at $r ;\left[X+X_{i}\right]$ at d_{1}; and $\left\{X, X_{i}\right\}$ at d_{2}. Following the similar discussion of when $d_{1} d_{2} \bar{r}$, we know that we can treat either X or X_{i} as already decoded because both X and X_{i} are known by d_{2} and r. As a result, if we treat X as already decoded by d_{1}, then we move X into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion. On the other hand, if we treat X_{i} as already decoded, then we move X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion.
- $s_{\mathrm{SX} ; 1}^{2}: s$ transmits $\left[Y+Y_{j}\right]$ from $Y \in Q_{\{r\}}^{2}$ and $Y_{j} \in Q_{\left\{d_{1}\right\}}^{2}$. The movement process is symmetric to $s_{\mathrm{SX} ; 1}^{1}$.
- $s_{\mathrm{SX} ; 2}^{1}: s$ transmits $\left[X+\bar{W}_{i}\right]$ from $X \in Q_{\{r\}}^{1}$ and $\bar{W}_{i} \in$ $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. The movement process is as follows.

$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{\bar{W}_{i}}$	$\overline{d_{1} d_{2}} r$	$\xrightarrow[\text { Case 2 }]{\stackrel{\bar{W}_{i}}{\longrightarrow}} Q_{\left\{r d_{2}\right\}}^{[1]}$
$Q_{\{r\}}^{1} \xrightarrow{X}$	$\overline{d_{1}} d_{2} \bar{r}$	$\xrightarrow[\text { Case } 1]{X} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} \overline{d_{2} r}$	$\xrightarrow{X} Q_{\text {dec }}^{1}$
$\begin{aligned} & Q_{\{r\}}^{1} \xrightarrow{X}, \\ & Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{\bar{W}_{i}} \end{aligned}$	$\overline{d_{1}} d_{2} r$	$\xrightarrow[\text { Case 1 }]{X} Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow[\text { Case 2 }]{\stackrel{\bar{W}_{i}}{ }} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} \overline{d_{2}} r$	$\xrightarrow{X} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case 2 }]{\bar{W}_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} d_{2} \bar{r}$	$\xrightarrow{X} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case 2 }]{X} Q_{\left\{r d_{2}\right\}}^{[1]}$
	$d_{1} d_{2} r$	if $\xrightarrow{X} Q_{\text {dec }}^{1}$, then $\xrightarrow[\text { Case 2 }]{\bar{W}_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$ if $\xrightarrow{X_{i}\left(\equiv \bar{W}_{i}\right)} Q_{\text {dec }}^{1}$, then $\xrightarrow[\text { Case 1 }]{X} Q_{\left\{r d_{2}\right\}}^{[1]}$

Departure: The property for $X \in Q_{\{r\}}^{1}$ is that X must be unknown to any of $\left\{d_{1}, d_{2}\right\}$, even not flagged in $\mathrm{RL}_{\left\{d_{1}, d_{2}\right\}}$. As a result, whenever the mixture $\left[X+\bar{W}_{i}\right]$ is received by any of $\left\{d_{1}, d_{2}\right\}, X$ must be removed from $Q_{\{r\}}^{1}$. Similarly, one property for $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ is that \bar{W}_{i} must be unknown to any of $\left\{d_{1}, r\right\}$, even not in $\mathrm{RL}_{\{r\}}$. As a result, whenever \bar{W}_{i} is received by any of $\left\{d_{1}, r\right\}$, \bar{W}_{i} must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$.

Similarly, one property for $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ is that \bar{W}_{i} must be unknown to any of $\left\{d_{1}, r\right\}$ and for r not allowed to even have \bar{W}_{i} in a mixed form with any other packet. As a result, whenever the mixture is received by r, it must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. We now need to consider the case when the mixture is received by both $\left\{d_{1}, d_{2}\right\}$ but not r. To that end, first note that since $X \in Q_{\{r\}}^{1}$ and $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{\{r\}}^{(1) \mid 1}$, we already have $\left\{X, X_{i}\right\}$ at $r ;\left\{\left[X_{i}+\bar{W}_{i}\right]\right\}$ at d_{1}; and \bar{W}_{i} at d_{2}, where $X_{i} \notin Q_{\text {dec }}^{1}$ is the informationequivalent pure session-1 packet corresponding to \bar{W}_{i} from the property of $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. Now assume that the mixture is received only by both d_{1} and d_{2}. We then have $\left\{X, X_{i}\right\}$ at $r ;\left\{\left[X_{i}+\bar{W}_{i}\right],\left[X+\bar{W}_{i}\right]\right\}$ at d_{1}; and $\left\{\bar{W}_{i},\left[X+\bar{W}_{i}\right]\right\}$ at d_{2}. Then d_{2} can now use the known \bar{W}_{i} and the received $\left[X+\bar{W}_{i}\right]$ to further extract X. In this case, whenever \bar{W}_{i} or X is delivered to d_{1}, it can decode X and X_{i} simultaneously. But notice that d_{1} also knows $\left[X_{i}+X\right]$ by manipulating its received mixtures $\left\{\left[X_{i}+\bar{W}_{i}\right],\left[X+\bar{W}_{i}\right]\right\}$. Moreover, X is known by both $\left\{d_{2}, r\right\}$ while X_{i} is known by r only. As a result, we chose to use X further and thus treat X as already decoded. The reason is because, for such X, this exactly falls into Case 2 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where $W_{i}=X \in Q_{\text {dec }}^{1 \cup 2}$ is known by both $\left\{d_{2}, r\right\}$ and d_{1} has $\left[X_{i}+W_{i}\right]=\left[X_{i}+X\right]$ where $X_{i} \notin Q_{\text {dec }}^{1}$. In a nutshell, when the reception status is $d_{1} d_{2} \bar{r}$, we can treat X as if $X \in Q_{\mathrm{dec}}^{1}$. Therefore, X must be removed from $Q_{\{r\}}^{1}$.

- Insertion: Whenever r receives the mixture, r can use the known X and the received $\left[X+\bar{W}_{i}\right]$ to extract \bar{W}_{i}. Also, whenever d_{2} receives the mixture, d_{2} can use the known \bar{W}_{i} and the received $\left[X+\bar{W}_{i}\right]$ to extract X. From these observations, we describe one by one for each reception status. When the reception status is $\overline{d_{1} d_{2}} r$, now \bar{W}_{i} is known by both $\left\{d_{2}, r\right\}$ where X is still at r. Since \bar{W}_{i} was coming from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}, d_{1}$ also knows $\left[X_{i}+\bar{W}_{i}\right]$ for some $X_{i} \notin Q_{\mathrm{dec}}^{1}$ where $\bar{W}_{i} \in Q_{\mathrm{dec}}^{1 \cup 2}$. For such \bar{W}_{i}, this exactly falls into Case 2 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we move \bar{W}_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion. When the reception status is $\overline{d_{1}} d_{2} \bar{r}$, now X is known by both $\left\{d_{2}, r\right\}$ where \bar{W}_{i} is still at d_{2}. For such X, this exactly falls into Case 1 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we move X into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion. When the reception status is $d_{1} \overline{d_{2} r}$, we now have $\left\{X, X_{i}\right\}$ at $r ;\left\{\left[X_{i}+\bar{W}_{i}\right],\left[X+\bar{W}_{i}\right]\right\}$ at d_{1}; and \bar{W}_{i} at d_{2}. In this case, whenever \bar{W}_{i} or X is further delivered to d_{1}, it can decode both X and X_{i} simultaneously. But since \bar{W}_{i} is overheard by d_{2}, we chose to treat X as already decoded and insert X into $Q_{\text {dec }}^{1}$, while still keeping $X_{i} \notin Q_{\text {dec }}^{1}$ as not-yet decoded. Since $X_{i} \notin Q_{\text {dec }}^{1}$ is kept intact and the mixture is received by d_{1} only, in order for d_{1} to further decode X_{i}, d_{1} needs to have either X_{i} in r or \bar{W}_{i} in d_{2}. Namely, the original scenario of $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ is still kept intact. As a result, we just insert X into Q_{dec}^{1}. When the reception status is $\overline{d_{1}} d_{2} r$, we now have that both X and \bar{W}_{i} are known by both $\left\{d_{2}, r\right\}$ and thus both X and \bar{W}_{i} falls into Case 1
and Case 2 of $Q_{\left\{r d_{2}\right\}}^{[1]}$, respectively. We thus move both X and \bar{W}_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 and Case 2 insertion, respectively. When the reception status is $d_{1} \overline{d_{2}} r$, we now have $\left\{X, X_{i}, \bar{W}_{i}\right\}$ at $r ;\left\{\left[X_{i}+\bar{W}_{i}\right],\left[X+\bar{W}_{i}\right]\right\}$ at d_{1}; and \bar{W}_{i} at d_{2}. Following the discussion when $d_{1} \overline{d_{2} r}$, we can treat either X or X_{i} as already decoded. But here we chose to treat X_{i} as already decoded since \bar{W}_{i} is overheard by both $\left\{d_{2}, r\right\}$ and d_{1} contains $\left[X+\bar{W}_{i}\right]$. Namely, by treating $X_{i} \in Q_{\text {dec }}^{1}$, we can switch the \bar{W}_{i} associated pure session-1 packet from X_{i} to $X \notin Q_{\text {dec }}^{1}$ since d_{1} now knows $\left[X+\bar{W}_{i}\right]$. This is exactly the same to Case 2 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where $W_{i}=\bar{W}_{i} \in Q_{\mathrm{dec}}^{1 \cup 2}$ is known by both $\left\{d_{2}, r\right\}$ and d_{1} has $\left[X+W_{i}\right]$ where $X \notin Q_{\text {dec }}^{1}$. As a result, we can further move \bar{W}_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion. When the reception status is $d_{1} d_{2} \bar{r}$, we now have $\left\{X, X_{i}\right\}$ at $r ;\left\{\left[X_{i}+\bar{W}_{i}\right],\left[X+\bar{W}_{i}\right]\right\}$ at d_{1}; and $\left\{X, \bar{W}_{i}\right\}$ at d_{2}. Following the Departure discussion when $d_{1} \overline{d_{2} r}$, we can choose to treat X as already decoded and use X as for Case 2 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where $W_{i}=X \in Q_{\text {dec }}^{1 \cup 2}$ is known by both $\left\{d_{2}, r\right\}$ and d_{1} has $\left[X_{i}+W_{i}\right]=\left[X_{i}+X\right]$ where $X_{i} \notin Q_{\text {dec }}^{1}$. As a result, we can further move X into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion. Finally when the reception status is $d_{1} d_{2} r$, we now have $\left\{X, X_{i}, \bar{W}_{i}\right\}$ at $r ;\left\{\left[X_{i}+\bar{W}_{i}\right],\left[X+\bar{W}_{i}\right]\right\}$ at d_{1}; and $\left\{X, \bar{W}_{i}\right\}$ at d_{2}. From the previous discussions, we know that we can treat either X or X_{i} as already decoded where both X and \bar{W}_{i} are known by both $\left\{d_{2}, r\right\}$. If we treat X as already decoded, then since $\bar{W}_{i} \in Q_{\mathrm{dec}}^{1 \mathrm{U} 2}$ was from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ and is known by both $\left\{d_{2}, r\right\}$, we can thus move \bar{W}_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion. On the other hand, if we treat X_{i} as already decoded, then since $X \notin Q_{\mathrm{dec}}^{1}$ is known by both $\left\{d_{2}, r\right\}$, we can thus move X into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion.
- $s_{\mathrm{SX}, 2}^{2}: s$ transmits $\left[Y+\bar{W}_{j}\right]$ from $Y \in Q_{\{r\}}^{2}$ and $\bar{W}_{j} \in$ $Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$. The movement process is symmetric to $s_{\mathrm{SX} ; 2}^{1}$.
- $s_{\mathrm{SX} ; 3}^{\mathrm{T}}$: s transmits $\left[X_{i}+X_{i}^{*}\right]$ from $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and $X_{i}^{*}(\equiv$ $\left.\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}\right)$. The movement process is as follows.

$\overline{d_{1} d_{2}} r$	$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$\xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
$\overline{d_{1}} d_{2} \bar{r}$	$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \xrightarrow{\bar{W}_{i}}$	$\xrightarrow[\text { Case } 1]{X_{i}^{*}\left(\equiv \bar{W}_{i}\right)} Q_{\left\{r d_{2}\right\}}^{[1]}$
$d_{1} \overline{d_{2} r}$	$Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}$	$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}$
$\overline{d_{1}} d_{2} r$	$\begin{aligned} & Q_{\left\{d_{2}\right\}}^{1} \xrightarrow{X_{i}}, \\ & Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1} \bar{W}_{i} \end{aligned}$	$\xrightarrow[\text { Case 1 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]} \xrightarrow[\text { Case 1 }]{X_{i}^{*}\left(\equiv \bar{W}_{i}\right)} Q_{\left\{r d_{2}\right\}}^{[1]}$
$d_{1} \overline{d_{2}} r$		$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case 2 }]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]}$
$d_{1} d_{2} \bar{r}$		$\xrightarrow{X_{i}} Q_{\text {dec }}^{1}, \xrightarrow[\text { Case } 1]{X_{i}^{*}\left(\equiv \bar{W}_{i}\right)} Q_{\left\{r d_{2}\right\}}^{[1]}$
$d_{1} d_{2} r$		$\begin{aligned} & \text { if } \xrightarrow{X_{i}} Q_{\mathrm{dec}}^{1} \text {, then } \xrightarrow[\text { Case } 1]{X_{i}^{*}\left(\equiv \bar{W}_{i}\right)} Q_{\left\{r d_{2}\right\}}^{[1]} \\ & \text { if } \xrightarrow{X_{i}^{*}\left(\equiv \bar{W}_{i}\right)} Q_{\text {dec }}^{1} \text {, then } \xrightarrow[\text { Case } 1]{X_{i}} Q_{\left\{r d_{2}\right\}}^{[1]} \end{aligned}$

- Departure: One property for $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ is that X_{i} must be unknown to any of $\left\{d_{1}, r\right\}$, not even in a mixed form with any other packet. As a result, whenever the mixture is received by any of $\left\{d_{1}, r\right\}$, it must be removed from $Q_{\left\{d_{2}\right\}}^{1}$. Similarly, one property for $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ is that
there exists a pure session- 1 packet $X_{i}^{*} \notin Q_{\text {dec }}^{1}$ that is information-equivalent to \bar{W}_{i} and is known by r only. Note that whenever the mixture $\left[X_{i}+X_{i}^{*}\right]$ is received by d_{2}, it can use the known X_{i} and the received $\left[X_{i}+X_{i}^{*}\right]$ to extract the pure X_{i}^{*}. As a result, \bar{W}_{i} must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. We now need to consider the case when the mixture is received by both $\left\{d_{1}, r\right\}$ but not d_{2}. To that end, first note that since $X_{i} \in Q_{\left\{d_{2}\right\}}^{1}$ and $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$, we have X_{i}^{*} at $r ;\left[X_{i}^{*}+\bar{W}_{i}\right]$ at d_{1}; and $\left\{X_{i}, \bar{W}_{i}\right\}$ at d_{2}, where $X_{i}^{*} \notin Q_{\mathrm{dec}}^{1}$ is the information-equivalent pure session-1 packet corresponding to \bar{W}_{i} from the property of $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$. Now assume that the mixture is received only by both d_{1} and r. We then have $\left\{X_{i}^{*},\left[X_{i}+X_{i}^{*}\right]\right\}$ at $r ;\left\{\left[X_{i}^{*}+\bar{W}_{i}\right],\left[X_{i}+X_{i}^{*}\right]\right\}$ at d_{1}; and $\left\{X_{i}, \bar{W}_{i}\right\}$ still at d_{2}. Then r can now use the known X_{i}^{*} and the received [$X_{i}+X_{i}^{*}$] to further extract X_{i}. In this case, whenever X_{i} or X_{i}^{*} is delivered to d_{1}, it can decode both X_{i} and X_{i}^{*} simultaneously since d_{1} has received $\left[X_{i}+X_{i}^{*}\right]$. Moreover, X_{i} is known by both $\left\{d_{2}, r\right\}$ while X_{i}^{*} is known by r only. As a result, we chose to use X_{i} further and thus treat X_{i} as already decoded. The reason is because, for such X_{i}, this exactly falls into Case 2 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where $W_{i}=X_{i} \in Q_{\text {dec }}^{1 \cup 2}$ is known by both $\left\{d_{2}, r\right\}$ and d_{1} has $\left[X_{i}^{*}+W_{i}\right]=\left[X_{i}^{*}+X_{i}\right]$ where $X_{i}^{*} \notin Q_{\mathrm{dec}}^{1}$. In a nutshell, when the reception status is $d_{1} \overline{d_{2}} r$, we can replace \bar{W}_{i} by $X_{i} \in Q_{\mathrm{dec}}^{1}$ for decoding X_{i}^{*} later. Therefore, \bar{W}_{i} must be removed from $Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$.
- Insertion: Whenever r receives the mixture, r can use the known X_{i}^{*} and the received $\left[X_{i}+X_{i}^{*}\right]$ to extract X_{i}. Also, whenever d_{2} receives the mixture, d_{2} can use the known X_{i} and the received $\left[X_{i}+X_{i}^{*}\right]$ to extract X_{i}^{*}. From these observations, we describe one by one for each reception status. When the reception status is $\overline{d_{1} d_{2}} r$, now X_{i} is known by both $\left\{d_{2}, r\right\}$ where X_{i}^{*} is still at r. For such X_{i}, this exactly falls into Case 1 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we move X_{i} into $Q_{\left\{r \frac{\left.d_{2}\right\}}{[1]}\right.}^{[}$as the Case 1 insertion. When the reception status is $\overline{d_{1}} d_{2} \bar{r}$, now X_{i}^{*} is known by both $\left\{d_{2}, r\right\}$ where X_{i} is still at d_{2}. For such X_{i}^{*}, this exactly falls into Case 1 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ and thus we move X_{i}^{*} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion. When the reception status is $d_{1} \overline{d_{2} r}$, we now have X_{i}^{*} at $r ;\left\{\left[X_{i}^{*}+\bar{W}_{i}\right],\left[X_{i}+X_{i}^{*}\right]\right\}$ at d_{1}; and $\left\{X_{i}, \bar{W}_{i}\right\}$ at d_{2}. In this case, whenever X_{i} or X_{i}^{*} is further delivered to d_{1}, it can decode both X_{i} and X_{i}^{*} simultaneously. We then chose to treat X_{i} as already decoded and insert X_{i} into $Q_{\text {dec }}^{1}$, while still keeping $X_{i}^{*} \notin Q_{\mathrm{dec}}^{1}$ as not-yet decoded. Since $X_{i}^{*} \notin Q_{\mathrm{dec}}^{1}$ is kept intact and the mixture $\left[X_{i}^{*}+\bar{W}_{i}\right.$] was known by d_{1} before, in order for d_{1} to further decode X_{i}^{*}, d_{1} needs to have either X_{i}^{*} in r or \bar{W}_{i} in d_{2}. Namely, the original scenario of $\bar{W}_{i} \in Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$ is still kept intact. As a result, we just insert X_{i} into Q_{dec}^{1}. When the reception status is $\overline{d_{1}} d_{2} r$, we now have that both X_{i} and X_{i}^{*} are known by both $\left\{d_{2}, r\right\}$ and thus both X_{i} and X_{i}^{*} falls into Case 1 of $Q_{\left\{r d_{2}\right\}}^{[1]}$. We thus move both X_{i} and \bar{W}_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertions. When the reception status is $d_{1} \overline{d_{2}} r$,
we now have $\left\{X_{i}, X_{i}^{*}\right\}$ at $r ;\left\{\left[X_{i}^{*}+\bar{W}_{i}\right],\left[X_{i}+X_{i}^{*}\right]\right\}$ at d_{1}; and $\left\{X_{i}, \bar{W}_{i}\right\}$ at d_{2}. Following the Departure discussion when $d_{1} \overline{d_{2}} r$, we can choose to treat X_{i} as already decoded and use X_{i} as for Case 2 of $Q_{\left\{r d_{2}\right\}}^{[1]}$ where $W_{i}={ }_{i} \in Q_{\mathrm{dec}}^{1 \cup 2}$ is known by both $\left\{d_{2}, r\right\}$ and d_{1} has $\left[X_{i}^{*}+W_{i}\right]=\left[X_{i}+X_{i}^{*}\right]$ where $X_{i}^{*} \notin Q_{\mathrm{dec}}^{1}$. As a result, we can further move X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 2 insertion. When the reception status is $d_{1} d_{2} \bar{r}$, we now have X_{i}^{*} at $r ;\left\{\left[X_{i}^{*}+\bar{W}_{i}\right],\left[X_{i}+X_{i}^{*}\right]\right\}$ at d_{1}; and $\left\{X_{i}, \bar{W}_{i}, X_{i}^{*}\right\}$ at d_{2}. Following the discussion when $d_{1} \overline{d_{2} r}$, we can treat either X_{i} or X_{i}^{*} as already decoded. But here we chose to treat X_{i} as already decoded since X_{i}^{*} is now overheard by both $\left\{d_{2}, r\right\}$ and d_{1} contains $\left[X_{i}+X_{i}^{*}\right]$. Namely, by treating $X_{i} \in Q_{\text {dec }}^{1}$, we can simply focus on delivering $X_{i}^{*} \notin Q_{\text {dec }}^{1}$ to d_{1} that is known by both $\left\{d_{2}, r\right\}$. This is exactly the same to Case 1 of $Q_{\left\{r d_{2}\right\}}^{[1]}$. As a result, we can further move X_{i}^{*} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion. Finally when the reception status is $d_{1} d_{2} r$, we now have $\left\{X_{i}, X_{i}^{*}\right\}$ at r; $\left\{\left[X_{i}^{*}+\bar{W}_{i}\right],\left[X_{i}+X_{i}^{*}\right]\right\}$ at d_{1}; and $\left\{X_{i}, \bar{W}_{i}, X_{i}^{*}\right\}$ at d_{2}. From the previous discussions, we know that we can treat either X_{i} or X_{i}^{*} as already decoded where both X_{i} and X_{i}^{*} are known by both $\left\{d_{2}, r\right\}$. If we treat X_{i} as already decoded, we can simply move $X_{i}^{*} \notin Q_{\text {dec }}^{1}$ into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion. Similarly, if we treat X_{i}^{*} as already decoded, then since $X_{i} \notin Q_{\text {dec }}^{1}$ is known by both $\left\{d_{2}, r\right\}$, we can thus move X_{i} into $Q_{\left\{r d_{2}\right\}}^{[1]}$ as the Case 1 insertion.
- $s_{\mathrm{SX} ; 3}^{2}: s$ transmits $\left[Y_{i}+Y_{j}^{*}\right]$ from $Y_{i} \in Q_{\left\{d_{1}\right\}}^{2}$ and $Y_{j}^{*}\left(\equiv W_{j} \in\right.$ $\left.Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}\right)$. The movement process is symmetric to $s_{\mathrm{SX} ; 3}^{1}$.

In the following Table III, we also described for each queue, the associated LNC operations that moves packet into and takes packets out of in the general LNC inner bound of Proposition 3. Note that r-variables are the same as w variables where the superscript $(h), h \in\{s, r\}$ is by (r), and thus they represent w-variables accordingly.

TABLE III
Summary of the associated LNC operations in Proposition 3 including newly added $s_{\mathrm{SX} ; l}^{k}$ operations

LNC operations \mapsto	Queue	\mapsto LNC operations
	Q_{ϕ}^{1}	$s_{\text {UC }}^{1}, s_{\text {PM1 }}^{1}$
$s_{\mathrm{UC}}^{1}, s_{\text {PM1 }}^{1}$	$Q_{\{r\}}^{1}$	$\begin{gathered} s_{\mathrm{PM} 1}^{2}, s_{\mathrm{PM} 2}^{1}, r_{\mathrm{UC}}^{1} \\ s_{\mathrm{SX} ; 1}^{1}, s_{\mathrm{SX} ; 2}^{1} \\ \hline \end{gathered}$
$s_{\text {PM1 }}^{1}$	$Q_{\left\{d_{2}\right\} \mid\{r\}}^{m \mid 2}$	$s_{\text {RC }}^{1}$
$s_{\mathrm{UC}}^{1}, s_{\text {RC }}^{1}$	$Q_{\left\{d_{2}\right\}}^{1}$	$\begin{gathered} s_{\mathrm{PM} 2}^{2}, s_{\mathrm{DX}}^{1} \\ s_{\mathrm{CX} ; 1}, s_{\mathrm{CX} ; 2}, s_{\mathrm{CX} ; 5} \\ s_{\mathrm{SX} ; 1}^{1}, s_{\mathrm{SX} ; 3}^{1} \end{gathered}$
$s_{\mathrm{RC}}^{2}, s_{\mathrm{SX} ; 1}^{1}$	$Q_{\left\{d_{2}\right\} \mid\{r\}}^{(1) \mid 1}$	$\begin{gathered} s_{\mathrm{DX}}^{(1)}, s_{\mathrm{CX} ; 3} \\ s_{\mathrm{CX} ; 4}, s_{\mathrm{CX} ; 7}, r_{\mathrm{DT}}^{(1)} \\ s_{\mathrm{SX} ; 2}^{1}, s_{\mathrm{SX} ; 3}^{1} \end{gathered}$
$\begin{gathered} s_{\mathrm{UC}}^{1}, s_{\mathrm{PM} 2}^{2}, s_{\mathrm{RC}}^{1}, s_{\mathrm{DX}}^{1} \\ s_{\mathrm{CX} ; 5}, r_{\mathrm{UC}}^{1}, r_{\mathrm{DT}}^{(1)}, r_{\mathrm{RC}} \\ s_{\mathrm{SX} ; 1}^{1}, s_{\mathrm{SX} ; 3}^{1}, s_{\mathrm{SX} ; 2}^{1} \end{gathered}$	$Q_{\left\{r d_{2}\right\}}^{[1]}($ Case 1)	$\begin{gathered} s_{\mathrm{CX} ; 6}, s_{\mathrm{CX} ; 8} \\ r_{\mathrm{DT}}^{[1]}, r_{\mathrm{CX}} \end{gathered}$
$\begin{gathered} s_{\mathrm{PM} 2}^{2}, s_{\mathrm{RC}}^{2}, s_{\mathrm{DX}}^{(1)} \\ s_{\mathrm{CX} ; 7}, r_{\mathrm{RC}} \\ s_{\mathrm{SX} ; 1}^{1}, s_{\mathrm{SX} ; 2}^{1}, s_{\mathrm{SX} ; 3}^{1} \end{gathered}$	$Q_{\left\{r d_{2}\right\}}^{[1]}($ Case 2)	
$\begin{gathered} s_{\mathrm{CX} ; 1}, s_{\mathrm{CX} ; 2} \\ s_{\mathrm{CX} ; 3}, s_{\mathrm{CX} ; 4}, r_{\mathrm{XT}} \end{gathered}$	$Q_{\left\{r d_{2}\right\}}^{[1]}$ (Case 3)	
$\begin{gathered} s_{\mathrm{UC}}^{1}, s_{\mathrm{PM} 2}^{1}, s_{\mathrm{RC}}^{1}, s_{\mathrm{RC}}^{2} \\ s_{\mathrm{DX}}^{1}, s_{\mathrm{DX}}^{(1)},\left\{s_{\mathrm{CX} ; 1} \text { to } s_{\mathrm{CX} ; 8}\right\} \\ r_{\mathrm{UC}}^{1}, r_{\mathrm{DT}}^{(1)}, r_{\mathrm{DT}}^{[1]} \\ r_{\mathrm{RC}}, r_{\mathrm{XT}}, r_{\mathrm{CX}} \\ s_{\mathrm{SX} ; 1}^{1}, s_{\mathrm{SX} ; 2}^{1}, s_{\mathrm{SX} ; 3}^{1} \\ \hline \end{gathered}$	$Q_{\text {dec }}^{1}$	
$\begin{gathered} \hline \hline s_{\mathrm{PM} 1}^{1}, s_{\mathrm{PM} 1}^{2}, s_{\mathrm{PM} 2}^{1}, s_{\mathrm{PM} 2}^{2} \\ s_{\mathrm{RC}}^{1}, s_{\mathrm{RC}}^{2} \end{gathered}$	$Q_{\text {mix }}$	$r_{\text {RC }}$
$s_{\text {CX; }}, s_{\text {CX; } 2}, s_{\text {CX; }}, s_{\text {CX; }}$	$Q_{\{r\}}^{m \mathrm{CX}}$	${ }^{\text {XT }}$
	Q_{ϕ}^{2}	$s_{\mathrm{UC}}^{2}, s_{\mathrm{PM} 1}^{2}$
$s_{\mathrm{UC}}^{2}, s_{\mathrm{PM} 1}^{2}$	$Q_{\{r\}}^{2}$	$\begin{gathered} s_{\mathrm{PM} 1}^{1}, s_{\mathrm{PM} 2}^{2}, r_{\mathrm{UC}}^{2} \\ s_{\mathrm{SX} ; 1}^{2}, s_{\mathrm{SX} ; 2}^{2} \end{gathered}$
$s_{\text {PM1 }}^{2}$	$Q_{\left\{d_{1}\right\} \mid\{r\}}^{m \mid 1}$	$s_{\text {RC }}^{2}$
$s_{\text {UC }}^{2}, s_{\text {RC }}^{2}$	$Q_{\left\{d_{1}\right\}}^{2}$	$\begin{gathered} s_{\mathrm{PM} 2}^{1}, s_{\mathrm{DX}}^{2} \\ s_{\mathrm{CX} ; 1}, s_{\mathrm{CX} ; 3}, s_{\mathrm{CX} ; 6} \\ s_{\mathrm{SX} ; 1}^{2}, s_{\mathrm{SX} ; 3}^{2} \end{gathered}$
$s_{\mathrm{RC}}^{1}, s_{\mathrm{SX} ; 1}^{2}$	$Q_{\left\{d_{1}\right\} \mid\{r\}}^{(2) \mid 2}$	$\begin{gathered} s_{\mathrm{DX}}^{(2)}, s_{\mathrm{CX} ; 2} \\ s_{\mathrm{CX} ; 4}, s_{\mathrm{CX} ; 8}, r_{\mathrm{DT}}^{(2)} \\ s_{\mathrm{SX} ; 2}^{2}, s_{\mathrm{SX} ; 3}^{2} \end{gathered}$
$\begin{gathered} s_{\mathrm{UC}}^{2}, s_{\mathrm{PM} 2}^{1}, s_{\mathrm{RC}}^{2}, s_{\mathrm{DX}}^{2} \\ s_{\mathrm{CX} ; 6}^{2}, r_{\mathrm{UC}}^{2}, r_{\mathrm{DT}}^{(2)}, r_{\mathrm{RC}} \\ s_{\mathrm{SX} ; 1}^{2}, s_{\mathrm{SX} ; 2}^{2}, s_{\mathrm{SX} ; 3}^{2} \end{gathered}$	$Q_{\left\{r d_{1}\right\}}^{[2]}($ Case 1)	$\begin{gathered} s_{\mathrm{CX} ; 5}, s_{\mathrm{CX} ; 7} \\ r_{\mathrm{DT}}^{[2]}, r_{\mathrm{CX}} \end{gathered}$
$\begin{gathered} s_{\mathrm{PM} 2}^{1}, s_{\mathrm{RC}}^{1}, s_{\mathrm{DX}}^{(2)} \\ s_{\mathrm{CX} ; 8}, r_{\mathrm{RC}}, s_{\mathrm{SX} ; 1}^{2} \\ s_{\mathrm{SX} ; 2}^{2}, s_{\mathrm{SX} ; 3}^{2} \end{gathered}$	$Q_{\left\{r d_{1}\right\}}^{[2]}($ Case 2)	
$\begin{gathered} s_{\mathrm{CX} ; 1}, s_{\mathrm{CX} ; 2} \\ s_{\mathrm{CX} ; 3}, s_{\mathrm{CX} ; 4}, r_{\mathrm{XT}} \end{gathered}$	$Q_{\left\{r d_{1}\right\}}^{[2]}($ Case 3)	
$\begin{gathered} s_{\mathrm{UC}}^{2}, s_{\mathrm{PM} 2}^{2}, s_{\mathrm{RC}}^{1}, s_{\mathrm{RC}}^{2} \\ s_{\mathrm{DX}}^{2}, s_{\mathrm{DX}}^{(2)},\left\{s_{\mathrm{CX} ; 1} \text { to } s_{\mathrm{CX} ; 8}\right\} \\ r_{\mathrm{UC}}^{2}, r_{\mathrm{DT}}^{(2)}, r_{\mathrm{DT}}^{[2]} \\ r_{\mathrm{RC}}, r_{\mathrm{XT}}, r_{\mathrm{CX}} \\ s_{\mathrm{SX} ; 1}^{2}, s_{\mathrm{SX} ; 2}^{2}, s_{\mathrm{SX} ; 3}^{2} \end{gathered}$	$Q_{\text {dec }}^{2}$	

APPENDIX D
 Detailed Description of Achievability Schemes in
 FIG. 4

In the following, we describe $\left(R_{1}, R_{2}\right)$ rate regions of each suboptimal achievability scheme used for the numerical evaluation in Section V.

- Intra-Flow Network Coding only: The rate regions can be described by Proposition 2, if the variables $\left\{s_{\mathrm{PM} 1}^{k}, s_{\mathrm{PM} 2}^{k}, s_{\mathrm{RC}}^{k}\right.$: for all $k \in\{1,2\}\},\left\{s_{\mathrm{CX} ; l}(l=1, \cdots, 8)\right\},\left\{r_{\mathrm{RC}}, r_{\mathrm{XT}}, r_{\mathrm{CX}}\right\}$ are all hardwired to 0 . Namely, we completely shut down all the variables dealing with cross-packet-mixtures. After such hardwirings, Proposition 2 is further reduced to the following form:

$$
1 \geq \sum_{k \in\{1,2\}}\left(s_{\mathrm{UC}}^{k}+s_{\mathrm{DX}}^{k}+r_{\mathrm{UC}}^{k}+r_{\mathrm{DT}}^{[k]}\right),
$$

and consider any $i, j \in(1,2)$ satisfying $i \neq j$. For each (i, j) pair (out of the two choices $(1,2)$ and $(2,1)$),

$$
\begin{gathered}
R_{i} \geq s_{\mathrm{UC}}^{i} \cdot p_{s}\left(d_{i}, d_{j}, r\right), \\
s_{\mathrm{UC}}^{i} \cdot p_{s \rightarrow \overline{d_{i} d_{j}} r} \geq r_{\mathrm{UC}}^{i} \cdot p_{r}\left(d_{i}, d_{j}\right), \\
s_{\mathrm{UC}}^{i} \cdot p_{s \rightarrow \overline{d_{i}} d_{j} r} \geq s_{\mathrm{DX}}^{i} \cdot p_{s}\left(d_{i}, r\right), \\
s_{\mathrm{UC}}^{i} \cdot p_{s \rightarrow \overline{d_{i}} d_{j} r}+s_{\mathrm{DX}}^{i} \cdot p_{s}\left(\overline{d_{i}} r\right)+r_{\mathrm{UC}}^{i} \cdot p_{r \rightarrow \overline{d_{i}} d_{j}} \geq r_{\mathrm{DT}}^{[i]} \cdot p_{r}\left(d_{i}\right), \\
\left(s_{\mathrm{UC}}^{i}+s_{\mathrm{DX}}^{i}\right) \cdot p_{s}\left(d_{i}\right)+\left(r_{\mathrm{UC}}^{i}+r_{\mathrm{DT}}^{[i]}\right) \cdot p_{r}\left(d_{i}\right) \geq R_{i} .
\end{gathered}
$$

- Always Relaying with NC: This scheme requires that all the packets go through r, and then r performs 2 -user broadcast channel NC. The corresponding rate regions can be described as follows:

$$
\begin{aligned}
& \frac{R_{1}}{p_{r}\left(d_{1}\right)}+\frac{R_{2}}{p_{r}\left(d_{1}, d_{2}\right)} \leq 1-\frac{R_{1}+R_{2}}{p_{s}(r)} \\
& \frac{R_{1}}{p_{r}\left(d_{1}, d_{2}\right)}+\frac{R_{2}}{p_{r}\left(d_{2}\right)} \leq 1-\frac{R_{1}+R_{2}}{p_{s}(r)}
\end{aligned}
$$

- Always Relaying with routing: This scheme requires that all the packets go through r as well, but r performs uncoded routing for the final delivery. The corresponding rate regions can be described as follows:

$$
\frac{R_{1}}{p_{r}\left(d_{1}\right)}+\frac{R_{2}}{p_{r}\left(d_{2}\right)} \leq 1-\frac{R_{1}+R_{2}}{p_{s}(r)} .
$$

- [10] without Relaying: This scheme completely ignores the relay r in the middle, and s just performs 2 -user broadcast channel LNC of [10]. The corresponding rate regions can be described as follows:

$$
\begin{aligned}
& \frac{R_{1}}{p_{s}\left(d_{1}\right)}+\frac{R_{2}}{p_{s}\left(d_{1}, d_{2}\right)} \leq 1 \\
& \frac{R_{1}}{p_{s}\left(d_{1}, d_{2}\right)}+\frac{R_{2}}{p_{s}\left(d_{2}\right)} \leq 1
\end{aligned}
$$

- Routing without Relaying: This scheme completely ignores the relay r in the middle, and s just performs uncoded routing. The corresponding rate regions can be described as follows:

$$
\frac{R_{1}}{p_{s}\left(d_{1}\right)}+\frac{R_{2}}{p_{s}\left(d_{2}\right)} \leq 1
$$

REFERENCES

[1] S. Chen and J. Zhao, "The requirements, challenges, and technologies for 5 g of terrestrial mobile telecommunication," IEEE Commun. Mag., vol. 52, no. 5, pp. 36-43, May 2014.
[2] T. M. Cover and A. E. Gamal, "Capacity theorems for the relay channel," IEEE Trans. Inform. Theory, vol. 25, no. 5, pp. 572-584, September 1979.
[3] G. Kramer, M. Gastpar, and P. Gupta, "Cooperative strategies and capacity theorems for relay networks," IEEE Trans. Inform. Theory, vol. 51, no. 9, pp. 3037-3063, September 2005.
[4] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, "Network information flow," IEEE Trans. Inform. Theory, vol. 46, no. 4, pp. 1204-1216, July 2000.
[5] S.-Y. Li, R. Yeung, and N. Cai, "Linear network coding," IEEE Trans. Inform. Theory, vol. 49, no. 2, pp. 371-381, February 2003.
[6] S. H. Lim, Y.-H. Kim, A. E. Gamal, and S.-Y. Chung, "Noisy network coding," IEEE Trans. Inform. Theory, vol. 57, no. 5, pp. 3132-3152, May 2011.
[7] A. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, "Capacity of wireless erasure networks," IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 789-804, March 2006.
[8] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, "Xors in the air: Practical wireless network coding," in Proc. ACM SIGCOMM, Pisa, Italy, September 2006, pp. 243-254.
[9] D. Koutsonikolas, C.-C. Wang, and Y. Hu, "Efficient network coding based opportunistic routing through cumulative coded acknowledgment," IEEE/ACM Trans. Networking, vol. 19, no. 5, pp. 1368-1381, 2011.
[10] L. Georgiadis and L. Tassiulas, "Broadcast erasure channel with feedback - capacity and algorithms," in Proc. 5th Workshop on Network Coding, Theory, and Applications (NetCod), Lausanne, Switzerland, June 2009, pp. 54-61.
[11] W.-C. Kuo and C.-C. Wang, "On the capacity of 2-user 1-hop relay erasure networks - the union of feedback, scheduling, opportunistic routing, and network coding," in Proc. IEEE Int'l Symp. Inform. Theory., St. Peterburg, Russia, July 2011, pp. 1337-1341.
[12] C.-C. Wang, "On the capacity of 1-to-K broadcast packet erasure channels with channel output feedback," IEEE Trans. Inform. Theory, vol. 58, no. 2, pp. 931-956, February 2012.
[13] -, "On the capacity of wireless 1-hop intersession network coding - a broadcast packet erasure channel approach," IEEE Trans. Inform. Theory, vol. 58, no. 2, pp. 957-988, February 2012.
[14] C.-C. Wang and D. J. Love, "Linear network coding capacity region of 2 -receiver mimo broadcast packet erasure channels with feedback," in Proc. IEEE Int'l Symp. Inform. Theory., Boston, MA, USA, July 2012, pp. 2062-2066.
[15] C. C. Wang, "Capacity region of two symmetric nearby erasure channels with channel state feedback," in Proc. IEEE Information Theory Workshop., Lausanne, Switzerland, September 2012, pp. 352-356.
[16] M. Gatzianas, L. Georgiadis, and L. Tassiulas, "Multiuser broadcast erasure channel with feedback - capacity and algorithms," IEEE Trans. Inform. Theory, vol. 59, no. 9, pp. 5779-5804, September 2013.
[17] C.-C. Wang, "Linear network coding capacity for broadcast erasure channels with feedback, receiver coordination, and arbitrary security requirement," in Proc. IEEE Int'l Symp. Inform. Theory., Istanbul, Turkey, July 2013, pp. 2900-2904.
[18] W.-C. Kuo and C.-C. Wang, "Two-flow capacity region of the cope principle for two-hop wireless erasure networks," IEEE Trans. Inform. Theory, vol. 59, no. 11, pp. 7553-7575, November 2013.
[19] C.-C. Wang and J. Han, "The capacity region of 2-receiver multipleinput broadcast packet erasure channels with channel output feedback," IEEE Trans. Inform. Theory, vol. 60, no. 9, pp. 5597-5626, Sept. 2014.
[20] W.-C. Kuo and C.-C. Wang, "Robust and optimal opportunistic scheduling for downlink 2-flow inter-session network coding," in Proc. 33rd IEEE Conf. Comput. Commun. (INFOCOM), Toronto, Canada, May 2014, pp. 655-663.
[21] A. Papadopoulos and L. Georgiadis, "Multiuser broadcast erasure channel with feedback and side information and related index coding results," in Proc. 52st Annual Allerton Conf. on Comm., Contr., and Computing., Monticello, Illinois, USA, October 2014.
[22] J. Han and C.-C. Wang, "General capacity region for the fully-connected 3-node packet erasure network," in Proc. IEEE Int'l Symp. Inform. Theory., Hong Kong, June 2015, pp. 2648-2652.

[^0]: ${ }^{1}$ Coding vector \mathbf{c}_{t} can either be appended in the header or be computed by the network-wide causal CSI feedback $[\mathbf{Z}]_{1}^{t-1}$.

[^1]: ${ }^{2}$ By allowing some coordinates of $\mathbf{Z}(t)$ to be correlated (i.e., spatially correlated as it is between coordinates, not over the time axis), our setting can also model the scenario in which d_{1} and d_{2} are situated in the same physical node and thus have perfectly correlated channel success events.

[^2]: ${ }^{3}$ For rigorous proofs, we need to invoke the law of large numbers and take care of the ϵ-error probability. For ease of discussion, the corresponding technical details are omitted when discussing the intuition of Proposition 1.

[^3]: ${ }^{4}$ This means that d_{2} does not require Y_{i} any more, and thus s or r can freely use this Y_{i} in the network to represent not-yet-decoded X_{i} instead.

