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Abstract—This work considers the smart repeater network
where a single sources wants to send two independent packet
streams to destinations{d1, d2} with the help of relay r. The
transmission from s or r is modeled by packet erasure channels:
For each time slot, a packet transmitted bys may be received,
with some probabilities, by a random subset of{d1, d2, r}; and
those transmitted by r will be received by a random subset
of {d1, d2}. Interference is avoided by allowing at most one
of {s, r} to transmit in each time slot. One example of this
model is any cellular network that supports two cell-edge users
when a relay in the middle uses the same downlink resources for
throughput/safety enhancement.

In this setting, we study the capacity region of (R1, R2)
when allowing linear network coding (LNC). The proposed
LNC inner bound introduces more advanced packing-mixing
operations other than the previously well-known butterfly-style
XOR operation on overheard packets of two co-existing flows.
A new LNC outer bound is derived by exploring the inherent
algebraic structure of the LNC problem. Numerical results show
that, with more than 85% of the experiments, the relative
sum-rate gap between the proposed outer and inner bounds
is smaller than 0.08% under the strong-relaying setting and
0.04% under arbitrary distributions, thus effectively bra cketing
the LNC capacity of the smart repeater problem.

Index Terms—Packet Erasure Networks, Channel Capacity,
Network Coding

I. I NTRODUCTION

Increasing throughput/connectivity within scarce resources
has been the main motivation for modern wireless communi-
cations. Among the various proposed techniques, the concept
of relaying has attracted much attention as a cost-effective
enabler to extend the network coverage and capacity. In recent
5G discussions, relaying became one of the core parts for the
future cellular architecture including techniques of small cell
managements and device-to-device communications between
users [1].

In network information theory, many intelligent and coop-
erative relaying strategies have been devised such as decode-
and-forward/compress-and-forward for relay networks [2], [3],
network coding for noiseless networks [4], [5], and general
noisy network coding for discrete memoryless networks [6].
Among them, network coding has emerged as a promising
technique for a practical wireless networking solution, which
models the underlying wireless channels by a simple but non-
trivial random packet erasure network. That is, each node
is associated with its own broadcast packet erasure channel
(PEC). Namely, each node can choose a symbolX ∈ Fq from
some finite fieldFq, transmitsX , and a random subset of
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Fig. 1: The 2-flow Smart Repeater Network and its subset scenarios

receivers will receive the packet. In this setting, [7] proved that
the linear network coding(LNC), operating only by “linear”
packet-mixings, suffices to achieve the single-multicast capac-
ity. Moreover, recent wireless testbeds have also demonstrated
substantial LNC throughput gain for multiple-unicasts over the
traditional store-and-forward 802.11 routing protocols [8], [9].

Motivated by these results, we are interested in finding an
optimal or near-optimal LNC strategy for wireless relaying
networks. To simplify the analysis, we consider a4-node2-
hop network with one sources, two destinations{d1, d2}, and
a common relayr inter-connected by two broadcast PECs. See
Fig. 1(a-b) for details. We assume time-sharing betweens and
r so that interference is fully avoided, and assume the causal
packet ACKnowledgment feedback [8]–[22]. In this way, we
can concentrate on how the relayr and sources can jointly
exploit the broadcast channel diversity within the network.

When relayr is not present, Fig. 1(b) collapses to Fig. 1(c),
the 2-receiver broadcast PEC. It was shown in [10] that
a simple LNC scheme is capacity-achieving. The idea is
to exploit the wireless diversity created by random packet
erasures, i.e., overhearing packets of other flows. Whenever
a packetX intended ford1 is received only byd2 and a
packet Y intended for d2 is received only byd1, s can
transmit their linear mixture[X+Y ] to benefit both receivers
simultaneously. This simple but elegant “butterfly-style”LNC
operation achieves the Shannon capacity of Fig. 1(c) [10].
Another related scenario is a2-flow wireless butterfly network
in Fig. 1(d) that contains two separate sourcess1 and s2
instead of a single sources as in our setting. In this butterfly
scenario, two separate sources are not coordinating with each
other and thus each source can only mix packets of their
own flow. [18] showed that the same butterfly-style LNC is
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no longer optimal but very close to optimal. In contrast, in
our setting of Fig. 1(b), the two flows are originating from
the same sources. Therefore,s can perform “inter-flow NC”
to further improve the performance. As we will see, relayr
should not just “forward” the packets it has received and need
to actively perform coding in order to approach the capacity.
This is why we call such a scenario the smart repeater problem.

Contributions: This work investigates the LNC capacity
region (R1, R2) of the smart repeater network. The outer
bound is proposed by leveraging upon the algebraic structure
of the underlying LNC problem. For the achievability scheme,
we show that the classic butterfly-style is far from optimality
and propose new LNC operations that lead to close-to-optimal
performance. By numerical simulations, we demonstrate that
the proposed outer/inner bounds are very close, thus effectively
bracketing the LNC capacity of the smart repeater problem.

II. PROBLEM DEFINITION AND USEFUL NOTATIONS

A. Problem Formation for The Smart Repeater Network

The 2-flow wireless smart repeater network with broadcast
PECs, see Fig. 1(b), can be modeled as follows. Consider two
traffic rates(R1, R2) and assume slotted transmissions. Within
a total budget ofn time slots, sources would like to sendnRk

packets, denoted by a row vectorWk, to destinationdk for
all k∈{1, 2} with the help of relayr. Each packet is chosen
uniformly randomly from a finite fieldFq with size q > 0.
To that end, we denoteW , (W1,W2) as ann(R1+R2)-
dimensional row vector of all the packets, and define the linear
spaceΩ , (Fq)

n(R1+R2) as theoverall message/coding space.
To represent the reception status, for any time slott ∈

{1, · · · , n}, we define twochannel reception status vectors:

Zs(t) = (Zs→d1(t), Zs→d2(t), Zs→r(t)) ∈ {1, ∗}3,

Zr(t) = (Zr→d1(t), Zr→d2(t)) ∈ {1, ∗}2,

where “1” and “∗” represent successful reception and erasure,
respectively. For example,Zs→d1(t) = 1 and ∗ represents
whether d1 can receive the transmission from sources or
not at time slott. We then useZ(t) , (Zs(t),Zr(t)) to
describe the5-dimensional channel reception status vector of
the entire network. We also assume thatZ(t) is memoryless
and stationary, i.e.,Z(t) is independently and identically
distributed over the time axist.

We assume that either sources or relay r can transmit at
each time slot, and express thescheduling decisionby σ(t)∈
{s, r}. For example, ifσ(t) = s, then sources transmits a
packetXs(t) ∈ Fq; and only whenZs→h(t) = 1, nodeh (one
of {d1, d2, r}) will receive Ys→h(t) = Xs(t). In all other
cases, nodeh receives an erasureYs→h(t) = ∗. The reception
Yr→h(t) of relay r’s transmission is defined similarly.

Assuming that the5-bit Z(t) vector is broadcast to boths
andr after each packet transmission through a separate control
channel, alinear network codecontainsn scheduling functions

∀ t ∈ {1, · · · , n}, σ(t) = fσ,t([Z]
t−1
1 ), (1)

where we use brackets[ · ]τ1 to denote the collection from time
1 to τ . Namely, at every timet, scheduling is decided based
on the network-wide channel state information (CSI) up to

time (t−1). If sources is scheduled, then it can send a linear
combination of any packets. That is,

If σ(t) = s, thenXs(t) = ctW
⊤ for somect ∈ Ω, (2)

wherect is a row coding vector inΩ. The choice ofct depends
on the past CSI vectors[Z]t−1

1 , and we assume thatct is known
causally to the entire network.1 Therefore, decoding can be
performed by simple Gaussian elimination.

We now define two important linear space concepts: The
individual message subspaceand theknowledge subspace.To
that end, we first defineel as ann(R1 +R2)-dimensional
elementary row vector with itsl-th coordinate being one and
all the other coordinates being zero. Recall that then(R1+R2)
coordinates of a vector inΩ can be divided into2 consecutive
“intervals”, each of them corresponds to the information
packetsWk for each flow from source to destinationdk. We
then define theindividual message subspaceΩk:

Ωk , span{el : l ∈ “interval” associated toWk}, (3)

That is,Ωk is a linear subspace corresponding to any linear
combination ofWk packets. By (3), eachΩk is a linear sub-
space of the overall message spaceΩ and rank(Ωk) = nRk.

We define the knowledge space for{d1, d2, r}. The knowl-
edge spaceSh(t) in the end of timet is defined by

Sh(t) , span{cτ : ∀τ≤ t s.t. nodeh receives the linear

combination(cτ ·W⊤) successfully in timeτ} (4)

whereh∈{d1, d2, r}. For example,Sr(t) is the linear space
spanned by the packets successfully delivered from source to
relay up to timet. Sd1(t) is the linear space spanned by
the packets received at destinationd1 up to time t, either
transmitted by source or by relay.

For shorthand, we useS1(t) andS2(t) instead ofSd1(t) and
Sd2(t), respectively. Then, by the above definitions, we quickly
have that destinationdk can decode the desired packetsWk

as long asSk(n) ⊇ Ωk. That is, when the knowledge space
in the end of timen contains the desired message space.

With the above linear space concepts, we now can describe
the packet transmission from relay. Recall that, unlike the
source where the packets are originated, relay can only send
a linear mixture ofthe packets that it has known.Therefore,
the encoder description from relay can be expressed by

If σ(t)=r, thenXr(t)= ctW
⊤ for somect∈ Sr(t−1). (5)

For comparison, in (2), the sources choosesct from Ω. We
can now define the LNC capacity region.

Definition 1. Fix the distribution ofZ(t) and finite fieldFq.
A rate vector (R1, R2) is achievable by LNC if for any
ǫ > 0 there exists a joint scheduling and LNC scheme with
sufficiently largen such thatProb(Sk(n) ⊇ Ωk) > 1 − ǫ for
all k ∈ {1, 2}. The LNC capacity region is the closure of all
LNC-achievable(R1, R2).

1Coding vectorct can either be appended in the header or be computed
by the network-wide causal CSI feedback[Z]t−11 .



3

B. A Useful Notation

In our network model, there are two broadcast PECs as-
sociated withs and r. For shorthand, we call those PECs
the s-PEC and ther-PEC, respectively. The distribution of
the network-wide channel status vectorZ(t) = (Zs(t),Zr(t))
can be described by the probabilitiesp

s→T{d1,d2,r}\T
for all

T ⊆ {d1, d2, r}, andp
r→U{d1,d2}\U

for all U ⊆ {d1, d2}. In
total, there are8 + 4 = 12 channel parameters.2

For notational simplicity, we also define the following two
probability functionsps(·) and pr(·), one for each PEC.
The input argument ofps is a collection of the elements in
{d1, d2, r, d1, d2, r}. The functionps(·) outputs the probability
that the reception event is compatible to the specified collec-
tion of {d1, d2, r, d1, d2, r}. For example,

ps(d2r) = ps→d1d2r
+ ps→d1d2r (6)

is the probability that the input of the source-PEC is success-
fully received byd2 but not byr. Herein,d1 is a dont-care
receiver andps(d2r) thus sums two joint probabilities together
(d1 receives it or not) as described in (6). Another example is
pr(d2) = pr→d1d2 + pr→d1d2

, which is the marginal success
probability that a packet sent byr is heard byd2. To slightly
abuse the notation, we further allowps(·) and pr(·) to take
multiple input arguments separated by commas. With this new
notation, they can represent the probability that the reception
event is compatible to at least one of the input arguments. For
example,

ps(d1d2, r) = ps→d1d2r
+ ps→d1d2r

+ ps→d1d2r

+ ps→d1d2r
+ ps→d1d2r

.

That is, ps(d1d2, r) represents the probability that(Zs→d1 ,
Zs→d2 , Zs→r) equals one of the following5 vectors(1, ∗, ∗),
(1, ∗, 1), (1, 1, 1), (∗, 1, 1), and (∗, ∗, 1). Note that these5
vectors are compatible to eitherd1d2 or r or both. Another
example of thisps(·) notation isps(d1, d2, r), which represents
the probability that a packet sent bys is received by at least
one of the three nodesd1, d2, andr.

The indicator function and taking expectation is denoted by
1{·} andE [·], respectively.

III. LNC C APACITY OUTER BOUND

Since the coding vectorct hasn(R1+R2) number of coordi-
nates, there are exponentially many ways of jointly designing
the schedulingσ(t) and the coding vectorct choices over time
when sufficiently largen andFq are used. Therefore, we will
first simplify the aforementioned design choices by comparing
ct to the knowledge spacesSh(t − 1), h ∈ {d1, d2, r}. Such
a simplification allows us to derive Proposition 1, which uses
a linear programming (LP) solver to exhaustively search over
the entire coding and scheduling choices and thus computes
an LNC capacity outer bound.

2By allowing some coordinates ofZ(t) to be correlated (i.e., spatially
correlated as it is between coordinates, not over the time axis), our setting
can also model the scenario in whichd1 and d2 are situated in the same
physical node and thus have perfectly correlated channel success events.

To that end, we useSk as shorthand forSk(t − 1), the
knowledge space of destinationdk in the end of timet−1. We
first define the following7 linear subspaces ofΩ.

A1(t) , S1, A2(t) , S2, (7)

A3(t) , S1 ⊕ Ω1, A4(t) , S2 ⊕ Ω2, (8)

A5(t) , S1 ⊕ S2, (9)

A6(t) , S1 ⊕ S2 ⊕ Ω1, A7(t) , S1 ⊕ S2 ⊕ Ω2, (10)

whereA ⊕ B , span{v : v ∈ A ∪ B} is the sum spaceof
anyA,B ⊆ Ω. In addition, we also define the following eight
additional subspaces involvingSr(t− 1):

Ai+7(t) , Ai(t)⊕ Sr for all i = 1, · · · , 7, (11)

A15(t) , Sr, (12)

whereSr is a shorthand notation forSr(t−1), the knowledge
space of relayr in the end of timet−1.

In total, there are7+8 = 15 linear subspaces ofΩ. We then
partition the overall message spaceΩ into 215 disjoint subsets
by the Venn diagramgenerated by these15 subspaces. That
is, at any timet, we can place any coding vectorct in exactly
one of the215 disjoint subsets by testing whether it belongs
to which A-subspaces. In the following discussion, we often
drop the input argument “(t)” when the time instant of interest
is clear in the context.

We now use15 bits to represent each disjoint subset inΩ.
For any15-bit stringb = b1b2 · · · b15, we define “the coding
type-b” by

TYPE
(s)
b

,

(

⋂

l:bl=1

Al

)

\

(

⋃

l:bl=0

Al

)

. (13)

where the regions of these215 disjoint coding types may vary
at every time instant as the15 A-subspaces defined in (7)
to (12) will evolve over the course of time. The superscript
“(s)” indicates the source, meaning thats can sendct in any
coding type since sources knows allW1 andW2 packets to
begin with. Note that not all215 disjoint subsets are feasible.
For example, anyTYPE(s)

b
with b7 = 1 but b14 = 0 is always

empty because any coding vector that lies inA7 = S1⊕S2⊕Ω2

cannot lie outside the largerA14 = S1 ⊕ S2 ⊕ Sr ⊕ Ω2, see
(10) and (11), respectively. We say those always empty subsets
infeasible coding typesand the rest is calledfeasible coding
types (FTs). By exhaustive computer search, we can prove
that out of215=32768 subsets, only154 of them are feasible.
Namely, the entire coding spaceΩ can be viewed as a union
of 154 disjoint coding types. Sources can choose a coding
vectorct from one of these154 types. See (2).

For coding vectors that relayr can choose, we can further
reduce the number of possible placements ofct in the follow-
ing way. By (5), we know that whenσ(t) = r, thect sent by
relay must belong to its knowledge spaceSr(t − 1). Hence,
suchct must always lie inSr(t − 1), which is A15(t), see
(12). As a result, any coding vectorct sent by relayr must
lie in those154 subsetsFTs that satisfy:

TYPE
(r)
b

, {TYPE
(s)
b

: b ∈ FTs such thatb15 = 1}. (14)



4

Again by computer search, there are18 such coding types
out of 154 subsetsFTs. We call those18 subsets asrelay’s
feasible coding types(rFTs). Obviously, rFTs ⊆ FTs. See
Appendix A for the enumeration of thoseFTs andrFTs.

We can then derive the following upper bound.

Proposition1. A rate vector(R1, R2) is in the LNC capacity
region only if there exists154 non-negative variablesx(s)

b
for

all b ∈ FTs, 18 non-negative variablesx(r)
b

for all b ∈ rFTs,
and 14 non-negativey-variables,y1 to y14, such that jointly
they satisfy the following three groups of linear conditions:
• Group 1, termed thetime-sharing condition, has1 inequality:

(

∑

∀b∈FTs

x
(s)
b

)

+

(

∑

∀b∈rFTs

x
(r)
b

)

≤ 1. (15)

• Group 2, termed therank-conversion conditions, has 14
equalities:

y1 =

(

∑

∀b∈FTs s.t. b1=0

x
(s)
b

· ps(d1)

)

+

(

∑

∀b∈rFTs s.t. b1=0

x
(r)
b

· pr(d1)

)

, (16)

y2 =

(

∑

∀b∈FTs s.t. b2=0

x
(s)
b

· ps(d2)

)

+

(

∑

∀b∈rFTs s.t. b2=0

x
(r)
b

· pr(d2)

)

, (17)

y3 =

(

∑

∀b∈FTs s.t. b3=0

x
(s)
b

· ps(d1)

)

+

(

∑

∀b∈rFTs s.t. b3=0

x
(r)
b

· pr(d1)

)

+R1, (18)

y4 =

(

∑

∀b∈FTs s.t. b4=0

x
(s)
b

· ps(d2)

)

+

(

∑

∀b∈rFTs s.t. b4=0

x
(r)
b

· pr(d2)

)

+R2, (19)

y5 =

(

∑

∀b∈FTs s.t. b5=0

x
(s)
b

· ps(d1, d2)

)

+

(

∑

∀b∈rFTs s.t. b5=0

x
(r)
b

· pr(d1, d2)

)

, (20)

y6 =

(

∑

∀b∈FTs s.t. b6=0

x
(s)
b

· ps(d1, d2)

)

+

(

∑

∀b∈rFTs s.t. b6=0

x
(r)
b

· pr(d1, d2)

)

+R1,

(21)

y7 =

(

∑

∀b∈FTs s.t. b7=0

x
(s)
b

· ps(d1, d2)

)

+

(

∑

∀b∈rFTs s.t. b7=0

x
(r)
b

· pr(d1, d2)

)

+R2,

(22)

y8 =

(

∑

∀b∈FTs s.t. b8=0

x
(s)
b

· ps(d1, r)

)

, y9 =

(

∑

∀b∈FTs s.t. b9=0

x
(s)
b

· ps(d2, r)

)

,

(23)

y10 =

(

∑

∀b∈FTs s.t. b10=0

x
(s)
b

· ps(d1, r)

)

+R1, (24)

y11 =

(

∑

∀b∈FTs s.t. b11=0

x
(s)
b

· ps(d2, r)

)

+R2, (25)

y12 =

(

∑

∀b∈FTs s.t. b12=0

x
(s)
b

· ps(d1, d2, r)

)

, (26)

y13 =

(

∑

∀b∈FTs s.t. b13=0

x
(s)
b

· ps(d1, d2, r)

)

+R1, (27)

y14 =

(

∑

∀b∈FTs s.t. b14=0

x
(s)
b

· ps(d1, d2, r)

)

+R2, (28)

• Group 3, termed thedecodability conditions, has5 equalities:

y1 = y3, y2 = y4, y8 = y11, y9 = y11, (29)

y5 = y6 = y7 = y12 = y13 = y14 = (R1+R2). (30)

The intuition is as follows. Since we are partitioningΩ (the
entire coding space) andSr (the knowledge space ofr) into
154 feasible coding typesFTs and18 subsetsrFTs, any LNC
scheme can be classified as eithers or r sending a coding
vector ct in certain coding type at each time instant. More
specifically, consider an achievable rate vector(R1, R2) and
the associated LNC scheme. In the beginning of any timet, we
can always compute the knowledge spacesS1(t−1), S2(t−1),
andSr(t−1) by (4) and use them to compute theA-subspaces
in (7)–(12). Then suppose that for some specific timeτ , the
given scheme chooses the sources to transmit a coding vector
cτ . By the previous discussions, we can classify which coding
type TYPE

(s)
b

this cτ belongs to, by comparing it to those
computed15 A-subspaces. After running the given scheme
from time 1 to n, we can thus compute the variablex(s)

b
,

1
n
E

[

∑n

t=1 1{ct∈TYPE
(s)
b

}

]

for eachb ∈ FTs as thefrequency
of scheduling sources with the chosen coding vectors being
in TYPE

(s)
b

. Similarly for the relayr, we can compute the

variablex(r)
b

, 1
n
E

[

∑n

t=1 1{ct∈TYPE
(r)
b

}

]

for eachb ∈ rFTs

as thefrequencyof scheduling relayr with the chosen coding
vectors being inTYPE(r)

b
. Obviously, the computed variables

{x
(s)
b

, x
(r)
b

} satisfy the time-sharing inequality (15).

We then compute they-variables by

yl ,
1

n
E
[

rank
(

Al(n)
)]

, ∀ l ∈ {1, 2, · · · , 14}, (31)

as the normalized expected ranks ofA-subspaces in the end of
timen. We now claim that these variables satisfy (16) to (30).
This claim implies that for any LNC-achievable(R1, R2),
there existsx(s)

b
, x(r)

b
, andy-variables satisfying Proposition 1,

thus constituting an outer bound on the LNC capacity.

To prove that (16) to (28) are true,3 consider anA-subspace,
sayA3(t) = S1(t− 1)⊕ Ω1 as defined in (8) and (4). In the
beginning of time1, destinationd1 has not received any packet
yet, i.e.,S1(0) = {0}. Thus the rank ofA3(1) is rank(Ω1) =
nR1.

The fact thatS1(t − 1) contributes toA3(t) implies that
rank(A3(t)) will increase by one whenever the destinationd1
receives a packetctW⊤ satisfyingct 6∈ A3(t). Specifically,
whenever sources sends act in TYPE

(s)
b

with b3 = 0, such
ct is not in A3(t), and wheneverd1 receives it,rank(A3(t))
increases by1. Moreover, whenever relayr sends act in
TYPE

(r)
b

with b3 = 0 and d1 receives it,rank(A3(t)) also

3For rigorous proofs, we need to invoke the law of large numbers and
take care of theǫ-error probability. For ease of discussion, the corresponding
technical details are omitted when discussing the intuition of Proposition 1.
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increases by1. Therefore, in the end of timen, we have

rank(A3(n)) =

n
∑

t=1

1{
sources sendsct∈TYPE

(s)
b

with b3=0,
and destinationd1 receives it

}

+

n
∑

t=1

1{
relay r sendsct∈TYPE

(r)
b

with b3=0,
and destinationd1 receives it

}

+ rank(A3(0)).

(32)

Taking the normalized expectation of (32), we have proven
(18). By similar rank-conversionarguments, (16) to (28) can
be shown to be true.

In the end of timen, since the given scheme is “decodable”
(i.e., bothd1 andd2 can decode the desired packetsW1 and
W2, respectively), we must haveS1(n) ⊇ Ω1 andS2(n) ⊇
Ω2, or equivalentlySk(n) = Sk(n) ⊕ Ωk for all k ∈ {1, 2}.
This implies that the ranks ofA1(n) andA3(n), and the ranks
of A2(n) and A4(n) are equal, respectively. Together with
(31), we thus have the first two equalities in (29). Similarly,
one can prove that the remaining equalities in (29) and (30)
are satisfied as well. The claim is thus proven.

IV. LNC CAPACITY INNER BOUND

A. LNC Inner Bound of the Strong-Relaying Scenario

In the smart repeater problem,s can always take over
relay’s operations, and thusr becomes useless when ther-
PEC is weaker than thes-PEC. To fully fetch the coding and
diversity benefits using relay, we first focus on the following
assumption.

Definition 2. The smart repeater network with{d1, d2} is
strong-relayingif pr(T {d1, d2}\T )>ps(T {d1, d2}\T ) for all
T ⊆ {d1, d2}\∅. That is, the givenr-PEC is stronger than the
given s-PEC for all non-empty subsets of{d1, d2}.

We describe our capacity-approaching achievability scheme
based on the strong-relaying scenario. The general inner bound
that works in arbitrarys-PEC andr-PEC distributions, and
introduces more advanced LNC operations will be described
in Proposition 3.

Proposition2. A rate vector(R1, R2) is LNC-achievable if
there exist2 non-negative variablests and tr, (6 × 2 + 8)
non-negatives-variables:

{

skUC, s
k
PM1, s

k
PM2, s

k
RC, s

k
DX, s

(k)
DX

: for all k ∈ {1, 2}
}

,
{

sCX;l (l=1, · · ·, 8)
}

,

and (3× 2 + 3) non-negativer-variables:

{

rkUC, r
(k)
DT

, r
[k]
DT

: for all k ∈ {1, 2}
}

,
{

rRC, rXT, rCX
}

,

such that jointly they satisfy the following five groups of linear
conditions:

• Group 1, termed thetime-sharing conditions, has3 inequal-

ities:

1 > ts + tr, (33)

ts ≥
∑

k∈{1,2}

(

skUC+skPM1+skPM2+skRC+skDX+s
(k)
DX

)

+

8
∑

l=1

sCX;l,

(34)

tr ≥
∑

k∈{1,2}

(

rkUC + r
(k)
DT

+ r
[k]
DT

)

+ rRC + rXT + rCX. (35)

• Group 2, termed thepackets-originating condition, has2
inequalities: Consider anyi, j ∈ {1, 2} satisfying i 6= j. For
each(i, j) pair (out of the two choices(1, 2) and (2, 1)),

Ri ≥
(

siUC + siPM1

)

· ps(di, dj , r), (E)

• Group 3, termed thepackets-mixing condition, has4 inequal-
ities: For each(i, j) pair,
(

siUC + siPM1

)

· ps→didjr
≥ (sj

PM1
+ siPM2) · ps(di, dj)

+ riUC · pr(di, dj),
(A)

siPM1 · ps→didjr
≥ siRC · ps(di, dj , r), (B)

and the following one inequality:

s1PM1 ·ps(d1, d2r) + s2PM1 ·ps(d2, d1r) + s1PM2 ·ps(d1d2)+

s2PM2 ·ps(d1d2)+
(

s1RC+s2RC
)

·ps→d1d2r
≥ rRC ·pr(d1, d2). (M)

• Group 4, termed theclassic XOR condition by source only,
has4 inequalities: For each(i, j) pair,
(

siUC + siRC
)

ps→didjr
≥
(

sj
PM2

+ siDX

)

· ps(di, r)+

(sCX;1 + sCX;1+i) · ps(di, r) + sCX;4+i · ps(di, r), (S)

sj
RC

· ps→didjr
≥ s

(i)
DX

· ps(di, r) + r
(i)
DT

· pr(di, dj)+

(sCX;1+j + sCX;4) · ps(di, r) + sCX;6+i · ps(di, r). (T)

• Group 5, termed theXOR condition, has3 inequalities:

4
∑

l=1

sCX;l · ps→d1d2r
≥ rXT · pr(d1, d2), (X0)

and for each(i, j) pair,

sj
PM2

·ps(didj , dir) +
(

siUC+siRC+sj
RC

+

4
∑

l=1

sCX;l

)

·ps→didjr

+
(

sCX;4+i + sCX;6+i + siDX + s
(i)
DX

)

· ps(dir)

+
(

riUC + rRC + r
(i)
DT

+ rXT

)

· pr→didj

≥ (sCX;7−i + sCX;9−i) · ps(di) +
(

rCX+ r
[i]
DT

)

· pr(di). (X)

• Group 6, termed thedecodability condition, has2 inequali-
ties: For each(i, j) pair,

(

siUC + sj
PM2

+
∑

k∈{1,2}

skRC +

8
∑

l=1

sCX;l + siDX + s
(i)
DX

)

· ps(di)+

(

riUC + rRC + rXT + rCX + r
(i)
DT

+ r
[i]
DT

)

· pr(di) ≥ Ri. (D)

The intuition is as follows. Proposition 2 can be described
based on packet movements in a queueing network, governed
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by the proposed LNC operations. Eachs- and r-variable
(except t-variables for time-sharing) is associated with a
specific LNC operation performed by the sources and the
relay r, respectively. The inequalities (E) to (D) then describe
the queueing process, where LHS and RHS of each inequality
implies the packet insertion and removal condition of a queue.
For the notational convenience, we define the following queue
notations associated with these14 inequalities (E) to (D):

TABLE I
Queue denominations for the inequalities (E) to (D)

(E1): Q1
φ

(B1): Qm|2
{d2}|{r}

(S1): Q1
{d2}

(X0): QmCX

{r}

(E2): Q2
φ

(B2): Qm|1
{d1}|{r}

(T1): Q(1)|1
{d2}|{r}

(X1): Q[1]
{rd2}

(A1): Q1
{r}

(M): Qmix (S2): Q2
{d1}

(X2): Q[2]
{rd1}

(A2): Q2
{r}

(T2): Q(2)|2
{d1}|{r}

(D1): Q1
dec

(D2): Q2
dec

where we use the index-after-reference to distinguish the
session (i.e. flow) of focus of an inequality. For example, (E1)
and (E2) are to denote the inequality (E) when(i, j) = (1, 2)
and (i, j) = (2, 1), respectively.

For example, suppose thatW1 = (X1, · · · , XnR1) packets
and W2 = (Y1, · · · , YnR2) packets are initially stored in
queuesQ1

φ andQ2
φ, respectively, at sources. The superscript

k ∈ {1, 2} indicates that the queue is for the packets intended
to destinationdk. The subscript indicates that those packets
have not been heard by any of{d1, d2, r}. The LNC operation
corresponding to the variables1

UC
(resp. s2

UC
) is to send a

session-1 packetXi (resp. a session-2 packetYj) uncodedly.
Then the inequality (E1) (resp. (E2)) implies that wheneverit
is received by at least one of{d1, d2, r}, this packet is removed
from the queue ofQ1

φ (resp.Q2
φ).

Depending on the reception status, a packet will either be
moved to another queue or remain in the same queue. For
example, the use of thes1

UC
-operation (sendingXi ∈ W1

uncodedly from source) will takeXi fromQ1
φ and insert it into

Q1
dec

as long asZs→d1(t) = 1 in the reception statusZs(t),
i.e., when the intended destinationd1 correctly receives it.
Similarly, when the reception status isZs→d1(t)=Zs→d2(t)=
0 but Zs→r(t) = 1, this packet will be inserted to the queue
Q1
{r} according to the packet movement rule of (A1); inserted

to Q1
{d2}

whenZs→d1(t) =Zs→r(t) = 0 but Zs→d2(t) = 1 by

(S1); and inserted toQ[1]
{rd2}

whenZs→d1(t)=0 butZs→d2(t)=

Zs→r(t)=1 by (X1). Obviously when none of{d1, d2, r} has
received it, the packetXl simply remains inQ1

φ.
Fig. 2 illustrates the proposed queueing network and move-

ment process represented by Proposition 2. The full/detailed
descriptions of the LNC operations and the corresponding
packet movement process following the inequalities in Propo-
sition 2 are relegated to Appendix B.

B. The Properties of Queues and The Correctness Proof

Each queue in the queueing network, see Fig. 2, is carefully
designed to store packets in a specific format such that the
queue itself can represent a specific scenario to be beneficial.
In this subsection, we highlight the properties of the queues,

which later will be used to prove the correctness of our
achievability scheme of Proposition 2.

To that end, we first describe the properties ofQ1
φ, Q1

dec
,

Q1
{r}, andQ1

{d2}
since their purpose is clear in the sense that

these queues collect pure session-1 packets (indicated by the
superscript), but heard only by the nodes (in the subscript{·})
or correctly decoded by the desired destinationd1 (by the
subscriptdec). After that, we describe the properties ofQmix,
and then explainQm|2

{d2}|{r}
, Q(1)|1

{d2}|{r}
, andQ[1]

{rd2}
focusing on the

queues of session-1. For example,Qm|2
{d2}|{r}

implies the queue
that contains the packet mixtures (the superscriptm), each
of session-1 and session-2, where such mixtures are known
by d2 and those session-2 packets used for mixtures related
to a session-1 packet that is mixed with a session-2 packet,
where such mixture is known byd2 but the session-2 packet is
known byr as well. The properties of the queues related to the
session-2 packets, i.e.,Q2

φ, Q2
dec

, Q2
{r}, Q2

{d1}
, Qm|1

{d1}|{r}
, Q(2)|2

{d1}|{r}
,

andQ[2]
{rd1}

, will be symmetrically explained by simultaneously
swapping (a) session-1 and session-2 in the superscript; (b)X
and Y ; (c) i and j; and (d) d1 and d2, if applicable. The
property ofQmCX

{r} will be followed at last.
To help aid the explanations, we also define for each

node in {d1, d2, r}, the reception listRL{d1}, RL{d2}, and
RL{r}, respectively, that records how the received packet is
constituted. The reception list is a binary matrix of its column
size fixed ton(R1+R2) but its row size being the number of
received packets and thus variable (increasing) over the course
of total time slots. For example, suppose thatd1 has received
a pure session-1 packetX1, a self-mixture[X1 +X2], and a
cross-mixture[X3 + Y1]. ThenRL{d1} will be

nR1 nR2

1 0 · · · · · · · · · · · ·

1 1 0 · · · · · · · · · ·

0 0 1 0 · · · · · · · · ·

0 0 · · · · · · · · · · · ·

0 0 · · · · · · · · · · · ·

1 0 · · · · · · · · · · · ·

such that the first row vector represents the pureX1 received,
the second row vector represents the mixture[X1 + X2]
received, and the third row vector represents the mixture
[X3 + Y1] received, all in a binary format. Namely, whenever
a node receives a packet, whether such packet is pure or not,
a newn(R1+R2)-dimensional row vector is inserted into the
reception list by marking the corresponding entries ofXi or
Yj as flagged (“1”) or not flagged (“0”) accordingly. From the
previous example,[X1+X2] in the reception listRL{d1} means
that the list contains an(R1+R2)-dimensional row vector of
exactly{1, 1, 0, · · · , 0}. We then say that a pure packet isnot
flaggedin the reception list, if the column of the corresponding
entry contains all zeros. From the previous example, the pure
session-2 packetY2 is not flagged inRL{d1}, meaning thatd1
has neither receivedY2 nor any mixture involving thisY2. Note
that “not flagged” is a stronger definition than “unknown”.
From the previous example, the pure session-1 packetX3 is
unknown tod1 but still flagged inRL{d1} asd1 has received
the mixture[X3 + Y1] involving thisX3. Another example is
the pureX2 that is flagged inRL{d1} but d1 knows thisX2 as
it can use the receivedX1 and the mixture[X1+X2] to extract
X2. We sometimes abuse the reception list notation to denote
the collective reception list byRLT for some non-empty subset
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Q1
φ Q2

φ

s1PM1 s2PM1s1UC s2UC

Q
m|2

{d2}|{r}
Q1

{r} Q2
{r} Q

m|1

{d1}|{r}
s1RC s2RC

Q1
{d2}

Q
(1)|1

{d2}|{r}
Q

(2)|2

{d1}|{r}
Q2

{d1}

s1PM2 s2PM2

s1DX s2DXs
(1)
DX

s
(2)
DX

sCX;1sCX;2 sCX;3sCX;4

Qmix Q
mCX

{r}

r1UC r2UCrRC rXT

r
(1)
DT

r
(2)
DT

sCX;5 sCX;7 sCX;6sCX;8

Q
[1]

{rd2}
Q

[2]

{rd1}

rCXr
[1]
DT

r
[2]
DT

Q1
dec Q1

dec

Fig. 2: Illustrations of The Queueing Network described by the inequalities (E1) to (D2) in Proposition 2. The upper-side-open
rectangle represents the queue, and the circle represents LNC encoding operation, where the blue means the encoding by the
sources and the red means the encoding by the relayr. The black outgoing arrows from a LNC operation (or from a setof
LNC operations grouped by a curly brace) represent the packet movements process depending on the reception status, where
the southwest and southeast dashed arrows are especially for into Q1

dec
and intoQ2

dec
, respectively.
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T ⊆ {d1, d2, r}. For example,RL{d1,d2,r} implies the vertical
concatenation of allRL{d1}, RL{d2}, andRL{r}.

We now describe the properties of the queues.
• Q1

φ: Every packet in this queue isof a pure session-
1 and unknown to any of {d1, d2, r}, even not flaggedin
RL{d1,d2,r}. Initially, this queue contains all the session-1
packetsW1, and will be empty in the end.
• Q1

dec
: Every packet in this queue isof a pure session-1

andknownto d1. Initially, this queue is empty but will contain
all the session-1 packetsW1 in the end.
• Q1

{r}: Every packet in this queue isof a pure session-1
and known by r but unknownto any of {d1, d2}, evennot
flaggedin RL{d1,d2}.
• Q1

{d2}
: Every packet in this queue isof a pure session-1

and known by d2 but unknownto any of {d1, r}, evennot
flaggedin RL{d1,r}.
• Qmix: Every packet in this queue isof a linear sum[Xi+
Yj ] from a session-1 packetXi and a session-2 packetYj such
that at least one of the following conditions hold:

(a) [Xi + Yj ] is in RL{d1}; Xi is unknownto d1; andYj is
knownby r but unknownto d2.

(b) [Xi + Yj ] is in RL{d2}; Xi is knownby r but unknown
to d1; andYj is unknownto d2.

The detailed clarifications are as follows. For a NC designer,
one important consideration is to generate as many “all-happy”
scenarios as possible in an efficient manner so that single
transmission benefits both destination simultaneously. One
famous example is theclassic XORoperation that a sender
transmits a linear sum[Xi + Yj ] when a session-1 packetXi

is not yet delivered tod1 but overheard byd2 and a session-
2 packetYj is not yet delivered tod2 but overheard byd1.
Namely, the sources can perform such classic butterfly-style
operation of sending the linear mixture[Xi + Yj ] whenever
such pair ofXi andYj is available. Similarly,Qmix represents
such an “all-happy” scenario that the relayr can benefit both
destinations simultaneously by sending eitherXi or Yj . For
example, suppose that the sources has transmitted a packet
mixture [Xi + Yj ] and it is received byd2 only. And assume
that r already knows the individualXi and Yj but Xi is
unknown tod1, see Fig. 3(a). This example scenario falls into
the second condition ofQmix above. Then sendingXi from
the relayr simultaneously enablesd1 to receive the desired
Xi andd2 to decode the desiredYj by subtracting the received
Xi from the known[Xi + Yj ]. Qmix collects such all-happy
mixtures[Xi + Yj ] that has been received by eitherd1 or d2
or both. In the same scenario, however, notice thatr cannot
benefit both destinations simultaneously, ifr sendsYj , instead
of Xi. As a result, we use the notation[Xi + Yj ] : W to
denote the specific packetW (known byr) thatr can send to
benefit both destinations. In this second condition scenario of
Fig. 3(a),Qmix is storing[Xi + Yj ] :Xi.

• Q
m|2
{d2}|{r}

: Every packet in this queue isof a linear sum
[Xi + Yj ] from a session-1 packetXi and a session-2 packet
Yj such that they jointly satisfy the following conditions
simultaneously.

(a) [Xi + Yj ] is in RL{d2}.

r

Xi, Yj d1

d2 [Xi+Yj ]

(a) Example scenario forQmix

r

Xi
d1 [Xi+Yi]

d2 Yi

(b) Scenario forYi∈Q
(1)|1

{d2}|{r}

It must beYi∈Q2
dec

r

Xi
d1

d2 Xi

(c) Case 1:Xi∈Q
[1]
{rd2}

r

Yi
d1 [Xi+Yi]

d2 Yi

(d) Case 2:Yi∈Q
[1]
{rd2}

It must beYi∈Q2
dec

r

[Wi+Wj ] d1 Wj

d2 [Wi+Wj ]

(e) Case 3:[Wi+Wj ]∈Q
[1]

{rd2}

r

[Wi+Wj ] d1 Wj

d2 Wi

(f) Scenario for

[Wi+Wj ]∈Q
mCX

{r}

Fig. 3: Illustrations of Scenarios of the Queues.

(b) Xi is unknownto any of{d1, d2, r}, evennot flaggedin
RL{d1,r}.

(c) Yj is knownby r but unknownto any of{d1, d2}, even
not flaggedin RL{d1}.

The scenario is the same as in Fig. 3(a) whenr not having
Xi. In this scenario, we have observed thatr cannot benefit
both destinations by sending the knownYj . Q

m|2
{d2}|{r}

collects
such unpromising[Xi + Yj ] mixtures.
• Q

(1)|1
{d2}|{r}

: Every packet in this queue isof a pure session-2
packetYi such that there exists a pure session-1 packetXi

that Yi is information equivalent to, and they jointly satisfy
the following conditions simultaneously.

(a) [Xi + Yi] is in RL{d1}.
(b) Xi is knownby r but unknownto any of{d1, d2}.
(c) Yi is knownby d2 (i.e. already inQ2

dec
) but unknownto

any of {d1, r}, even not flagged inRL{r}.

The concrete explanations are as follows. The main purpose of
this queue is basically the same asQ1

{d2}
, i.e., to store session-

1 packet overheard byd2, so as to be used by the sources
for the classic XOR operation with the session-2 counterparts
(e.g., any packet inQ2

{d1}
). Notice that anyXi ∈ Q1

{d2}
is

unknown tor and thusr cannot generate the corresponding
linear mixture with the counterpart. However, becauseXi is
unknown to the relay,r cannot even naively deliverXi to the
desired destinationd1. On the other hand, the queueQ(1)|1

{d2}|{r}
here not only allowss to perform the classic XOR operation
but also admits naive delivery fromr. To that end, consider
the scenario in Fig. 3(b). Here,d1 has received a linear sum
[Xi+Yi]. Wheneverd1 receivesYi (session-2 packet),d1 can
useYi and the known[Xi + Yi] to decode the desiredXi.
This Yi is also known byd2 (i.e., already inQ2

dec
), meaning

thatYi is no more different than a session-1 packet overheard
by d2 but not yet delivered tod1. Namely, suchYi can be
treated asinformation equivalent toXi. That is, using this
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session-2 packetYi for the sake of session-1 does not incur
any information duplicity becauseYi is already received by
the desired destinationd2.4 For shorthand, we denote suchYi

asYi ≡ Xi. As a result, the sources can use thisYi as for
session-1 when performing the classic XOR operation with a
session-2 counterpart. Moreover,r also knows the pureXi

and thus relay can perform naive delivery ford1 as well.
• Q

[1]
{rd2}

: Every packet in this queue isof either a pure

or a mixed packet W satisfying the following conditions
simultaneously.
(a) W is knownby bothr andd2 but unknownto d1.
(b) d1 can extract a desired session-1 packet whenW is

further received.
Specifically, there are three possible cases based on how the
packetW ∈Q

[1]
{rd2}

is constituted:

Case 1:W is a pure session-1 packetXi. That is, Xi is
known by bothr andd2 but unknown tod1 as in Fig. 3(c).
Obviously, d1 acquires this newXi when it is further
delivered tod1.

Case 2:W is a pure session-2 packetYi ∈ Q2
dec

. That is,
Yi is already received byd2 and known byr as well
but unknown to d1. For such Yi, as similar to the
discussions ofQ(1)|1

{d2}|{r}
, there exists a session-1 packetXi

still unknown to d1 whereXi ≡ Yi, and their mixture
[Xi + Yi] is in RL{d1}, see Fig. 3(d). One can easily
see that whend1 further receives thisYi, d1 can use the
receivedYi and the known[Xi+Yi] to decode the desired
Xi.

Case 3:W is a mixed packet of the form[Wi +Wj ] where
Wi and Wj are pure but generic that can be either a
session-1 or a session-2 packet. That is, the linear sum
[Wi + Wj ] is known by bothr andd2 but unknown to
d1. In this case,Wi is still unknown tod1 but Wj is
already received byd1 so that whenever[Wi + Wj ] is
delivered tod1, Wi can further be decoded. See Fig. 3(e)
for details. Specifically, there are two possible subcases
depending on whetherWi is of a pure session-1 or of a
pure session-2:

– Wi is a session-1 packetXi. As discussed above,Xi

is unknown tod1 and it is obvious thatd1 can decode
the desiredXi whenever[Wi+Wj ] is delivered tod1.

– Wi is a session-2 packetYi ∈ Q2
dec

. In this subcase,
there exists a session-1 packetXi (other thanWj in the
above Case 3 discussions) still unknown tod1 where
Xi ≡ Yi. Moreover,[Xi + Yi] is already inRL{d1}.
As a result,d1 can decode the desiredXi whenever
[Wi +Wj ] is delivered tod1.

The concrete explanations are as follows. The main purpose
of this queue is basically the same asQ

(1)|1
{d2}|{r}

but the queue

Q
[1]
{rd2}

here allows not only the sources but also the relayr to
perform the classic XOR operation. As elaborated above, we
have three possible cases depending on the form of the packet
W ∈Q

[1]
{rd2}

. Specifically, either a pure session-1 packetXi 6∈

Q1
dec

(Case 1) or a pure session-2 packetYi ∈Q2
dec

(Case 2)

4This means thatd2 does not requireYi any more, and thuss or r can
freely use thisYi in the network to represent not-yet-decodedXi instead.

or a mixture [Wi + Wj ] (Case 3) will be used when either
s or r performs the classic XOR operation with a session-
2 counterpart. For example, suppose that we have a packet
X∈Q

[2]
{rd1}

(Case 2) as a session-2 counterpart. Symmetrically

following the Case 2 scenario ofQ[1]
{rd2}

in Fig. 3(d), we know
thatX has been received by bothr andd1. There also exists
a session-2 packetY still unknown tod2 whereY ≡ X , of
which their mixture[X + Y ] is already inRL{d2}. For this

session-2 counterpartX , consider any packetW in Q
[1]
{rd2}

.

Obviously, the relayr knows bothW andX by assumption.
As a result, eithers or r can send their linear sum[W +X ]
as per the classic pairwise XOR operation. Sinced1 already
knowsX by assumption, such mixture[W+X ], when received
by d1, can be used to decodeW and further decode a desired
session-1 packet as discussed above. Moreover, ifd2 receives
[W + X ], then d2 can use the knownW to extractX and
further decode the desiredY since[X+Y ] is already inRL{d2}

by assumption.
• QmCX

{r} : Every packet in this queue isof a linear sum[Wi+

Wj ] that satisfies the following conditions simultaneously.

(a) [Wi +Wj ] is in RL{r}.
(b) Wi is knownby d2 but unknownto any of{d1, r}.
(c) Wj is knownby d1 but unknownto any of{d2, r}.

whereWi andWj are pure but generic that can be either a
session-1 or a session-2 packet. Specifically, there are four
possible cases based on the types ofWi andWj packets:

Case 1:Wi is a pure session-1 packetXi andWj is a pure
session-2 packetYj .

Case 2:Wi is a pure session-1 packetXi andWj is a pure
session-1 packetXj ∈Q1

dec
. For the latterXj packet, as

similar to the discussions ofQ(1)|1
{d2}|{r}

, there also exists
a pure session-2 packetYj still unknown to d2 where
Yj ≡ Xj and their mixture[Xj+Yj ] is already inRL{d2}.
As a result, later whend2 decodes thisXj , d2 can use
Xj and the known[Xj + Yj ] to decode the desiredYj .

Case 3:Wi is a pure session-2 packetYi∈Q2
dec

andWj is a
pure session-2 packetYj . For the formerYi packet, there
also exists a pure session-1 packetXi still unknown to
d1 whereXi ≡ Yi and [Xi + Yi] is already inRL{d1}.
As a result, later whend1 decodes thisYi, d1 can useYi

and the known[Xi + Yi] to decode the desiredXi.
Case 3:Wi is a pure session-2 packetYi∈Q2

dec
andWj is a

pure session-1 packetXj ∈Q1
dec

. For the formerYi and
the latterXj packets, the discussions follow the Case 3
and Case 2 above, respectively.

The concrete explanations are as follows. This queue rep-
resents the “all-happy” scenario as similar to the butterfly-
style operation by the relayr, i.e., sending a linear mixture
[Wi + Wj ] using Wi heard by d2 and Wj heard by d1.
Originally, r must have known both individuals packetsWi

and Wj to generate their linear sum. However, the sender
in fact does not need to know both individuals to perform
this classic XOR operation. The sender can still do the same
operation even though it knows the linear sum[Wi + Wj ]
only. This possibility only applies to the relayr as all the
messages including both individual packets are originated
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TABLE II
Summary of the associated LNC operations

that moves packets into and takes packets out of.

LNC operations 7→ Queue 7→ LNC operations

Q1
φ

s1
UC

, s1
PM1

s1
UC

, s1
PM1

Q1
{r}

s2
PM1

, s1
PM2

, r1
UC

s1
PM1

Q
m|2
{d2}|{r}

s1
RC

s1
UC

, s1
RC

Q1
{d2}

s2
PM2

, s1
DX

sCX;1, sCX;2, sCX;5

s2
RC

Q
(1)|1
{d2}|{r}

s
(1)
DX

, sCX;3
sCX;4, sCX;7, r(1)

DT

s1
UC

, s2
PM2

, s1
RC

, s1
DX Q

[1]
{rd2}

(Case 1)

sCX;6, sCX;8

r
[1]
DT

, r
CX

sCX;5, r1
UC

, r(1)
DT

, rRC

s2
PM2

, s2
RC

, s(1)
DX Q

[1]
{rd2}

(Case 2)
sCX;7, rRC

sCX;1, sCX;2
Q

[1]
{rd2}

(Case 3)
sCX;3, sCX;4, r

XT

s1
UC

, s1
PM2

, s1
RC

, s2
RC

Q1
dec

s1
DX

, s(1)
DX

, {sCX;1 tosCX;8}

r1
UC

, r(1)
DT

, r[1]
DT

rRC, r
XT

, r
CX

s1
PM1

, s2
PM1

, s1
PM2

, s2
PM2 Qmix rRC

s1
RC

, s2
RC

sCX;1, sCX;2, sCX;3, sCX;4 Q
mCX

{r}
r
XT

Q2
φ

s2
UC

, s2
PM1

s2
UC

, s2
PM1

Q2
{r}

s1
PM1

, s2
PM2

, r2
UC

s2
PM1

Q
m|1
{d1}|{r}

s2
RC

s2
UC

, s2
RC

Q2
{d1}

s1
PM2

, s2
DX

sCX;1, sCX;3, sCX;6

s1
RC

Q
(2)|2
{d1}|{r}

s
(2)
DX

, sCX;2
sCX;4, sCX;8, r(2)

DT

s2
UC

, s1
PM2

, s2
RC

, s2
DX Q

[2]
{rd1}

(Case 1)

sCX;5, sCX;7

r
[2]
DT

, r
CX

sCX;6, r2
UC

, r(2)
DT

, rRC

s1
PM2

, s1
RC

, s(2)
DX Q

[2]
{rd1}

(Case 2)
sCX;8, rRC

sCX;1, sCX;2
Q

[2]
{rd1}

(Case 3)
sCX;3, sCX;4, r

XT

s2
UC

, s2
PM2

, s1
RC

, s2
RC

Q2
dec

s2
DX

, s(2)
DX

, {sCX;1 tosCX;8}

r2
UC

, r(2)
DT

, r[2]
DT

rRC, r
XT

, r
CX

from the sources. As a result, this queue represents such
scenario that the relayr only knows the linear sum instead
of individuals, as in Fig. 3(f). More precisely, Cases 1 to 4
happen when the sources performed one of four classic XOR
operationssCX;1 to sCX;4, respectively, and the corresponding
linear sum is received only byr, see Appendix B for details.

Based on the properties of queues, we now describe the
correctness of Proposition 2, our LNC inner bound. To that
end, we first investigate all the LNC operations involved in
Proposition 2 and prove the “Queue Invariance”, i.e., the queue

properties explained aboveremains invariant regardless of an
LNC operation chosen. Such long and tedious investigations
are relegated to Appendix B. Then, the decodability condition
(D), jointly with the Queue Invariance, imply thatQ1

dec
and

Q2
dec

will contain at leastnR1 and nR2 number of pure
session-1 and pure session-2 packets, respectively, in the end.
This further means that, given a rate vector(R1, R2), any t-
, s-, and r-variables that satisfy the inequalities (E) to (D)
in Proposition 2 will be achievable. The correctness proof of
Proposition 2 is thus complete.

For readability, we also describe for each queue, the associ-
ated LNC operations that moves packet into and takes packets
out of, see Table II.

C. The General LNC Inner Bound

The LNC inner bound in Proposition 2 has focused on the
strong-relaying scenario and has considered mostly on cross-
packets-mixing operations (i.e., mixing packets from different
sessions when benefiting both destinations simultaneously).
We now describe the general LNC inner bound that works in
arbitrarys-PEC andr-PEC distributions, and also introduces
self-packets-mixing operations (i.e., mixing packets from the
same session for further benefits).

Proposition3. A rate vector(R1, R2) is LNC-achievable if
there exist2 non-negative variablests andtr, (6×2+8+3×2)
non-negatives-variables:
{

skUC, s
k
PM1, s

k
PM2, s

k
RC, s

k
DX , s

(k)
DX

, for all k ∈ {1, 2}
}

,
{

sCX;l (l=1, · · ·, 8)
}

,
{

skSX;l (l=1, 2, 3) for all k ∈ {1, 2}
}

.

and (2 × (3 × 2 + 3)) non-negativew-variables: For allh ∈
{s, r},

{

w
(h):k
UC

, w
(h):(k)
DT

, w
(h):[k]
DT

: for all k ∈ {1, 2}
}

,
{

w
(h)
RC

, w
(h)
XT

, w
(h)
CX

}

,

such that jointly they satisfy the following five groups of linear
conditions:

• Group 1, termed thetime-sharing condition, has3 inequal-
ities:

1 ≥ ts + tr, (36)

ts ≥
∑

k∈{1,2}

(

skUC + skPM1 + skPM2 + skRC + skDX + s
(k)
DX

)

+

8
∑

l=1

sCX;l +
∑

k∈{1,2}

(

skSX;1 + skSX;2 + skSX;3
)

+
∑

k∈{1,2}

(

w
(s):k
UC

+ w
(s):(k)
DT

+ w
(s):[k]
DT

)

+ w
(s)
RC

+ w
(s)
XT

+ w
(s)
CX

, (37)

tr ≥
∑

k∈{1,2}

(

w
(r):k
UC

+w
(r):(k)
DT

+w
(r):[k]
DT

)

+ w
(r)
RC

+ w
(r)
XT

+ w
(r)
CX

.

(38)
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• Group 2, termed thepackets-originating condition, has 2
inequalities: Consider anyi, j ∈ {1, 2} satisfying i 6= j. For
each(i, j) pair (out of the two choices(1, 2) and (2, 1)),

Ri ≥
(

siUC + siPM1

)

· ps(di, dj , r), (39)

where (39) is the same to (E) in Proposition 2.
• Group 3, termed thepackets-mixing condition, has4 inequal-
ities: For each(i, j) pair,
(

siUC + siPM1

)

· ps→didjr
≥ (sj

PM1
+ siPM2) · ps(di, dj)

+
(

siSX;1 + siSX;2
)

· ps(di, dj) +
∑

h∈{s,r}

w
(h):i
UC

· ph(di, dj),

(40)

siPM1 · ps→didjr
≥ siRC · ps(di, dj , r), (41)

and the following one inequality:

s1PM1 ·ps(d1, d2r) + s2PM1 ·ps(d2, d1r) + s1PM2 ·ps(d1d2)+

s2PM2 ·ps(d1d2)+
(

s1RC+s2RC
)

·ps→d1d2r
≥
∑

h∈{s,r}

w
(h)
RC

· ph(d1, d2).

(42)

where (41) is the same to (B) in Proposition 2.
• Group 4, termed theclassic XOR condition by source only,
has4 inequalities:

(

siUC + siRC
)

ps→didjr
≥
(

sj
PM2

+ siDX

)

· ps(di, r)+

(sCX;1 + sCX;1+i) · ps(di, r) + sCX;4+i · ps(di, r)+
(

siSX;1 + siSX;3
)

· ps(di, r), (43)

sj
RC

· ps→didjr
+ siSX;1 · ps→didjr

≥ s
(i)
DX

· ps(di, r)+
∑

h∈{s,r}

w
(h):(i)
DT

· ph(di, dj) + (sCX;1+j + sCX;4) · ps(di, r)+

sCX;6+i · ps(di, r) + siSX;2 · ps(didj , r) + siSX;3 · ps(dir, dj).
(44)

• Group 5, termed theXOR condition, has3 inequalities:

4
∑

l=1

sCX;l · ps→d1d2r
≥
∑

h∈{s,r}

w
(h)
XT

· ph(d1, d2), (45)

and for each(i, j) pair,

sj
PM2

·ps(didj , dir) +
(

siUC+siRC+sj
RC

+

4
∑

l=1

sCX;l

)

·ps→didjr

+
(

sCX;4+i + sCX;6+i + siDX + s
(i)
DX

)

· ps(dir)

+
(

siSX;1 + siSX;2 + siSX;3
)

·
(

ps(dj) + ps(r)− ps→didjr

)

+
∑

h∈{s,r}

(

w
(h):i
UC

+ w
(h)
RC

+ w
(h):(i)
DT

+ w
(h)
XT

)

· ph(didj)

≥ (sCX;7−i + sCX;9−i) · ps(di)

+
∑

h∈{s,r}

(

w
(h)
CX

+ w
(h):[i]
DT

)

· ph(di). (46)

• Group 6, termed thedecodability condition, has2 inequali-
ties: For each(i, j) pair,

(

siUC + sj
PM2

+
∑

k∈{1,2}

skRC +

8
∑

l=1

sCX;l + siDX + s
(i)
DX

)

· ps(di)

+
(

siSX;1 + siSX;2 + siSX;3
)

· ps(di)

+
∑

h∈{s,r}

(

w
(h):i
UC

+ w
(h)
RC

+ w
(h)
XT

+ w
(h)
CX

)

· ph(di)

+
∑

h∈{s,r}

(

w
(h):(i)
DT

+ w
(h):[i]
DT

)

· ph(di) ≥ Ri, (47)

The main difference to Proposition 2 (for the strong-relaying
scenario) can be summarized as follows. Recall that all the
messagesW = (W1,W2) are originated from the sources
and the knowledge space of the relayr at time t, i.e., Sr(t)
always satisfiesΩ ⊇ Sr(t). As a result,s can always mimic
any LNC encoding operation thatr can perform regardless of
any timet ∈ {1, · · · , n}. Therefore, we allows to mimic the
same encoding operations thatr does and thus ther-variables
in Proposition 2 is now replaced by thew-variables associated
with boths andr, where the performer is distinguished by the
superscript(h), h ∈ {s, r}. For that, the conditions (A), (T),
(X0), and (X) that are associated withr-variables has changed
to (40), (44), (46), and (46), respectively, by replacingr-
variables intow-variables with the superscript(h), h ∈ {s, r}.
Ther-PEC probabilities are also replaced by a generic notation
ph(·), h ∈ {s, r}. On the other hand, the other conditions that
are associated only withs-variables, i.e., (E), (B), (M), and
(S) remain the same as before by (39), (41), (42), and (43),
respectively. In addition to the above systematic changes,we
also consider the more advanced LNC encoding operations
that the sources can do, i.e., self-packets-mixing operations
{sk

SX;l (l=1, 2, 3) : for all k∈{1, 2}}. By these newly added
6 s-variables, (40), (43) to (44), and (46) to (47) are updated
accordingly.

The queueing network described in Section IV-B remains
the same as before, but we have additional self-packets-mixing
operations{sk

SX;l (l = 1, 2, 3) : for all k ∈ {1, 2}} for the
general LNC inner bound. The LNC encoding operations and
the packet movement process of the newly addeds-variables
sk
SX;l can also be found in Appendix C.

V. NUMERICAL EVALUATION

Consider a smart repeater network with marginal channel
success probabilities: (a)s-PEC: ps(d1) = 0.15, ps(d2) =
0.25, and ps(r) = 0.8; and (b) r-PEC: pr(d1) = 0.75 and
pr(d2) = 0.85. And we assume that all the erasure events are
independent. We will use the results in Propositions 1 and 2
to find the largest(R1, R2) value for this example scenario.

Fig. 4 compares the LNC capacity outer bound (Proposi-
tion 1) and the LNC inner bound (Proposition 2) with different
achievability schemes. The smallest rate region is achieved by
simply performing uncoded direct transmission without using
the relayr. The second achievability scheme is the2-receiver
broadcast channel LNC from the sources in [10] while still
not exploitingr at all. The third and fourth schemes always
user for any packet delivery. Namely, both schemes do not
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Fig. 5: The cumulative distribution of the relative gap between
the outer and the inner bounds. The LNC outer bound is
described in Proposition 1, and the inner bounds are described
in Propositions 2 and 3, respectively.

allow 2-hop delivery froms. Thenr in the third scheme uses
pure routing whiler performs the2-user broadcast channel
LNC in the fourth scheme. The fifth scheme performs the
time-shared transmission betweens andr, while allowing only
intra-flow network coding. The sixth scheme is derived from
using only the classic butterfly-style LNCs corresponding to
sCX;l (l=1, · · ·, 8), rCX, andr

XT
. That is, we do not allows to

perform fancy operations such assk
PM1

, sk
PM2

, sk
RC

, andrRC.
One can see that the result is strictly suboptimal.

In summary, one can see that our proposed LNC inner
bound closely approaches to the LNC capacity outer bound
in all angles. This shows that the newly-identified LNC oper-
ations other than the classic butterfly-style LNCs are critical
in approaching the LNC capacity. The detailed rate region
description of each sub-optimal achievability scheme can be
found in Appendix D.

Fig. 5 examines the relative gaps between the outer bound
and two inner bounds by choosing the channel parameters
ps(·) and pr(·) uniformly randomly while obeying (a) the
strong-relaying condition in Definition 2 when using Propo-
sition 2; and (b) the arbitrarys-PEC andr-PEC distributions
when using Proposition 3. For any chosen parameter instance,
we use a linear programming solver to find the largest sum rate
(R1+R2) of the LNC outer bound in Proposition 1, which is
denoted byRsum.outer. Similarly, we find the largest sum rate
(R1+R2) that satisfies the LNC inner bound in Proposition 2
(resp. Proposition 3) and denote it byRsum.inner. We then

compute the relative gap per each experiment,(Rsum.outer −
Rsum.inner)/Rsum.outer, and then repeat the experiment10000
times, and plot the cumulative distribution function (cdf)in
unit of percentage. We can see that with more than85%
of the experiments, the relative gap between the outer and
inner bound is smaller than0.08% for Case (a) and0.04% for
Case (b).

VI. CONCLUSION

This work studies the LNC capacity of the smart repeater
packet erasure network for two unicast flows. The capacity re-
gion has been effectively characterized by the proposed linear-
subspace-based outer bound, and the capacity-approaching
LNC scheme with newly identified LNC operations other than
the previously well-known classic butterfly-style operations.

APPENDIX A
L IST OF CODING TYPES FORFTs AND rFTs

We enumerate the154 Feasible Types(FTs) defined in (13)
that the sources can transmit in the following way:

FTs ,{00000, 00010, 00020, 00030, 00070, 00110,

00130, 00170, 00220, 00230, 00270, 00330,

00370, 00570, 00770, 00A70, 00B70, 00F70,

00F71, 01010, 01030, 01070, 01110, 01130,

01170, 01230, 01270, 01330, 01370, 01570,

01770, 01A70, 01B70, 01F70, 01F71, 02020,

02030, 02070, 02130, 02170, 02220, 02230,

02270, 02330, 02370, 02570, 02770, 02A70,

02B70, 02F70, 02F71, 03030, 03070, 03130,

03170, 03230, 03270, 03330, 03370, 03570,

03770, 03A70, 03B70, 03F70, 03F71, 07070,

07170, 07270, 07370, 07570, 07770, 07A70,

07B70, 07F70, 07F71, 11110, 11130, 11170,

11330, 11370, 11570, 11770, 11B70, 11F70,

11F71, 13130, 13170, 13330, 13370, 13570,

13770, 13B70, 13F70, 13F71, 17170, 17370,

17570, 17770, 17B70, 17F70, 17F71, 22220,

22230, 22270, 22330, 22370, 22770, 22A70,

22B70, 22F70, 22F71, 23230, 23270, 23330,

23370, 23770, 23A70, 23B70, 23F70, 23F71,

27270, 27370, 27770, 27A70, 27B70, 27F70,

27F71, 33330, 33370, 33770, 33B70, 33F70,

33F71, 37370, 37770, 37B70, 37F70, 37F71,

57570, 57770, 57F70, 57F71, 77770, 77F70,

77F71, A7A70, A7B70, A7F70, A7F71, B7B70,

B7F70, B7F71, F7F70, F7F71},

where each5-digit indexb1b2b3b4b5 represent a15-bitstring
b of whichb1 is a hexadecimal of first four bits,b2 is a octal
of the next three bits,b3 is a hexadecimal of the next four
bits, b4 is a octal of the next three bits, andb5 is binary of
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the last bit. The subset ofFTs that the relayr can transmit,
i.e., rFTs are listed separately in the following:

rFTs ,{00F71, 01F71, 02F71, 03F71, 07F71, 11F71,

13F71, 17F71, 22F71, 23F71, 27F71, 33F71,

37F71, 57F71, 77F71, A7F71, B7F71, F7F71},

Recall that theb15 of a15-bitstringb represents whether the
coding subset belongs toA15(t) or not, andA15(t) , Sr(t−1)
by definition (12). As a result, any coding type withb15 = 1
implies that it lies in the knowledge space of the relayr. The
enumeratedrFTs in the above is thus a collection of such
coding subsets inFTs with b5 = 1.

APPENDIX B
LNC ENCODING OPERATIONS, PACKET MOVEMENT

PROCESS, AND QUEUE INVARIANCE IN PROPOSITION2

In the following, we will describe all the LNC encoding
operations and the corresponding packet movement process
of Proposition 2 one by one, and then prove that the Queue
Invariance explained in Section IV-B always holds.

To simplify the analysis, we will ignore the null reception,
i.e., none of{d1, d2, r} receives a transmitted packet, because
nothing will happen in the queueing network. Moreover, we
exploit the following symmetry: For those variables whose
superscript indicates the session informationk∈{1, 2} (either
session-1 or session-2), here we describe session-1 (k = 1)
only. Those variables withk = 2 in the superscript will
be symmetrically explained by simultaneously swapping (a)
session-1 and session-2 in the superscript; (b)X andY ; (c) i
andj; and (d)d1 andd2, if applicable.
• s1

UC
: The sources transmitsXi ∈Q1

φ. Depending on the
reception status, the packet movement process following the
inequalities in Proposition 2 is summarized as follows.

Departure
Reception

Status Insertion

Q1
φ

Xi−−→

d1d2r
Xi−−→ Q1

{r}

d1d2r
Xi−−→ Q1

{d2}

d1d2r
Xi−−→ Q1

dec

d1d2r
Xi−−−→

Case 1
Q

[1]
{rd2}

d1d2r
Xi−−→ Q1

dec

d1d2r
Xi−−→ Q1

dec

d1d2r
Xi−−→ Q1

dec

- Departure: One property forXi∈Q1
φ is thatXi must be

unknown to any of{d1, d2, r}. As a result, wheneverXi

is received by any of them,Xi must be removed from
Q1

φ for the Queue Invariance.
- Insertion: One can easily verify that the queue properties

for Q1
{r}, Q1

{d2}
, Q1

dec
, andQ[1]

{rd2}
hold for the correspond-

ing insertions.

• s2
UC

: s transmitsYj ∈ Q2
φ. The movement process is

symmetric tos1
UC

.

• s1
PM1

: s transmits a mixture[Xi + Yj ] from Xi ∈Q1
φ and

Yj∈Q2
{r}. The movement process is as follows.

Q1
φ

Xi−−→ d1d2r
Xi−−→ Q1

{r}

Q1
φ

Xi−−→, Q2
{r}

Yj
−−→

d1d2r
[Xi+Yj ]
−−−−−−→ Q

m|2
{d2}|{r}

d1d2r
[Xi+Yj ]:Yj
−−−−−−−−→ Qmix

d1d2r
[Xi+Yj ]:Xi
−−−−−−−−→ Qmix

d1d2r [Xi+Yj ]:Yj
−−−−−−−−→ Qmixd1d2r

d1d2r
[Xi+Yj ]: eitherXi orYj
−−−−−−−−−−−−−−−→ Qmix

- Departure: The property forXi ∈ Q1
φ is that Xi must

be unknown to any of{d1, d2, r}, even not flagged in
RL{d1,d2,r}. As a result, whenever the mixture[Xi + Yj ]
is received by any of{d1, d2, r}, Xi must be removed
from Q1

φ. Similarly, the property forYj ∈Q2
{r} is thatYj

must be unknown to any of{d1, d2}, even not flagged in
RL{d1,d2}. Therefore, whenever the mixture is received
by any of{d1, d2}, Yj must be removed fromQ2

{r}.
- Insertion: When onlyr receives the mixture,r can use

the knownYj and the received[Xi + Yj ] to extract the
pureXi. As a result, we can insertXi to Q1

{r} as it is not
flagged inRL{d1,d2}. The case when onlyd2 receives the

mixture satisfies the properties ofQm|2
{d2}|{r}

asr knows the
pureYj only while d2 knows the mixture[Xi+Yj ] only.
As a result, we can insert[Xi + Yj ] to Q

m|2
{d2}|{r}

. The
remaining reception cases fall into at least one of two
conditions ofQmix. For example when onlyd1 receives
the mixture, now[Xi + Yj ] is in RL{d1} while Yj is still
known byr only. This corresponds to the first condition
of Qmix. One can easily verify that other cases satisfy
either one of or both properties ofQmix. Following the
packet format forQmix, we insert [Xi + Yj ] : W into
Qmix whereW denotes the packet inr that can benefit
both destinations when transmitted. From the previous
example when onlyd1 receives the mixture, we insert
[Xi+Yj ] : Yj into Qmix as sending the knownYj from r
simultaneously enablesd2 to receive the desiredYj and
d1 to decode the desiredXi by subtractingYj from the
received[Xi + Yj ].

• s2
PM1

: s transmits a mixture[Xi+Yj ] from Xi ∈Q1
{r} and

Yj∈Q2
φ. The movement process is symmetric tos1

PM1
.

• s1
PM2

: s transmits a mixture[Xi + Yj ] from Xi∈Q1
{r} and

Yj∈Q2
{d1}

. The movement process is as follows.

Q2
{d1}

Yj
−−→ d1d2r

Yj
−−−→
Case 1

Q
[2]
{rd1}

Q1
{r}

Xi−−→, Q2
{d1}

Yj
−−→ d1d2r

[Xi+Yj ]:Xi
−−−−−−−−→ Qmix

Q1
{r}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{r}

Xi−−→, Q2
{d1}

Yj
−−→

d1d2r
[Xi+Yj ]:Xi
−−−−−−−−→ Qmix

d1d2r
Xi−−→ Q1

dec
,

Yj
−−−→
Case 1

Q
[2]
{rd1}

d1d2r
Xi−−→ Q1

dec
,

Xi(≡Yj)
−−−−−−→

Case 2
Q

[2]
{rd1}

d1d2r
Xi−−→ Q1

dec
,

Yj
−−−→
Case 1

Q
[2]
{rd1}
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- Departure: The property forXi ∈Q1
{r} is thatXi must

be unknown to any of{d1, d2}, even not flagged in
RL{d1,d2}. As a result, whenever the mixture[Xi+Yj ] is
received by any of{d1, d2}, Xi must be removed from
Q1
{r}. Similarly, the property forYj ∈ Q2

{d1}
is that Yj

must be unknown to any of{d2, r}, even not flagged in
RL{d2,r}. Therefore, whenever the mixture is received by
any of {d2, r}, Yj must be removed fromQ2

{d1}
.

- Insertion: Wheneverd1 receives the mixture,d1 can use
the knownYj and the received[Xi + Yj ] to extract the
pure/desiredXi. As a result, we can insertXi into Q1

dec

wheneverd1 receives. The cases whend2 receives but
d1 does not fall into the second condition ofQmix as
[Xi+Yj] is inRL{d2} andXi is known byr only. Namely,
r can benefit both destinations simultaneously by sending
the knownXi. For those two reception statusd1d2r and
d1d2r, we can thus insert this mixture intoQmix as[Xi+
Yj ] :Xi. Wheneverr receives the mixture,r can use the
knownXi and the received[Xi + Yj ] to extract the pure
Yj . Now Yj is known by bothr andd1 but still unknown
to d2 even if d2 receives this mixture[Xi + Yj ] as well.
As a result,Yj can be moved toQ[2]

{rd1}
as the Case 1

insertion. But for the reception status ofd1d2r, note from
the previous discussion that we can insert the mixture into
Qmix sinced2 receives the mixture butd1 does not. In this
case, we chose to use more efficientQmix that can handle
both sessions simultaneously. Finally when the reception
status isd1d2r, we have thatXi is known by bothr and
d1 while the mixture[Xi+Yj ] is received byd2. Namely,
Xi is still unknown tod2 but when it is delivered,d2 can
useXi and the received[Xi + Yj ] to extract a desired
session-2 packetYj . Moreover,Xi is already inQ1

dec
and

thus can be used as an information-equivalent packet for
Yj . This scenario is exactly the same as the Case 2 of
Q

[2]
{rd1}

and thus we can moveXi into Q
[2]
{rd1}

as the Case 2
insertion.

• s2
PM2

: s transmits a mixture[Xi + Yj ] from Xi∈Q1
{d2}

and
Yj∈Q2

{r}. The movement process is symmetric tos1
PM2

.

• s1
RC

: s transmitsXi of the mixture[Xi + Yj ] in Q
m|2
{d2}|{r}

.
The movement process is as follows.

Q
m|2
{d2}|{r}

[Xi+Yj ]
−−−−−−→

d1d2r
[Xi+Yj ]:Xi
−−−−−−−−→ Qmix

d1d2r
Xi−−→ Q1

{d2}
,

Yj
−−→ Q2

dec

d1d2r
Xi−−→ Q1

dec
,

Xi−−→ Q
(2)|2
{d1}|{r}

d1d2r
Xi−−−→

Case 1
Q

[1]
{rd2}

,
Yj
−−→ Q2

dec

d1d2r
Xi−−→ Q1

dec
,

Xi(≡Yj)
−−−−−−→

Case 2
Q

[2]
{rd1}

d1d2r Xi−−→ Q1
dec

,
Yj
−−→ Q2

decd1d2r

- Departure: One condition for[Xi+Yj]∈Q
m|2
{d2}|{r}

is that
Xi is unknown to any of{d1, d2, r}. As a result, when-
ever Xi is received by any of{d1, d2, r}, the mixture
[Xi + Yj ] must be removed fromQm|2

{d2}|{r}
.

- Insertion: From the conditions ofQm|2
{d2}|{r}

, we know that
Xi is unknown tod1 and Yj is known only byr. As

a result, wheneverd1 receivesXi, d1 receives the new
session-1 packet and thus we can insertXi into Q1

dec
.

Wheneverd2 receivesXi, d2 can use the known[Xi +
Yj ] and the receivedXi to subtract the pureYj . We can
thus insertYj into Q2

dec
. The case when onlyr receives

Xi falls into the first condition ofQmix as [Xi + Yj ] is
in RL{d2} and Xi is known by r only. In this case,r
can benefit both destinations simultaneously by sending
the receivedXi. For this reception status ofd1d2r, we
thus insert the mixture intoQmix as [Xi + Yj ] :Xi. The
remaining reception status to consider ared1d2r, d1d2r,
d1d2r, and d1d2r. The first when onlyd2 receivesXi

falls into the property ofQ1
{d2}

asXi is known only byd2
and not flagged inRL{d1,r}. Thus we can insertXi into
Q1
{d2}

. Obviously, d2 can decodeYj from the previous
discussion. For the second when onlyd1 receivesXi,
we first haveXi ∈Q1

dec
while Xi is unknown to any of

{d2, r}. Moreover,Yj is known byr only and[Xi+Yj] is
in RL{d2}. This scenario falls exactly intoQ2

{d1}
and thus

we can insertXi into Q2
{d1}

. The third case when bothd2

and r receiveXi falls exactly into Case 1 ofQ[1]
{rd2}

as
Xi is now known by bothd2 andr but still unknown to
d1. And obviously,d2 can decodeYj from the previous
discussion. For the fourth case when bothd1 andr receive
Xi, we now have thatr contains{Xi, Yj}; d1 contains
Xi; andd2 contains[Xi + Yj ]. That is,Xi is already in
Q1

dec
and known byr as well but still unknown tod2.

Moreover,d2 can decode the desired session-2 packetYj

when it receivesXi further. As a result,Xi can be used
as an information-equivalent packet forYj and can be
moved intoQ[2]

{rd1}
as the Case 2 insertion.

• s2
RC

: s transmitsYj of [Xi+Yj ] ∈ Q
m|1
{d1}|{r}

. The movement
process is symmetric tos1

RC
.

• s1
DX

: s transmitsXi ∈ Q1
{d2}

. The movement process is as
follows.

Q1
{d2}

Xi−−→ d1d2r
Xi−−−→

Case 1
Q

[1]
{rd2}

do nothing d1d2r do nothing

Q1
{d2}

Xi−−→

d1d2r
Xi−−→ Q1

dec

d1d2r
Xi−−−→

Case 1
Q

[1]
{rd2}

d1d2r
Xi−−→ Q1

dec
d1d2r

d1d2r

- Departure: One condition forXi∈Q1
{d2}

is thatXi must
be unknown to any of{d1, r}. As a result,Xi must be
removed fromQ1

{d2}
whenever it is received by any of

{d1, r}.
- Insertion: Wheneverd1 receivesXi, it receives a new

session-1 packet and thus we can insertXi into Q1
dec

.
If Xi is received byr but not by d1, thenXi will be
known by bothd2 andr (sinced2 already knowsXi) but
still unknown tod1. This falls exactly into the first-case
scenario ofQ[1]

{rd2}
and thus we can moveXi into Q

[1]
{rd2}

as the Case 1 insertion.
• s2

DX
: s transmitsYj ∈ Q2

{d1}
. The movement process is

symmetric tos1
DX

.
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• s
(1)
DX

: s transmitsYi ∈ Q
(1)|1
{d2}|{r}

. The movement process is
as follows.

Q
(1)|1
{d2}|{r}

Yi−−→ d1d2r
Yi−−−→

Case 2
Q

[1]
{rd2}

do nothing d1d2r do nothing

Q
(1)|1
{d2}|{r}

Yi−−→

d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec

d1d2r
Yi−−−→

Case 2
Q

[1]
{rd2}

d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec
d1d2r

d1d2r

- Departure: One property forYi∈Q
(1)|1
{d2}|{r}

is thatYi must
be unknown to any of{d1, r}. As a result, wheneverYi

is received by any of{d1, r}, Yi must be removed from
Q

(1)|1
{d2}|{r}

.

- Insertion: From the property ofYi ∈Q
(1)|1
{d2}|{r}

, we know
that Yi ∈ Q2

dec
; there exists a session-1 packetXi still

unknown to d1 where Xi ≡ Yi; and [Xi + Yi] is in
RL{d1}. As a result, wheneverd1 receivesYi, d1 can use
the receivedYi and the known[Xi + Yi] to extractXi

and thus we can insertXi into Q1
dec

. If Yi is received by
r but not byd1, thenYi will be known by bothd2 andr
but unknown tod1, where[Xi + Yi] is in RL{d1}. Thus
when d1 receivesYi, d1 can further decode the desired
Xi. Moreover,Yi is already inQ2

dec
. As a result, we can

moveYi into Q
[1]
{rd2}

as the Case 2 insertion.

• s
(2)
DX

: s transmitsXj ∈ Q
(2)|2
{d1}|{r}

. The movement process is

symmetric tos(1)
DX

.
• sCX;1: s transmits[Xi+Yj] fromXi ∈ Q1

{d2}
andYj ∈ Q2

{d1}
.

The movement process is as follows.

Q1
{d2}

Xi−−→,

Q2
{d1}

Yj
−−→

d1d2r
[Xi+Yj ]
−−−−−−→ Q

mCX

{r}

Q2
{d1}

Yj
−−→ d1d2r

Yj
−−→ Q2

dec

Q1
{d2}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{d2}

Xi−−→,

Q2
{d1}

Yj
−−→

d1d2r
[Xi+Yj ]
−−−−−−→

Case 3
Q

[1]
{rd2}

,
Yj
−−→ Q2

dec

d1d2r
Xi−−→ Q1

dec
,

[Xi+Yj ]
−−−−−−→

Case 3
Q

[2]
{rd1}

d1d2r Xi−−→ Q1
dec

,
Yj
−−→ Q2

decd1d2r

- Departure: One condition forXi ∈ Q1
{d2}

is that Xi

must be unknown to any of{d1, r}, even not flagged in
RL{d1,r}. As a result, whenever the mixture is received
by any of {d1, r}, Xi must be removed fromQ1

{d2}
.

Symmetrically forYj ∈ Q2
{d1}

, whenever the mixture is
received by any of{d2, r}, Yj must be removed from
Q2
{d1}

.
- Insertion: Wheneverd1 receives the mixture[Xi+Yj ], d1

can use the knownYj∈Q2
{d1}

and the received[Xi + Yj ]
to extract the desiredXi and thus we can insertXi into
Q1

dec
. Similarly, wheneverd2 receives this mixture,d2 can

use the knownXi∈Q1
{d2}

and the received[Xi + Yj ] to
extract the desiredYj and thus we can insertYj intoQ2

dec
.

The remaining reception status ared1d2r, d1d2r, and
d2d2r. The first when onlyr receives the mixture exactly

falls into the first-case scenario ofQmCX

{r} as [Xi + Yj ] is
in RL{r}; Xi∈Q1

{d2}
is known byd2 only; andYj ∈Q2

{d1}
is known byd1 only. As a result,r can then send this
mixture[Xi+Yj ] to benefit both destinations. The second
case when bothd2 andr receive the mixture, jointly with
the assumptionYj∈Q2

{d1}
, falls exactly into the third-case

scenario ofQ[1]
{rd2}

whereWi is a pure session-1 packet.

As a result, we can move[Xi + Yj ] into Q
[1]
{rd2}

as the
Case 3 insertion. (And obviously,d2 can decodeYj from
the previous discussion.) The third case when bothd1
and r receive the mixture follows symmetrically to the
second case ofd1d2r and thus we can insert[Xi + Yj ]

into Q
[2]
{rd1}

as the Case 3 insertion.

• sCX;2: s transmits[Xi+Xj ] from Xi ∈ Q1
{d2}

and Xj ∈

Q
(2)|2
{d1}|{r}

. The movement process is as follows.

Q1
{d2}

Xi−−→,

Q
(2)|2
{d1}|{r}

Xj
−−→

d1d2r
[Xi+Xj ]
−−−−−−→ Q

mCX

{r}

Q
(2)|2
{d1}|{r}

Xj
−−→ d1d2r

Yj(≡Xj)
−−−−−−→ Q2

dec

Q1
{d2}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{d2}

Xi−−→,

Q
(2)|2
{d1}|{r}

Xj
−−→

d1d2r
[Xi+Xj ]
−−−−−−→

Case 3
Q

[1]
{rd2}

,
Yj(≡Xj)
−−−−−−→ Q2

dec

d1d2r
Xi−−→ Q1

dec
,

[Xi+Xj ]
−−−−−−→

Case 3
Q

[2]
{rd1}

d1d2r Xi−−→ Q1
dec

,
Yj(≡Xj)
−−−−−−→ Q2

decd1d2r

- Departure: One condition forXi ∈ Q1
{d2}

is that Xi

must be unknown to any of{d1, r}, even not flagged
in RL{d1,r}. As a result, whenever the mixture[Xi+Xj]
is received by any of{d1, r}, Xi must be removed from
Q1
{d2}

. From the property forXj ∈ Q
(2)|2
{d1}|{r}

, we know
that Xj is unknown to any of{d2, r}, even not flagged
in RL{r}. As a result, wheneverr receives the mixture

[Xi+Xj], Xj must be removed fromQ(2)|2
{d1}|{r}

. Moreover,
wheneverd2 receives this mixture,d2 can use the known
Xi∈Q1

{d2}
and the received[Xi +Xj] to decodeXj and

thusXj must be removed fromQ(2)|2
{d1}|{r}

.
- Insertion: From the properties ofXi ∈Q1

{d2}
andXj ∈

Q
(2)|2
{d1}|{r}

, we know thatr containsYj (still unknown to
d2 and Yj ≡ Xj); d1 containsXj; and d2 contains
{Xi, [Yj+Xj]} already. Therefore, wheneverd1 receives
the mixture[Xi+Xj], d1 can use the knownXj and the
received[Xi+Xj ] to extract the desiredXi and thus we
can insertXi into Q1

dec
. Similarly, wheneverd2 receives

this mixture,d2 can use the known{Xi, [Yj +Xj ]} and
the received[Xi + Xj ] to extract the desiredYj , and
thus we can insertYj into Q2

dec
. The remaining reception

status ared1d2r, d1d2r, and d2d2r. One can see that
the case when onlyr receives the mixture exactly falls
into the Case 2 scenario ofQmCX

{r} . For the second case
when bothd2 andr receive the mixture, nowr contains
{Yj , [Xi+Xj ]}; d1 containedXj before; andd2 contains
{Xi, [Yj + Xj], [Xi + Xj ]}. This falls exactly into the
third-case scenario ofQ[1]

{rd2}
whereWi is a pure session-1



16

packetXi. As a result, we can move[Xi+Xj ] into Q
[1]
{rd2}

as the Case 3 insertion. (And obviously,d2 can decode
the desiredYj from the previous discussion.) For the third
case when bothd1 and r receive the mixture, nowr
contains{Yj , [Xi +Xj ]}; d1 contains{Xj, [Xi +Xj]};
andd2 contained{Xi, [Yj +Xj ]} before, where we now
haveXi ∈Q1

dec
from the previous discussion. This falls

exactly into the third-case scenario ofQ[2]
{rd1}

whereWj

is a pure session-1 packetXj∈Q1
dec

. Note that delivering
[Xi+Xj] will enabled2 to further decode the desiredYj .
Thus we can move[Xi +Xj] into Q

[2]
{rd1}

as the Case 3
insertion.

• sCX;3: s transmits[Yi + Yj ] from Yi ∈ Q
(1)|1
{d2}|{r}

and Yj ∈

Q2
{d1}

. The movement process is as follows.

Q
(1)|1
{d2}|{r}

Yi−−→,

Q2
{d1}

Yj
−−→

d1d2r
[Yi+Yj ]
−−−−−→ Q

mCX

{r}

Q2
{d1}

Yj
−−→ d1d2r

Yj
−−→ Q2

dec

Q
(1)|1
{d2}|{r}

Yi−−→ d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec

Q
(1)|1
{d2}|{r}

Yi−−→,

Q2
{d1}

Yj
−−→

d1d2r
[Yi+Yj ]
−−−−−→

Case 3
Q

[1]
{rd2}

,
Yj
−−→ Q2

dec

d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec
,

[Yi+Yj ]
−−−−−→

Case 3
Q

[2]
{rd1}

d1d2r Xi(≡Yi)
−−−−−−→ Q1

dec
,

Yj
−−→ Q2

decd1d2r

- Departure: From the property forYi∈Q
(1)|1
{d2}|{r}

, we know
that Yi is unknown to any of{d1, r}, even not flagged
in RL{r}. As a result, wheneverr receives the mixture

[Yi + Yj ], Yi must be removed fromQ(1)|1
{d2}|{r}

. Moreover,
wheneverd1 receives this mixture,d1 can use the known
Yj ∈Q2

{d1}
and the received[Yi + Yj ] to decodeYi and

thusYi must be removed fromQ(1)|1
{d2}|{r}

. One condition for
Yj∈Q2

{d1}
is thatYj must be unknown to any of{d2, r},

even not flagged inRL{d2,r}. As a result, whenever the
mixture [Yi + Yj ] is received by any of{d2, r}, Yj must
be removed fromQ2

{d1}
.

- Insertion: From the properties ofYi ∈ Q
(1)|1
{d2}|{r}

and
Yj ∈ Q2

{d1}
, we know thatr containsXi (still unknown

to d1 andXi ≡ Yi); d1 contains{Yj, [Xi + Yi]}; andd2
containsYi already. Therefore, wheneverd1 receives the
mixture [Yi + Yj ], d1 can use the known{Yj, [Xi + Yi]}
and the received[Yi + Yj ] to extract the desiredXi and
thus we can insertXi into Q1

dec
. Similarly, wheneverd2

receives this mixture,d2 can use the knownYi and the
received[Yi + Yj ] to extract the desiredYj , and thus
we can insertYj into Q2

dec
. The remaining reception

status ared1d2r, d1d2r, andd2d2r. One can see that the
first case when onlyr receives the mixture exactly falls
into the Case 3 scenario ofQmCX

{r} . For the second case
when bothd2 andr receive the mixture, nowr contains
{Xi, [Yi+Yj ]}; d1 contained{Yj , [Xi+Yi]} before; and
d2 contains{Yi, [Yi+Yj ]}, where we now haveYj∈Q2

dec

from the previous discussion. This falls exactly into the
third-case scenario ofQ[1]

{rd2}
whereWi is a pure session-2

packetYi. Note that delivering[Yi+Yj] will enabled1 to

further decode the desiredXi. Thus we can move[Yi+Yj ]

into Q
[1]
{rd2}

as the Case 3 insertion. For the third case
when bothd1 andr receive the mixture, nowr contains
{Xi, [Yi + Yj ]}; d1 contains{Yj , [Xi + Yi], [Yi + Yj ]};
and d2 containedYi before. This falls exactly into the
third-case scenario ofQ[2]

{rd1}
whereWj is a pure session-

2 packetYj . As a result, we can move[Yi + Yj ] into
Q

[2]
{rd1}

as the Case 3 insertion. (And obviously,d1 can
decode the desiredXi from the previous discussion.)

• sCX;4: s transmits[Yi +Xj ] from Yi ∈ Q
(1)|1
{d2}|{r}

andXj ∈

Q
(2)|2
{d1}|{r}

. The movement process is as follows.

Q
(1)|1
{d2}|{r}

Yi−−→,

Q
(2)|2
{d1}|{r}

Xj
−−→

d1d2r
[Yi+Xj ]
−−−−−−→ Q

mCX

{r}

Q
(2)|2
{d1}|{r}

Xj
−−→ d1d2r

Yj(≡Xj)
−−−−−−→ Q2

dec

Q
(1)|1
{d2}|{r}

Yi−−→ d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec

Q
(1)|1
{d2}|{r}

Yi−−→,

Q
(2)|2
{d1}|{r}

Xj
−−→

d1d2r
[Yi+Xj ]
−−−−−−→

Case 3
Q

[1]
{rd2}

,
Yj(≡Xj)
−−−−−−→ Q2

dec

d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec
,

[Yi+Xj ]
−−−−−−→

Case 3
Q

[2]
{rd1}

d1d2r Xi(≡Yi)
−−−−−−→ Q1

dec
,

Yj(≡Xj)
−−−−−−→ Q2

decd1d2r

- Departure: From the property forYi∈Q
(1)|1
{d2}|{r}

, we know
that Yi is unknown to any of{d1, r}, even not flagged
in RL{r}. As a result, wheneverr receives the mixture

[Yi +Xj], Yi must be removed fromQ(1)|1
{d2}|{r}

. Moreover,

Xj ∈Q
(2)|2
{d1}|{r}

is known byd1. As a result, wheneverd1
receives the mixture,d1 can use the knownXj and the
received[Yi + Xj ] to decodeYi and thusYi must be
removed fromQ(1)|1

{d2}|{r}
. Symmetrically forXj∈Q

(2)|2
{d1}|{r}

,
whenever the mixture is received by any of{d2, r}, Xj

must be removed fromQ(2)|2
{d1}|{r}

.

- Insertion: From the properties ofYi ∈ Q
(1)|1
{d2}|{r}

and

Xj ∈Q
(2)|2
{d1}|{r}

, we know thatr contains{Xi, Yj} where
Xi (resp. Yj) is still unknown to d1 (resp. d2) and
Xi ≡ Yi (resp.Yj ≡ Xj); d1 contains{[Xi + Yi], Xj};
andd2 contains{Yi, [Yj+Xj]} already. Therefore, when-
ever d1 receives the mixture[Yi + Xj ], d1 can use the
known {[Xi + Yi], Xj} and the received[Yi + Xj ] to
extract the desiredXi and thus we can insertXi into
Q1

dec
. Similarly, wheneverd2 receives this mixture,d2

can use the known{Yi, [Yj + Xj ]} and the received
[Yi + Xj ] to extract the desiredYj , and thus we can
insert Yj into Q2

dec
. The remaining reception status are

d1d2r, d1d2r, andd2d2r. One can see that the first case
when onlyr receives the mixture exactly falls into the
Case 4 scenario ofQmCX

{r} . For the second case when
both d2 and r receive the mixture, nowr contains
{Xi, Yj , [Yi+Xj]}; d1 contained{[Xi+Yi], Xj} before;
and d2 contains{Yi, [Yj + Xj ], [Yi + Xj ]} where we
now haveXj ∈Q1

dec
from the previous discussion. This

falls exactly into the third-case scenario ofQ
[1]
{rd2}

where
Wi is a pure session-2 packetYi. Note that delivering
[Yi + Xj] will enable d1 to further decode the desired
Xi. Thus we can move[Yi + Xj ] into Q

[1]
{rd2}

as the
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Case 3 insertion. For the third case when bothd1 andr
receive the mixture, nowr contains{Xi, Yj , [Yi +Xj]};
d1 contains{[Xi+ Yi], Xj, [Yi +Xj]}; andd2 contained
{Yi, [Yj + Xj]} before, where we now haveYi ∈ Q2

dec

from the previous discussion. This falls exactly into the
third-case scenario ofQ[2]

{rd1}
whereWj is a pure session-

2 packetXj. Note that delivering[Yi +Xj ] will enable
d2 to further decode the desiredYj . Thus we can move
[Yi +Xj ] into Q

[2]
{rd1}

as the Case 3 insertion.

• sCX;5: s transmits[Xi +W j ] from Xi ∈ Q1
{d2}

andW j ∈

Q
[2]
{rd1}

. The movement process is as follows.

Q1
{d2}

Xi−−→ d1d2r
Xi−−−→

Case 1
Q

[1]
{rd2}

Q
[2]
{rd1}

W j
−−→ d1d2r

Yj(≡W j)
−−−−−−−→ Q2

dec

Q1
{d2}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{d2}

Xi−−→,

Q
[2]
{rd1}

W j
−−→

d1d2r
Xi−−−→

Case 1
Q

[1]
{rd2}

,
Yj(≡W j)
−−−−−−−→ Q2

dec

Q1
{d2}

Xi−−→ d1d2r
Xi−−→ Q1

dec

Q1
{d2}

Xi−−→,

Q
[2]
{rd1}

W j
−−→

d1d2r
Xi−−→ Q1

dec
,

Yj(≡W j)
−−−−−−−→ Q2

decd1d2r

- Departure: The property forXi ∈ Q1
{d2}

is that Xi

must be unknown to any of{d1, r}, even not flagged in
RL{d1,r}. As a result, whenever the mixture[Xi +W j ]
is received by any of{d1, r}, Xi must be removed from
Q1
{d2}

. Similarly, one condition forW j ∈ Q
[2]
{rd1}

is that

W j must be unknown tod2. However whend2 receives
the mixture,d2 can use the knownXi ∈ Q1

{d2}
and the

received[Xi + W j ] to decodeW j . ThusW j must be
removed fromQ

[2]
{rd1}

wheneverd2 receives.

- Insertion: From the properties ofXi ∈Q1
{d2}

andW j ∈

Q
[2]
{rd1}

, we know thatr containsW j ; d1 containsW j ; and
d2 containsXi already. Therefore, wheneverd1 receives
this mixture,d1 can use the knownW j and the received
[Xi + W j ] to extract the desiredXi and thus we can
insertXi into Q1

dec
. Similarly, wheneverd2 receives this

mixture,d2 can use the knownXi and the received[Xi+
W j ] to extractW j . We now need to consider case by case
whenW j was inserted intoQ[2]

{rd1}
. If it was the Case 1

insertion, thenW j is a pure session-2 packetYj and thus
we can simply insertYj into Q2

dec
. If it was the Case 2

insertion, thenW j is a pure session-2 packetXj ∈Q1
dec

and there exists a session-2 packetYj still unknown tod2
whereYj ≡ Xj . Moreover,d2 has received[Yj+Xj]. As
a result,d2 can further decodeYj and thus we can insert
Yj into Q2

dec
. If it was the Case 3 insertion, thenW j is

a mixed form of[Wi +Wj ] whereWi is already known
by d2 butWj is not. As a result,d2 can decodeWj upon
receivingW j = [Wi +Wj ]. Note thatWj in the Case 3
insertionW j = [Wi + Wj ] ∈ Q

[2]
{rd1}

comes from either

Q2
{d1}

or Q
(2)|2
{d1}|{r}

. If Wj was coming fromQ2
{d1}

, then
Wj is a session-2 packetYj and we can simply insertYj

into Q2
dec

. If Wj was coming fromQ
(2)|2
{d1}|{r}

, thenWj is
a session-1 packetXj and there also exists a session-2
packetYj still unknown tod2 whereYj ≡ Xj. Moreover,
d2 has received[Yj +Xj]. As a result,d2 can further use
the known [Yj + Xj ] and the extractedXj to decode
Yj and thus we can insertYj into Q2

dec
. In a nutshell,

wheneverd2 receives the mixture[Xi+W j ], a session-2
packetYj that was unknown tod2 can be newly decoded.
The remaining reception status ared1d2r andd1d2r. For
both cases whenr receives the mixture butd1 does not,
r can use the knownW j and the received[Xi +W j ] to
extractXi. SinceXi is now known by bothr andd2 but
unknown tod1, we can thus moveXi into Q

[1]
{rd2}

as the
Case 1 insertion.

• sCX;6: s transmits[W i + Yj ] from W i ∈ Q
[1]
{rd2}

andYj ∈

Q2
{d1}

. The movement process is symmetric tosCX;5.

• sCX;7: s transmits[Yi +W j ] from Yi ∈ Q
(1)|1
{d2}|{r}

andW j ∈

Q
[2]
{rd1}

. The movement process is as follows.

Q
(1)|1
{d2}|{r}

Yi−−→ d1d2r
Yi−−−→

Case 2
Q

[1]
{rd2}

Q
[2]
{rd1}

W j
−−→ d1d2r

Yj (≡W j)
−−−−−−−→ Q2

dec

Q
(1)|1
{d2}|{r}

Yi−−→ d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec

Q
(1)|1
{d2}|{r}

Yi−−→,

Q
[2]
{rd1}

W j
−−→

d1d2r
Yi−−−→

Case 2
Q

[1]
{rd2}

,
Yj(≡W j)
−−−−−−−→ Q2

dec

Q
(1)|1
{d2}|{r}

Yi−−→ d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec

Q
(1)|1
{d2}|{r}

Yi−−→,

Q
[2]
{rd1}

W j
−−→

d1d2r
Xi(≡Yi)
−−−−−−→ Q1

dec
,

d1d2r
Yj (≡W j)
−−−−−−−→ Q2

dec

- Departure: From the property forYi∈Q
(1)|1
{d2}|{r}

, we know
thatYi is unknown to any of{d1, r}, even not flagged in
RL{r}. As a result, wheneverr receives the mixture[Yi+

W j ], Yi must be removed fromQ(1)|1
{d2}|{r}

. Moreover,W j ∈

Q
[2]
{rd1}

is known byd1. As a result, wheneverd1 receives

the mixture,d1 can use the knownW j and the received
[Yi + W j ] to decodeYi and thusYi must be removed
from Q

(1)|1
{d2}|{r}

. Similarly, one condition forW j ∈Q
[2]
{rd1}

is that W j must be unknown tod2. However whend2
receives the mixture,d2 can use the knownYi∈Q

(1)|1
{d2}|{r}

and the received[Yi+W j ] to decodeW j . ThusW j must
be removed fromQ[2]

{rd1}
wheneverd2 receives.

- Insertion: From the properties ofYi∈Q
(1)|1
{d2}|{r}

andW j ∈

Q
[2]
{rd1}

, we know thatr contains{Xi,W j}; d1 contains

{[Xi + Yi],W j}; andd2 containsYi already. Therefore,
wheneverd1 receives this mixture,d1 can use the known
{[Xi+Yi],W j} and the received[Yi+W j ] to extract the
desiredXi and thus we can insertXi intoQ1

dec
. Similarly,

wheneverd2 receives this mixture,d2 can use the known
Yi and the received[Yi + W j ] to extractW j . We now
need to consider case by case whenW j was inserted
into Q

[2]
{rd1}

. If it was the Case 1 insertion, thenW j is a
pure session-2 packetYj and thus we can simply insert
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Yj into Q2
dec

. If it was the Case 2 insertion, thenW j

is a pure session-1 packetXj ∈Q1
dec

and there exists a
session-2 packetYj still unknown tod2 whereYj ≡ Xj.
Moreover,d2 has received[Yj +Xj]. As a result,d2 can
further decodeYj and thus we can insertYj into Q2

dec
. If

it was the Case 3 insertion, thenW j is a mixed form of
[Wi +Wj ] whereWi is already known byd2 but Wj is
not. As a result,d2 can decodeWj upon receivingW j =
[Wi +Wj ]. Note thatWj in the Case 3 insertionW j =

[Wi +Wj ]∈Q
[2]
{rd1}

comes from eitherQ2
{d1}

or Q(2)|2
{d1}|{r}

.
If Wj was coming fromQ2

{d1}
, then Wj is a session-

2 packetYj and we can simply insertYj into Q2
dec

. If
Wj was coming fromQ

(2)|2
{d1}|{r}

, thenWj is a session-1
packetXj and there also exists a session-2 packetYj

still unknown tod2 whereYj ≡ Xj . Moreover,d2 has
received[Yj + Xj]. As a result,d2 can further use the
known [Yj +Xj] and the extractedXj to decodeYj and
thus we can insertYj into Q2

dec
. In a nutshell, whenever

d2 receives the mixture[Yi + W j ], a session-2 packet
Yj that was unknown tod2 can be newly decoded. The
remaining reception status ared1d2r andd1d2r. For both
cases whenr receives the mixture butd1 does not,r can
use the knownW j and the received[Yi +W j ] to extract
Yi. SinceYi is now known by bothr andd2 but [Xi+Yi]

is in RL{d1}, we can thus moveYi into Q
[1]
{rd2}

as the
Case 2 insertion.

• sCX;8: s transmits[W i +Xj ] from W i ∈ Q
[1]
{rd2}

andXj ∈

Q
(2)|2
{d1}|{r}

. The movement process is symmetric tosCX;7.
• r1

UC
: r transmitsXi from Xi ∈ Q1

{r}. The movement
process is as follows.

Q1
{r}

Xi−−→
d1d2

Xi−−−→
Case 1

Q
[1]
{rd2}

d1d2 Xi−−→ Q1
decd1d2

- Departure: One condition forXi∈Q1
{r} is thatXi must

be unknown to any of{d1, d2}. As a result, whenever
Xi is received by any of{d1, d2}, Xi must be removed
from Q1

{r}.
- Insertion: From the above discussion, we know thatXi

is unknown tod1. As a result, wheneverXi is received
by d1, we can insertXi to Q1

dec
. If Xi is received byd2

but not byd1, thenXi is now known by bothd2 andr
but still unknown tod1. This exactly falls into the first-
case scenario ofQ[1]

{rd2}
and thus we can moveXi into

Q
[1]
{rd2}

as the Case 1 insertion.

• r2
UC

: r transmitsYj from Yj ∈ Q2
{r}. The movement

process is symmetric tor1
UC

.
• r

(1)
DT

: r transmitsXi that is known byr only and informa-
tion equivalent fromYi ∈Q

(1)|1
{d2}|{r}

. The movement process is
as follows.

Q
(1)|1
{d2}|{r}

Yi−−→
d1d2

Xi−−−→
Case 1

Q
[1]
{rd2}

d1d2 Xi(≡Yi)
−−−−−−→ Q1

decd1d2

- Departure: From the property forYi ∈ Q
(1)|1
{d2}|{r}

, we
know that there exists an information-equivalent session-
1 packetXi that is known byr but unknown to any of
{d1, d2}. As a result, wheneverXi is received by any of
{d1, d2}, Yi must be removed fromQ(1)|1

{d2}|{r}
.

- Insertion: From the above discussion, we know thatXi

is unknown tod1 and thus we can insertXi to Q1
dec

wheneverXi is received byd1. If Xi is received byd2
but not byd1, thenXi is now known by bothd2 and r
but still unknown tod1. This exactly falls into the first-
case scenario ofQ[1]

{rd2}
and thus we can moveXi into

Q
[1]
{rd2}

as the Case 1 insertion.

• r
(2)
DT

: r transmitsYj that is known byr only and informa-
tion equivalent fromXj ∈Q

(2)|2
{d1}|{r}

. The movement process is

symmetric tor(1)
DT

.
• rRC: r transmitsW known byr for the packet of the form
[Xi + Yj ] : W ∈Qmix. The movement process is as follows.

Qmix

[Xi+Yj ]:W
−−−−−−−−→

d1d2

either
Xi−−−→

Case 1
Q

[1]
{rd2}

or
Yj

−−−→
Case 2

Q
[1]
{rd2}

,

Yj
−−→ Q2

dec

d1d2

Xi−−→ Q1
dec

,

either
Yj

−−−→
Case 1

Q
[2]
{rd1}

or
Xi−−−→

Case 2
Q

[2]
{rd1}

d1d2
Xi−−→ Q1

dec
,

Yj
−−→ Q2

dec

- Departure: From the conditions of[Xi+Yj ] : W ∈Qmix,
we know thatQmix is designed to benefit both destinations
simultaneously whenr transmitsW . That is, whenever
d1 (resp.d2) receivesW , d1 (resp.d2) can decode the
desiredXi (resp.Yj), regardless whether the packetW
is of a session-1 or of a session-2. However from the
conditions ofQmix, we know thatXi is unknown tod1
and Yj is unknown tod2. Therefore, wheneverW is
received by any of{d1, d2}, [Xi + Yj ] : W must be
removed fromQ

[1]
{rd2}

.
- Insertion: From the above discussions, we know thatd1

(resp. d2) can decode the desiredXi (resp. Yj) when
W is received byd1 (resp. d2). As a result, we can
insertXi into Q1

dec
(resp.Yj into Q2

dec
) when d1 (resp.

d2) receivesW . We now consider two reception status
d1d2 and d1d2. From the conditions ofQmix, note that
W is always known byr and can be eitherXi or Yj .
Moreover,Xi (resp.Yj) is unknown tod1 (resp.d2). For
the first reception cased1d2, if Xi was chosen asW to
benefit both destinations, thenXi is now known by both
d2 andr but still unknown tod1. This exactly falls into
the first-case scenario ofQ[1]

{rd2}
and thus we moveXi

into Q
[1]
{rd2}

as the Case 1 insertion. On the other hand,
if Yj was chosen asW to benefit both destinations, then
we know thatYj is now known by bothd2 and r, and
that [Xi + Yj ] is already inRL{d1}. This exactly falls

into the second-case scenario ofQ
[1]
{rd2}

and thus we can

moveYj ∈Q2
dec

into Q
[1]
{rd2}

as the Case 2 insertion. The

second reception cased1d2 will follow the the previous
arguments symmetrically.
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• r
XT

: r transmits[Wi+Wj ]∈QmCX

{r} . The movement process
is as follows.

Q
mCX

{r}

[Wi+Wj ]
−−−−−−→

d1d2

[Wi+Wj ]
−−−−−−→

Case 3
Q

[1]
{rd2}

,

Yj(≡Wj)
−−−−−−→ Q2

dec

d1d2

Xi(≡Wi)
−−−−−−→ Q1

dec
,

[Wi+Wj ]
−−−−−−→

Case 3
Q

[2]
{rd1}

d1d2

Xi(≡Wi)
−−−−−−→ Q1

dec
,

Yj(≡Wj)
−−−−−−→ Q2

dec

- Departure: From the property for[Wi + Wj ] ∈ QmCX

{r} ,
we know thatWi is known only byd2 and thatWj is
only known byd1. As a result, wheneverd1 receives this
mixture,d1 can use the knownWj and the received[Wi+
Wj ] to extractWi and thus the mixture must be removed
from QmCX

{r} . Similarly, wheneverd2 receives this mixture,
d2 can use the knownWi and the received[Wi +Wj ] to
extractWj and thus the mixture must be removed from
QmCX

{r} .
- Insertion: From the above discussions, we have observed

that wheneverd1 (resp.d2) receives the mixture,d1 (resp.
d2) can extractWi (resp.Wj ). From the four cases study
of QmCX

{r} , we know thatd1 (resp.d2) can decode a desired
session-1 packetXi (resp. session-2 packetYj) whenever
d1 (resp.d2) receives the mixture, and thus we can insert
Xi (resp.Yj) into Q1

dec
(resp.Q2

dec
). We now consider the

reception statusd1d2 andd1d2. If d2 receives the mixture
but d1 does not, thend1 containedWj and d2 now
contains[Wi+Wj ]. Moreover,[Wi+Wj ] was transmitted
from r. This falls exactly into the third-case scenario of
Q

[1]
{rd2}

. As a result, we can move[Wi+Wj ] into Q
[1]
{rd2}

as
the Case 3 insertion. The case when the reception status
is d1d2 can be symmetrically followed such that we can
move [Wi +Wj ] into Q

[2]
{rd1}

as the Case 3 insertion.

• r
[1]
DT

: r transmitsW i∈Q
[1]
{rd2}

. The movement process is as
follows.

do nothing d1d2 do nothing

Q
[1]
{rd2}

W i−−→
d1d2 Xi(≡W i)

−−−−−−−→ Q1
decd1d2

- Departure: One condition forW i∈Q
[1]
{rd2}

is thatW i is
known by d2 unknown tod1. As a result, wheneverd1
receives,W i must be removed fromQ[1]

{rd2}
. SinceW i∈

Q
[1]
{rd2}

is already known byd2, nothing happens if it is
received byd2.

- Insertion: From the previous observation, we only need
to consider the reception status whend1 receivesW i. For
thosed1d2 andd1d2, we need to consider case by case
whenW i was inserted intoQ[1]

{rd2}
. If it was the Case 1

insertion, thenW i is a pure session-1 packetXi and thus
we can simply insertXi into Q1

dec
. If it was the Case 2

insertion, thenW i is a pure session-2 packetYi ∈Q2
dec

and there exists a session-1 packetXi still unknown to
d1 whereXi ≡ Yi. Moreover,d1 has received[Xi + Yi].
As a result,d1 can further decodeXi and thus we can

insertXi into Q1
dec

. If it was the Case 3 insertion, then
W i is a mixed form of[Wi +Wj ] whereWj is already
known byd1 but Wi is not. As a result,d1 can decode
Wi upon receivingW i = [Wi+Wj ]. Note thatWi in the
Case 3 insertionW i = [Wi + Wj ]∈Q

[1]
{rd2}

comes from

eitherQ1
{d2}

or Q(1)|1
{d2}|{r}

. If Wi was coming fromQ1
{d2}

,
thenWi is a session-1 packetXi and we can simply insert
Xi into Q1

dec
. If Wi was coming fromQ(1)|1

{d2}|{r}
, thenWi

is a session-2 packetYi and there also exists a session-1
packetXi still unknown tod1 whereXi ≡ Yi. Moreover,
d1 has received[Xi+Yi]. As a result,d1 can further use
the known[Xi+Yi] and the extractedYi to decodeXi and
thus we can insertXi into Q1

dec
. In a nutshell, whenever

d1 receivesW i, a session-1 packetXi that was unknown
to d1 can be newly decoded.

• r
[2]
DT

: r transmitsW j ∈ Q
[2]
{rd1}

. The movement process is

symmetric tor[1]
DT

.
• r

CX
: r transmits[W i+W j ] from W i ∈Q

[1]
{rd2}

andW j ∈

Q
[2]
{rd1}

. The movement process is as follows.

Q
[2]
{rd1}

W j
−−→ d1d2

Yj(≡W j)
−−−−−−−→ Q2

dec

Q
[1]
{rd2}

W i−−→ d1d2
Xi(≡W i)
−−−−−−−→ Q1

dec

Q
[1]
{rd2}

W i−−→,

Q
[2]
{rd1}

W j
−−→

d1d2

Xi(≡W i)
−−−−−−−→ Q1

dec
,

Yj(≡W j)
−−−−−−−→ Q2

dec

- Departure: From the property forW i ∈ Q
[1]
{rd2}

, we

know that W i is known by d2 but unknown tod1.
Symmetrically,W j∈Q

[2]
{rd1}

is known byd1 but unknown
to d2. As result, wheneverd1 (resp. d2) receives the
mixture,d1 (resp.d2) can use the knownW j (resp.W i)
and the received[W i+W j ] to extractW i (resp.W j).
Therefore, we must removeW i from Q

[1]
{rd2}

whenever

d1 the mixture and removeW j from Q
[2]
{rd1}

wheneverd2
receives.

- Insertion: From the above discussions, we have observed
that wheneverd1 (resp.d2) receives the mixture,d1 (resp.
d2) can extractW i (resp.W j). We first focus on the case
whend1 receives the mixture. For thosed1d2 andd1d2,
we can use the same arguments forW i as described in
the Insertion process ofr[1]

DT
. Following these case studies,

one can see that a session-1 packetXi that was unknown
to d1 can be newly decoded wheneverd1 receivesW i.
The reception status whend2 receives the mixture can be
followed symmetrically such thatd2 can always decode
a new session-2 packetYj that was unknown before.

APPENDIX C
LNC ENCODING OPERATIONS, PACKET MOVEMENT

PROCESS, AND QUEUE INVARIANCE FOR NEWLY ADDED

s-VARIABLES sk
SX;l IN PROPOSITION3

In the following, we will describe the newly added6
self-packets-XOR operations and the corresponding packet
movement process of Proposition 3 one by one, and then prove
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that the Queue Invariance explained in Section IV-B always
holds.

Again, to simplify the analysis, we will ignore the null
reception and we will exploit the following symmetry: For
those variablessk

SX;l whose superscript indicates the session
information k ∈ {1, 2} (either session-1 or session-2), here
we describe session-1 (k = 1) only. Those variables with
k = 2 in the superscript will be symmetrically explained by
simultaneously swapping (a) session-1 and session-2 in the
superscript; (b)X andY ; (c) i and j; and (d)d1 andd2, if
applicable.
• s1

SX;1: The sources transmits[X+Xi] from X ∈ Q1
{r} and

Xi ∈ Q1
{d2}

. The movement process is as follows.

Q1
{d2}

Xi−−→ d1d2r
Xi−−−→

Case 1
Q

[1]
{rd2}

Q1
{r}

X
−→ d1d2r

X
−−−→
Case 1

Q
[1]
{rd2}

Q1
{r}

X
−→,

Q1
{d2}

Xi−−→

d1d2r
Xi−−→ Q1

dec
,

Xi−−→ Q
(1)|1
{d2}|{r}

d1d2r
X

−−−→
Case 1

Q
[1]
{rd2}

,
Xi−−−→

Case 1
Q

[1]
{rd2}

d1d2r
Xi−−→ Q1

dec
,

Xi−−−→
Case 2

Q
[1]
{rd2}

d1d2r
X
−→ Q1

dec
,

X
−−−→
Case 2

Q
[1]
{rd2}

d1d2r
if

X
−→ Q1

dec
, then

X
−−−→
Case 2

Q
[1]
{rd2}

,

if
Xi−−→ Q1

dec
, then

Xi−−−→
Case 2

Q
[1]
{rd2}

- Departure: The property forX ∈ Q1
{r} is that X must

be unknown to any of{d1, d2}, even not flagged in
RL{d1,d2}. As a result, whenever the mixture[X + Xi]
is received by any of{d1, d2}, X must be removed from
Q1
{r}. Similarly, the property forXi ∈ Q1

{d2}
is that Xi

must be unknown to any of{d1, r}, even not flagged in
RL{d1,r}. As a result, whenever the mixture is received
by any of{d1, r}, Xi must be removed fromQ1

{d2}
.

- Insertion: Wheneverr receives the mixture,r can use
the knownX and the received[X+Xi] to extractXi.
Moreover, wheneverd2 receives the mixture,d2 can use
the knownXi and the received[X+Xi] to extractX .
From the above observations, we describe one by one for
each reception status. When the reception status isd1d2r,
now Xi is known by bothd2 andr but still unknown to
d1 while X is still at r. This Xi falls exactly into the
first-case scenario ofQ[1]

{rd2}
and thus we moveXi into

Q
[1]
{rd2}

as the Case 1 insertion. When the reception status

is d1d2r, now X is known by bothd2 and r but still
unknown tod1 while Xi is still at d2. As a result, we
can moveX into Q

[1]
{rd2}

as the Case 1 insertion. When the

reception status isd1d2r, we now haveX at r; [X+Xi] at
d1; andXi atd2. In this case, wheneverXi orX is further
delivered,d1 can decode bothX andXi simultaneously.
We can thus treatXi as information-equivalent toX or
vice versa. But sinceXi is overheard byd2, we chose to
treatXi as already decoded “in advance”; insertXi into
Q1

dec
; and treatX as not-yet decoded byd1. For such

X , note that nowr can perform the naive delivery tod1.
This exactly falls into the scenario ofQ(1)|1

{d2}|{r}
when we

substituteYi by Xi. Originally,Q(1)|1
{d2}|{r}

holds packets of

pure session-2 where such a session-2 packetYi∈Q
(1)|1
{d2}|{r}

is information equivalent to a session-1 packet not yet
delivered tod1. Xi here plays the same role asYi as
we treatX ≡ Xi and thatX is not yet delivered to
d1. As a result, we moveXi into Q

(1)|1
{d2}|{r}

. When the

reception status isd1d2r, we have bothX andXi known
by both d2 and r but still unknown tod1. As a result,
we can move bothX andXi into Q

[1]
{rd2}

as the Case 1

insertion. When the reception status isd1d2r, we now
have{X,Xi} at r; [X+Xi] atd1; andXi atd2. Following
the discussion whend1d2r, we can treat eitherX or Xi

as already decoded. But here we choose to treatXi as
already decoded sinceXi is known by bothd2 and r.
SuchXi falls exactly into the second-case scenario of
Q

[1]
{rd2}

when we substituteYi by Xi. As a result, we

moveXi into Q1
dec

, and also intoQ(1)|1
{d2}|{r}

as the Case 2
insertion. When the reception status isd1d2r, we now
haveX at r; [X+Xi] at d1; and{X,Xi} at d2. Similarly
following the discussion whend1d2r, here we choose to
treat X as already decoded sinceX is known by both
d2 andr. Similarly following the above discussions, we
moveX into Q1

dec
, and also intoQ(1)|1

{d2}|{r}
as the Case 2

insertion. Finally when the reception status isd1d2r, we
now have{X,Xi} at r; [X+Xi] at d1; and {X,Xi}
at d2. Following the similar discussion of whend1d2r,
we know that we can treat eitherX or Xi as already
decoded because bothX andXi are known byd2 and
r. As a result, if we treatX as already decoded byd1,
then we moveX into Q

[1]
{rd2}

as the Case 2 insertion. On
the other hand, if we treatXi as already decoded, then
we moveXi into Q

[1]
{rd2}

as the Case 2 insertion.

• s2
SX;1: s transmits[Y +Yj ] from Y ∈Q2

{r} and Yj ∈Q2
{d1}

.
The movement process is symmetric tos1

SX;1.
• s1

SX;2: s transmits [X+W i] from X ∈ Q1
{r} and W i ∈

Q
(1)|1
{d2}|{r}

. The movement process is as follows.

Q
(1)|1
{d2}|{r}

W i−−→ d1d2r
W i−−−→

Case 2
Q

[1]
{rd2}

Q1
{r}

X
−→

d1d2r
X

−−−→
Case 1

Q
[1]
{rd2}

d1d2r
X
−→ Q1

dec

Q1
{r}

X
−→,

Q
(1)|1
{d2}|{r}

W i−−→

d1d2r
X

−−−→
Case 1

Q
[1]
{rd2}

,
W i−−−→

Case 2
Q

[1]
{rd2}

d1d2r
X
−→ Q1

dec
,

W i−−−→
Case 2

Q
[1]
{rd2}

d1d2r
X
−→ Q1

dec
,

X
−−−→
Case 2

Q
[1]
{rd2}

d1d2r
if

X
−→ Q1

dec
, then

W i−−−→
Case 2

Q
[1]
{rd2}

if
Xi(≡W i)
−−−−−−−→ Q1

dec
, then

X
−−−→
Case 1

Q
[1]
{rd2}

- Departure: The property forX ∈ Q1
{r} is that X must

be unknown to any of{d1, d2}, even not flagged in
RL{d1,d2}. As a result, whenever the mixture[X +W i]
is received by any of{d1, d2}, X must be removed from
Q1
{r}. Similarly, one property forW i∈Q

(1)|1
{d2}|{r}

is thatW i

must be unknown to any of{d1, r}, even not inRL{r}.
As a result, wheneverW i is received by any of{d1, r},
W i must be removed fromQ(1)|1

{d2}|{r}
.
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Similarly, one property forW i∈Q
(1)|1
{d2}|{r}

is thatW i must
be unknown to any of{d1, r} and for r not allowed to
even haveW i in a mixed form with any other packet. As
a result, whenever the mixture is received byr, it must
be removed fromQ(1)|1

{d2}|{r}
. We now need to consider the

case when the mixture is received by both{d1, d2} but
not r. To that end, first note that sinceX ∈ Q1

{r} and

W i∈Q
(1)|1
{d2}|{r}

, we already have{X,Xi} at r; {[Xi+W i]}

at d1; andW i at d2, whereXi 6∈Q1
dec

is the information-
equivalent pure session-1 packet corresponding toW i

from the property ofW i ∈ Q
(1)|1
{d2}|{r}

. Now assume that
the mixture is received only by bothd1 and d2. We
then have{X,Xi} at r; {[Xi+W i], [X+W i]} at d1;
and {W i, [X+W i]} at d2. Then d2 can now use the
known W i and the received[X+W i] to further extract
X . In this case, wheneverW i or X is delivered tod1, it
can decodeX and Xi simultaneously. But notice that
d1 also knows[Xi +X ] by manipulating its received
mixtures{[Xi+W i], [X+W i]}. Moreover,X is known
by both{d2, r} while Xi is known byr only. As a result,
we chose to useX further and thus treatX as already
decoded. The reason is because, for suchX , this exactly
falls into Case 2 ofQ[1]

{rd2}
whereWi = X ∈ Q1∪2

dec
is

known by both{d2, r} andd1 has[Xi+Wi]= [Xi+X ]
whereXi 6∈Q1

dec
. In a nutshell, when the reception status

is d1d2r, we can treatX as if X ∈Q1
dec

. Therefore,X
must be removed fromQ1

{r}.
- Insertion: Wheneverr receives the mixture,r can use the

knownX and the received[X+W i] to extractW i. Also,
wheneverd2 receives the mixture,d2 can use the known
W i and the received[X+W i] to extractX . From these
observations, we describe one by one for each reception
status. When the reception status isd1d2r, now W i is
known by both{d2, r} whereX is still at r. SinceW i

was coming fromQ(1)|1
{d2}|{r}

, d1 also knows[Xi+W i] for

someXi 6∈ Q1
dec

whereW i ∈ Q1∪2
dec

. For suchW i, this
exactly falls into Case 2 ofQ[1]

{rd2}
and thus we moveW i

into Q
[1]
{rd2}

as the Case 2 insertion. When the reception

status isd1d2r, now X is known by both{d2, r} where
W i is still at d2. For suchX , this exactly falls into
Case 1 ofQ[1]

{rd2}
and thus we moveX into Q

[1]
{rd2}

as

the Case 1 insertion. When the reception status isd1d2r,
we now have{X,Xi} at r; {[Xi+W i], [X+W i]} at
d1; and W i at d2. In this case, wheneverW i or X is
further delivered tod1, it can decode bothX and Xi

simultaneously. But sinceW i is overheard byd2, we
chose to treatX as already decoded and insertX into
Q1

dec
, while still keepingXi 6∈Q1

dec
as not-yet decoded.

SinceXi 6∈Q1
dec

is kept intact and the mixture is received
by d1 only, in order ford1 to further decodeXi, d1 needs
to have eitherXi in r or W i in d2. Namely, the original
scenario ofW i∈Q

(1)|1
{d2}|{r}

is still kept intact. As a result,
we just insertX into Q1

dec
. When the reception status is

d1d2r, we now have that bothX andW i are known by
both {d2, r} and thus bothX andW i falls into Case 1

and Case 2 ofQ[1]
{rd2}

, respectively. We thus move bothX

andW i into Q
[1]
{rd2}

as the Case 1 and Case 2 insertion,

respectively. When the reception status isd1d2r, we now
have {X,Xi,W i} at r; {[Xi+W i], [X+W i]} at d1;
and W i at d2. Following the discussion whend1d2r,
we can treat eitherX or Xi as already decoded. But
here we chose to treatXi as already decoded sinceW i

is overheard by both{d2, r} andd1 contains[X+W i].
Namely, by treatingXi ∈Q1

dec
, we can switch theW i-

associated pure session-1 packet fromXi to X 6∈ Q1
dec

sinced1 now knows[X+W i]. This is exactly the same
to Case 2 ofQ[1]

{rd2}
whereWi = W i ∈ Q1∪2

dec
is known

by both {d2, r} and d1 has [X+Wi] whereX 6∈ Q1
dec

.
As a result, we can further moveW i into Q

[1]
{rd2}

as the
Case 2 insertion. When the reception status isd1d2r, we
now have{X,Xi} at r; {[Xi+W i], [X+W i]} at d1;
and{X,W i} at d2. Following theDeparture discussion
whend1d2r, we can choose to treatX as already decoded
and useX as for Case 2 ofQ[1]

{rd2}
whereWi=X∈Q1∪2

dec

is known by both{d2, r} andd1 has[Xi+Wi]=[Xi+X ]
whereXi 6∈ Q1

dec
. As a result, we can further moveX

into Q
[1]
{rd2}

as the Case 2 insertion. Finally when the

reception status isd1d2r, we now have{X,Xi,W i} at
r; {[Xi+W i], [X+W i]} at d1; and{X,W i} at d2. From
the previous discussions, we know that we can treat either
X or Xi as already decoded where bothX andW i are
known by both{d2, r}. If we treatX as already decoded,
then sinceW i ∈Q1∪2

dec
was fromQ

(1)|1
{d2}|{r}

and is known

by both{d2, r}, we can thus moveW i into Q
[1]
{rd2}

as the
Case 2 insertion. On the other hand, if we treatXi as
already decoded, then sinceX 6∈Q1

dec
is known by both

{d2, r}, we can thus moveX into Q
[1]
{rd2}

as the Case 1
insertion.

• s2
SX;2: s transmits [Y +W j ] from Y ∈ Q2

{r} and W j ∈

Q
(2)|2
{d1}|{r}

. The movement process is symmetric tos1
SX;2.

• s1
SX;3: s transmits[Xi+X∗

i ] from Xi ∈ Q1
{d2}

andX∗
i (≡

W i ∈ Q
(1)|1
{d2}|{r}

). The movement process is as follows.

d1d2r Q1
{d2}

Xi−−→
Xi−−−→

Case 1
Q

[1]
{rd2}

d1d2r Q
(1)|1
{d2}|{r}

W i−−→
X∗

i (≡W i)
−−−−−−−→

Case 1
Q

[1]
{rd2}

d1d2r Q1
{d2}

Xi−−→
Xi−−→ Q1

dec

d1d2r

Q1
{d2}

Xi−−→,

Q
(1)|1
{d2}|{r}

W i−−→

Xi−−−→
Case 1

Q
[1]
{rd2}

,
X∗

i (≡W i)
−−−−−−−→

Case 1
Q

[1]
{rd2}

d1d2r
Xi−−→ Q1

dec
,

Xi−−−→
Case 2

Q
[1]
{rd2}

d1d2r
Xi−−→ Q1

dec
,

X∗

i (≡W i)
−−−−−−−→

Case 1
Q

[1]
{rd2}

d1d2r
if

Xi−−→ Q1
dec

, then
X∗

i (≡W i)
−−−−−−−→

Case 1
Q

[1]
{rd2}

if
X∗

i (≡W i)
−−−−−−−→ Q1

dec
, then

Xi−−−→
Case 1

Q
[1]
{rd2}

- Departure: One property forXi∈Q1
{d2}

is thatXi must
be unknown to any of{d1, r}, not even in a mixed form
with any other packet. As a result, whenever the mixture
is received by any of{d1, r}, it must be removed from
Q1
{d2}

. Similarly, one property forW i ∈ Q
(1)|1
{d2}|{r}

is that
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there exists a pure session-1 packetX∗
i 6∈ Q1

dec
that is

information-equivalent toW i and is known byr only.
Note that whenever the mixture[Xi+X∗

i ] is received by
d2, it can use the knownXi and the received[Xi+X∗

i ]
to extract the pureX∗

i . As a result,W i must be removed
from Q

(1)|1
{d2}|{r}

. We now need to consider the case when
the mixture is received by both{d1, r} but notd2. To that
end, first note that sinceXi ∈Q1

{d2}
andW i ∈Q

(1)|1
{d2}|{r}

,

we haveX∗
i at r; [X∗

i +W i] at d1; and {Xi,W i} at
d2, whereX∗

i 6∈Q1
dec

is the information-equivalent pure
session-1 packet corresponding toW i from the property
of W i∈Q

(1)|1
{d2}|{r}

. Now assume that the mixture is received
only by bothd1 and r. We then have{X∗

i , [Xi+X∗
i ]}

at r; {[X∗
i +W i], [Xi+X∗

i ]} at d1; and{Xi,W i} still at
d2. Thenr can now use the knownX∗

i and the received
[Xi+X

∗
i ] to further extractXi. In this case, wheneverXi

or X∗
i is delivered tod1, it can decode bothXi andX∗

i

simultaneously sinced1 has received[Xi+X
∗
i ]. Moreover,

Xi is known by both{d2, r} while X∗
i is known byr

only. As a result, we chose to useXi further and thus
treatXi as already decoded. The reason is because, for
suchXi, this exactly falls into Case 2 ofQ[1]

{rd2}
where

Wi =Xi ∈ Q1∪2
dec

is known by both{d2, r} and d1 has
[X∗

i +Wi] = [X∗
i +Xi] whereX∗

i 6∈Q1
dec

. In a nutshell,
when the reception status isd1d2r, we can replaceW i

by Xi∈Q1
dec

for decodingX∗
i later. Therefore,W i must

be removed fromQ(1)|1
{d2}|{r}

.
- Insertion: Wheneverr receives the mixture,r can use

the knownX∗
i and the received[Xi+X∗

i ] to extractXi.
Also, wheneverd2 receives the mixture,d2 can use the
known Xi and the received[Xi+X∗

i ] to extractX∗
i .

From these observations, we describe one by one for each
reception status. When the reception status isd1d2r, now
Xi is known by both{d2, r} whereX∗

i is still at r. For
suchXi, this exactly falls into Case 1 ofQ[1]

{rd2}
and thus

we moveXi into Q
[1]
{rd2}

as the Case 1 insertion. When

the reception status isd1d2r, now X∗
i is known by both

{d2, r} whereXi is still at d2. For suchX∗
i , this exactly

falls into Case 1 ofQ[1]
{rd2}

and thus we moveX∗
i into

Q
[1]
{rd2}

as the Case 1 insertion. When the reception status

is d1d2r, we now haveX∗
i at r; {[X∗

i +W i], [Xi+X∗
i ]}

at d1; and {Xi,W i} at d2. In this case, wheneverXi

or X∗
i is further delivered tod1, it can decode both

Xi and X∗
i simultaneously. We then chose to treatXi

as already decoded and insertXi into Q1
dec

, while still
keepingX∗

i 6∈Q1
dec

as not-yet decoded. SinceX∗
i 6∈Q1

dec

is kept intact and the mixture[X∗
i +W i] was known by

d1 before, in order ford1 to further decodeX∗
i , d1 needs

to have eitherX∗
i in r or W i in d2. Namely, the original

scenario ofW i∈Q
(1)|1
{d2}|{r}

is still kept intact. As a result,
we just insertXi into Q1

dec
. When the reception status is

d1d2r, we now have that bothXi andX∗
i are known by

both{d2, r} and thus bothXi andX∗
i falls into Case 1 of

Q
[1]
{rd2}

. We thus move bothXi andW i into Q
[1]
{rd2}

as the

Case 1 insertions. When the reception status isd1d2r,

we now have{Xi, X
∗
i } at r; {[X∗

i +W i], [Xi+X∗
i ]}

at d1; and {Xi,W i} at d2. Following the Departure
discussion whend1d2r, we can choose to treatXi as
already decoded and useXi as for Case 2 ofQ[1]

{rd2}
where

Wi = i ∈ Q1∪2
dec

is known by both{d2, r} and d1 has
[X∗

i +Wi]=[Xi+X∗
i ] whereX∗

i 6∈Q1
dec

. As a result, we
can further moveXi into Q

[1]
{rd2}

as the Case 2 insertion.
When the reception status isd1d2r, we now haveX∗

i at
r; {[X∗

i+W i], [Xi+X
∗
i ]} at d1; and{Xi,W i, X

∗
i } at d2.

Following the discussion whend1d2r, we can treat either
Xi or X∗

i as already decoded. But here we chose to treat
Xi as already decoded sinceX∗

i is now overheard by both
{d2, r} and d1 contains[Xi+X∗

i ]. Namely, by treating
Xi∈Q1

dec
, we can simply focus on deliveringX∗

i 6∈Q1
dec

to d1 that is known by both{d2, r}. This is exactly the
same to Case 1 ofQ[1]

{rd2}
. As a result, we can further move

X∗
i into Q

[1]
{rd2}

as the Case 1 insertion. Finally when the
reception status isd1d2r, we now have{Xi, X

∗
i } at r;

{[X∗
i +W i], [Xi+X∗

i ]} at d1; and{Xi,W i, X
∗
i } at d2.

From the previous discussions, we know that we can treat
eitherXi or X∗

i as already decoded where bothXi and
X∗

i are known by both{d2, r}. If we treatXi as already
decoded, we can simply moveX∗

i 6∈Q1
dec

into Q
[1]
{rd2}

as
the Case 1 insertion. Similarly, if we treatX∗

i as already
decoded, then sinceXi 6∈Q1

dec
is known by both{d2, r},

we can thus moveXi into Q
[1]
{rd2}

as the Case 1 insertion.

• s2
SX;3: s transmits[Yi+Y

∗
j ] from Yi ∈ Q2

{d1}
andY ∗

j (≡ Wj ∈

Q
(2)|2
{d1}|{r}

). The movement process is symmetric tos1
SX;3.

In the following Table III, we also described for each
queue, the associated LNC operations that moves packet into
and takes packets out of in the general LNC inner bound
of Proposition 3. Note thatr-variables are the same asw-
variables where the superscript(h), h∈ {s, r} is by (r), and
thus they representw-variables accordingly.
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TABLE III
Summary of the associated LNC operations in Proposition 3

including newly addedsk
SX;l operations

LNC operations 7→ Queue 7→ LNC operations

Q1
φ

s1
UC

, s1
PM1

s1
UC

, s1
PM1

Q1
{r}

s2
PM1

, s1
PM2

, r1
UC

s1
SX;1, s1

SX;2

s1
PM1

Q
m|2
{d2}|{r}

s1
RC

s1
UC

, s1
RC

Q1
{d2}

s2
PM2

, s1
DX

sCX;1, sCX;2, sCX;5
s1
SX;1, s1

SX;3

s2
RC

, s1
SX;1 Q

(1)|1
{d2}|{r}

s
(1)
DX

, sCX;3
sCX;4, sCX;7, r(1)

DT

s1
SX;2, s1

SX;3

s1
UC

, s2
PM2

, s1
RC

, s1
DX

Q
[1]
{rd2}

(Case 1)

sCX;6, sCX;8

r
[1]
DT

, r
CX

sCX;5, r1
UC

, r(1)
DT

, rRC
s1
SX;1, s1

SX;3, s1
SX;2

s2
PM2

, s2
RC

, s(1)
DX

Q
[1]
{rd2}

(Case 2)sCX;7, rRC
s1
SX;1, s1

SX;2, s1
SX;3

sCX;1, sCX;2
Q

[1]
{rd2}

(Case 3)
sCX;3, sCX;4, r

XT

s1
UC

, s1
PM2

, s1
RC

, s2
RC

Q1
dec

s1
DX

, s(1)
DX

, {sCX;1 tosCX;8}

r1
UC

, r(1)
DT

, r[1]
DT

rRC, r
XT

, r
CX

s1
SX;1, s1

SX;2, s1
SX;3

s1
PM1

, s2
PM1

, s1
PM2

, s2
PM2 Qmix rRC

s1
RC

, s2
RC

sCX;1, sCX;2, sCX;3, sCX;4 Q
mCX

{r}
r
XT

Q2
φ

s2
UC

, s2
PM1

s2
UC

, s2
PM1

Q2
{r}

s1
PM1

, s2
PM2

, r2
UC

s2
SX;1, s2

SX;2

s2
PM1

Q
m|1
{d1}|{r}

s2
RC

s2
UC

, s2
RC

Q2
{d1}

s1
PM2

, s2
DX

sCX;1, sCX;3, sCX;6
s2
SX;1, s2

SX;3

s1
RC

, s2
SX;1 Q

(2)|2
{d1}|{r}

s
(2)
DX

, sCX;2
sCX;4, sCX;8, r(2)

DT

s2
SX;2, s2

SX;3

s2
UC

, s1
PM2

, s2
RC

, s2
DX

Q
[2]
{rd1}

(Case 1)

sCX;5, sCX;7

r
[2]
DT

, r
CX

sCX;6, r2
UC

, r(2)
DT

, rRC
s2
SX;1, s2

SX;2, s2
SX;3

s1
PM2

, s1
RC

, s(2)
DX

Q
[2]
{rd1}

(Case 2)sCX;8, rRC, s2
SX;1

s2
SX;2, s2

SX;3

sCX;1, sCX;2
Q

[2]
{rd1}

(Case 3)
sCX;3, sCX;4, r

XT

s2
UC

, s2
PM2

, s1
RC

, s2
RC

Q2
dec

s2
DX

, s(2)
DX

, {sCX;1 tosCX;8}

r2
UC

, r(2)
DT

, r[2]
DT

rRC, r
XT

, r
CX

s2
SX;1, s2

SX;2, s2
SX;3

APPENDIX D
DETAILED DESCRIPTION OFACHIEVABILITY SCHEMES IN

FIG. 4

In the following, we describe(R1, R2) rate regions of
each suboptimal achievability scheme used for the numerical
evaluation in Section V.
• Intra-Flow Network Coding only: The rate regions can be
described by Proposition 2, if the variables{sk

PM1
, sk

PM2
, sk

RC
:

for all k ∈ {1, 2}}, {sCX;l (l = 1, · · · , 8)}, {rRC, rXT, rCX}
are all hardwired to0. Namely, we completely shut down all
the variables dealing with cross-packet-mixtures. After such
hardwirings, Proposition 2 is further reduced to the following
form:

1 ≥
∑

k∈{1,2}

(

skUC + skDX + rkUC + r
[k]
DT

)

,

and consider anyi, j ∈ (1, 2) satisfyingi 6= j. For each(i, j)
pair (out of the two choices(1, 2) and (2, 1)),

Ri ≥ siUC · ps(di, dj , r),

siUC · ps→didjr
≥ riUC · pr(di, dj),

siUC · ps→didjr
≥ siDX · ps(di, r),

siUC · ps→didjr
+ siDX · ps(dir) + riUC · pr→didj

≥ r
[i]
DT

· pr(di),
(

siUC + siDX

)

· ps(di) +
(

riUC + r
[i]
DT

)

· pr(di) ≥ Ri.

• Always Relaying with NC: This scheme requires that all
the packets go throughr, and thenr performs2-user broadcast
channel NC. The corresponding rate regions can be described
as follows:

R1

pr(d1)
+

R2

pr(d1, d2)
≤ 1−

R1 +R2

ps(r)
,

R1

pr(d1, d2)
+

R2

pr(d2)
≤ 1−

R1 +R2

ps(r)
.

• Always Relaying with routing: This scheme requires that
all the packets go throughr as well, butr performs uncoded
routing for the final delivery. The corresponding rate regions
can be described as follows:

R1

pr(d1)
+

R2

pr(d2)
≤ 1−

R1 +R2

ps(r)
.

• [10] without Relaying: This scheme completely ignores the
relay r in the middle, ands just performs2-user broadcast
channel LNC of [10]. The corresponding rate regions can be
described as follows:

R1

ps(d1)
+

R2

ps(d1, d2)
≤ 1,

R1

ps(d1, d2)
+

R2

ps(d2)
≤ 1.

• Routing without Relaying: This scheme completely ignores
the relayr in the middle, ands just performs uncoded routing.
The corresponding rate regions can be described as follows:

R1

ps(d1)
+

R2

ps(d2)
≤ 1.
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