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Abstract

In this paper, we introduce the notion of Plausible Deniability in an information theoretic framework. We consider a scenario
where an entity that eavesdrops through a broadcast channel summons one of the parties in a communication protocol to reveal
their message (or signal vector). It is desirable that the summoned party have enough freedom to produce a fake output that is
likely plausible given the eavesdropper’s observation. We examine three variants of this problem – Message Deniability, Transmitter
Deniability, and Receiver Deniability. In the first setting, the message sender is summoned to produce the sent message. Similarly,
in the second and third settings, the transmitter and the receiver are required to produce the transmitted codeword, and the received
vector respectively. For each of these settings, we examine the maximum communication rate that allows a given minimum rate
of plausible fake outputs. For the Message and Transmitter Deniability problems, we fully characterise the capacity region for
general broadcast channels, while for the Receiver Deniability problem, we give an achievable rate region for physically degraded
broadcast channels.

I. INTRODUCTION

The explosive growth in information technologies in recent years is not without its pitfalls. On one hand, advances in
communications have enabled ground-breaking applications that have arguably been instrumental in improving the general
quality of life. On the other hand, the naturally connected nature of these technologies also presents a wide variety of security
and privacy concerns. To counter these, much recent attention has also focused on designing and analyzing algorithms and
protocols that guarantee security or privacy. It is worth noting that the security requirement often varies greatly with the
application. Indeed, the consequences of security failure as well as the nature of eavesdropping parties differ from application to
application. For example, for a user posting on a social network, the implication is often limited to loss of personal information
to a potentially malicious party. On the other hand, for an whistleblower posting sensitive information to an accomplice, any
security failure has potentially life-altering consequences. The nature of the eavesdropper is also different in these situations. In
the first example, an eavesdropper is typically a passive party that simply listens to an ongoing transmission, and it is desirable
that the content of the communication be kept hidden from the eavesdropper. On the other hand, in the second example, the
eavesdropper may often be an authority that has the power to coerce the whistleblower to reveal the transmitted message. In
this case, it is important that the whistleblower is able to deny the fact that any sensitive communication has taken place by
producing a fake message that appears plausible to the coercing party.

We argue that while much of the work in secure communication is well suited to the first scenario, i.e., the ability to hide
data, there is relatively little work that applies to the second scenario. For the first scenario, by now, there is are well developed
theoretical results as well as practical algorithms both in the cryptographic [1] as well as information theoretic [2]–[4] settings.
However, there is limited understanding of both fundamental limits and algorithms for the second setting. In this paper, we
propose an information theoretic framework for Plausibly Deniable communication in the sense just described. In the following,
we begin with an overview of some related notions of security and contrast these with our notion of Plausibly Deniable
communication.

A. Related notions

1) Information theoretic secrecy: Usually secure protocols aim to hide data from an eavesdropper by taking advantage of
some asymmetry between the legitimate receiver and the eavesdropper – the eavesdropper should be “less powerful” than the
legitimate receiver. The framework of information theoretic secrecy relies on the eavesdropper having “less information” than
the intended receiver and provides guarantees that hold irrespective of the eavesdropper’s computational ability. For example, in
the wiretap channel setting [2], [3] (See Figure 4a) the eavesdropper may observe Alice’s transmission through a noisier channel
than Bob does. On similar lines, in the secure network coding setting [5], the eavesdropper may observe a smaller subset of
the transmission than legitimate nodes. In each of these settings, the information-theoretic approach allows characterizing the
“capacity”, which is defined as the maximum code rate such that (a) the intended receiver can decode the secret message m
reliably given her received vector y, i.e., P(m̂(y) 6= m) ≈ 0, and (b) the eavesdropper can gain very little statistical information
about the secret message m given her observation z, i.e., P(m|z) ≈ P(m). Note here that there is no restriction placed on
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m // Alice
x // Bob // m̂

BEC(p) z // Judy

Fig. 1: Alice wishes to communicate a message m to Bob by sending a codeword x over a noiseless binary channel while an
eavesdropper Judy observes x through a binary erasure channel with erasure probability p > 0. Note that, in order to avoid
being detected as lying, the summoned party’s output should appear plausible to Judy given her side information z. In particular,
for the channel in this example, both Alice and Bob are forced to reveal their true codewords (i.e., x) to Judy. This example
also shows a contrast between the standard notion of secrecy and the plausible deniability requirement.

the computational power of the eavesdropper. As a result, schemes that guarantee information theoretic security are free of
computational assumptions and as a result are guaranteed to be secure against any future developments in fast computing.

We argue that even though information theoretic secrecy is perfectly suited when the goal is to only hide the data against a
passive eavesdropper, it does not guarantee any protection against eavesdroppers that have the ability to summon one of the
communicating parties. The reason for this is as follows. At a high level, information theoretic secrecy is achieved by ensuring
that the eavesdropper has a large enough list of candidate messages that appear roughly equiprobable. On the other hand,
plausible deniability requires the summoned party to produce one such candidate message without knowing the eavesdropper’s
channel realisation. The following example illustrates this difference more concretely.

Example 1 (Secrecy does not guarantee plausible deniability). Consider the setting of Figure 1. Since the channel to Bob
is noiseless, the secrecy capacity [3] is p. On the other hand, even if Alice and Bob operate a code equipped with an
information-theoretic secrecy guarantee and Judy demands that Alice provide the transmitted codeword x, Alice has no choice
but to provide exactly what was transmitted (and hence, also reveal the message). If Alice chooses to provide a vector x′
different from x, then Judy would be able to detect with a constant probability that Alice is lying since the transmitted symbol
for any coordinate where x′ and x differ would be received correctly by Judy with probability 1 − p. /

2) Cryptographic security: In the cryptographic setting, the asymmetry between the legitimate receiver and the eavesdropepr
usually manifests itself through complexity theoretic notions. For example, in a public key cryptosystem, the receiver holds a
pair of carefully chosen keys (kpublic, kprivate). The public key kpublic is known to all parties including the eavesdropper, while
the private key kprivate is known only to the eavesdropper. This allows the sender to encrypt the message m to the ciphertext
x = ENC(m, kpublic). The encryption algorithm is chosen such that the receiver can use his private key to decrypt the ciphertext
to obtain the message as m = DEC(x, kpublic, kprivate) in polynomial time. On the other hand, without knowing kprivate, the
eavesdropper cannot efficiently compute ENC−1(x, kpublic) (under reasonable computational assumptions). However, even if the
eavesdropper is unable to invert the ciphertext on their own, if they have the ability to summon the receiver to produce the
private key, the receiver may have no choice but to respond truthfully by revealing the true private key, else the ciphertext and
the public key may not be consistent with it.

3) Deniable Encryption: The notion of Deniable Encryption was first introduced by Canetti et al. in [6] recognizing the
above problem of lack of plausible deniability in the cryptographic setting.1 Here, the typical setting is as follows. Consider a
public key setting as described in Section I-A2. Unlike the setting of Section I-A2 the eavedropper Judy who has bounded
computational power both observes the ciphertext and can issue a summon to Bob coercing him to revealing the message. The
framework of Deniable Encryption allows for encryption schemes such that upon receiving Judy’s summon, Bob is able to
produce a fake private key k (F)

public which decrypts the ciphertext to a fake message m(F) while appearing plausible to Judy. In
other words, there is no polynomial time algorithm, using which Judy is able to determine whether Bob has responded with the
true public key or a fake public key. Note that usual public key protocols such as RSA do not allow Bob to produce a fake
key for every pair of (m, kpublic). This notion has received much attention in recent years. By now, there are fairly extensive
theoretical and practical developments along this line (c.f. [8]–[10] and the references therein).

4) Covert Communication: In both the secrecy and the plausible deniability problems considered above, while the goal is
to be able to hide the message that is being transmitted, the implicit assumption is that it is permissible for some form of
communication to take place. However, in the setting of covert commmunication [11]–[14], even the fact that any communication
is taking place is objectionable from the eavesdropper’s point of view. For example, the communicating parties may be two
prisoners in adjacent cells that wish to communicate without the warden knowing that they are doing so. In this setting, the
goal is to ensure that from the warden’s point of view, the output distribution induced by non-zero transmissions appear close

1Also related is the notion of uncoercible communication introduced by Benaloh et al. [7].
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to that under zero transmission. The capacity for this problem is now well understood and follows the so called square-root
law – in n channel uses, only O(

√
n) message bits can possibly be transmitted without being detected. Note that the notion of

covertness only guarantees that the eavesdropper be unable to distinguish no transmission from a non-zero transmission; it
does not necessarily prevent the eavesdropper from gaining any information about the potential message, if she assumes that
something was transmitted.2 Therefore, the covertness requirement only implies a weak form of plausible deniability – the
transmitter can claim that no transmission took place when something was transmitted. However, it does not necessarily allow
the communicating parties to claim the transmission of a message different from the true message.

B. Our work

Taking inspiration from the formulation of Deniable Encryption discussed in Section I-A3, we propose an information
theoretic approach to plausible deniability. While the approach in Section I-A3 relies on cryptographic assumptions, i.e., the
assumption that the eavesdropper is computationally limited without access to the receiver’s private key, we assume that the
eavesdropper has potentially unlimited computational power, but the eavesdropper and the legitimate receiver have different
channels statistics. In this setting, the sender can leverage this difference by careful encoding that allows the receiver to decode
the message correctly while leaving enough room for confusion such that, if summoned, transmitter and the receiver are able
produce fake messages or codewords that appear statistically indistinguishable from the true message or codeword to the
eavesdropper given his channel observation.

1) Our setup: Our general setup is as follows. Alice, Bob, and Charlie are three participants in a potentially secretive
communication setup. Charlie wishes to send a message m ∈ M to Bob through Alice. Alice and Bob are at two ends of
a noisy channel and operate the physical layer with Alice being the transmitter and Bob being the receiver, while Charlie
interacts directly with Alice and knows the message but does not partake in the physical layer transmission and reception. The
nature of the message may either be an innocuous or a secretive one – this is known to Alice, Bob, and Charlie, but not to any
eavesdroppers.

Judy is an eavesdropper who observes a noisy version of Alice’s transmission. In this work, we assume that the statistics
of Judy’s observation are known to the above three parties, but the exact observation is unknown. We consider three settings
for this problem. In the Transmitter Deniability problem, Judy may summon Alice and ask her to produce the transmitted
codeword. Similarly, in the Receiver Deniability, and the Message Deniability problems, Judy may summon Bob, and Charlie, to
produce the received vector, and the message, respectively. In each of these settings, depending on whether the communication
is innocuous or secretive, the summoned party may either respond truthfully or use a Faking Procedure to produce a fake
output that reveals as little information about the true message as possible while still maintaining plausibility with respect to
Judy’s observation.

We quantify the efficacy of a communication scheme in terms of its two properties – the reliability of the code and the
plausible deniability of the faking procedure. The first property i.e., the reliability is measured in a standard fashion in terms
of the message rate and the error probability at the decoder. Plausible deniability is also measured in terms of two metrics –
the plausibility and the rate of deniability. Roughly speaking, plausibility measures the closeness between two distributions
– the joint distribution of the fake output with the eavesdropper’s observation and that of the true message or signal vector
with the eavesdropper’s observation. We measure this distance in terms of the Kullback-Leibler (K-L) divergence.3 The rate of
deniability is measured as the conditional entropy of the fake message given the summoned party’s observations. This attempts
to capture the amount of freedom the summoned party has while responding to the summons. The rate of deniability may also
be roughly interpreted as a measure of equivocation at the eavesdropper after the summoned party is forced to respond. Strictly
speaking, the rate of deniability is a purely operational characteristic of the faking procedure and our formal definition of the
rate of deniability does not appear to be related to equivocation. However, when the faking procedure satisfies the plausibility
requirement, we establish an asymptotic equivalence between these two notions in Propositions 2 and 3. We also emphasise here
that demanding a rate of deniability D is a stronger requirement than demanding an equivocation D in the usual information
theoretic secrecy setting – this naturally extends similar observations in the cryptographic setting where, a plausibly deniable
protocol trivially also satisfies the security requirement.

2) Organization of this paper: The rest of this paper is organised as follows. In Section II, we formally describe our notation
and problem formulation and state the main results in Section III. In Sections IV and V, we give proof sketches for our
theorems, and discuss some examples and key properties of our capacity regions. Finally, in Section VI, we provide concluding
remarks.

2One can also demand both covertness and secrecy simultaneously. By operating at even lower rates (though still O(
√

n) bits per n channel uses), it is
possible to be covert about the transmission status and secret about the message being potentially transmitted. [13], [15].

3Although, in this paper, we measure the plausibility in terms of K-L divergence, one is also well justified to instead use other measures of distance
such as the variational distance. We argue that K-L divergence is a stronger measure for our problem as requiring that the K-L divergence be small also
implies that the variational distance is small (by invoking Pinsker’s inequality). Further, using K-L divergence instead of variational distance considerably
simplifies our converse proofs. It is worth noting that the variational distance has a natural interpretation in terms of Hypothesis Testing – the variational
distance between two probability measures P1 and P2 equals 1 − Pr(test outputs P2 |true distribution is P1) − Pr(test outputs P1 |true distribution is P2) for an
optimal hypothesis test for distinguishing P1 and P2.
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II. PROBLEM FORMULATION

A. Notation

Throughout this paper, we typically adopt the following notation. Upper case math and lower case symbols such as X and x
denote random variables and their specific values respectively. Boldface symbols such as X and x denote random vectors and
their specific values respectively, while calligraphic symbols such as X denote sets. Probability distributions of generic random
variables is typically written as P (e.g. PX , PY |X ), while probability distributions imposed by the specific codebook are typically
written as Q (e.g. QX). All logarithms in this paper are assumed to base 2. For some random variables X and Y following
distributions PX and PY on alphabets X and Y respectively, we define the entropy, conditional entropy, and the mutual
information respectively as �(X) ,

∑
x∈X :PX (x)>0 PX (x) log (1/PX (x)), �(Y |X) ,

∑
x∈X :PX,Y (x,y)>0 PX,Y (x, y) log

(
1/PY |X (y|x)

)
, and

�(X; Y ) = �(X) −�(X |Y ). The Kullback-Leibler divergence between two probability measures P1 and P2 over a set X is
defined as �(P1||P2) ,

∑
x∈X :P1(x)>0 P1(x) log (P1(x)/P2(x)). Throughout this paper, we employ strong typicality in our analysis,

and define the strongly typical set for a random variable X as

A (n)
ε (X) ,

{
x ∈X n : max

x∈X

∣∣∣∣∣ |{i : xi = x}|
n

− PX (x)
∣∣∣∣∣ ≤ ε

|X |

}
.

B. Channel model

Consider the problem settings shown in Figure 2. Alice, Bob, and Judy are connected through the following memoryless
broadcast channel – at each discrete time instant, Alice’s transmission X ∈X , Bob’s reception Y ∈ Y , and Judy’s observation
Z ∈ Z follow the conditional distribution PY,Z |X over finite alphabets X × Y ×Z . Initially, only Charlie knows the message
m ∈M and passes it onto Alice to be transmitted to Bob over the broadcast channel. Charlie only knows the value of the
message, but does not see the channel inputs or outputs. Throughout this paper, we assume that the message M is uniformly
distributed over M . There is no shared randomness, but Alice, Bob, and Charlie have private randomness KA ∈ K , KB ∈ K ,
and KC ∈ K respectively. In addition, the code and the faking procedure (defined in the following) are known to all parties.

C. Codes and Faking Procedures

A code of block-length n is a pair of maps ENC : M ×K →X n and DEC : Y n →M . These maps are applied by Alice
and Bob to generate the codeword x , xn = ENC(m, kA) and the reconstruction m̂ = DEC(y) respectively. When there is no
private randomness at Alice, we denote the codeword for message m by x(m). To simplify notation, we represent a code
(ENC,DEC) through its codebook C , {ENC(m, kA) : m ∈M , kA ∈ K }. Note that C is a multi-set with possible repetitions as
we do not require that ENC(·) be an injective map.

Judy may summon Alice, Bob, or Charlie to provide a variable w ∈ W that can be used to reconstruct the message using a
map MSG : W →M . Depending on whether or not the transmission is an innocuous, the summoned party may either reveal
the true value of w or use a (possibly stochastic) faking procedure FAKE : W ×K → W to output a fake value w(F) ∈ W . In
this paper, we consider three settings that are specified by the choice of the variable w. In particular, we consider the following
special cases:

a) Message deniability: This setting is shown in Figure 2a. Charlie is the summoned party, w = m, W = M , and
MSG(w) = w.

b) Transmitter deniability: This setting is shown in Figure 2b. Here, Alice is the summoned party, w = x, W = X n,
and MSG(w) is the most likely message given that x = w, i.e., MSG(w) , argmaxm∈M QM |X(m|w) if the maximum is attained
at a unique value of m. If there are multiple values of m achieving the above maximum, then MSG(w) selects one of them
arbitrarily.

c) Receiver deniability: This setting is shown in Figure 2c. Bob is the summoned party, w = y, W = Y n, and
MSG(w) = DEC(w).

D. Reliability

We say that C is (ε ,R)-reliable if 1
n log |M | = R, and there exists an encoder and decoder pair (ENC,DEC) such that the

average error probability
∑

(m,y):DEC(y) 6=m QM,Y(m, y) is no larger than ε . Here, QM is the uniform distribution on M and QY,M
is the joint distribution of the message M and Bob’s received vector Y that induced by the specific code (ENC,DEC) and the
channel transition probability PYZ |X .

E. Plausible deniability

We first define our notion of plausible deniability for general random variables, and subsequently, specialise it to our setting.
Let W(F), W, and Z be random variables distributed according to a distribution QW(F) ,W,Z. Let QZ,W and QZ,W(F) be marginals
of the distribution QZ,W,W(F) . We say that W(F) is (δ,D)-plausibly deniable for W given observation Z if

(i) �(QZ,W(F) ||QZ,W) ≤ δ, and
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kC ∈ K

��

kA ∈ K

��

Bob // m̂ = DEC(y)

m ∈M // Charlie
m //

m(F) = FAKE(m, kC)
11

Alice
x = ENC(m, kA)

// p(y, z|x)

y 22

z
,, Judy

(a) Message deniability

kA ∈ K

��

Bob // m̂ = DEC(y)

m ∈M // Charlie
m // Alice

x = ENC(m, kA)
//

x(F) = FAKE(x, kA)
22

p(y, z|x)

y 22

z
,, Judy

(b) Transmitter Deniability

kB ∈ K

��

kA ∈ K

��

Bob //

y(F) = FAKE(y, kB)

��

m̂ = DEC(y)

m ∈M // Charlie
m // Alice

x = ENC(m, kA)
// p(y, z|x)

y 22

z
,, Judy

(c) Receiver Deniability

Fig. 2: The above figure shows the three different problem settings considered in this paper. These settings have the following
commonalities: Charlie knows only the message m and may have access to an independently generated private random string
kC ; Alice knows the message m, an independently generated private random string kA and the transmitted codeword x; Bob
observes the channel output y and potentially has an independently generated private random string kB, and is required to
reconstruct m; Judy observes the channel output z. However, depending on the setting we consider, Judy summons Charlie,
Alice, or Bob to produce m, x, or y respectively. The summoned party responds with a fake output FAKE(·) that has roughly
the same distribution as the variable Judy demands to know. In each setting, the fake output is a function of the true value of
variable demanded and the independent private randomness available to the summoned party.
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(ii) 1
n�(MSG(W(F))|W) = D.

In this paper, we are interested in settings where W is the random variable whose value is demanded by Judy through
her summon, W(F) is the random variable denoting the output of the faking procedure FAKE(·) employed by the summoned
party, and Z is Judy’s observation. The parameters δ and D respectively measure the plausibility and the rate of deniability of
FAKE(·). We say that a faking procedure FAKE(·) is (δ,D)-plausibly deniable for W given observation Z is its output W(F) is
(δ,D)-plausibly deniable for W given observation Z.
Remark 1. Note that since we assume that the output of the faking procedure depends only value of variable W (that is known
to the summoned party) and the summoned party’s independently distributed private randomness, the random variables W(F), W,
Z satisfy the Markov chain W(F) −W − Z.
Remark 2. Note that the joint distribution QZ,W,W(F) depends on both the code (ENC,DEC) and the faking procedure, FAKE(·)
and takes into account the (uniform) message distribution QM , the channel conditional probability PYZ |X , and the distribution of
independent private randomness variables KA, KB, and KC .

F. Capacity regions

For each setting w ∈ {m, x, y}, we say that a rate-deniability pair (R,D) is achievable if for any ε , δ > 0, for some R′ ≥ R and
D′ ≥ D, and for large enough n, there exists a blocklength-n code C that is (ε ,R′)-reliable and a faking procedure FAKE(·) that
is (δ,D′)-plausibly deniable for W given Z. The capacity region Rw is the closure of the set of all achievable rate-deniability
pairs.

III. MAIN RESULTS

For the message deniability problem, we give a characterisation the capacity region Rm for general broadcast channels in
Theorem 1. The proof of this theorem is presented in Section IV.

Theorem 1 (Message Deniability). Rm is the set of all (R,D) pairs such that

0 ≤ R ≤ �(Y ; V ) + �(U; Y |V ) − �(U; Z |V ), and
0 ≤ D ≤ min {R, �(U; Y |V ) − �(U; Z |V )}

for some random variables U and V which take values in sets U and V , respectively, with |U | ≤ (|X | + 1) (|X | + 2) and
|V | ≤ |X | + 2, and satisfy the Markov chain V − U − X − (Y,Z).

Next, we characterise the capacity region Rx for the transmitter deniability problem for general broadcast channels and given
an achievable region for the receiver deniability problem for physically degraded broadcast channels. These results are stated in
Theorems 2 and 3 below and are proved in Section V.

Theorem 2 (Transmitter Deniability). Rx is the set of all (R,D) pairs such that

0 ≤ R ≤ �(X; Y ), and
0 ≤ D ≤ min {R, �(X; Y |U)}

for some random variable U which takes values in a set U , with |U | ≤ |X |, and satisfes the Markov chains U − X − (Y,Z)
and X − U − Z .

Theorem 3 (Achievability for Receiver Deniability). Let PY,Z |X be a physically degraded broadcast channel, i.e., PZ |X (z|x) =∑
y∈Y PZ |Y (z|y)PY |X (y|x) for some distribution PZ |Y . Then, Ry includes all (R,D) pairs such that

0 ≤ R ≤ �(X; Y ), and
0 ≤ D ≤ min {R, �(X; Y |V )}

for some random variable V which takes values in a finite set V and satisfies the Markov chains V − Y − (X,Z) and Y − V − Z .

IV. MESSAGE DENIABILITY

In this section, we outline the proof of Theorem 1 and discuss connections of the message deniability problem with standard
information theoretic secrecy problems. Our achievability argument relies on reducing our problem to the following variant of
the information theoretic secrecy problem.
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(ŝ, t̂) = DEC(y)

k ∈ K

��

y // Bob

OO

s ∈ S , t ∈ T // Alice // x p(y, z|x)

11

,,

t

��

z // Judy

��

s =?

Fig. 3: Any code for the above secrecy problem can be operated as a code for the Message Deniability problem by treating s
as the part of the message that the faking algorithm randomizes over and t as the part of the message that is unchanged by it.

A. Broadcast channel with confidential and leaked messages

Consider the setup shown in Figure 3. Alice observes sources s ∈ S and t ∈ T and wishes to transmit them reliably to Bob
over n uses of the channel. Judy observes a noisy version of the transmission and knows the source t as side information. The
goal for the transmission is to ensure that the leakage �(S; Z|T ) is small. At first sight, the setting here is similar to the public
message and confidential message setting of [3] in that secrecy is only required for the private message s. However, in contrast
to [3], Judy is not interested in estimating t based on z, but is instead provided with t as side-information. This allows us to
operate at potentially higher rates than [3]. We define the capacity region for this problem in the following.

Definition 1. The capacity region Rs for broadcast channel with confidential and side-information messages is the set of (Rs,Rt)
pairs such that, given ε , δ > 0, a large enough blocklength n, and sources S and T drawn independently and uniformly from S
and T respectively, there exists a code C , consisting of an encoder ENC : S ×T ×K →X n, a decoder DEC : Y n → S ×T ,
and Alice’s private randomness K ∈ K , that satisfies the following properties:

1) |S | ≥ 2nRs and |T | ≥ 2nRt .
2) QS,T,Y(DEC(Y) 6= (S,T )) ≤ ε .
3) � (S; T,Z) < δ.

The following lemma provides an inner bound on Rs.

Lemma 1. Rs includes the set of all (Rs,Rt) pairs such that there exist random variables U and V satisfying V −U − X − (Y,Z),

Rs ≤ �(U; Y |V ) − �(U; Z |V ), and (1)
Rt ≤ �(V ; Y ). (2)

The above lemma gives an achievable region for this problem with strong secrecy (condition 3 of Definition 1). In the
following corollary, we show that for every rate pair in this region, there exists a code for which the K-L divergence between
the distributions QSQT,Z and QS,T,Z is small. This property is useful in the proof of Theorem 1, where we show that codes for
the above secrecy problem lead to suitable codes and faking procedure for our message deniability problem.

Corollary 1. Lemma 1 continues to hold if the condition �(QSQT,Z||QS,T,Z) < δ is added to Definition 1 .

We discuss the proof of Lemma 1 and Corollary 1 in Appendix A.

B. Proof of achievability in Theorem 1

It suffices to prove the achievability of (R,D) pairs satisfying V − U − X − (Y,Z),

0 ≤ R ≤ �(Y ; V ) + D, and
0 ≤ D ≤ �(U; Y |V ) − �(U; Z |V ).

Note that such an (R,D) pair may be expressed as R = Rs + Rt , and D = Rt , where the pair (Rs,Rt) satisfies the inequalities (1)
and (2) specified in Lemma 1. The crux of the achievability proof is the following reduction argument. Let ε , δ > 0 be given.
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Choose n large enough so that there exists a code C of rate (Rs,Rt) satisfying the achievability of Corollary 1 with the chosen
values of ε and δ. For the message deniability problem, we decompose the nR-length message m into two parts – a confidential
part s of nRs bits, and a leaked part t of nRt bits. Next, Alice and Bob encode and decode (s, t) using the code C = (ENC,DEC).
The reliability guarantees for our code thus follow directly from the guarantees on C proved in Corollary 1. The faking
procedure draws s′ independently at random from the distribution QS on {0, 1}nRs and outputs m(F) = (s′, t). For the faking
procedure thus constructed,

�(QM (F) ,Z||QM,Z) = �(QS′,T,Z||QS,T,Z)
= �(QSQT,Z||QS,T,Z)
(a)
≤ δ.

In the above, the bound (a) follows from the guarantees provided in Corollary 1. This shows that (R,D) ∈ Rm.

C. Proof of converse in Theorem 1

The scheme described in the previous section has the following property. Given the part of the message that is revealed to
Judy, the additional information learnt by Judy based on her channel observation is no larger than δ. In particular this implies
that for the scheme presented in our achievability proof, �(M; Z|M (F)) < δ, i.e., given the fake message, the channel observation
and the true message are nearly independent. In our converse proof, we start off by showing that this property must, in fact,
be true for any faking procedure that satisfies the plausibility requirement. Further, we also show that in order for a faking
procedure to be plausible, the entropy for the message and the fake message must be close each other. The following lemma
makes these claims precise.

Lemma 2. Let M (F) be (δ,D)-plausibly deniable for M given observation Z and satisfy M (F) − M − Z. Then, there exists a
non-negative constant λ depending only on PZ |X and |M | such that

�(M; Z|M (F)) ≤ δ + nλ
√
δ, and

|�(M) −�(M (F))| ≤ δ + nλ
√
δ.

Proof:
We explicitly prove only the first inequality. The second inequality follow from a similar reasoning. We first use the definition
of mutual information and Kullback-Leibler Divergence to note that

�(M; Z|M (F)) = �(Z|M (F)) −�(Z|M)

=

∑
(z,m):QZ,M(F) (z,m)>0

QZ,M (F) (z,m) log
QM (F) (m)

QZ,M (F) (z,m)
−

∑
(z,m):QZ,M (z,m)>0

QZ,M(z,m) log
QM(m)

QZ,M(z,m)

=

∑
m:QM(F) (m)>0

QM (F) (m) log QM (F) (m) −
∑
m∈M

QM(m) log QM(m)

−

∑
(z,m):QZ,M(F) (z,m)>0

QZ,M (F) (z,m) log
1

QZ,M (F) (z,m)
+

∑
(z,m):QZ,M (z,m)>0

QZ,M(z,m) log
1

QZ,M(z,m)

= D
(
QM (F) ||QM

)
+

∑
m∈M

[
QM (F) (m) −QM(m)

]
log QM(m)

− D
(
QZ,M (F) ||QZ,M

)
−

∑
(z,m):QZ,M(F) (z,m)>0

QZ,M (F) (z,m) log
1

QZ,M(z,m)
−

∑
(z,m):QZ,M (z,m)>0

QZ,M(z,m) log
1

QZ,M(z,m)

= D
(
QM (F) ||QM

)
+

∑
m∈M

[
QM (F) (m) −QM(m)

]
log QM(m)

− D
(
QZ,M (F) ||QZ,M

)
−

∑
(z,m):QZ,M (z,m)>0

[
QZ,M (F) (z,m) −QZ,M(z,m)

]
log

1
QZ,M(z,m)

. (3)

In the last step we use the fact that {(z,m) : QZ,M (F) (z,m) > 0} ⊆ {(z,m) : QZ,M(z,m) > 0} as �(QZ,M (F) ||QZ,M) < δ < ∞.
Continuing further from Eq. (3) and again using the fact that �(QZ,M (F) ||QZ,M) < δ, we have

�(M; Z|M (F))
(a)
≤ δ −

∑
(z,m):QZ,M (z,m)>0

[
QZ,M (F) (z,m) −QZ,M(z,m)

]
log

1
QZ,M(z,m)
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≤ δ +

∑
(z,m):QZ,M (z,m)>0

∣∣∣QZ,M (F) (z,m) −QZ,M(z,m)
∣∣∣ log

1
QZ,M(z,m)

= δ +

∑
(z,m):QZ,M (z,m)>0

∣∣∣QZ,M (F) (z,m) −QZ,M(z,m)
∣∣∣ log

|M |∑
x:PZ|X(z|x)>0 PZ|X(z|x)QX|M(x|m)

(b)
≤ δ +

∑
(z,m):QZ,M (z,m)>0

∣∣∣QZ,M (F) (z,m) −QZ,M(z,m)
∣∣∣ ∑

x∈X n

PZ|X(z|x)>0

QX|M(x|m) log
|M |

PZ|X(z|x)

≤ δ +

∑
(z,m):QZ,M (z,m)>0

∣∣∣QZ,M (F) (z,m) −QZ,M(z,m)
∣∣∣ ∑

x∈X n

PZ|X(z|x)>0

QX|M(x|m) max
x′:PZ|X(z|x′)>0

log
|M |

PZ|X(z|x′)

≤ δ +

∑
(z,m):QZ,M (z,m)>0

∣∣∣QZ,M (F) (z,m) −QZ,M(z,m)
∣∣∣ ∑

x∈X n

PZ|X(z|x)>0

QX|M(x|m)n log
(|M |)1/n

min(z,x):PZ |X (z|x)>0 PZ |X (z|x)

(c)
≤ δ + n

√
2δ

[
log |M | − log

1
min(z,x):PZ |X (z|x)>0 PZ |X (z|x)

]
.

In the above, (a) follows by using the fact that M (F) is (δ,D)-plausibly deniable for M given Z to bound the first term in (3),
noting that QM (m) equals 1/|M | to conclude that the second term is zero, and applying the non-negativity of the Kullback-Leibler
divergence. The inequality (b) is obtained by using Jensen’s inequality. Finally, (c) follows applying Pinsker’s inequality to
bound the variational distance between the distributions QZ,M (F) and QZ,M . �

Proof of converse of Theorem 1:
Let ε , δ > 0. We begin by obtaining n-letter bounds on D and R for any (ε ,R)-reliable and (δ,D)-plausibly deniable code. To
this end, from the definition and Lemma 2, there exists γ = γ(ε , δ) > 0 such that lim(ε ,δ)→(0,0) γ = 0, and

nD ≤ �(M (F) |M)
= �(M |M (F)) +�(M (F)) −�(M)
≤ �(M |M (F)) + nγ
(a)
≤ �(M; Y|M (F)) + 2nγ
≤ �(M; Y|M (F)) − �(M; Z|M (F)) + 3nγ. (4)

In the above, (a) follows by applying Fano’s inequality and letting γ be at least as large as ε . Next, Applying we apply Fano’s
inequality to bound the rate R as

nR ≤ �(M; Y) + nγ
= �(M (F),M; Y) + nγ
= �(M (F); Y) + �(M; Y|M (F)) + nγ
≤ �(M (F); Y) + �(M; Y|M (F)) − �(M; Z|M (F)) + 2nγ, (5)

where the second equality follows from the fact that M (F) − M − Y is a Markov chain. Next, we obtain single-letter versions of
the above expressions. Let T be uniformly distributed over [1 : n] and independent of (M,M (F),X,Y,Z). From (4),

D ≤
1
n

[
�(M; Y|M (F)) − �(M; Z|M (F))

]
+ 3γ

(a)
=

1
n

n∑
i=1

[
�(M; Yi |Y i−1,Zn

i+1,M
(F)) − �(M; Zi |Y i−1,Zn

i+1,M
(F))

]
+ 3γ

= �(M; YT |YT−1,Zn
T+1,M

(F),T ) − �(M; ZT |YT−1,Zn
T+1,M

(F),T ) + 3γ

where (a) follows from Csiszár’s sum identity [16]. Also,

�(M (F); Y) =
n∑

i=1
�(M (F); Yi |Y i−1)

≤

n∑
i=1
�(M (F),Y i−1,Zn

i+1; Yi)

= n�(M (F),YT−1,Zn
T+1; YT |T )

≤ n�(M (F),YT−1,Zn
T+1,T ; YT ).
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Hence, from (5),

R ≤ �(M (F),YT−1,Zn
T+1,T ; YT ) + �(M; YT |YT−1,Zn

T+1,M
(F),T ) − �(M; ZT |YT−1,Zn

T+1,M
(F)) + 2γ.

Next, let V = (M (F),YT−1,Zn
T+1,T ), U = (V,M), X = XT , Y = YT and Z = ZT . Then, clearly, V − U − X − (Y,Z). Substituting

above and letting ε and δ be arbitrarily small (but positive) shows that any achievable rate-deniability pair (R,D) must satisfy

0 ≤ R ≤ �(Y ; V ) + �(U; Y |V ) − �(U; Z |V ), and
0 ≤ D ≤ min {R, �(U; Y |V ) − �(U; Z |V )}

for some random variables U and V satisfying the Markov chain V − U − X − (Y,Z).
Finally, we argue that it suffices to consider random variables U and V such that |U | ≤ (|X | + 1) (|X | + 2) and |V | ≤ |X |+2.

The proof follows along the cardinality bounding argument for the broadcast channel with confidential messages [3, pp. 347-348].
In particular, consider auxiliary variables V and U, that take values in sets V and U respectively, and are jointly distributed with
X,Y , and Z such that PVUXYZ (v, u, x, y, z) = PV (v)PU |V (u|v)PX |U (x|u)PYZ |X (y, z|x) for every (v, u, x, y, z) ∈ V ×U ×X ×Y ×Z .
The first step in the proof is to show that there exist auxiliary variables Ṽ and Ũ, that take values in sets Ṽ and U
respectively, are jointly distributed with X,Y , and Z such that PṼ ŨXYZ (v, u, x, y, z) = PṼ (v)PU |V (u|v)PX |U(x|u)PYZ |X(y, z|x) for
every (v, u, x, y, z) ∈ Ṽ ×U ×X × Y ×Z , where, PṼ satisfy the following constraints:∑

v∈Ṽ

PṼ (v)
∑
u∈U

PU |V (u|v)PX |U (x|u) =
∑
v∈V

PV (v)
∑
u∈U

PU |V (u|v)PX |U (x|u) = PX (x) for all x ∈X , (6)∑
v∈Ṽ

PṼ (v)�(Y |V = v) =
∑
v∈Ṽ

PV (v)�(Y |V = v), (7)

∑
v∈Ṽ

PṼ (v)
�(Y |V = v) −

∑
u∈U

PU |V (u|v)�(Y |U = u)
 =∑

v∈V

PV (v)
�(Y |V = v) −

∑
u∈U

PU |V (u|v)�(Y |U = u)
 , (8)

∑
v∈Ṽ

PṼ (v)
�(Z |V = v) −

∑
u∈U

PU |V (u|v)�(Z |U = u)
 =∑

v∈V

PV (v)
�(Z |V = v) −

∑
u∈U

PU |V (u|v)�(Z |U = u)
 , and (9)

|Ṽ | ≤ |X | + 2. (10)

In the above, constraints. (6) and (7) ensure that �(Y ; Ṽ ) equals �(Y ; V ), (8) and (9) ensure that �(Ũ; Y |Ṽ ) − �(Ũ; Z |Ṽ ) equals
�(U; Y |V ) − �(U; Z |V ), and Eq. (10) follows from Caratheodory’s theorem (c.f. [17, Lemma 3]) as Eqs. (6)-(9) imply at most
|X | + 2 constraints on PṼ . Note that the number of constraints in our setting is one less than that in [3] as we do not require
�(Z; Ṽ ) to equal �(Z; V ). Next, using a similar reasoning, the next step is to show that there exists an auxiliary variable Û that takes
values in a set Û , is jointly distributed with Ṽ , X,Y , and Z such that PṼ ÛXYZ (v, u, x, y, z) = PṼ (v)PÛ |Ṽ (u|v)PX |U (x|u)PYZ |X (y, z|x)
for every (v, u, x, y, z) ∈ Ṽ × Û ×X × Y ×Z , where, for each v ∈ Ṽ , PÛ |Ṽ satisfies the following constraints:

∑
u∈Û

PÛ |Ṽ (u|v)PX |U (x|u) =
∑
u∈U

PU |Ṽ (u|v)PX |U (x|u) = PX |Ṽ (x|v), (11)∑
u∈U

PÛ |Ṽ (u|v)�(Y |U = u) =
∑
u∈U

PU |Ṽ (u|v)�(Y |U = u), (12)∑
u∈U

PÛ |Ṽ (u|v)�(Z |U = u) =
∑
u∈U

PU |Ṽ (u|v)�(Z |U = u), and (13)∣∣∣∣{u ∈ Û : PÛ |Ṽ (u|v) > 0
}∣∣∣∣ ≤ |X | + 1. (14)

Here, constraint (11) ensures consistency of the marginals of PṼ ÛXYZ and PṼ ŨXYZ with respect to (Ṽ , X,Y,Z), constraints (12)
and (13) (along with (11)) ensure that �(Û; Y |Ṽ ) − �(Û; Z |Ṽ ) equals �(Ũ; Y |Ṽ ) − �(Ũ; Z |Ṽ ), and Eq. (14) again follows from
Caratheodory’s theorem as Eqs. (11)-(13) imply at most |X |+ 1 constraints on PÛ |Ṽ (·|v). Finally, summing the bound from (14)
over all v ∈ Ṽ , we obtain that it suffices to let |Û | be at most (|X | + 1) (|X | + 2). This completes the proof of the converse. �

D. Discussions

1) Plausible deniability vs Secrecy: In the following discussion, we compare the capacity region Rm to rate regions for
two standard information-theoretic secrecy problems – the Wire-Tap Channel [2] and Broadcast Channel with Confidential
messages [3] (see Figure 4). To this end, we first adapt the following definitions from [2], [3].

Definition 2 (Rate-Equivocation Region). For a channel PY,Z |X , the rate-equivocation region Requiv is the set of all non-negative
(R,Re) pairs such for any ε > 0 and large enough block-length n, there exists a code for the Wire-Tap Channel problem
(Figure 4a) when the message |M | ≥ 2nR, QM(m) = 1/|M | for each m ∈M , QM,X,Y(m 6= m̂) < ε , and �(M |Z) ≥ nRe.
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m̂ = DEC(y)

y // Bob

OO

m ∈M // Alice // x p(y, z|x)

11

,, z // Judy

��

m =?

(a) The Wire-Tap Channel

(m̂0, m̂1) = DECY (y)

y // Bob

OO

(m0,m1) ∈M0 ×M1 // Alice // x p(y, z|x)

11

,, z // Judy

��

ˆ̂m0 = DECZ (z),m1 =?

(b) Broadcast Channel with Confidential Messages

Fig. 4: In the Wire-Tap Channel problem (first introduced by [2] and explored further in [3]), the goal for Alice is to transmit a
confidential message m to the legitimate receiver Bob while ensuring that the “leakage” to the eavesdropper Judy (measured
through the rate of equivocation) is smaller than a threshold. The capacity region for this problem (see Definition 2 exhibits a
tradeoff between the message rate R and the equivocation rate Re. The Broadcast Channel with Confidential messages setup
(introduced by [3]) generalizes the Wire-Tap Channel model to include a “public” message m0 that is meant to be decoded by
both Bob and Judy. Similarly to the Wire-Tap Channel, this setup also includes a confidential message m1 that is meant to be
decoded by only Bob while ensuring that the leakage to Judy is smaller than a threshold. In general, the capacity region for
this setup exhibits a tradeoff between three parameters – the rate of the public message R0, the rate of the confidential message
R1, and the equivocation rate. In our discussion, we only consider a two-dimensional projection of this region (see Definition 3)
to the set of (R0,R1) pairs that ensure that the equivocation about the message m1 is arbitrarily close to the entropy of m1. The
reader is referred to [4] for an excellent introduction to these and other information-theoretic security problems.

Definition 3 (Sum Capacity with Confidential and Public messages). For a channel PY,Z |X , the sum capacity region with
confidential and public messages Rbcc is the set of all non-negative (R,R1) pairs with R ≥ R1 for which, given any ε > 0, for a large
enough blocklength n, there exists a code for the Broadcast Channel with Confidential Messages setup (Figure 4b) with |M0| ≥

2n(R−R1), |M1| ≥ 2nR1 , QM0,M1 (m0,m1) = 1/|M0||M1| for each (m0,m1) ∈M0×M1, QM0,M1,X,Y,Z

(
(M̂0,

ˆ̂M0, M̂1) 6= (M0,M0,M1)
)
<

ε and �(M1|Z) ≥ nR1 − ε .

We note that in the Message Deniability setting, the existence of (δ,D)-plausibly deniable faking procedure implies that the
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equivocation of M given Z is no smaller than D − O(
√
δ).

Proposition 1. Let M (F) be (δ,D)-plausibly deniable for M given observation Z and satisfy M (F) − M − Z. Then, there exists µ
depending only on PZ |X such that

�(M |Z) ≥ nD − nµ
√
δ − 2δ.

Proof:
The above proposition is a direct consequence of Lemma 2. Specifically, note that there exists λ = λ(PZ |X ) such that

�(M |Z) ≥ �(M |Z) + �(M; Z|M (F)) − δ − nλ
√
δ

= �(M |Z) +�(M |M (F)) −�(M |Z,M (F)) − δ − nλ
√
δ

≥ �(M |M (F)) − δ − nλ
√
δ

= �(M (F) |M) +�(M) −�(M (F)) − δ − nλ
√
δ

≥ nD − 2δ − 2nλ
√
δ.

�
The above proposition leads to the following corollary.

Corollary 2. Rbcc ⊆ Rm ⊆ Requiv.

Proof:
As proved in [3], Rbcc is the set of all (R,R1) pairs such that there exist random variables V and U satisfying V −U − X − (Y,Z)
and

0 ≤ R ≤ min{�(V ; Y ), �(V ; Z)} + �(U; Y |V ) − �(U; Z |V )
0 ≤ R0 ≤ min{�(V ; Y ), �(V ; Z)}

The first inclusion, Rbcc ⊆ Rm, follows directly by comparing our characterization of Rm with the above capacity expression.
Note that in the setting of [3], the public message of rate R0 is intended to be decoded by both the receivers, while in our
achievability proof of Theorem 1, we require that it be decoded only by Bob. This allows us to operate with public message
rates as high as �(V ; Y ), rather than min {�(V ; Y ), �(V ; Z)} as in [3]. Next, applying Proposition 1 to a sequence of codes with δ
approaching zero, we obtain that every (R,D) ∈ Rm also lies in Requiv. �

The following example illustrates that both inclusions in the above corollary may be strict.

Example 2 (Binary Erasure Eavesdropper). Consider the example of Figure 1. Let X = Y = {0, 1}, Z = {0,⊥, 1}, and

PYZ |X (yz|x) =


1 − p if (y, z) = (x, x),
p if (y, z) = (x,⊥), and
0 otherwise.

As this is a degraded channel, it suffices to let the variable U in Theorem 1 be equal to X. Further, using the fact that Y = X
and H(X |Z,V ) = pH(X |V ) (as the channel from X to Z is a Binary Erasure Channel with erasure probability p), we obtain the
following characterisation for Rm. Rm is the set of (R,D) pairs such that there exists a random variable V with V − X − Z ,

0 ≤ R ≤ �(X) − (1 − p)�(X |V ), and
0 ≤ D ≤ min{R, p�(X |V )}.

Let αX,V = H(X |V )/H(X). Thus, �(X) − (1 − p)�(X |V ) = (1 − αX,V (1 − p))�(X), and p�(X) = pαX,V�(X). Note that αX,V may
take any value in the interval [0, 1] and the maximum value of �(X) equals 1. Thus, Rm consists of (R,D) pairs such that for
some α ∈ [0, 1], 0 ≤ R ≤ (1 − α(1 − p)) and 0 ≤ D ≤ min{R, αp}. Simplifying further, we conclude that the region Rm consists
of (R,D) pairs such that

0 ≤ R ≤ 1

0 ≤ D ≤ min
{

p(1 − R)
1 − p

,R
}
.

We next compare this region with the regions Rbcc and Requiv. For the channel considered in this example, the Rate-Equivocation
region consists of all (R,Re) pairs satisfying

0 ≤ R ≤ 1
0 ≤ Re ≤ min{p,R}.



13

Next, the region Rbcc consists of all (R,R1) pairs satisfying

0 ≤ R ≤ 1

0 ≤ R1 ≤ min
{

p(1 − p − R)
1 − 2p

,R
}
.

Comparing the above regions, it is evident that the inclusion relation in Corollary 2 may be strict. The plot shown in Figure 5
compares these regions. /

R

D, R1, Re

1p

p

1 − p

Requiv

Rbcc

Rm

Fig. 5: Comparision of Rm with Rbcc and Requiv in Example 2.

2) Rate of deniability as the Equivocation rate: Even though we define the rate of deniability as an operational property
of the faking procedure, surprisingly, it also has a rough interpretation as the rate of equivocation given the eavesdropper
channel output as well as the fake message. This is especially interesting in light of Example 2 that shows that the rate of
deniability may be strictly smaller than the equivocation rate at the eavesdropper in the Wire-Tap Channel setting. The following
proposition states this property formally.

Proposition 2. Let M (F) be (δ,D)-plausibly deniable for M given observation Z and satisfy M (F) − M − Z. Then, there exists
µ ≥ 0 depending only on PYZ |X such that

nD − δ − nµ
√
δ ≤ �(M |M (F),Z) ≤ nD + δ + nµ

√
δ.

Proof:
Note that

�(M |M (F),Z) = �(M |M (F)) − �(M; Z|M (F))
= �(M (F) |M) −�(M (F)) +�(M) − �(M; Z|M (F))
= nD −�(M (F)) +�(M) − �(M; Z|M (F)).

Applying Lemma 2 and the non-negativity of mutual information to the terms on the left hand side above gives the claimed
result. �

V. TRANSMITTER AND RECEIVER DENIABILITY

Before formally proving Theorems 2 and 3, we introduce the notion of zero information variables that is central to our
discussion of the achievability proofs presented in this section.

A. Zero Information Variables

For a random variable W ∼ PW and a channel PZ |W , we define the following relation: for w1,w2 ∈ W , we say that w1 ∼ w2 if
PZ |W (z|w1) = PZ |W (z|w2), for all z ∈ Z . It is evident that this is an equivalence relation. Let U0 represent the set of equivalence
classes of this relation. We define the zero-information random variable U0 of W w.r.t. PZ |W as a random variable taking
values in U0 and jointly distributed with W and Z such that W ∈ U0 with probability 1. For each w ∈ W , we will call the
corresponding u0 its zero-information symbol.

Note that, U0 is a function of W . Intuitively, the zero information symbol u0 of w is the largest subset of W such that
each w′ ∈ uo is statistically indistinguishable from w given any z ∈ Z with PZ |W (z|w) > 0. Figure 6 shows an example
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u0,1

u0,2

w1

w2

w3

z1

z2

z3

U0

W Z

PZ |W

w1

w2

w3

0.3

0.7

0.3

0.7

0.4

0.6

Fig. 6: Let W and Z be random variables distributed on W = {w1,w2,w3} and Z = {z1, z2, z3} respectively with PZ |W specified
according to the edge labels in the above figure. Notice that w1 and w2 are indistinguishable to an observer who has access to
only Z as PZ |W (z|w1) = PZ |W (z|w2) for every z ∈ Z . Hence, the zero-information variable for the distribution PZ |W takes the
values u0,1 ≡ {w1,w2} and u0,2 ≡ {w3}.

of a zero-information variable. Note that U0 − W − Z (since U0 is a function of W ), W − U0 − Z (by definition), and
PZ |W (z|w) = PZ |W,U0 (z|w, uo) = PZ |U0 (z|uo) if uo is the zero-information symbol of w.

In our achievability proofs for Transmitter and Receiver deniability, the use of zero-information variables considerably
simplifies the proof. In particular, we argue that the rate regions claimed achievable in Theorems 2 and 3 it suffices to consider
zero information variables instead of the general class of auxiliary variables presented in the theorem statements. The following
lemma shows that such a choice does not lead to any loss of optimality.

Lemma 3. Suppose W − U − Z and U − W − (V,Z) are Markov chains. Then �(W ; V |U) ≤ �(W ; V |U0), where U0 is the
zero-information random variable of W w.r.t. PZ |W .

Proof:
We first show that the Markov chains W −U −Z and U −W −Z imply that U0 must also be a function of U. To show this, it is
enough to show that for w1,w2 ∈ W with PW (w1),PW (w2) > 0, if there is a z ∈ Z such that PZ |W (z|w1) 6= PZ |W (z|w2), then for
every u ∈ U at least one of PU |W (u|w1) and PU |W (u|w2) must be zero. Suppose, to the contrary both PU |W (u|w1),PU |W (u|w2) > 0.
Then

PZ |W (z|w1) (a)
= PZ |W,U (z|w1, u)
(b)
= PZ |U (z|u)
(c)
= PZ |W,U (z|w2, u)
(d)
= PZ |W (z|w2),

where (a) follows from the Markov chain U − V − Z and the fact that PW (w1)PU |W (u|w1) > 0; (b) follows from the Markov
chain W −U − Z; (c) follows from the Markov chain W −U − Z and the fact that PW (w2)PU |W (u|w2) > 0; and (d) follows from
the Markov chain U −W − Z . But, this is a contradiction.

Thus, U0 is a function of U. From its definition, U0 is a function of W . Hence,

�(W ; V |U) = �(W ; V |U,U0)
≤ �(U,W ; V |U0)
= �(W ; V |U0) + �(U; V |W,U0)
(a)
= �(W ; V |U0) + �(U; V |W )
(b)
= �(W ; V |U0),

where (a) uses the fact that U0 is a function of W and (b) follows from U −W − V being a Markov chain. �
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B. Transmitter Deniability

We begin our proof for Theorem 2 by stating two lemmas that lead to our converse arguments. The following lemma mirrors
Lemma 2 from the message deniability setting and derives necessary conditions for any faking procedure to be plausible with
respect to the eavesdropper’s observation. In particular, we show that for any plausibly deniable faking procedure, the true
codeword and the eavesdropper observation must be nearly conditionally independent given the fake codeword. Further, the
joint distribution of the true and fake codewords must be such that it allows exchanging M for M (F) (and vice versa) does not
changes entropic terms involving these by at most δ.

Lemma 4. Let X(F) be (δ,D)-plausibly deniable for X given observation Z and satisfy X(F) −X−Z. Then, there exists a constant
κ depending only on PZ |X such that

�(X; Z|X(F)) ≤ nκ
√
δ,∣∣∣�(X|X(F)) −�(X(F) |X)

∣∣∣ ≤ nκ
√
δ,∣∣∣�(X) −�(X(F))

∣∣∣ ≤ nκ
√
δ, and∣∣∣�(X|X(F),M) −�(X(F) |X,MSG(X(F)))

∣∣∣ ≤ nκ
√
δ.

Proof:
We explicitly only prove the first inequality. The other inequalities follow from a similar reasoning.

�(X; Z|X(F)) = �(Z|X(F)) −�(Z|X)

=

∑
(z,x):QZ,X(F) (z,x)>0

QZ,X(F) (z, x) log
QX(F) (x)

QZ,X(F) (z, x)
−

∑
(z,x):QZ,X(z,x)>0

QZ,X(z, x) log
QX(x)

QZ,X(z, x)

= D
(
QX(F) ||QX

)
− D

(
QZ,X(F) ||QZ,X

)
+

∑
(z,x):QZ(F) ,X(z,x)>0

QZ,X(F) (z, x) log
QX(x)

QZ,X(z, x)
−

∑
(z,x):QZ,X(z,x)>0

QZ,X(z, x) log
QX(x)

QZ,X(z, x)

(a)
= D

(
QX(F) ||QX

)
− D

(
QZ,X(F) ||QZ,X

)
+

∑
(z,x):QZ,X(z,x)>0

QZ,X(F) (z, x) log
QX(x)

QZ,X(z, x)
−

∑
(z,x):QZ,X(z,x)>0

QZ,X(z, x) log
QX(x)

QZ,X(z, x)

= D
(
QX(F) ||QX

)
− D

(
QZ,X(F) ||QZ,X

)
+

∑
(z,x):QZ,X(z,x)>0

[
QZ,X(F) (z, x) −QZ,X(z, x)

]
log

1∏n
i=1 PZ |X (zi |xi)

(b)
≤ δ + n

√
2δ max

(z,x):PZ |X (z|x)>0
log

1
PZ |X (z|x)

.

In the above, step (a) uses the fact that
{
(z, x) : QZ(F) ,X(z, x) > 0

}
⊆

{
(z, x) : QZ,X(z, x) > 0

}
(as D

(
QZ,X(F) ||QZ,X

)
< δ < ∞). In

step (b), we use the fact that X(F) is (δ,D)-plausibly deniable X for Z. The bound on the first term follow from definition, the
second from non-negativity of K-L divergence, while the last term is bounded by applying Pinsker’s inequality. �

The following lemma follows from a standard chain of information inequalities with Lemma 4 as a starting point and
single-letterizing the resulting expressions.

Lemma 5. Let C be an (ε ,R)-reliable code of blocklength n for a channel PYZ |X , and let X(F) be (δ,D)-plausibly deniable for
X given observation Z and satisfy X(F) − X − Z. Then, there exists random variables U, X,Y , and Z satisfying U − X − (Y,Z)
and a constant γ = γ(ε , δ) > 0 satisfying lim(ε ,δ)→(0,0) γ = 0 such that

R ≤ �(X; Y ) + γ,
D ≤ �(X; Y |U) + γ, and
�(X; Z |U) ≤ γ.

Proof:
Note that Y − X − X(F). We use Lemma 4 below.

nD ≤ �(MSG(X(F))|X)
= �(X(F) |X) −�(X(F) |X,MSG(X(F)))
(a)
≤ �(X|X(F)) −�(X|X(F),MSG(X)) + 2nκ

√
δ

≤ �(X|X(F)) −�(X|Y,X(F),MSG(X)) + 2nκ
√
δ

= �(X|X(F)) −�(X|Y,X(F)) + �(X; MSG(X)|Y,X(F)) + 2nκ
√
δ

(b)
≤ �(X; Y|X(F)) + nε + 2nκ

√
δ
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(c)
≤ �(X; Y|X(F)) − �(X; Z|X(F)) + nε + 3nκ

√
δ

=

n∑
i=1

[
�(X; Yi |X(F),Y i−1) − �(X; Zi |X(F),Zn

i+1)
]
+ nε + 3nκ

√
δ

(d)
=

n∑
i=1

[
�(X; Yi |X(F),Y i−1,Zn

i+1) − �(X; Zi |X(F),Y i−1,Zn
i+1)

]
+ nε + 3nκ

√
δ

=

n∑
i=1

[
�(Yi |X(F),Y i−1,Zn

i+1) −�(Yi |X,X(F),Y i−1,Zn
i+1) −�(Zi |X(F),Y i−1,Zn

i+1) +�(Zi |X,X(F),Y i−1,Zn
i+1)

]
+ nε + 3nκ

√
δ

(e)
=

n∑
i=1

[
�(Yi |X(F),Y i−1,Zn

i+1) −�(Yi |Xi ,X(F),Y i−1,Zn
i+1) −�(Zi |X(F),Y i−1,Zn

i+1) +�(Zi |Xi ,X(F),Y i−1,Zn
i+1)

]
+ nε + 3nκ

√
δ.

In the above, (a) and (c) follow from Lemma 4, (b) is a consequence of Fano’s inequality, (d) is an application of Csiszár’s
sum identity [16], and (e) relies on the memoryless nature of the channel to argue that (Yi ,Zi) − Xi − (X(F),Y i−1,Zn

i+1, X
i−1, Xn

i+1)
is a Markov chain. Next, we let Ui , (X(F),Y i−1,Zn

i+1), and let T be a random variable independent of (M,X(F),X,Y,Z) that is
uniformly distributed over [1 : n]. Note that Ui − Xi − (Yi ,Zi) is a Markov chain. The above inequalities are continued further as

nD ≤
n∑

i=1

[
�(Yi |Ui) −�(Yi |Xi ,Ui) −�(Zi |Ui) +�(Zi |Xi ,Ui)

]
+ nε + 3nκ

√
δ

= n�(XT ; YT |UT ,T ) − n�(XT ; ZT |UT ,T ) + nε + 3nκ
√
δ.

Next, note that

�(XT ; ZT |UT ,T )

=
1
n

n∑
i=1
�(Xi; Zi |X(F),Y i−1,Zn

i+1)

=
1
n

n∑
i=1

[
�(Zi |X(F),Y i−1,Zn

i+1) −�(Zi |Xi ,X(F),Y i−1,Zn
i+1)

]
(a)
=

1
n

n∑
i=1

[
�(Zi |X(F),Y i−1,Zn

i+1) −�(Zi |X,X(F),Zn
i+1)

]
≤

1
n

n∑
i=1
�(X; Zi |X(F),Zn

i+1)

=
1
n
�(X; Z|X(F))

(b)
< κ
√
δ.

In the above, (a) follows by noting that for each i, Zi − Xi − (X i−1, Xn
i+1,X

(F),Y i−1,Zn
i+1) is a Markov chain due to the

memoryless nature of the channel PZ |X and (b) follows from Lemma 4. Defining random variables (U, X,Y ) with QU,X,Y (u, x, y) =
Q(UT ,T ),XT ,YT (u, x, y), we obtain

D ≤ �(X; Y |U) + ε + 3κ
√
δ.

Notice that QY |X is the same as the channel transition probability PY |X . Further, U − X − (Y,Z) is a Markov chain and
�(X; Z |U) < κ

√
δ. Thus, U satisfies the constraints from the lemma statement. Finally, we bound the rate as follows.

nR = �(M)
(a)
≤ �(X; Y) + nε

≤

n∑
i=1
�(Xi; Yi) + nε

= n�(XT ; YT |T ) + nε
≤ n�(T, XT ; YT ) + nε
= n�(XT ; YT ) + �(T ; YT |XT ) + nε
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(b)
= n�(XT ; YT ) + nε
= n�(X; Y ) + nε .

In the above, (a) follows from Fano’s inequality and (b) from the fact that QYT |(XT ,T )(y|x, t) = PY |X (y|x). Letting γ = ε + 3κ
√
δ

proves the lemma. �
We are now ready to formally prove Theorem 2. The converse essentially follows from the results that we have earlier in

this section. Using these, we show that every achievable (R,D) must satisfy the upper bounds stated in the theorem for some
choice of an auxiliary random variable U satisfying U − X − (Y,Z) and Y − U − Z . For the direct part of the proof, we prove
the achievability of all (R,D) that satisfy upper bounds provided by the theorem statement when U is the zero information
variable of X with respect to PZ |X . We note that restricting the choice of U to be the zero information variable entails no loss
in optimality (as shown in Lemma 3).

Proof of Theorem 2:
The converse for Theorem 2 follows by invoking Lemma 5 for a vanishing sequence of δ’s and by applying standard continuity
arguments from Lemma 7 to show that any (R,D) ∈ Rx must satisfy

0 ≤ R ≤ �(X; Y ) and (16)
0 ≤ D ≤ �(X; Y |U) (17)

for some random variable U satisfying the Markov chains U − X − (Y,Z) and X − U − Z . Now, applying Lemma 3, we note
that �(X; Y |U) ≤ �(X; Y |U0), where U0 ∈ U0 is the zero information variable of X w.r.t. PZ |X . Further, by definition, |U0| ≤ |X |.
Thus, to describe the region given by Eqs. (16) and (17), it suffices to consider auxiliary variables U whose support is of size
no larger than |X |.

We now give a proof sketch for the achievability of claimed rate region. Our achievability uses a superposition code for the
broadcast channel PY,Z |X . To this end, choose random variables (X,U) satisfying the conditions in the theorem with U as the
zero information variable of X w.r.t. PZ |X . Recall that Lemma 3 guarantees that there is no loss of optimality in choosing U as
the zero information variable of X w.r.t. PZ |X . In the following, we prove the achievability of the rate pairs that lie on the
boundary of the claimed region, i.e., we consider (R,D) where R = �(X; Y ) − 2ε and D = �(X; Y |U) − ε .

We consider a superposition code via a standard random coding argument. For any ε > 0, first, we generate C̃ =

{u(1), . . . ,u(2n(R−D))} by drawing ui( j) independently from the distribution PU for each i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , 2n(R−D)}.
Next, for each j ∈ {1, 2, . . . , 2n(R−D)}, we generate a sub-code C j = {x( j, 1), . . . , x( j, 2nD)} by drawing xi( j, k) independently from
the distribution PX |U (·|ui( j)) for each i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , 2nD}. We then form the codebook C = {x(C )(m) : m ∈M }
by taking the union ∪ j∈{1,2,...,2n(R−D)}C j . Finally, the faking procedure simply accepts the transmitted codeword (say, x) and
outputs a uniformly drawn codeword from the sub-code that contains x (say, C j).

Since the reliability of the above code follows from standard arguments for superposition coding (see [16] for example), we
skip the detailed analysis here. The plausible deniability for the code follows directly from the construction by noting that for
every x ∈ C j , u( j) is precisely the sequence of the zero information symbols of x w.r.t. PZ |X . Thus, for any x, x′ ∈ C j and
z ∈ Z n, QX|Z(x|z) = QX|Z(x′|z). �

C. Receiver Deniability

In this section, we give the proof of our achievability for Receiver Deniability in the physically degraded channel setting. As
earlier, Lemma 3 shows that the rate region claimed in Theorem 3 is unchanged if V is restricted to be the zero information
variable of Y with respect to PYZ |X . In the following, we prove the achievability of (R,D) that satisfy the bounds in Theorem 3
with respect to an auxiliary variable V that is the zero information variable of Y with respect to PYZ |X .

Proof of Theorem 3:
Let ε > 0, fix a blocklength n, set

R = �(X; Y ) − ρ (18)

for some ρ > ε , and |M | = 2nR. Let V be the zero information variable of Y with respect to PYZ |X . Our achievability uses a
random coding argument. Consider the following codebook generation procedure and the corresponding faking procedure.

a) Codebook generation: The codebook C is a multiset {x(C )(m) : m ∈M } that is generated by drawing each x(C )
i (m)

independently from the distribution PX . Let PrC be the probability distribution over the random generation of the codebook.
b) Encoding: For a message m ∈M , the encoder transmits x(C )(m).
c) Decoding: Upon receiving y, the decoder looks for m ∈M such that (x(C )(m), y) ∈ A (n)

ε (X,Y ).
d) Faking procedure: Given y, the faking procedure first generates the unique v where, for each i, vi represents the zero

information symbol of yi w.r.t. PZ |Y . Next, Y(F) is drawn from Y n according to the conditional distribution QY(F) |V = QY|V. Note
that the distribution QY|V depends on both the codebook as well the channel.
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e) Analysis: Note that Y(F) −V− (Y,X,Z) is a Markov chain. For similar reasons as in transmitter deniability, these ensure
that the parameter δ is zero. To this end, we first observe that for any (y, v, z) ∈ Y n × V n ×Z n,

QYVZ(y, v, z) (a)
= QYV(y, v)QZ|Y(z|y)
(b)
= QY|V(y|v)QV(v)PZ|Y(z|y)
(c)
= QY|V(y|v)QV(v)PZ|V(z|v),

and

QY(F)VZ(y, v, z) =
∑

y′∈Y n

QY,Y(F)VZ(y′, y, v, z)

(d)
=

∑
y′∈Y n

QY|V(y′|v)QY(F) |V(y|v)QV(v)QZ|Y(z|y′)

(e)
=

∑
y′∈Y n

QY|V(y′|v)QY(F) |V(y|v)QV(v)PZ|V(z|v)

= QY(F) |V(y|v)QV(v)PZ|V(z|v)
( f )
= QY|V(y|v)QV(v)PZ|V(z|v)

= QYVZ(y, v, z).

In the above, (a) and (d) follow from the dependence structure of the random variables Y,Y(F),V, and Z, (b) is a consequence
of the channel being physically degraded, (c) and (e) are true since V is the zero information variable of Y w.r.t. PY |Z , and ( f )
is implied by the faking procedure used to generate Y(F). Thus,

δ = �(QY(F)Z||QYZ)
≤ �(QY(F)VZ||QYVZ)
= 0.

Next, we analyze the rates (R,D) that our code and faking procedure can achieve. Let α ∈ (0, 1). The reliability analysis is
similar to Shannon’s channel coding theorem. Let G1 , {C : QM,X,Y(M 6= M̂) < ε } denote the class of codebooks that have an
average error probability smaller than ε . Following the standard proof of reliability of random codes, there exists n1 = n1(α)
such that as long as R < �(X; Y ) and n > n1,

PrC (G1) ≥ 1 − α/4. (19)

In the following we assume that C ∈ G1 and prove that, with a high probability over the codebook generation, the rate of
deniability for our faking procedure is large enough for our theorem. To this end, the following chain of inequalities give a
lower bound on D for the code C .

nD = �(DEC(Y(F))|Y)
= �(DEC(Y(F))|V Y) (20)
= �(DEC(Y(F))|V) (21)
= �(DEC(Y)|V) (22)
≥ �(DEC(Y); X|V)
= �(DEC(Y),Y; X|V) − �(X; Y|V,DEC(Y))
= �(X; Y|V) − �(X; Y|V,DEC(Y))
≥ �(X; Y|V) − nε . (23)

In the above, Eq. (20) follows from the fact that V is a function of Y, (21) is due to the Markov chain Y(F) − V − Y, and (22)
follows from the faking procedure inducing QY(F) |V = QY|V. Fano’s inequality implies 23 (assuming that C ∈ G1). Note that the
above bound is a multi-letter bound that depends on the specific codebook C . A single letter bound depending only on the
probability distribution of the single letter random variables follows from concentration arguments over the codebook generation
process. In the following, we argue that, with high probability over the generation of C , �(X; Y|V) ≥ n�(X; Y |V ) − nε for a
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large enough n. For every v ∈ V n, let us define the multi-set Cv , {x ∈ C : (x, v) ∈ A (n)
ε (X,V )}.4 Further, for every x ∈X n,

let Mx , {m ∈M : x(C )(m) = x}. First, note that

�(X; Y|V) ≥ �(X|V) − nε

by Fano’s inequality (assuming that C ∈ G1). Then, given a code C , there exists ε ′ = ε ′(ε ) satisfying limε→0 ε
′ = 0 and

�(X|V) ≥
∑

(x,v)∈A (n)
ε (X,V )

QX,V(x, v) log
QV(v)

QX,V(x, v)

=
∑

(x,v)∈A (n)
ε (X,V )

QX(x)PV|X(v|x) log

∑
x′∈C

2−nR PV|X(v|x′)

QX(x)PV|X(v|x)

≥
∑

(x,v)∈A (n)
ε (X,V )

QX(x)PV|X(v|x) log

∑
x′∈Cv

2−nR PV|X(v|x′)

QX(x)PV|X(v|x)

(a)
≥

∑
(x,v)∈A (n)

ε (X,V )

QX(x)PV|X(v|x) log

∑
x′∈Cv

PV|X(v|x′)

|Mx| PV|X(v|x)

(b)
≥

∑
(x,v)∈A (n)

ε (X,V )

QX(x)PV|X(v|x) log
|Cv|

|Mx|
− 2nε ′. (24)

In the above, (a) is obtained by expressing QX(x) as 2−nR|Mx|. (b) follows by noting that for every (x, v) belonging to A (n)
ε (X,V ),∣∣∣∣log 1

PV|X(v|x) − n�(V |X)
∣∣∣∣ < nε ′ for some ε ′ > 0 that can be made arbitrarily close to 0 as ε approaches 0. We now show that,

with high probability over the random generation of C , the expression in (24) is lower bounded in the desired manner. To this
end, define the following three desirable events over the codebook generation process.

G2 ,

C :
∑

(x,v)∈A (n)
ε (X,V )

QX(x)PV|X(v|x) > (1 − ε )


G3 ,

{
C : |Cv| ≥ 2n(R−�(X;V )−ε ′′) ∀ v ∈ A (n)

ε (V )
}

G4 ,
{
C : |Mx| < 2nε ∀ x ∈ A (n)

ε (X)
}
.

In the above, ε ′′ > 0 is a constant that is specified later. Note that if C ∈ ∩4
i=1Gi , then Eq. (23)-(24) imply that

D ≥
1
n

(1 − ε ) log
2n(R−�(X;V )−ε ′′)

2nε − 2(ε + ε ′)

=
(
(1 − ε )(�(X; Y |V ) − ρ − ε − ε ′′) − 2(ε + ε ′)

)
= �(X; Y |V ) − (ρ + 3ε + ε�(X; Y |V ) + 2ε ′ + ε ′′)
≥ �(X; Y |V ) − (ρ + 3ε + ε log |X | + 2ε ′ + ε ′′). (25)

We next lower bound the probabilities of each of the above events.
i) Event G2: First observe that ∑

(x,v)∈A (n)
ε (X,V )

QX(x)PV|X(v|x) ≥
|C ∩A (n)

ε (X)|
|C |

min
x∈A (n)

ε (X)

∑
v∈A (n)

ε (V |x)

PV|X(v|x). (26)

To bound the right hand side above, we first note that using the additive form of the Chernoff bound and the definition of
strong typicality,

�C

 |C ∩A (n)
ε (X)|
|C |

 = ∑
x∈A (n)

ε (X)

PX(x)

≥ 1 − |X |max
x̃∈X

∑
x: | 1n |{i:xi=x̃}|−PX (x̃)|> ε

|X |

PX (x)

≥ 1 − |X | exp
(
−

nε2 minx̃∈X PX (x̃)
4|X |2

)
. (27)

4Recall that C is a multi-set with possibly repeated elements. As a result, Cv may also contain codewords that have multiplicity greater than one.
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In particular, for a large enough n, we have

�C

 |C ∩A (n)
ε (X)|
|C |

 ≥ 1 − ε /4.

Next, by standard properties of the conditionally typical set, we have, for large enough n,∑
v∈A (n)

ε (V |x)

PV|X(v|x) ≥ 1 − ε /4. (28)

Combining (27) and (28), we conclude that there exists n∗ such that for every n > n∗,

�C

 |C ∩A (n)
ε (X)|
|C |

min
x∈A (n)

ε (X)

∑
v∈A (n)

ε (V |x)

PV|X(v|x)

 > 1 −
ε

2
.

The above expression gives, in expectation, a lower bound on the left hand side of (26). A further concentration argument over
the i.i.d. generation of the codebook shows the existence of n2 = n2(ε ) such that whenever n > n2(α),

PrC (G2) ≥ 1 − α/4. (29)

ii) Event G3: Next, note that for any v ∈ A (n)
ε (V ), there exists n# and ε ′′ = ε ′′(ε ) satisfying limε→0 ε

′′ = 0 and

� |Cv| = 2nR
∑

x:(x,v)∈A (n)
ε (X,V )

PX(x)

≥ 2n(R−�(X;V )−ε ′′/2)

whenever n > n#. Now, since each codeword falls in Cv in an independent and identical manner over the codebook generation,
the true value of Cv concentrates around its mean with a high probability. In particular, by applying Chernoff bound on Cv, we
obtain that there exists n3 = n3(ε ) such that for every n > n3(α),

PrC (G3) ≥ PrC (|Cv| ≥ 2−nε ′′/2
�|Cv|)

> 1 − α/4. (30)

iii) Event G4: Finally, let β = 2nε , and observe that there exists ε ′′′ = ε ′′′(ε ) such that limε→0 ε
′′′(ε ) = 0 and

log (PrC (C /∈ G4)) = log PrC (∃ S ⊆M , x ∈ A (n)
ε (X) s.t. |S | = β and x(C )(m) = x ∀ m ∈ S )

≤ log
∑

S⊆M
|S |=β

∑
x∈A (n)

ε (X)

∏
m∈S

PrC

(
x(C )(m) = x

)

= log
(
|M |

β

)
+ log

∑
x∈A (n)

ε (X)

(
PrC

(
x(C )(1) = x

))β
(a)
≤ |M |Hb

(
β

|M |

)
+ log |A (n)

ε (X)| + β log max
x∈A (n)

ε (X)
PrC (x(C )(1) = x)

(b)
≤ β log

|M |

β
+ (|M | − β) log

|M |

|M | − β
− (β − 1)n�(X) + (β + 1)nε ′′′

(c)
≤ β log

|M |

β
+ β log e − (β − 1)n�(X) + (β + 1)nε ′′′

= 2nε (n(R − ε ) + log e) − (2nε − 1)n�(X) + (2nε+1)nε ′′′

= 2nε (n(R −�(X) − ε + ε ′′′) + log e) + n(�(X) + ε ′′′)
≤ 2nε (n(R − �(X; Y ) − ε + ε ′′′) + log e) + n(�(X) + ε ′′′)
= 2nε (n(−ρ − ε + ε ′′′) + log e) + n(�(X) + ε ′′′). (31)

In the above, (a) is a standard upper bound on
(
|M |

β

)
in terms of the binary entropy function Hb(β/|M |). (b) obtained by noting

that there exists ε ′′′ such that limε→0 ε
′′′ = 0, |A (n)

ε (X)| ≤ 2n(�(X)+ε ′′′) and PX(x) ≤ 2−n(�(X)−ε ′′′) for each x ∈ A (n)
ε (X). Lastly, (c)

is obtained by using the fact that for every a > 0, log a = log e ln a ≤ (a − 1) log e. Note that as long as ρ is strictly greater than
ε ′′′ − ε , the right hand side of (31) diverges to −∞ as n increases without bound. In particular, this implies that there exists n4
such that for every n > n4(α),

PrC (G4) > 1 − α/4. (32)
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Finally, combining (19), (29), (30), and (32) we conclude that, whenever n > max{n1, n2, n3, n4}, with probability at least 1 − α,
the randomly drawn code is simultaneously (ε ,R)-reliable and (0,D)-plausibly deniable where (R,D) satisfy the lower bounds
in (18) and (25). Since ρ and ε can be made arbitrarily close to zero, this shows the achievability of all rates in the interior of
the claimed region. �

D. Discussions

1) An example:

Example 3. Consider a channel PYZ |X with X = Y = Z = {1, 2, 3}, Y = X and PZ |X as in Figure 6, i.e.,

PYZ |X (y, z|x) =


0.3 (x, y, z) ∈ {(1, 1, 1), (2, 2, 1)}
0.7 (x, y, z) ∈ {(1, 1, 2), (2, 2, 2)}
0.4 (x, y, z) = (3, 3, 2)
0.6 (x, y, z) = (3, 3, 3)
0 otherwise.

We characterize the capacity region Rx by restricting our choice of the auxililary random variable U to the zero-information
random variable. For the above conditional distribution, the zero-information random variable of X w.r.t. PZ |X takes two values:
u1 = {1, 2} and u2 = {3}. Since X = Y , �(X; Y ) = �(X) and �(X; Y |U) = PX(1) log PX ({1,2})

PX (1) − PX(2) log PX ({1,2})
PX (2) . The capacity

region Rx (Figure 7) consists of all (R,D) pairs satisfying the following

D ≤ R ≤ Ht

(D
2
,

D
2
, 1 − D

)
0 ≤ D ≤ 1,

where Ht(·, ·, ·) represents the ternary entropy function. Interestingly, the capacity region depends on the conditional distribution
PZ |X , only through the zero-information variable induced by it – all conditional distributions PZ |X that induce the same
zero-information variable have the same capacity region (assuming PY |X is unchanged). This is a general feature of capacity
regions for the transmitter deniability problem. /

1

1

2/3

log 3

Rx

R

D

Fig. 7: Capacity region Rx for Example 3.

2) Rate of deniability as the Equivocation rate: Similar to the Message Deniability setting, we can attach a secrecy
interpretation to the rate of deniability for faking procedures that are plausibly deniable. The following proposition mirrors
Proposition 2.

Proposition 3. Let X(F) be (δ,D)-plausibly deniable for X given Z and satisfy the Markov chain X(F) −X−Z. Then, there exists
µ ≥ 0 depending only on PZ |X such that

nD − nµ
√
δ ≤ �(M |Z,X(F)) ≤ nD + nµ

√
δ.

Proof:
The proof relies on the Lemma 4 and proceeds in similar spirit as Proposition 2. To this end, let κ be the constant defined in
Lemma 4. Note that

�(M |Z,X(F)) = �(M |X(F)) − �(M; Z|X(F))
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= nD +�(M |X(F)) −�(MSG(X(F))|X) − �(M; Z|X(F)).

Applying the non-negativity of mutual information and Lemma 4, we obtain

�(M |Z,X(F)) ≤ nD +�(M |X(F)) −�(MSG(X(F))|X)
≤ nD + nκ

√
δ,

and

�(M |Z,X(F)) ≥ nD − 2nκ
√
δ.

Choosing µ = 2κ completes the proof. �

VI. CONCLUDING REMARKS

In this paper, we have considered three different models of Plausible Deniability and give achievable rates for each model
while also giving tight converses for the message deniability and transmitter deniability settings. It is evident that, at the very
least, each capacity region is a subset of the Rate-Equivocation region. Intuitively, this may be interpreted as follows – any
code that has a rate of deniability D has the property that the equivocation at the eavesdropper is at least D (otherwise, with
high probability, the eavesdropper can detect a fake response). On the other hand, it is not a priori clear whether the achievable
rates for any one model considered in this paper is a subset of another – part of the difficulty in comparing the different settings
arises from the fact that in each setting, the faking procedure accepts different inputs to generate the fake output.

Digging deeper into the nature of our problem, our achievability proofs rely crucially on the summoned party’s ability to
identify a set of plausible fake responses that appear roughly as likely as the true response to an eavesdropper who also observes
the channel output. Further, the set of plausible responses must be identified without knowing the eavesdropper actual channel
observation. To achieve this goal, our schemes ensure that the set of possible response values partitions into “cliques” such that
each response from the clique would be plausible to the eavesdropper given any likely channel output. This simplifies our faking
procedure to randomly picking one response from the clique corresponding to the true response. In our scheme for the message
deniability setting, these cliques correspond to all messages that are consistent with the transmitted “public message”, while in
the transmitter and receiver deniability settings, these cliques correspond to codewords and received vectors that are statistically
consistent with the zero information variables of the actual transmitted codeword and the received vector, respectively. In each
of these settings, given the clique corresponding to the true value of the summoned party’s response, the eavesdropper’s channel
observation provides asymptotically negligible additional information about the true value of the response.

Given our problem formulation, the above achievability idea appears natural. Perhaps surprisingly, we also show that any
good faking procedure for our problem must follow the above decomposition (at least roughly). In the transmitter and receiver
deniability settings, Lemmas 2 and 4 make this claim precise. A drastic consequence of this is that non-zero rates are possible for
transmitter deniability only when non-trivial zero information variables exist with respect to the eavesdropper’s channel output.
We note that the existence of such variables is guaranteed only for fairly special classes of channels – even for channels such
as Binary Symmetric Channels, the only zero information variables are the channel inputs themselves. Further, the existence of
non-trivial zero information variables may be rather fragile with respect to perturbations in the channel conditional probability.
This is in contrast to the message deniability setting, the capacity region for plausible deniability seems somewhat robust to the
channel statistics (c.f. [18] for the robustness analysis for a related problem).

Our work potentially leads to several intriguing open questions. In settings where non-zero rates of deniability are not possible
(e.g. transmitter deniability over a binary symmetric broadcast channel), it is of interest to understand whether an asymptotically
vanishing rate of communication may still be possible. Recent work on “square-root law” in covert communications [11]–[14]
suggests such a possibility. However, unlike covert communication, the eavesdropper in our setting has potentially greater
distinguishing power due to access to both the channel observation and the summoned party’s response. Separately, while our
work examines the broadcast channel setting, the notion of information theoretic plausible deniability readily extends to other
communication settings with security oriented goals, e.g., secret key generation, interactive communication, and communication
with public discussion. It would be interesting to examine the capacity question in these settings. Finally, we remark that while
our formulation of plausible deniability relies on the asymmetry between the channel to the eavesdropper and the legitimate
receiver, and the cryptographic formulation of [6], [8], [10] relies on the eavesdropper’s inability to efficiently compute certain
functions without knowing the receiver’s private key, it would be interesting to understand whether other forms of asymmetry
between the legitimate parties and the eavesdropper may be similarly exploited to obtain plausibly deniable communication.

APPENDIX A
STRONG SECRECY FOR BROADCAST CHANNELS WITH BOTH CONFIDENTIAL AND LEAKED MESSAGES

In the following, we consider the problem of broadcast channel with both confidential and leaked messages described in
Figure 3. We first give the proof of Lemma 1 that gives an inner bound on the capacity region defined in Definition 1.
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Proof of Lemma 1:
The proof essentially follows from the strategies used in [19, Theorem 17.13], [20, Theorem 3], [21] to prove strong secrecy
capacity region for the setting of broadcast channel with confidential messages (Figure 4). The only difference here from the
settings of [19]–[21], is that we do not demand that the message t be reliably decoded by Judy from her observation z. This
allows us to send t at all rates less than �(V ; Y ) instead of min {�(V ; Y ), �(V ; Z)} for every (U,V ) pair satisfying the lemma
conditions. As the proof would be nearly identical to the proofs supplied in [19]–[21], we skip the full proof of the lemma
here. �

Next, we give a lemma that allows us to modify the strong secrecy metric (condition 3 of Definition 1) to the Kullback-Leibler
Divergence in the form suitable for our problem.

Lemma 6. Let α ∈ (0, 1) and β > 0. Let Ĩ , J be random variables distributed on I and J respectively with a joint distribution
PĨ ,J such that �(Ĩ; J) < β. Then, there exists a random variable I ∈ I that is jointly distributed with Ĩ and J in accordance with
a Markov chain I − Ĩ − J such that the joint distribution PI ,Ĩ ,J has the following properties:

1) PI ,Ĩ

(
I 6= Ĩ

)
> 1 − α.

2) PI (i) = PĨ (i) for all i ∈ I.
3) �(I; J) < β.
4) �(PIPJ ||PI ,J ) ≤

√
2β log (1/α).

Proof:
In the following, we assume, without loss of generality, that PĨ (ĩ) > 0 and PJ ( j) > 0 for each (ĩ, j) ∈ I × J . We construct the
random variable I explicitly as follows. First, we define the transition probability

PI |Ĩ (i|ĩ) =
{

1 − α + αPĨ (ĩ) i = ĩ
αPĨ (i) i 6= ĩ,

and let PI ,Ĩ ,J (i, ĩ, j) = PI |Ĩ (i|ĩ)PĨ ,J (ĩ, j) for all (i, ĩ, j) ∈ I × I × J . Clearly, I equals Ĩ with probability at least 1 − α. Hence,
condition 1 is satisfied. Also, PI (i) =

∑
ĩ∈I PI |Ĩ (i|ĩ)PĨ (ĩ) = PĨ (i), which implies that condition 2 is also satisfied. Further, noting

that I − Ĩ − J is a Markov chain, by the Data Processing inequality,

�(I; J) ≤ �(Ĩ; J)
< β.

Thus, condition 3 is satisfied as well. Note that

PI ,J (i, j) =
∑
ĩ∈I

PI |Ĩ (i|ĩ)PĨ ,J (ĩ, j)

= (1 − α + αPI (i))PĨ ,J (i, j) + αPI (i)
∑

ĩ∈I\{i}

PĨ ,J (ĩ, j)

≥ αPI (i)PJ ( j). (33)

Note that, by our assumption, PI (i)PJ ( j) > 0 for each (i, j) ∈ I × J . Further, Eq. (33) implies that PI ,J (i, j) > 0 for each
(i, j) ∈ I × J . Thus, �(PIPJ ||PI ,J ) and �(PI ,J ||PIPJ ) are finite and well-defined. Now,

�(PIPJ ||PI ,J ) =
∑

i∈I, j∈J

PI (i)PJ ( j) log
PI (i)PJ ( j)
PI ,J (i, j)

=
∑

i∈I, j∈J

(
PI (i)PJ ( j) − PI ,J (i, j)

)
log

PI (i)PJ ( j)
PI ,J (i, j)

+
∑

i∈I, j∈J

PI ,J (i, j) log
PI (i)PJ ( j)
PI ,J (i, j)

(a)
≤ ||PI ,J − PIPJ ||1 max

i∈I, j∈J
log

PI (i)PJ ( j)
PI ,J (i, j)

−�(PIJ ||PIPJ )

(b)
≤

√
2β log(1/α).

In the above, (a) follows from Hölder’s inequality. (b) is obtained by applying the non-negativity of the Kullback-Leibler
Divergence, inequality (33), and by noting that

||PI ,J − PIPJ ||1 =
∑

i∈I, j∈J

∣∣∣∣∣∣∣∣
∑
ĩ∈I

PI |Ĩ (i|ĩ)
(
PĨ ,J (ĩ, j) − PĨ (ĩ)PJ ( j)

)∣∣∣∣∣∣∣∣
≤

∑
i∈I,ĩ∈I j∈J

PI |Ĩ (i|ĩ)
∣∣∣PĨ ,J (ĩ, j) − PĨ (ĩ)PJ ( j)

∣∣∣
= ||PĨ ,J − PĨPJ ||1
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(a)
≤

√
2�

(
PĨ ,J ||PĨPJ

)
≤

√
2β.

In the above, (a) follows from Pinsker’s inequality. This proves that I satisfies the conditions 2-4. �
Finally, we give a proof of Corollary 1.

Proof of Corollary 1:
The proof follows by starting with a code from Lemma 1 and using Lemma 6 to modify it to achieve the desired properties.
Let C̃ be a code that satisfies conditions 1-3 of Definition 1. Let S̃ ∈ S denote the confidential message and T ∈ T denote the
leaked message for this code. Note that the random variables S̃,T , and Z satisfy �(S̃; T,Z) < δ. Next, apply Lemma 6 with S̃,
(T,Z), ε , and δ, in place of Ĩ , J , α, and β, respectively to obtain the random variable S (in place of I) that is jointly distributed
with S̃ and (T,Z) according to a distribution QS,S̃,(T,Z) = QS|S̃QS̃Q(T,Z)|S̃.

Consider a code C that operates as follows. Let (S,T ) be the messages for this code. First, Alice maps the message S to a
randomly drawn S̃ according to the transition probability QS̃|S . Next, she encodes (S̃,T ) using the encoder for C̃ . Upon receving
Y, Bob uses the decoder for C̃ to output his reconstruction of (S,T ).

By Lemma 6, the overall code satisfies the conditions of Definition 1 with requirement 2 replaced by∑
(y,s,t):DEC(y)6=(s,t)

QY,S,T (y, s, t) ≤ 2ε .

In addition, the code also satisfies the following property

�(QSQT,Z||QS,T,Z) <
√

2δ log(1/ε ).

Now, by first choosing ε small enough and subsequently, δ small enough, both the error probability and the K-L divergence
above can be made arbitrarily small. This proves the corollary. �

APPENDIX B
A CONTINUITY PROPERTY

Lemma 7. Let P be a compact subset of the set of probability measures over a finite set B. Let � : P → �+ and
� : P → �+ be functionals that are continuous with respect to the variational distance such that �−1({0}) 6= φ . Then,

lim
δ→0+

max
P∈P:�(P)<δ

�(P) = max
P∈P:�(P)=0

�(P). (34)

Proof:
Since P is compact and� is a continuous on P ,� is bounded. Further, as�(P) ≥ 0 for every P ∈P , and maxP∈P:�(P)<δ�(P)
is an increasing function of δ, the limit on the left hand side of Eq (34) exists. Now, for any δ > 0,

max
P∈P:�(P)<δ

�(P) ≥ max
P∈P:�(P)=0

�(P).

Taking the limit as δ approaches zero, the left hand side of Eq. (34) is at least as large as the right hand side. Next, we show
that the limit on the left hand side cannot be larger than the right hand side.

To this end, let M∗ = limδ→0 maxP∈P:�(P)<δ�(P). Thus, there exists a sequence {P(i)
}i∈� in P such that �(P(i)) < 1/i and

limi→∞�(P(i)) = M∗. As P is a compact set under the variational distance, {P(i)
}i∈� contains a subsequence {P(i j )} j∈� that

converges (in variational distance) to a limiting distribution P∗. By continuity of �, we have

0 ≤ �(P∗B) = lim
j→∞
�(P(i j )) ≤ lim

j→∞
1/i j = 0.

Thus, M∗ =�(P∗) ≤ max{P∈P:�(P)=0}�(P). �
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