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Abstract—We discuss a method to adapt the codeword stabi- where
lized (CWS) quantum code framework to the problem of finding
asymmetric quantum codes. We focus on the corresponding Ao = 1 0 A = 0 7 (4)
Pauli error models for amplitude damping noise and phase Vi—=v)’ 0 0)’
damping noise. In particular, we look at codes for Pauli erra .
models that correct one or two amplitude damping errors. Or some damping parameter
Applying local Clifford operations on graph states, we are dle It has been demonstrated that designing QECC adaptively to
to exhaustively search for all possible codes up to length. With  gpecific error models can result in better codes [8]) [13[1

a similar method, we also look at codes for the Pauli error < ~

model that detect a single amplitude error and detect multige %s’tﬂozgllh’c%lsg?g?#g;gée?wspg:ggglEtle]é]r.eﬁc:;gt?een o

phase damping errors. Many new codes with good parameters . . ; ' .

are found, including nonadditive codes and degenerate code  Systematic construction applying the CWS framework. Is thi

Index Terms—codeword stabilized quantum code, nonadditive work, we fill this gap by developing a method for finding CWS

code, asymmetric code, amplitude damping channel, phase ai-  codes for asymmetric channels. Our method leads to many new

ing channel codes with good parameters, including nonadditive codes an
I, INTRODUCTION degenerate codes. These results demonstrate the power of th

Codeword stabilized (CWS) quantum codes constitute tf(w:ew S framework for constructing good QECC.

by far most general systematic framework for constructing I
guantum error-correcting codes (QECC) [6]] [7]] [9]. It en- . ) o )
compasses stabilizer cod&s [4], [5],[14].][32], as well aswyn ~ Depending on the noise model in different physical systems,
nonadditive codes with good parametérs [23]] [28]] [35]eOv Ve obtain d|fferent asymmetrlc quantu_m channels. We start
the past years, it has been explored in various settings amd Yith the amplitude damping chann&lp with Kraus operators

been applied in many different cases, leading to promisi§en in Eq.[#), which models real physical processes sach a

. ERRORMODELS

results [2], [T5]-[17], [20], [25], [[26], [[33]. spontaneous emission. If the system is at finite temperature
Most of the QECC constructed so far are for the depolaridlen the noise model will not only contain the Kraus operator
ing channel A, corresponding to emission, but als corresponding to

D absorption[[2[7]. Notice that
Eor(p) = (1 —p)p+ S (XpX +YpY + ZpZ), (1)

al , P _ VY :
where the PauliX, Y, Z errors happen equally likely. (Heye A= T(X +iY), Ay = T(X —iY). )
denotes the density matrix representing the state of tha-qua _ :
tum system.) The most general quantum channels allowed pgnce. the linear span of the operatarsand A, equals the

quantum mechanics are completely positive, trace-praggrvlineéar span ofX' andY'. We can then equivalently formulate
linear maps that can be represented in the Kraus decongosif'® error model by using the Pauli operatdfsandY’, which

()=, Ekal]; with 3, E;];Ek =1 [27). happen with equal probability. That is, if a code is capalfle o
One example generalizing the depolarizing charfaglis ~ correctingt X- andt Y-errors, it can also corre¢tA;- and
the asymmetric Pauli channel which sendt® t Aj-errors.

Furthermore, notice that
(1 =pz —py —p2)p + 02 XpX +pyYpY +p.ZpZ, (2)
where the PauliX,Y,Z errors happen with probabilities
Px, Py, D=, Tespectively[[2l1]. Other asymmetric channels stu
ied in the literature include the amplitude damping chafijel

Ag=1—1(I-2)+0(), (6)

QA'/hiIe A; depends linearly on/y. This then results in an
asymmetry between the probabilities = p, andp. that the
Ean(p) = AopA$ + AlpAI, (3) PauliX,Y errors or the PaulZ error, respectively, happen.
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Apart from amplitude damping, another common noise in  Z-errors up to weight will allow to correct|r/2] Z-
physical systems is dephasing, with Kraus operators giyen b errors. The error set is
VI —pI and,/p(I £ Z)/2, or equivalently, in terms of and

Z with p, > 0 andp, = p. = 0 [27]. In general, the system W ={IyU{X.,Yi:i=1,...,n}UZ,, (10)
undergoes both amplitude damping and dephasing, resulting ) )
in a wide range for the parameters = p, andp.. whereZ,. is the set of all Paull operators up to weight

r. A code that detects this error set in fact detects both

Therefore, in this work we consider the following asymmet- :
an arbitrary error and phase errors.

ric Pauli channel

Ens(p) = (1 — (2pay +D2))p l1l. ALGORITHM TO SEARCH FORCWS CODES

+ Pay (XpX + YY) +p.ZpZ, (") A QECCQ is a subspace of the spacerfjubits (C2)&"
(here we focus on quantum systems of dimensjos- 2,
tfut the approach can be generalized to qudits of dimension
eq > 2). For a K-dimensional code space spanned by the

whereX andY happen with equal probability, = p, = pyy.
In terms of Eq. [(V), the asymmetric Pauli error mod

corresponding to amplitude damping is given by, o v guponomal basig|t;): i = 1,...,K} and an error set,

andp. o« ~2. This is different from the amplitude dampingthere is a . . :

. physical operation detecting all the eleméhts £
error model in, e.g.,Eﬂl],[DS],EIZ3],[124],EB_1], where the as well as their linear combinations) if the error detattio
Kraus operatorsi, and A; are used. The main reason tha ondition [3], [22]

we use the Pauli Kraus operators as our error sets is that this

enables us to use the CWS framework to construct codes. (Wil Eulto) = cubij, ¢y €C, (11)

Within the CWS framework, in order to transform the quantum '

error detection condition into a classical condition, imere s satisfied. The notatioin, K)) is used to denote a QECC

convenient to use Pauli errors, as we will discuss in Belc. With lengthn and dimensionk .

In other words, sincel, and A; are not Pauli operators, the Qur goal is to find good codes detecting the error §&ts,

CWS framework does not directly apply. Furthermore, due fgr each of the three cases. For each code lengtive seek

Eq. (8) and Eq.[{6), our error model does not only correct thge largest dimensioi’ of CWS codes for each error sgt’},

errors Ao and A,, but the resulting codes will be stronger in; — 1,2 3. This is done through a maximum clique seafdh [7],

the sense thati] can be corrected as well. by using the algorithms and programs developed in [34].
In this work we consider three specific cases for asymmetric

codes, as listed below. We usg,Y;, Z; to denote the Pauli oA, The CWS framework

X,Y, Z operators on theth qubit. Notice that our method . ] ]

for generating the error sets is very general and can bePn ((n,K)) CWS codeQ is described by two objects: 1)

straightforwardly generalized to deal with different taas A StabilizerS that is an abelian subgroup of thequbit Pauli
betweenp,, p,, andp.. group, has orde2”, and does not contair-/; the groupsS

is called the word stabilizer. 2) A set df n-qubit Pauli
B(beratorsW = {we: £ = 1,...,K}, which are called the
word operators. There is a unique quantum stdjestabilized
by S, i.e, s|S) = |S) for all s € S. The code@ is then
'spanned by the basis vectors given|by) = w|S).
According to Eq.[(Il1), the cod® detects the error set
W = (I} U{X,, Y, Zi, XiX,,YiY5, X.Y5, VY5, if anq only if <w_i|E|wj_> = cE_5ij for all £ € £. Whe_r_lg
@) consists of Pauli matrices, this error-detecting conditian

1. Codes correcting a single amplitude damping error:
improve the fidelity of the transmitted state fram- ~
to 1 —~2, one only needs to correct a singlg error and
detect a singled, error [18]. In terms of Pauli operators
the corresponding error set is given by

wherei,j = 1,...,n. A code that detects this error setbe written in terms of5 andw; as below [9]:
in fact also corrects a singld! error. Forall B € &,
2. Codes correcting two amplitude damping errors: based L,
on the analysis on the single error case above, the error Vi g wiBw; ¢ 5 (12)
set is given by and
{2} _ . {1}
¥ =(E.E,: E,, E, e £} ©) (VZ wl Bw; ¢ iS) or (13)
A codTe that detects this error set in fact also corrects (W: wl EBw; € S) or (14)
two A; errors.
3. Codes detecting both a single amplitude damping error (Vz‘: wIEwZ— € —S) . (15)

and multiple dephasing errors: detectifd;, Y;, Z;}
suffices to detect an arbitrary single qubit error (includf condition (I3) holds for allE € £ different from identity,
ing a single amplitude damping error), and detecting ahen the code) is nondegenerate, otherwise it is degenerate.



B. The CWS standard form Recall that the single-qubit Clifford group is generated by
Every ((n, K)) CWS code can be transformed, by locaihe Hadamard operatdi and the phase operatét as given

Clifford operations, into a standard forml [9], where the diorPelow [4], [14]
operators take the fornm, = Z° and the word stabilizer 1 /1 1 1 0
has generators of the fori$y = X;Z*¢, for some choices of H= ﬁ (1 _1) , P= (0 ) :
classical-bit stringsc, andr;. HereZ¢ = Z¢1®...Q Z%",

In the standard form, any-qubit Pauli error, which can

(19)

Since overall phase factors can be ignored, we only need

be written in the formE — + 2 X for some classicab-bit © consider the action of the Clifford group on the Pauli

stringsv andu, can be translated to classical errors via th@atrlcesX, Y,z modqlo phase factors. The Clifford group
acts as the permutation grougy on three letters (we use

ma
P n 1,2,3 to denoteX,Y, Z, respectively). The groups has
Clg(E =+2VX") = v@@(u)iri. (16) order six, with the elements given by (in cycle notation)
i=1 {id, (123), (132), (12), (13), (23) }, where id denotes the iden-

tity permutation. All error set€17}, j = 1,2, 3, are invariant
with respect to interchangingy andY . Hence it is sufficient to
consider one representative from each of the three riglgtsos
of (12), given by{id, (12)}, {(13), (132)}, and{(23), (123)}.
Cls(E)#0 (17) So effectively, we only need to test, e.g., the three pertinuis
or Vi Z°E = EZ°. (18) {id;(13),(23)}. _
Therefore, for each of the error sefd/}, we have three
If Eq. (I7) holds for allE' € £, the CWS code is nondegen-cases for each qubit no permutation, permut® and Z,
erate, otherwise it is degenerate. or permuteX and Z. To search for a length code, this
] ] will reduce the total number of error sets fro6® to 3™
C. Local Clifford operations for each graph state to be tested. Compared to codes for the

To get to the standard form, one needs to apply locdépolarizing channel, the search space is enlarged by ar fact
Clifford (LC) operations of the forml = &), L;, whereL; of 3", due to the asymmetry betwegp, andp.. Nevertheless,
are single-qubit Clifford operation§][9]. This transforriie we can still handle the search for smallin particular for the
stabilizer S and word operator§w,} to the standard form, error sets£{7}, j =1,2,3, up to lengthn = 9.
but at the same time also changes the error model.

For the depolarizing channel given in Edl. (2), the errorset i
invariant under LC operations, since in this model esskytia As described above, in our search algorithm, we start from
all single-qubit errors happen equally likely. Therefdreopr- the CWS standard form and transform the erro€sét by LC
der to search for a CWS code, one can simply use the standapérations. This has no effect on the code paraméterds<))
form by starting from a stabilizer of the fori; = X;Z", found. However, to present the CWS codes found, we fix the
which corresponds to a graph stgtel[19]. For a fixed lemgth error set€/} and equivalently transform the CWS standard
it is sufficient to consider all graph states up to LC equineée form into a general CWS code.
as classified in[]10]. This results in an exhaustive search fo ) ) ) )
all possible CWS codes of length A. Codes correcting a single amplitude damping error

Being able to restrict the search to graph states up to LCWe have conducted an exhaustive search for the error set
equivalence, instead of all stabilizer states of lengthhas £{'} up to lengthn = 9, resulting in CWS codes correcting
dramatically reduced the search space, and exhaustivehsear single amplitude damping error. As already mentioned, the
for single-error-correcting codes for the depolarizinguwhel codes found can not only correct a single error given by the
up to lengthn = 10 has been carried out. It turned out thaKraus operatord,, at the same time they also correct a single
the best CWS code with length= 9 has dimensiorkk = 12, error Al. In other words, the codes correct both singl@rrors
beating the best stabilizer code of dimensidn= 8 [35]; for and singleY” errors (and detect singlg errors as well). We
n = 10 the best CWS code has dimensiéh = 24, again summarize our results in Taldlk .
beating the best stabilizer code of dimensin= 16 [20]. As we can see from the table, for the length§, 8,9, our

For the asymmetric channels as given in KEq. (7), howevendes outperform the best single-error-correcting codethe
considering only all graphs states as classified in [10] &ed tdepolarizing channel—which also correct the error &€t
error sets€17} (j = 1,2,3) is not sufficient to exhaustively i.e., a single amplitude damping error. In particular, dgths
search for all possible CWS codes. This is due to the asymnieand 9, the best CWS codes we have found (of dimensions
try betweenp,, andp., which implies that the error sets arel0 and20 respectively) are nonadditive codes.
no longer invariant under LC operations. Therefore, in orde For lengths6,8,9, our codes also outperform the best
to exhaustively search for all possible CWS codes by usikgown CSS codes that are specifically designed to detect the
the standard form, one will need to check all the possiblererrerror set£{!}, based on a construction proposed[inl [14] (see
sets that are LC equivalent to a givéf}. also [31]). Therefore, for these lengths, we have found good

Now for the word operator§Z<: ¢, € C}, the error detec-
tion condition requires that the classical binary ccdeetects
all errors from Ck(€), and that for eactf € £

IV. RESULTS



TABLE | . . . . . .
Dimension K of CWS codes((n, K)) of length n detecting the error set en_COd.'n.g a s!ngle qubit, since the corresponding classaxie
&4} for different lengthn. The columnd = 3 lists the largest dimension C is trivially linear [9].

of CWS codes that correct a single error for the depolarizihgnnel. The One code has the stabiliz&h generated by
column £{1} lists the largest dimension of CWS codes found detecting the

error set€{1}. The column CSS lists the largest dimension of the known X1 I I I I I I 7
Calderbank-Shor-Steane (CSS) codgs [4]] [32] that careciothe error set
&1}, based on a construction proposed[inl [14]. The column GRg) the z I X z1I zX
largest dimension of codes correcting a single amplitudepitag error based I X1 1111 721
on a construction proposed in [31]. I Z7 I I X1 Z X 7
I 1 X1 I Z11 1
n || d=3 [, g} T cssid] | GF@B) [31] I I Z I YY Z 71
> 2 z 2 2 I 11 X1 121 I
7 > 3 3 3 I 11 ZY ZY 1 Z
8 8 10 8 16 i
5 > 5 5 7 The other code has the stabiliz€s generated by
X1 1 1 1 1117
z 1 I 1 Z 7Z Z 1 X
codes that outperform all the previously known construio rxr 11 11 zZ1
for detecting the error sett!}. rz1 7z zZY1YZ
Notice that the existence of a CWS code with dimension I xr1 11 211
K = 4, and hence a subcode of dimensidnimplies the rr zz z XX z1
existence of a stabilizer code with the same parametérs [7, rrr xnr z1I1 11
I 111 X1 Z Z Z

Theorem 7]. Hence thé&(6,4)) codes we found, as listed in
Table[], include stabilizer codes encoding two qubits. As anlt is straightforward to check that these codes detect the

example, one such code has stabilisegenerated by error set€{?}, since no elements iét?} is also inC(S;)\ S;
(for ¢ = 1,2). Furthermore, both codes are degenerate since
XX11 27z B . i :
some of the elements i6{2} are indeed inS;, for instance
X Z I Z I X
zZ Ly zyZz XlTZhgése codes outperform th¢10,2)) code found in [[11]
I 1 ZX12Z b elo, '

Recall that Shor’s nine-qubit code, having the same paenset

It is straightforward to check that this code detects thererr((9,2)) as our codes, also corrects two amplitude damping
set&{1}, since no elements ifit'} is also inC(S)\ S, where errors [14]. However, Shor’s code only corrects the Kraus
C(S) is the centralizer of the stabilizef. operators4, and A;, but does not detect the error s&t*}.

However, with the exception ofi = 7, the single-error- Therefore, for lengtm = 9, we have found good codes that
correcting codes constructed in_[31] have larger dimerssioautperform all the previous known constructions for detegt
than our codes. The codes constructed in [31] are spedfficathe error set€ 12},
designed to correct the Kraus operatdgsand A, these codes
cannot detect the error s&t!}. As detection of the errog{}
implies that a single erroA{ can be corrected as well, it is _
not a surprise that our codes have smaller dimensions. For the error set¥, we have performed an exhaustive

Notice that the codes constructed [A[31] are also cwagarch for different IengthsandZ-errordete.ctlng capabilities
codes, but errors are handled in a different way than theUp ton = 8, and a random search. starting from randomly
Pauli error set{!}. It remains open how to generalize the€lected graph states far= 9 and differentr. Our results

method of [31] to deal with more than one amplitude dampirfqe listed in TabléJl. We compare our results with the best

error, while the error se€{!} can naturally be generalized,S abilizer codes that detect all errors up to weiglds given

e.g., to&12} for correcting two amplitude damping errors, ad? [4], and the codes detecting a single amplitude damping
demonstrated next. errors andZ errors up to weight as found in[[12].

As we can see from the table, for most lengthsind Z-
error weightr, the CWS codes found outperform the known
results. The entries for which we did not find improvements

We have performed an exhaustive search for codes corregtern, = 6, r = 1 andn = 8, » = 1. Codes withr = 1 detect
ing two amplitude damping errors, i.e., detecting the eseir single Pauli errors, i.e., they are codes of minimum disanc
E12} up to lengthn = 9. In fact, the resulting codes correctwo. For even length, the corresponding stabilizer codes ar
any combination of{’ and Z errors up to weight two, as well known to have the largest possible dimension for singlererr
as a singleZ error. detecting code$[29]. For odd length= 5, 7,9, we find codes

No non-trivial CWS codes are found for length< 8. For with parameters matching those of the code fanfilgm +
lengthn = 9, two LC-inequivalent codes encoding a singlé, 3 x 22m~3,2)) given in [29]. Whenever the dimension is a
gubit have been found found. These are both stabilizer cogesver of two, the codes we found include stabilizer codes.

C. Codes detecting a single amplitude damping error and
detecting multiple dephasing errors

B. Codes correcting two amplitude damping errors



TABLE I
Dimension K of CWS codes detecting the error s&t3} for different lengthn and parameter. For each value of, the first column lists the largest
dimension of stabilizer codes that detect all errors up tmhte- as given in[[#]; the second column lists the largest dimensibasymmetric codes detecting
a single amplitude damping error and phase errors up to weigls found in[[12]; the third column lists the largest dimenstd the CWS codes found by
our search for codes detecting the error §&t}. ‘—' means that no non-trivial codes exist based on the cort&rucThe numbers labeled with are the

best parameters found by random search; otherwise the rabgimension is obtained by exhaustive search.

n/r 1 2 3 4 5 6 7
stab.| [12] | CWS]|| stab.| [12]| CWS]|| stab.,| [12] | CWS|| stab.,| [12]| CWS]|| stab.| [12] | CWS|| stab.| [12] | CWS|| stab.| [12] | CWS
5 4 5 6 2 — 4 — — 2 — — 2 — — — — — — — - -
6 16 | 16 16 2 2 8 — — 4 — — 2 — — 2 — — — — — —
7 16 | 22 24 2 8 16 — — 8 — — 2 — — 2 — — 2 — - -
8 64 | 64 | 64 8 8 20 — 8 16 — — 4 — — 2 — — 2 — - 2
9 64 | 93 96* 8 16 | 40* — 8 20* — 6* — — 4* — — 2% — — 2%

These results demonstrate the power of the CWS framewaqrk|
for constructing good QECC, even with random search.
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