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Abstract—We discuss a method to construct quantum codes where~ is a damping parameter. The AD channel models,
correcting amplitude damping errors via code concatenatio. e g., photon loss in optical fibers, or spontaneous emissfion
The inner codes are chosen as asymmetric Calderbank-Shor- atoms [[2], [19].

Steane (CSS) codes. By concatenating with outer codes cartiag . _—
symmetric errors, many new codes with good parameters are It has been first demonstrated in [18] that designing QECCs

found, which are better than the amplitude damping codes adaptively to the AD noise can result in better codes. In
obtained by any previously known construction. particular, a four-qubit code correcting a single AD error
Index Terms—Quantum error-correcting codes, concatenated was found, using less qubits than the smallest single-error
codes, amplitude damping channel, CSS codes. correcting code for the depolarizing channel that needs five
qubits [1], [16]. Generalizations of this four-qubit codesa
discussed in[5],]6]. In particular, it was discussed in &t
Channels transmitting quantum information represented ky,or's nine-qubit code can corréxAD errors, despite the fact
the density matrixp are completely positive, trace-preservingnat the code only corrects a single error for the depolagizi
linear maps. They can be represented in the Kraus decaffannel.
position A(p) = 3, ArpAl with 3°, ALA; = T [19]. The  Subsequent works borrow ideas from the construction of
matricesA; are called the Kraus operators or error set of th@assical asymmetric codes [13], combined with the coddwor

|. INTRODUCTION

channelA. _ stabilized (CWS) quantum code methdd [3], to construct
Most quantum error-correcting codes constructed so far &jfigle-error-correcting AD codes, including both stataili
for the depolarizing channel codes and non-additive codés|[17],][21]. Multi-error-eating

_ p AD codes are discussed ifnl[4], based on a concatenation
Ao(p) = (1 =p)p+ §(XpX YV +2p2), (1) method. In particular, the inner code is chosen as the tvimtqu
where the PauliX,Y, Z errors happen equally likely. Thecode{|01),[10)} based on the classical dual-rail code, which
Kraus operators ofdpp are {/I — pl, \/§X7 \/gy, \/gz}_ results in a quantum erasure channel for the outer codesy Man
The assumption of equal probability for the Pailiy, Zz good stabilizer AD codes are constructed by concatenating
errors in fact models the worst case scenario of ‘white npisavith the quantum erasure codes. However, due to the choice
where all kind of errors happen. However, in practical Syste of the inner code, the rate of the constructed AD codes can
some errors are usually more likely to happen than others.n&ver exceed /2.
more realistic error model for physical systems is based onln this work, we discuss a new method to construct AD
the common noise processes described by amplitude damp#fges via concatenation. We choose the inner codes as codes
and phase damping. The corresponding asymmetric channdl@grecting certain kind of asymmetric errors. By carefully

given by analyzing the error model for the AD channel, we introduce
the concept of ‘effective weight' for errors and ‘effective
Ans(p) = (1 = (2pzy +p2))p distance’ for the AD codes. This allows us to use outer codes
+ Py (XpX + YY) +p.ZpZ, (2) correcting symmetric errors (i.e., the ‘usual’ codes desijto

correct depolarizing errors). Our new method results inynan
ew AD codes with good parameters, which are better than
he AD codes obtained by any previously known construction.

where the PaulX andY errors happen with equal probability
Dzy, Which is determined by the amplitude damping (AD
noise. The probabilityp, of the PauliZ error depends on

the phase damping noise, and in general we haye# p.. Il. BACKGROUND
The amplitude damping channel is given by][19] A QECCQ is a subspace of the spacerofjudits (C?)®",
_ 1 T with single qudit dimension;. For a K-dimensional code
Ano(p) = AopAg + AipAs, 3) space spanned by the orthonormal bdsis),i =1,..., K}
where the Kraus operators are and an error set, there is a physical operation detecting all

1 0 0 A the elements,, € A if the error detection condition [1],[14]
=y i) a=( 0) @ (Wil Auliy) = ey ©)
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is satisfied. As an example, fol? = XYT1Z € A%, wt.(E) = 4. In

The notation((n, K)), is used to denote a qudit QECC withfact, we have the following result on the effective weight of
lengthn and dimensiork. A stabilizer QECC has dimensionthe elements in4{*}.

K = ¢* for some integei, and the notatiorin, k], is used Lemma 2:Any elementE € Al has effective weight
to denote a qudit stabilizer code with lengthand dimension wt.(E) < 2t.

¢". A codeQ is of distanced if Eq. (B) is satisfied for all4,, Proof: Notice that any element < A% will be a
that act nontrivially on at most — 1 qudits. product of at most elements fromA{'} as given in Eq.[{7).

In this work, we focus on the construction of AD codesAny element inA{!} has at most effective weight henceF
which are qubit codes witly = 2. However, qudit codes has at most effective weigl2t. [ ]
with ¢ = 2" are used as outer codes for the concatenationObviously, the upper boundt is achievable by some
constructions to get qubit AD codes. elementst € A, We can now define the effective distance

We consider error setd of Pauli type. For multi-qubit Pauli d. for ¢-AD-error-correcting codes that detect the error set
operators, for instance¥ @ Y ® I @ Z, we will write it as A{*}. This effective distance will later allow us to compare
XYI1Z or X Y>Z, (where the subscripts denote the numbeyur new codes with codes for the depolarizing channel with
of the qubits that the PaulX,Y,Z operator is acting on), the usual code distance&(i.e., eachX,Y, Z has weightl).
when no confusion arises. For the AD chandgh as givenin Definition 3: A code has effective distanc&. = s, if it
Eq. (4), the Kraus operatork, and A; are not Pauli operators. detects Pauli errors of effective weight up 4o- 1.

However, we can find Pauli error models that lead to codesTherefore, if a code has effective distante= 2t + 1, then
correcting AD errors. it detects the error sett{*}, and is hence #-code.

Notice that Now we are ready to present our concatenation method.

~ ) Theorem 4:Starting from an innefn, k1]> code Q; with

A = g(X +i¥), Ao=1I- %(I ~2)+0(y), (6) effective distancel., concatenation Ef aﬁmg]], ka2, 8]ox qudit
and henceA, which is of different order iny as A;. So the outer code@, with distanced results in a concatenated code
corresponding asymmetric error model as given in Ei. (2) hbigine, k1kz]2 with effective distance at leagt.d. _

Pay o 7 andp. o 2. Proof: The concatenated codg is a stabilizer code with

A t-error-correcting AD code (af-code in short) improves length niny and dimension(2*:)*2, hence encodings: k;
the fidelity of the transmitted state froin—~ to 1 —~*. For qubits. Denote the stabilizer & by So. It has two sets of
instance, fort = 1, we only need to correct a singlé, error generators. The first set is obtained by replacing each tenso
and detect a singlel, error [10]. In terms of Pauli operators,factor of the generators of the stabiliz&p, of the outer code
we only need to correct a singl& and Y error, and detect Py the corresponding logical operator of the inner code. The

a singleZ error. In other words, a code that detects the err§Bcond set is formed by the stabilizg of the inner code
set A} that is given by acting on each block of; qubits.

) For the outer code?,, any nontrivial logical operator in
AV =Y ULXG Y, 25, XX, XaY5,YiY5) (7)) ¢(So,) \ So, has weight at leass, where C/(S) is the
with 4, j € [1,n], is al-code that corrects a single AD error.centralizer of the stabilize$. Likewise, the logical operators
Pauli error models that lead to codes correcti errors N C(Sg,)\So, of the inner code have effective weight at least
can be given similarly. For instance, codes detecting thai Pae- The logical operators of the concatenated code are obtaine
error set given byd{?t = {4,4,: A, A, ¢ Al'}} are2- by replacing each tensor factor in the logical operatorsef t
codes that correc? AD errors. We will similarly denote by outer code by the corresponding logical operator of therinne

A{t} the Pauli error set that results #rcodes. code. Those operators have effective weight at ldast As
for standard concatenation of quantum codes [15], multigly

I1l. CONCATENATED METHOD a logical operator of2 by an element of the stabilizeto will

We examine the weight properties of the elementsli¥, not result in an effective weight less thapy. |

which leads to new effective error models that are more conve

nient for constructing codes detecting the error.4€t. From IV. THE [r,7 — 1]2 INNER CODE

Eq. (3) and Eq.[{6) it follows that each error contributes a  To examine the power of the construction for AD codes

factor of 42 to the noise, whileX or Y errors contribute a given in Theorerfll4, we will start with simple inner codes. We

factor of v. In other words, when we consider eaghor Y take classical linear binary codes of distarxceith lengthr

error as 1 error’, then eachZ error will be ‘effectively 2 and dimension — 1 (hence cardinalit@”—'). For any length

errors’. Motivated by this observation, we have the follogvi 7, such a distance-code will be formed by all bit strings of

definition for ‘effective weight'. length r with even Hamming weight. For any such classical
Definition 1: For any tensor produdt of Pauli errors, each codeC, = [r,r—1, 2]2, the corresponding quantum co@g =

tensor factorX or Y has effective weight, and each factor [r,r — 1] is spanned by the computational basis vectors

7 has effective weigh®. The effective weight ofF’ is the for all ¢; € C,.. We first examine the effective distance @f.

sum of the effective weight of all factor¥,Y, Z in E, and Lemma 5:The codeQ, defined above has effective dis-

is denoted bywt.(E). tanced, = 2.



Proof: The only non-trivial element of the stabilizét, We remark that thd9, 1], 2-code given above is in fact
of the codeQ, is the r-fold tensor productZ®". We need local Clifford equivalent to one of thg9, 1], codes found
to look at the effective weights of the logical operatorstthan [12] via exhaustive numerical search for CWS codes
are in C(S,) \ S., where C(S,) is the centralizer ofS,. detecting the error setl{2}. It is one of the besb-codes
These are Pauli operators that commute with”. Clearly, known, which beats th§l10, 1]» 2-code found in[[4]. In fact,
a singleZ (i.e., Z;) operator having effective weight two isthe construction in[[4] can be viewed as a special case of
in C(S,) \ S,, but this set does not contain a singleor Y Theoren{®, by concatenating all qudits of an outer code with
operator. The tensor product of tw¥ or Y operators (i.e., the inner codeQ,. Notice that in [4], codes with effective
X:X;, X,Y;. Y, X;,Y:Y;) is in C(S,) \ S,. Therefore, every distance2d are constructed in order to obtaincodes with
logical operator ofQ, has effective weight at least two, and = ¢ — 1, which results in lengtien instead of2n — 1 as
hence the effective distance ¢, is 2. m given by Theorerll6. In other words, by using Theofém 6, the
Since the dimension of the quantum co@g is 2" !, it length of any,-code constructed in[4] can be reduced by one.
can be used as inner code for the concatenation with a qudiFor decoding, the inner codp,r — 1], will be used to
outer codes with single qudit dimensign= 2"~!. For the detect singleX- andY -errors. This provides side-information
construction of a-code, we need effective distanze+ 1 for on detected errors (erasures) for the outer code and altows t
the concatenated code. simultaneously correet erasures and erroneous blocks with
Theorem 6:Given an[n, k, d],--1 stabilizer code, a quan-r qubits each, as long as+ 2f < 6.
tum codeQ with parametergrn — 1, (r — 1)k]» and effective
distanced, > 26 —pl can be %onstruéted. 'I)'h]i]s istacode with V. PARAMETERS OFNEW AD CODES
t=46—1. In this section we discuss the parameters of the new AD
Proof: We start from an[n,k,d],-—1 stabilizer code codes found by our concatenated method when using the inner
of length n, and each qudit has dimensi@i~—!. The first code Q,. We compare the effective distandg of the new
qudit is encoded into a trivial qubit code with paramete@odes constructed via our concatenated method to the déstan
[r—1,7—1,d. = 1]». Each of the other qudits= 2,3,...,n  di Of the best known stabilizer codes.
is encoded into the cod@, with parametergr,r — 1,d. = The best possible parameters for our concatenation tech-
2]2. The resulting concatenated co@eis a stabilizer code of hique are expected when the outer code is an optimal quantum
length (r — 1) + (n — 1)r = rn — 1 and dimension2"~1)¥, code, and quantum MDS (QMDS) codes in particular. QMDS
hence encodingr — 1)k qubits. Any logical operator of codes have parametefs,n + 2 — 2d,d],, i.e., they attain
[n,k,d]o-—1 has weight at least. Hence any logical operatorthe quantum Singleton bound + 2d < = + 2 [14], [20].
of Q that acts trivially on the first qudit has effective weighQMDS codes are known to exists for all < ¢ + 1, for
at least2d. Logical operators of that act non-trivially on the 7 = ¢*—1,¢% ¢°+1 and somel < ¢+1, as well as for many
first qudit have effective weight at leabt+-2(§ —1) = 2§ — 1. parameters, < ¢ +1,d<q+1[8] Ingeneral it seems as

Therefore, the effective distance &fis d. > 2§ — 1. m if for a qudit QMDS code with qudit dimensiop we have
Example 7:Starting from the]5, 1, 3], code with stabilizer the boundsi < ¢+ 1, andn < ¢* + 1, with the exception of
generated by codes[4™ + 2,2™ — 4, 4]am (see [9]).
X7 7X1T In order to construct &code, we use QMDS codés, n —
I XZ7ZX 2t,t + 1], whereq = 27—1 >t as outer code and the code
XI1XZZ Q, = [r,r — 1]2 as inner code, yielding &code of length
ZX1XZ rn — 1 encoding(r — 1)(n — 2t) = rn — n — 2rt + 2t qubits.

_ ) ) o The parameters of our codes based on the concatenation
and encoding qubit8, 3,4, 5 into the codeQ, stabilized by ¢ QMDS codes and the cod@, are presented in Tab[g I.
27, we get a9, 1], code with effective distancé =2 -3 —  the |ast column labeledi, lists the largest known lower
1 =5, which corrects two AD errors. By choosing the 10gic&),, ;nq,, on the minimum distance of a stabilizer code for the
operators forQ, as X = XX andZ = 71, the stabilizer of yenqarizing channel (sekl[7]). Here we consider only codes
the [9,1]> code is generated by of length up tonmax = 128. We only list the parameters

X 72I 7ZI XX II [n, k,d. = 2t+ 1] of t-codes for which the effective distance
I XX 7ZI 7I XX d. exceeds the lower bount, (i.e., d. > di). Furthermore,
X I XX ZI 7ZI we omit parameters for which we find even betters codes
7 XX II XX ZI (smaller length, larger dimension, or larger effectiveatise).
In Tables[Dl andll we list parameters of the bestodes
I ZZ II II II X
I II 77 II II we found using outer codes that do not reach the quantum
Singleton bound +2d < n+2, but have the largest minimum
I 11 11 zz 1II _ .
I I I I 27 distance among the known codes. The codes in Table Il are

based on qubit codes as outer codes and hence comparable to
Notice the two groups of generators as mentioned in the prab& codes in[]4], but reducing the length by one as discussed
of Theoren{ 4. above.



TABLE | TABLE Il

CONCATENATED CODES[n, k, de]2 FOR THEAD CHANNEL BASED ON CONCATENATED CODES[n, k, de]2 FOR THEAD CHANNEL BASED ON
QMDSOUTER CODES WITH QUDIT DIMENSION2, 4, 8, AND 16. NON-QMDSOUTER QUBIT CODES
t concatenated code| outer code | dj, t concatenated code| outer code | djp
[7,2,de = 3]2 [4,2,2]2 2 3 [19,2,de = 7]2 [10,2,4]2 6
[9,1,de = 5]2 I5,1, 3]2 3 [23,4,de = T]2 12,4, 4]2 6
4 [21,1,de = 9]2 11,1, 5]2 7
[[317 4,de = 9]]2 |I167 4, 5]2 8
t concatenated code| outer code | dp [35,6,de = 9]2 18,6, 5]» ]
3| [23,4,de =7]2 [8,2,4] 52 5 | [31,2,de = 11]2 16,2,6]2 | 10

[26,6,de = T]2 [9, 3,4] 52
[29,8,de = T]2 [10,4, 4] 52
[41,16,de = 7]2 [14,8,4]52
4 [26,2,de = 9]2 [9,1,5]92
[50,18,de = 9]2 [17,9,5]92

[39,4, de = 11]2 [20,4,6]2 | 9
[41,5,de = 11]2 [21,5,6]2 | 9
[47,6,de = 11]2 [24,6,6]2 | 10
[55,12,de = 11]2 | [28,12,6]> | 10
6 | [33,1,de = 13]2 [7,1,7]2 | 11
[47,3, de = 13]2 [24,3,7]2 | 11
[49,5, de = 13]2 [25,5,7]2 | 11
[59,8, de = 13]2 [30,8,7]> | 12

t concatenated code| outer code | dp
4| [39,6,de =9]2 [10,2, 5] 93 [63,10,de = 13]2 | [32,10,7]2 | 12

8
[43,9,de = 9]2 [11,3,5]53 | 8 7 [47.1,d. = 15] 2418 |13
[47,12,de = 9]2 | [12,4,5]s | 8 [51,4, de = 15]2 [26,4,8]> | 12
8
8

[59,21,de =9]2 | [15,7,5]9s [59, 5, de = 15]2 [30,5,8]2 | 13
[75,33,de =9]2 | [19,11,5]3 [63,6,de = 15]2 [32,6,8]> | 14

5| [47,6,de =11]2 | [12,2,6]53 | 10 [65,7, de = 15]2 [33,7,8]2 | 13
[63,18,de = 11]2 | [16,6,6]43 | 10 [67,8,de = 15]2 | [34,8,8]2 | 14
[71,24,d. = 11]2 | [18,8,6]4 | 10 [71,12,de. = 15]2 | [36,12,8]2 | 14
[75,27,de = 11]2 | [19,9,6]53 | 10 8 | [49,1,d. =17]2 | [25,1,9]2 | 13
[79,30,de = 11]2 | [20,10,6]43 | 9 [53,3,de = 17]2 | [27,3,9]2 | 13
[83,33,de = 11]2 | [21,11,6]4s | 10 [69,4,dec = 17]2 [35,4,9]2 | 15
[91,39,de = 11]2 | [23,13,6]4s | 10 [101,19,de = 17]2 | [51,19,9]> | 16
[99,45,de = 11]2 | [25,15,6]43 | 10 9 | [55,2,de =192 | [28,2,10]> | 14
[103,48,de = 1] | [26,16,6],s | 10 [71,3,de = 19]2 | [36,3,10]2 | 15

[105,17,de = 19]2 | [53,17,10]2 | 17
10 | [67,1,de = 21]> | [29,1,11]z | 15
[81,3,de = 21]o | [41,3,11]2 | 18
[95,4,de = 21]> | [48,4,11]2 | 20

[107,51,de = 11]2 | [27,17,6]53 | 10
[111,54,de = 11]2 | [28,18,6]55 | 10
6 | [95,36,de = 13]2 | [24,12,7]o3 | 12

[99,39,de = 13]2 | [25,13,7]5s | 11 [97.5.dy = 215 19.5.11]> | 19
[103,42,d. = 13]2 | [26,14, 7] | 11 T [83.2.d. = 23] 122.12], |19
[107,45,de = 13]2 | [27,15,7]ys | 11 [97,3,de = 23]2 | [49,3,12]2 | 21
[111,48,de = 13]2 | [28,16,7]ys | 11 [99,4,d. = 23]2 | [50,4,12] | 20
[115,51,de = 13]2 | [29,17,7]5s | 12 [107,8,de = 23]2 | [54,8,12]2 | 19
[119,54,de = 13]2 | [30,18,7]4s | 12 12| [85,1,de = 25]2 43,1,13]2 | 21
[123,57,de = 13]2 | [31,19,7]ps | 12 [101,3,de = 25]2 | [51,3,13]2 | 21
[127,60,de = 13]2 | [32,20,7]ss | 11 113,5,de = 25]2 | [57,5,13]2 | 21
7 | [127,54,de = 15]2 | [32,18,8]4s | 13 13 | [103,2,de =272 | [52,2,14]z | 21

[115,4,de = 27]2 | [58,4,14]5 | 22

t concatenated code| outer code | dp 1 1(2)2’?’ 36 i ;; 2 gg’?’ E 2 |23
b 9 e — 9 b

2 2

[79,16,de = 13]2 | [16,4,7]p1 | 12 17 3.d = 2915 | [59.3.15]5

7 | [119,40,d. = 15]2 | [24,10,8]4 | 14 5 [119.2.d. =31, | [60.2.16], | 23
16 | [121,1,de = 33]z | [6L,1,17]2

VI. DISCUSSION

We can also use other asymmetric codes as inner codes tgxample 9: Choose the inner code to be the asymmetric
construct concatenated codes based on Thebfem 4. Usin@,@7{4,2}ﬂ2 CSS code withX-distancedy = 4 and Z-
similar idea as in Theoref 6, one may also encode the figgstanced , = 2, resulting in effective distancé. = 4. It can
qudit of the outefnz, ka],x, code into a trivial[kz, k22 code. pe constructed from the first order Reed-Muller code and the

This leads to the following corollary. repetition code. Its stabilizer is generated by
Corollary 8: Concatenating arnaz, k2, d],+ qudit outer

code Q, with an inner asymmetridn,, k1]. code Q; with zZ 7 Z
effective distance, results in a cod§n; (n2 —1)+ ko, k1ka]-2 Z Z I
with effective distance at least.(6 — 1) + 1, as well as a zZ I Z
concatenated codgnins, k1ks]o with effective distance at Z Z Z
leastd.d. X X X



TABLE Il . .
CONCATENATED CODES[n, k, de]2 FOR THEAD CHANNEL BAsEDON  COMpared to ratg/8 for the [8, 3, {4, 2}]> code, resulting in

NON-QMDSOUTER CODES WITH QUDIT DIMENSIONA AND 8. codes with better parameters.
Nonetheless, this example illustrates the flexibility ofr ou
t | concatenated code| outer code | di method. We can also use it for channels for which the asym-
4| [41,8,dc = 92 [14,4,5],2 | 8

metry betweerp,, andp, is different than for the amplitude

[44,10,de =9]2 | [15,5,5]2 | & damping channel (see, e.f.]11]).

[47,12,de = 9]2 | [16,6,5]2 | 8

5 | [50,10,de =11]> | [17,5,6]52 | 9 ACKNOWLEDGEMENTS
6 | [44.2,de =13]2 | [15,1,7], | 12
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