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Abstract—We discuss a method to construct quantum codes
correcting amplitude damping errors via code concatenation.
The inner codes are chosen as asymmetric Calderbank-Shor-
Steane (CSS) codes. By concatenating with outer codes correcting
symmetric errors, many new codes with good parameters are
found, which are better than the amplitude damping codes
obtained by any previously known construction.

Index Terms—Quantum error-correcting codes, concatenated
codes, amplitude damping channel, CSS codes.

I. I NTRODUCTION

Channels transmitting quantum information represented by
the density matrixρ are completely positive, trace-preserving
linear maps. They can be represented in the Kraus decom-
positionA(ρ) =

∑

k AkρA
†
k with

∑

k A
†
kAk = I [19]. The

matricesAi are called the Kraus operators or error set of the
channelA.

Most quantum error-correcting codes constructed so far are
for the depolarizing channel

ADP(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ), (1)

where the PauliX,Y, Z errors happen equally likely. The
Kraus operators ofADP are{√1− pI,

√

p

3
X,

√

p

3
Y,

√

p

3
Z}.

The assumption of equal probability for the PauliX,Y, Z
errors in fact models the worst case scenario of ‘white noise’,
where all kind of errors happen. However, in practical systems,
some errors are usually more likely to happen than others. A
more realistic error model for physical systems is based on
the common noise processes described by amplitude damping
and phase damping. The corresponding asymmetric channel is
given by

AAS(ρ) = (1− (2pxy + pz))ρ

+ pxy(XρX + Y ρY ) + pzZρZ, (2)

where the PauliX andY errors happen with equal probability
pxy, which is determined by the amplitude damping (AD)
noise. The probabilitypz of the PauliZ error depends on
the phase damping noise, and in general we havepxy 6= pz.

The amplitude damping channel is given by [19]

AAD(ρ) = A0ρA
†
0
+A1ρA

†
1
, (3)

where the Kraus operators are

A0 =

(

1 0
0

√
1− γ

)

, A1 =

(

0
√
γ

0 0

)

, (4)

where γ is a damping parameter. The AD channel models,
e.g., photon loss in optical fibers, or spontaneous emissionof
atoms [2], [19].

It has been first demonstrated in [18] that designing QECCs
adaptively to the AD noise can result in better codes. In
particular, a four-qubit code correcting a single AD error
was found, using less qubits than the smallest single-error-
correcting code for the depolarizing channel that needs five
qubits [1], [16]. Generalizations of this four-qubit code are
discussed in [5], [6]. In particular, it was discussed in [6]that
Shor’s nine-qubit code can correct2 AD errors, despite the fact
that the code only corrects a single error for the depolarizing
channel.

Subsequent works borrow ideas from the construction of
classical asymmetric codes [13], combined with the codeword
stabilized (CWS) quantum code method [3], to construct
single-error-correcting AD codes, including both stabilizer
codes and non-additive codes [17], [21]. Multi-error-correcting
AD codes are discussed in [4], based on a concatenation
method. In particular, the inner code is chosen as the two-qubit
code{|01〉, |10〉} based on the classical dual-rail code, which
results in a quantum erasure channel for the outer codes. Many
good stabilizer AD codes are constructed by concatenating
with the quantum erasure codes. However, due to the choice
of the inner code, the rate of the constructed AD codes can
never exceed1/2.

In this work, we discuss a new method to construct AD
codes via concatenation. We choose the inner codes as codes
correcting certain kind of asymmetric errors. By carefully
analyzing the error model for the AD channel, we introduce
the concept of ‘effective weight’ for errors and ‘effective
distance’ for the AD codes. This allows us to use outer codes
correcting symmetric errors (i.e., the ‘usual’ codes designed to
correct depolarizing errors). Our new method results in many
new AD codes with good parameters, which are better than
the AD codes obtained by any previously known construction.

II. BACKGROUND

A QECCQ is a subspace of the space ofn qudits(Cq)⊗n,
with single qudit dimensionq. For a K-dimensional code
space spanned by the orthonormal basis{|ψi〉, i = 1, . . . ,K}
and an error setA, there is a physical operation detecting all
the elementsAµ ∈ A if the error detection condition [1], [14]

〈ψi|Aµ|ψj〉 = cµδij (5)
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is satisfied.
The notation((n,K))q is used to denote a qudit QECC with

lengthn and dimensionK. A stabilizer QECC has dimension
K = qk for some integerk, and the notation[[n, k]]q is used
to denote a qudit stabilizer code with lengthn and dimension
qk. A codeQ is of distanced if Eq. (5) is satisfied for allAµ

that act nontrivially on at mostd− 1 qudits.
In this work, we focus on the construction of AD codes,

which are qubit codes withq = 2. However, qudit codes
with q = 2r are used as outer codes for the concatenation
constructions to get qubit AD codes.

We consider error setsA of Pauli type. For multi-qubit Pauli
operators, for instance,X ⊗ Y ⊗ I ⊗ Z, we will write it as
XY IZ or X1Y2Z4 (where the subscripts denote the number
of the qubits that the PauliX,Y, Z operator is acting on),
when no confusion arises. For the AD channelAAD as given in
Eq. (4), the Kraus operatorsA0 andA1 are not Pauli operators.
However, we can find Pauli error models that lead to codes
correcting AD errors.

Notice that

A1 =

√
γ

2
(X + iY ), A0 = I − γ

4
(I − Z) +O(γ2), (6)

and hence,A0 which is of different order inγ asA1. So the
corresponding asymmetric error model as given in Eq. (2) has
pxy ∝ γ andpz ∝ γ2.

A t-error-correcting AD code (ort-code in short) improves
the fidelity of the transmitted state from1− γ to 1− γt. For
instance, fort = 1, we only need to correct a singleA1 error
and detect a singleA0 error [10]. In terms of Pauli operators,
we only need to correct a singleX andY error, and detect
a singleZ error. In other words, a code that detects the error
setA{1} that is given by

A{1} = {I} ∪ {Xi, Yi, Zi, XiXj , XiYj , YiYj}, (7)

with i, j ∈ [1, n], is a 1-code that corrects a single AD error.
Pauli error models that lead to codes correctingt AD errors

can be given similarly. For instance, codes detecting the Pauli
error set given byA{2} = {AµAν : Aµ, Aν ∈ A{1}} are 2-
codes that correct2 AD errors. We will similarly denote by
A{t} the Pauli error set that results int-codes.

III. C ONCATENATED METHOD

We examine the weight properties of the elements inA{t},
which leads to new effective error models that are more conve-
nient for constructing codes detecting the error setA{t}. From
Eq. (3) and Eq. (6) it follows that eachZ error contributes a
factor of γ2 to the noise, whileX or Y errors contribute a
factor of γ. In other words, when we consider eachX or Y
error as ‘1 error’, then eachZ error will be ‘effectively 2
errors’. Motivated by this observation, we have the following
definition for ‘effective weight’.

Definition 1: For any tensor productE of Pauli errors, each
tensor factorX or Y has effective weight1, and each factor
Z has effective weight2. The effective weight ofE is the
sum of the effective weight of all factorsX,Y, Z in E, and
is denoted bywte(E).

As an example, forE = XY IZ ∈ A{2}, wte(E) = 4. In
fact, we have the following result on the effective weight of
the elements inA{t}.

Lemma 2:Any elementE ∈ A{t} has effective weight
wte(E) ≤ 2t.

Proof: Notice that any elementE ∈ A{t} will be a
product of at mostt elements fromA{1} as given in Eq. (7).
Any element inA{1} has at most effective weight2, henceE
has at most effective weight2t.

Obviously, the upper bound2t is achievable by some
elementsE ∈ A{t}. We can now define the effective distance
de for t-AD-error-correcting codes that detect the error set
A{t}. This effective distance will later allow us to compare
our new codes with codes for the depolarizing channel with
the usual code distanced (i.e., eachX,Y, Z has weight1).

Definition 3: A code has effective distancede = s, if it
detects Pauli errors of effective weight up tos− 1.

Therefore, if a code has effective distancede = 2t+1, then
it detects the error setA{t}, and is hence at-code.

Now we are ready to present our concatenation method.
Theorem 4:Starting from an inner[[n1, k1]]2 codeQi with

effective distancede, concatenation of an[[n2, k2, δ]]2k1 qudit
outer codeQo with distanceδ results in a concatenated code
[[n1n2, k1k2]]2 with effective distance at leastdeδ.

Proof: The concatenated codeQ is a stabilizer code with
length n1n2 and dimension(2k1)k2 , hence encodingk1k2
qubits. Denote the stabilizer ofQ by SQ. It has two sets of
generators. The first set is obtained by replacing each tensor
factor of the generators of the stabilizerSQo

of the outer code
by the corresponding logical operator of the inner code. The
second set is formed by the stabilizerSi of the inner code
acting on each block ofn1 qubits.

For the outer codeQo, any nontrivial logical operator in
C(SQo

) \ SQo
has weight at leastδ, where C(S) is the

centralizer of the stabilizerS. Likewise, the logical operators
in C(SQi

)\SQi
of the inner code have effective weight at least

de. The logical operators of the concatenated code are obtained
by replacing each tensor factor in the logical operators of the
outer code by the corresponding logical operator of the inner
code. Those operators have effective weight at leastdeδ. As
for standard concatenation of quantum codes [15], multiplying
a logical operator ofQ by an element of the stabilizerSQ will
not result in an effective weight less thandeδ.

IV. T HE [[r, r − 1]]2 INNER CODE

To examine the power of the construction for AD codes
given in Theorem 4, we will start with simple inner codes. We
take classical linear binary codes of distance2 with lengthr
and dimensionr− 1 (hence cardinality2r−1). For any length
r, such a distance-2 code will be formed by all bit strings of
length r with even Hamming weight. For any such classical
codeCr = [r, r−1, 2]2, the corresponding quantum codeQr =
[[r, r− 1]]2 is spanned by the computational basis vectors|ci〉
for all ci ∈ Cr. We first examine the effective distance ofQr.

Lemma 5:The codeQr defined above has effective dis-
tancede = 2.



Proof: The only non-trivial element of the stabilizerSr

of the codeQr is the r-fold tensor productZ⊗r. We need
to look at the effective weights of the logical operators that
are in C(Sr) \ Sr, whereC(Sr) is the centralizer ofSr.
These are Pauli operators that commute withZ⊗r. Clearly,
a singleZ (i.e., Zi) operator having effective weight two is
in C(Sr) \ Sr, but this set does not contain a singleX or Y
operator. The tensor product of twoX or Y operators (i.e.,
XiXj , XiYj , YiXj , YiYj) is in C(Sr) \ Sr. Therefore, every
logical operator ofQr has effective weight at least two, and
hence the effective distance ofQr is 2.

Since the dimension of the quantum codeQr is 2r−1, it
can be used as inner code for the concatenation with a qudit
outer codes with single qudit dimensionq = 2r−1. For the
construction of at-code, we need effective distance2t+1 for
the concatenated code.

Theorem 6:Given an[[n, k, δ]]2r−1 stabilizer code, a quan-
tum codeQ with parameters[[rn− 1, (r− 1)k]]2 and effective
distancede ≥ 2δ−1 can be constructed. This is at-code with
t = δ − 1.

Proof: We start from an[[n, k, δ]]2r−1 stabilizer code
of length n, and each qudit has dimension2r−1. The first
qudit is encoded into a trivial qubit code with parameters
[[r−1, r−1, de = 1]]2. Each of the other quditsj = 2, 3, . . . , n
is encoded into the codeQr with parameters[[r, r − 1, de =
2]]2. The resulting concatenated codeQ is a stabilizer code of
length (r − 1) + (n − 1)r = rn − 1 and dimension(2r−1)k,
hence encoding(r − 1)k qubits. Any logical operator of
[[n, k, δ]]2r−1 has weight at leastδ. Hence any logical operator
of Q that acts trivially on the first qudit has effective weight
at least2δ. Logical operators ofQ that act non-trivially on the
first qudit have effective weight at least1+2(δ−1) = 2δ−1.
Therefore, the effective distance ofQ is de ≥ 2δ − 1.

Example 7:Starting from the[[5, 1, 3]]2 code with stabilizer
generated by

X Z Z X I
I X Z Z X
X I X Z Z
Z X I X Z

and encoding qubits2, 3, 4, 5 into the codeQ2 stabilized by
ZZ, we get a[[9, 1]]2 code with effective distanced = 2 · 3−
1 = 5, which corrects two AD errors. By choosing the logical
operators forQ2 as X̄ = XX and Z̄ = ZI, the stabilizer of
the [[9, 1]]2 code is generated by

X ZI ZI XX II
I XX ZI ZI XX
X II XX ZI ZI
Z XX II XX ZI

I ZZ II II II
I II ZZ II II
I II II ZZ II
I II II II ZZ

Notice the two groups of generators as mentioned in the proof
of Theorem 4.

We remark that the[[9, 1]]2 2-code given above is in fact
local Clifford equivalent to one of the[[9, 1]]2 codes found
in [12] via exhaustive numerical search for CWS codes
detecting the error setA{2}. It is one of the best2-codes
known, which beats the[[10, 1]]2 2-code found in [4]. In fact,
the construction in [4] can be viewed as a special case of
Theorem 6, by concatenating all qudits of an outer code with
the inner codeQ2. Notice that in [4], codes with effective
distance2δ are constructed in order to obtaint-codes with
t = δ − 1, which results in length2n instead of2n − 1 as
given by Theorem 6. In other words, by using Theorem 6, the
length of anyt-code constructed in [4] can be reduced by one.

For decoding, the inner code[[r, r − 1]]2 will be used to
detect singleX- andY -errors. This provides side-information
on detected errors (erasures) for the outer code and allows to
simultaneously correcte erasures andf erroneous blocks with
r qubits each, as long ase+ 2f < δ.

V. PARAMETERS OFNEW AD CODES

In this section we discuss the parameters of the new AD
codes found by our concatenated method when using the inner
codeQr. We compare the effective distancede of the new
codes constructed via our concatenated method to the distance
dlb of the best known stabilizer codes.

The best possible parameters for our concatenation tech-
nique are expected when the outer code is an optimal quantum
code, and quantum MDS (QMDS) codes in particular. QMDS
codes have parameters[[n, n + 2 − 2d, d]]q, i.e., they attain
the quantum Singleton boundk + 2d ≤ n + 2 [14], [20].
QMDS codes are known to exists for alln ≤ q + 1, for
n = q2−1, q2, q2+1 and somed ≤ q+1, as well as for many
parametersn ≤ q2 + 1, d ≤ q + 1 [8]. In general it seems as
if for a qudit QMDS code with qudit dimensionq we have
the boundsd ≤ q + 1, andn ≤ q2 + 1, with the exception of
codes[[4m + 2, 2m − 4, 4]]2m (see [9]).

In order to construct at-code, we use QMDS codes[[n, n−
2t, t + 1]]q whereq = 2r−1 ≥ t as outer code and the code
Qr = [[r, r − 1]]2 as inner code, yielding at-code of length
rn− 1 encoding(r− 1)(n− 2t) = rn− n− 2rt+ 2t qubits.

The parameters of our codes based on the concatenation
of QMDS codes and the codeQr are presented in Table I.
The last column labeleddlb lists the largest known lower
bounddlb on the minimum distance of a stabilizer code for the
depolarizing channel (see [7]). Here we consider only codes
of length up tonmax = 128. We only list the parameters
[[n, k, de = 2t+1]]2 of t-codes for which the effective distance
de exceeds the lower bounddlb (i.e., de > dlb). Furthermore,
we omit parameters for which we find even betters codes
(smaller length, larger dimension, or larger effective distance).

In Tables II and III we list parameters of the bestt-codes
we found using outer codes that do not reach the quantum
Singleton boundk+2d ≤ n+2, but have the largest minimum
distance among the known codes. The codes in Table II are
based on qubit codes as outer codes and hence comparable to
the codes in [4], but reducing the length by one as discussed
above.



TABLE I
CONCATENATED CODES[[n, k, de]]2 FOR THEAD CHANNEL BASED ON

QMDS OUTER CODES WITH QUDIT DIMENSION2, 4, 8, AND 16.

t concatenated code outer code dlb

1 [[7, 2, de = 3]]2 [[4, 2, 2]]2 2

2 [[9, 1, de = 5]]2 [[5, 1, 3]]2 3

t concatenated code outer code dlb

3 [[23, 4, de = 7]]2 [[8, 2, 4]]
22

6

[[26, 6, de = 7]]2 [[9, 3, 4]]
22

6

[[29, 8, de = 7]]2 [[10, 4, 4]]
22

6

[[41, 16, de = 7]]2 [[14, 8, 4]]
22

6

4 [[26, 2, de = 9]]2 [[9, 1, 5]]
22

8

[[50, 18, de = 9]]2 [[17, 9, 5]]
22

8

t concatenated code outer code dlb

4 [[39, 6, de = 9]]2 [[10, 2, 5]]
23

8

[[43, 9, de = 9]]2 [[11, 3, 5]]
23

8

[[47, 12, de = 9]]2 [[12, 4, 5]]
23

8

[[59, 21, de = 9]]2 [[15, 7, 5]]
23

8

[[75, 33, de = 9]]2 [[19, 11, 5]]
23

8

5 [[47, 6, de = 11]]2 [[12, 2, 6]]
23

10

[[63, 18, de = 11]]2 [[16, 6, 6]]
23

10

[[71, 24, de = 11]]2 [[18, 8, 6]]
23

10

[[75, 27, de = 11]]2 [[19, 9, 6]]
23

10

[[79, 30, de = 11]]2 [[20, 10, 6]]
23

9

[[83, 33, de = 11]]2 [[21, 11, 6]]
23

10

[[91, 39, de = 11]]2 [[23, 13, 6]]
23

10

[[99, 45, de = 11]]2 [[25, 15, 6]]
23

10

[[103, 48, de = 11]]2 [[26, 16, 6]]
23

10

[[107, 51, de = 11]]2 [[27, 17, 6]]
23

10

[[111, 54, de = 11]]2 [[28, 18, 6]]
23

10

6 [[95, 36, de = 13]]2 [[24, 12, 7]]
23

12

[[99, 39, de = 13]]2 [[25, 13, 7]]
23

11

[[103, 42, de = 13]]2 [[26, 14, 7]]
23

11

[[107, 45, de = 13]]2 [[27, 15, 7]]
23

11

[[111, 48, de = 13]]2 [[28, 16, 7]]
23

11

[[115, 51, de = 13]]2 [[29, 17, 7]]
23

12

[[119, 54, de = 13]]2 [[30, 18, 7]]
23

12

[[123, 57, de = 13]]2 [[31, 19, 7]]
23

12

[[127, 60, de = 13]]2 [[32, 20, 7]]
23

11

7 [[127, 54, de = 15]]2 [[32, 18, 8]]
23

13

t concatenated code outer code dlb

6 [[79, 16, de = 13]]2 [[16, 4, 7]]
24

12

7 [[119, 40, de = 15]]2 [[24, 10, 8]]
24

14

VI. D ISCUSSION

We can also use other asymmetric codes as inner codes to
construct concatenated codes based on Theorem 4. Using a
similar idea as in Theorem 6, one may also encode the first
qudit of the outer[[n2, k2]]2k2 code into a trivial[[k2, k2]]2 code.
This leads to the following corollary.

Corollary 8: Concatenating an[[n2, k2, δ]]2k1 qudit outer
codeQo with an inner asymmetric[[n1, k1]]2 codeQi with
effective distancede results in a code[[n1(n2−1)+k2, k1k2]]2
with effective distance at leastde(δ − 1) + 1, as well as a
concatenated code[[n1n2, k1k2]]2 with effective distance at
leastdeδ.

TABLE II
CONCATENATED CODES[[n, k, de]]2 FOR THEAD CHANNEL BASED ON

NON-QMDS OUTER QUBIT CODES.

t concatenated code outer code dlb

3 [[19, 2, de = 7]]2 [[10, 2, 4]]2 6
[[23, 4, de = 7]]2 [[12, 4, 4]]2 6

4 [[21, 1, de = 9]]2 [[11, 1, 5]]2 7
[[31, 4, de = 9]]2 [[16, 4, 5]]2 8
[[35, 6, de = 9]]2 [[18, 6, 5]]2 8

5 [[31, 2, de = 11]]2 [[16, 2, 6]]2 10
[[39, 4, de = 11]]2 [[20, 4, 6]]2 9
[[41, 5, de = 11]]2 [[21, 5, 6]]2 9
[[47, 6, de = 11]]2 [[24, 6, 6]]2 10
[[55, 12, de = 11]]2 [[28, 12, 6]]2 10

6 [[33, 1, de = 13]]2 [[17, 1, 7]]2 11
[[47, 3, de = 13]]2 [[24, 3, 7]]2 11
[[49, 5, de = 13]]2 [[25, 5, 7]]2 11
[[59, 8, de = 13]]2 [[30, 8, 7]]2 12
[[63, 10, de = 13]]2 [[32, 10, 7]]2 12

7 [[47, 1, de = 15]]2 [[24, 1, 8]]2 13
[[51, 4, de = 15]]2 [[26, 4, 8]]2 12
[[59, 5, de = 15]]2 [[30, 5, 8]]2 13
[[63, 6, de = 15]]2 [[32, 6, 8]]2 14
[[65, 7, de = 15]]2 [[33, 7, 8]]2 13
[[67, 8, de = 15]]2 [[34, 8, 8]]2 14
[[71, 12, de = 15]]2 [[36, 12, 8]]2 14

8 [[49, 1, de = 17]]2 [[25, 1, 9]]2 13
[[53, 3, de = 17]]2 [[27, 3, 9]]2 13
[[69, 4, de = 17]]2 [[35, 4, 9]]2 15

[[101, 19, de = 17]]2 [[51, 19, 9]]2 16

9 [[55, 2, de = 19]]2 [[28, 2, 10]]2 14
[[71, 3, de = 19]]2 [[36, 3, 10]]2 15

[[105, 17, de = 19]]2 [[53, 17, 10]]2 17

10 [[57, 1, de = 21]]2 [[29, 1, 11]]2 15
[[81, 3, de = 21]]2 [[41, 3, 11]]2 18
[[95, 4, de = 21]]2 [[48, 4, 11]]2 20
[[97, 5, de = 21]]2 [[49, 5, 11]]2 19

11 [[83, 2, de = 23]]2 [[42, 2, 12]]2 19
[[97, 3, de = 23]]2 [[49, 3, 12]]2 21
[[99, 4, de = 23]]2 [[50, 4, 12]]2 20
[[107, 8, de = 23]]2 [[54, 8, 12]]2 19

12 [[85, 1, de = 25]]2 [[43, 1, 13]]2 21
[[101, 3, de = 25]]2 [[51, 3, 13]]2 21
[[113, 5, de = 25]]2 [[57, 5, 13]]2 21

13 [[103, 2, de = 27]]2 [[52, 2, 14]]2 21
[[115, 4, de = 27]]2 [[58, 4, 14]]2 22
[[125, 6, de = 27]]2 [[63, 6, 14]]2 23

14 [[105, 1, de = 29]]2 [[53, 1, 15]]2 21
[[117, 3, de = 29]]2 [[59, 3, 15]]2 23

15 [[119, 2, de = 31]]2 [[60, 2, 16]]2 23

16 [[121, 1, de = 33]]2 [[61, 1, 17]]2 25

Example 9:Choose the inner code to be the asymmetric
[[8, 3, {4, 2}]]2 CSS code withX-distancedX = 4 and Z-
distancedZ = 2, resulting in effective distancede = 4. It can
be constructed from the first order Reed-Muller code and the
repetition code. Its stabilizer is generated by

Z Z Z Z I I I I
Z Z I I Z Z I I
Z I Z I Z I Z I
Z Z Z Z Z Z Z Z
X X X X X X X X



TABLE III
CONCATENATED CODES[[n, k, de]]2 FOR THEAD CHANNEL BASED ON

NON-QMDS OUTER CODES WITH QUDIT DIMENSION4 AND 8.

t concatenated code outer code dlb

4 [[41, 8, de = 9]]2 [[14, 4, 5]]
22

8

[[44, 10, de = 9]]2 [[15, 5, 5]]
22

8

[[47, 12, de = 9]]2 [[16, 6, 5]]
22

8

5 [[50, 10, de = 11]]2 [[17, 5, 6]]
22

9

6 [[44, 2, de = 13]]2 [[15, 1, 7]]
22

12

[[56, 6, de = 13]]2 [[19, 3, 7]]
22

12

[[59, 8, de = 13]]2 [[20, 4, 7]]
22

12

[[74, 14, de = 13]]2 [[25, 7, 7]]
22

12

[[77, 16, de = 13]]2 [[26, 8, 7]]
22

12

[[80, 18, de = 13]]2 [[27, 9, 7]]
22

12

7 [[104, 26, de = 15]]2 [[35, 13, 8]]
22

14

[[107, 28, de = 15]]2 [[36, 14, 8]]
22

14

8 [[74, 6, de = 17]]2 [[25, 3, 9]]
22

15

[[92, 14, de = 17]]2 [[31, 7, 9]]
22

16

[[95, 16, de = 17]]2 [[32, 8, 9]]
22

16

[[110, 22, de = 17]]2 [[37, 11, 9]]
22

16

9 [[77, 4, de = 19]]2 [[26, 2, 10]]
22

16

[[98, 10, de = 19]]2 [[33, 5, 10]]
22

18

[[101, 12, de = 19]]2 [[34, 6, 10]]
22

17

[[104, 14, de = 19]]2 [[35, 7, 10]]
22

17

[[110, 18, de = 19]]2 [[37, 9, 10]]
22

17

[[113, 20, de = 19]]2 [[38, 10, 10]]
22

18

[[116, 22, de = 19]]2 [[39, 11, 10]]
22

18

10 [[95, 4, de = 21]]2 [[32, 2, 11]]
22

20

[[98, 6, de = 21]]2 [[33, 3, 11]]
22

19

[[101, 8, de = 21]]2 [[34, 4, 11]]
22

19

[[104, 10, de = 21]]2 [[35, 5, 11]]
22

18

[[107, 12, de = 21]]2 [[36, 6, 11]]
22

18

[[116, 14, de = 21]]2 [[39, 7, 11]]
22

20

[[119, 16, de = 21]]2 [[40, 8, 11]]
22

20

[[122, 18, de = 21]]2 [[41, 9, 11]]
22

20

[[125, 20, de = 21]]2 [[42, 10, 11]]
22

20

[[128, 22, de = 21]]2 [[43, 11, 11]]
22

20

11 [[116, 10, de = 23]]2 [[39, 5, 12]]
22

21

[[119, 12, de = 23]]2 [[40, 6, 12]]
22

21

[[122, 14, de = 23]]2 [[41, 7, 12]]
22

21

[[125, 16, de = 23]]2 [[42, 8, 12]]
22

21

12 [[116, 6, de = 25]]2 [[39, 3, 13]]
22

22

[[119, 8, de = 25]]2 [[40, 4, 13]]
22

22

[[128, 10, de = 25]]2 [[43, 5, 13]]
22

23

t concatenated code outer code dlb

8 [[107, 21, de = 17]]2 [[27, 7, 9]]
23

16

Based on Theorem 4, concatenating with a QMDS[[10, 2, 5]]23
outer code results in a code[[80, 6]]2 with effective distance
de = 20. This code is better than the best known stabilizer
code [[80, 6, 16]]2. Using Corollary 8, we get a[[75, 6]]2 code
with effective distancede = 17, correctingt = 8 AD errors.
This again improves upon the best known stabilizer code
[[75, 6, 15]]2. However, thet = 8 code with parameters[[74, 6]]2
listed in Table III has better parameters. Note that for both
codes[[8, 3, {4, 2}]]2 and[[2, 1, {2, 1}]]2 (i.e., the codeQ2 with
the stabilizer generated byZZ), the ratio between theX- and
Z-distance is2, resulting in an effective distance of4 and
2, respectively. However, the[[2, 1, {2, 1}]]2 code has rate1/2

compared to rate3/8 for the [[8, 3, {4, 2}]]2 code, resulting in
codes with better parameters.

Nonetheless, this example illustrates the flexibility of our
method. We can also use it for channels for which the asym-
metry betweenpxy andpz is different than for the amplitude
damping channel (see, e.g. [11]).
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