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Abstract

We tighten the Entropy Power Inequality (EPI) when one of therandom summands is Gaussian. Our strengthening
is closely connected to the concept of strong data processing for Gaussian channels and generalizes the (vector
extension of) Costa’s EPI. This leads to a new reverse entropy power inequality and, as a corollary, sharpens Stam’s
inequality relating entropy power and Fisher information.Applications to network information theory are given,
including a short self-contained proof of the rate region for the two-encoder quadratic Gaussian source coding
problem.

Our argument is based on weak convergence and a technique employed by Geng and Nair for establishing
Gaussian optimality via rotational-invariance, which traces its roots to a ‘doubling trick’ that has been successfully
used in the study of functional inequalities.

Index Terms

Entropy power inequality, Costa’s EPI, Stam’s Inequality,Strong Data Processing, Gaussian Source Coding

I. INTRODUCTION AND MAIN RESULT

For a random variableX with densityf , the differential entropy ofX is defined by

h(X) = −
∫

f(x) log f(x)dx. (1)

Similarly, h(X) is defined to be the differential entropy of a random vectorX ∈ R
n having density onRn. The

celebrated Entropy Power Inequality (EPI) put forth by Shannon [1] and rigorously established by Stam [2] and
Blachman [3] asserts that forX,W independent

22h(X+W ) ≥ 22h(X) + 22h(W ). (2)

Under the assumption thatW is Gaussian, we prove the following strengthening of (2):

Theorem 1. LetX ∼ PX , and letW ∼ N(0, σ2) be independent ofX. For anyV satisfyingX → (X+W )→ V ,

22(h(X+W )−I(X;V )) ≥ 22(h(X)−I(X+W ;V )) + 22h(W ). (3)

The notationX → (X+W )→ V in Theorem 1 follows the usual convention, indicating that the random variables
X, X +W andV form a Markov chain, in that order. Throughout, we writeX → Y → V |Q to denote random
variablesX,Y, V,Q with joint distribution factoring asPXY V Q = PXQPY |XQPV |Y Q. That is,X → Y → V form
a Markov chain conditioned onQ.

When the integral (1) does not exist, or ifX does not have density, then we adopt the convention thath(X) = −∞.
In this case, the inequality (3) is a trivial consequence of the data processing inequality. So, as with the classical
EPI, Theorem 1 is only informative whenX has density andh(X) exists.

A conditional version of the EPI is often useful in applications. Theorem 1 easily generalizes along these lines.
Indeed, due to joint convexity oflog(2x + 2y) in x, y, we obtain the following corollary of Theorem 1:
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Corollary 1. SupposeX,W are conditionally independent givenQ, and moreover thatW is conditionally Gaussian
givenQ. Then, for anyV satisfyingX → (X +W )→ V |Q,

22(h(X+W |Q)−I(X;V |Q)) ≥ 22(h(X|Q)−I(X+W ;V |Q)) + 22h(W |Q). (4)

It is interesting to note that the conditional version of theclassical EPI assumes a form symmetric to (3). In
particular, forQ→ X → (X +W ), it holds that

22(h(X+W )−I(X+W ;Q)) ≥ 22(h(X)−I(X;Q)) + 22h(W ). (5)

Note that the mutual informations in the exponents on the LHSand RHS of (3) and (5) respectively correspond to the
smaller and larger mutual informations in the corresponding data processing inequalitiesI(X;V ) ≤ I(X +W ;V )

andI(X +W ;Q) ≤ I(X;Q).
As one would expect, Theorem 1 also admits a vector generalization, which may be regarded as our main result:

Theorem 2. SupposeX,W are n-dimensional random vectors that are conditionally independent givenQ, and
moreover thatW is conditionally Gaussian givenQ. Then, for anyV satisfyingX→ (X+W)→ V |Q,

2
2

n
(h(X+W|Q)−I(X;V |Q)) ≥ 2

2

n
(h(X|Q)−I(X+W;V |Q)) + 2

2

n
h(W|Q). (6)

In the following section, we will see that the strengtheningof the classical EPI afforded by Theorem 2 generalizes
Costa’s EPI [4] (and the vector generalization [5]), which has found applications ranging from interference channels
to secrecy capacity (e.g., [5]–[8]). It also leads to a new reverse EPI, which can be applied to improve Stam’s
inequality or, equivalently, the Gaussian logarithmic Sobolev inequality. Moreover, we will see that Theorem 2
leads to a very brief proof of the converse for the rate regionof the quadratic Gaussian two-encoder source-coding
problem [9], [10]. Applications to one-sided interferencechannels and strong data processing inequalities are also
given.

We remark that the restriction ofW to be conditionally Gaussian in Theorem 2 should not be a severe limitation
in practice. Indeed, in applications of the EPI, it is typically the case that one of the variables is Gaussian. As
noted by Rioul [11], examples include the scalar Gaussian broadcast channel problem [12] and its generalization
to the multiple-input multiple-output case [13], [14]; thesecrecy capacity of the Gaussian wiretap channel [15]
and its multiple access extension [16]; determination of the corner points for the scalar Gaussian interference
channel problem [6], [7]; the scalar Gaussian source multiple-description problem [17]; and characterization of the
rate-distortion regions for several multiterminal Gaussian source coding schemes [10], [18], [19]. It is tempting to
conjecture that (6) holds when the distribution ofW is unconstrained, however we suspect this is not true (but no
counterexample was immediately apparent).

II. A PPLICATIONS

A. Generalized Costa’s Entropy Power Inequality

Costa’s EPI [4] states that, for independentn-dimensional random vectorsX ∼ PX andW ∼ N(0,Σ),

2
2

n
h(X+αW) ≥ (1− α2)2

2

n
h(X) + α22

2

n
h(X+W) for |α| ≤ 1. (7)

This result was generalized to a vector setting by Liuet al. using perturbation and I-MMSE arguments [5]. We
demonstrate below that this generalization follows as an easy corollary to Theorem 2 by takingV equal toX
contaminated by additive Gaussian noise. In this sense, Theorem 2 may be interpreted as a further generalization
of Costa’s EPI, where the additive noise is no longer restricted to be Gaussian.

Theorem 3. [5] Let X ∼ PX andW ∼ N(0,Σ) be independent,n-dimensional random vectors. For a positive
semidefinite matrixA � I,

2
2

n
h(X+A1/2W) ≥ |I −A|1/n2 2

n
h(X) + |A|1/n2 2

n
h(X+W). (8)
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Proof: Let W1,W2 denote two independent copies ofW, and putY = X + A1/2W1 andV = Y + (I −
A)1/2W2. Note thatV = X +W in distribution so thatI(X;V ) = h(X +W) − h(W). Similarly, I(Y;V ) =

h(X+W)− h((I −A)1/2W). Now, (8) follows from Theorem 2 since

2
2

n
(h(X+A1/2W)−h(X+W)+h(W)) = 2

2

n
(h(Y)−I(X;V )) (9)

≥ 2
2

n
(h(X)−I(Y;V )) + 2

2

n
h(A1/2W1) (10)

= 2
2

n
(h(X)−h(X+W)+h((I−A)1/2W)) + |A|1/n2 2

n
h(W) (11)

= |I −A|1/n2 2

n
(h(X)−h(X+W)+h(W)) + |A|1/n2 2

n
h(W). (12)

Multiplying both sides by2
2

n
(h(X+W)−h(W)) completes the proof.

Costa’s EPI may be interpreted as a concavity property enjoyed by entropy powers. The proof of Theorem 3
suggests a generalization of this property to non-Gaussiannoise. Indeed, we have the following, which may be
viewed as a reverse EPI:

Theorem 4. Let X ∼ PX,Z ∼ PZ andW ∼ N(0,Σ) be independent,n-dimensional random vectors. Then

2
2

n
(h(X+W)+h(Z+W)) ≥ 2

2

n
(h(X)+h(Z)) + 2

2

n
(h(X+Z+W)+h(W)). (13)

Proof: This is an immediate consequence of Theorem 2 by puttingV = X+Z+W and rearranging exponents.

We briefly remark that Madiman observed the following inequality on submodularity of differential entropy [20],
which can be proved via data processing: ifX,Z,W are independent random variables, then

22(h(X+W )+h(Z+W )) ≥ 22(h(X+Z+W )+h(W )). (14)

WhenW is Gaussian, Theorem 4 sharpens inequality (14) by reducingthe LHS by a factor of22(h(X)+h(Z)).

B. A Reverse EPI and a Refinement of Stam’s Inequality

Theorem 4 admits several interesting corollaries which aredeeply connected to the celebrated Gaussian
Logarithmic Sobolev Inequality (LSI). To start, define the entropy powerN(X) and the Fisher InformationJ(X)

of a random vectorX with densityf with respect to Lebesgue measure as follows:

N(X) ,
1

2πe
2

2

n
h(X) J(X) , E

[‖∇f(X)‖2
f(X)

]

. (15)

To avoid degeneracy, we assume throughout this section thatentropies and Fisher informations exist and are finite.
In exploring the similarity between the Brunn-Minkowski inequality and the EPI, Costa and Cover [21] proved

the following “information isoperimetric inequality” forn-dimensionalX

N(X)J(X) ≥ n. (16)

This inequality is commonly referred to as Stam’s inequality, due to the fact that he first observed it in his classic
1959 paper [2] in the one-dimensional case. In 1975, Gross rediscovered (16) by establishing the (mathematically
equivalent) LSI for the standard Gaussian measureγn on R

n [22]: For everyh on R
n with gradient inL2(γn)

∫

Rn

h2 log h2dγn ≤ 2

∫

Rn

|∇h|2dγn +

(
∫

Rn

h2dγn

)

log

(
∫

Rn

h2 dγn

)

. (17)

In the same paper, Gross also proved that (17) is equivalent to the hypercontractivity of the Ornstein-Uhlenbeck
semigroup [23]. It wasn’t until the 1990’s that Carlen [24] showed the equivalence between Stam’s inequality and
Gross’ LSI. We refer the reader to [25] for a concise proof andfurther historical details.

Since (16) is proved using de Bruijn’s identity and the special case of Shannon’s EPI when one summand is
Gaussian, Theorem 4 naturally leads to a sharpening of (16).Surprisingly, this strengthening takes the form of a
reverse EPI, which upper boundsN(X+ Z) in terms of the marginal entropies and Fisher informations.
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Theorem 5. If X andZ are independentn-dimensional random vectors, then

N(X)N(Z) (J(X) + J(Z)) ≥ nN(X+ Z). (18)

Proof: We may assumeJ(X) <∞ andJ(Z) <∞, else there is nothing to prove. To begin, letG ∼ N(0, I)

be independent ofX,Z and recall de Bruijn’s identity [2]:ddth(X+
√
tG) = 1

2 ln 2J(X+
√
tG). In particular, we

have
d

dt
N(X+

√
tG)

∣

∣

∣

t=0
=

1

n
N(X)J(X). (19)

Identifying W =
√
tG in Theorem 4 and rearranging, we find

N(X+
√
tG)N(Z+

√
tG)−N(X)N(Z)

t
≥ N(X+ Z+

√
tG) ≥ N(X+ Z). (20)

Letting t→ 0 and applying (19) proves the claim.
It is straightforward to recover Stam’s inequality from Theorem 5. Indeed, letZ ∼ N(0, σ2I) with variance

chosen such thatN(Z) = N(X), then (18) reduces to

N(X)J(X) +N(Z)J(Z) ≥ n
N(X+ Z)

N(X)
≥ n

2N(X)

N(X)
= 2n, (21)

where the second inequality follows from the EPI. SinceN(Z)J(Z) = n, (16) follows.
Stated another way, (16) reads1nJ(X) ≥ 1

N(X) . Using the EPI, we may sandwich the (appropriately normalized)
entropy power of the sumX+ Z according to

1

n
J(X) +

1

n
J(Z) ≥ N(X+ Z)

N(X)N(Z)
≥ 1

N(X)
+

1

N(Z)
, (22)

which is met with equality throughout ifX andZ are Gaussian with proportional covariance matrices.
Next, letX′,X be independent and identically distributed with finite entropy, and define thedoubling constant

of X (cf. [26]), denoted byd(X), as

d(X) ,
N

(

X+X′√
2

)

N(X)
. (23)

We remark that the doubling constant and its relationship toother functionals is discussed in [26] for the one-
dimensional setting, and in [27] for general dimension.

By letting Z andX be independent and identically distributed, Theorem 5 yields the following inequality, which
expresses the deficit in (16) in terms of the doubling constant d(X):

Corollary 2. For anyn-dimensional random vectorX,

N(X)J(X) ≥ n d(X). (24)

Recalling the conditions for equality in the EPI,d(X) ≥ 1 with equality if and only ifX is Gaussian. Therefore,
Corollary 2 represents a strict strengthening of (16). Since (16) is equivalent to the Gaussian LSI, Corollary 2
provides a bound on the deficit in the LSI. Such bounds have been of recent interest [28]–[30], and are interpreted
as a stability estimate for the LSI.

Let X be a random vector having densityf with respect toγn. Then the LSI (17) may be written as1

∫

Rn

f log f dγn ≤
1

2

∫

Rn

|∇f |2
f

dγn. (25)

1In fact, this is completely equivalent to Gross’ formulation (17).
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Under the assumptions thatX is zero-mean and satisfies the Poincaré inequality

ζ E
[

s2(X)
]

≤ E
[

|∇s(X)|2
]

(26)

for every smooths : Rn → R such thatE[s(X)] = 0, the LSI (25) may be improved to
∫

Rn

f log f dγn ≤
c(ζ)

2

∫

Rn

|∇f |2
f

dγn, (27)

wherec(ζ) < 1 for ‘spectral gap’ζ > 0 [29]. In fact, by using Corollary 2 and the self-strengthening argument of
[28], the constantc(ζ) established in [29] may be improved by incorporatingd(X).

Whenn = 1, Var(X) = 1 andh(X) > −∞, Ball, Barthe and Naor [31] showed that the Poincaré inequality
(26) implies

d(X) ≥ (N(X))−
ζ

2+2ζ . (28)

SinceN(X) ≤ 1 due toVar(X) = 1, we obtain a sharpening of Stam’s inequality:

Corollary 3. LetX be a zero-mean random variable withVar(X) = 1 and finite entropy. IfX satisfies the Poincaré
inequality (26), then

(N(X))1+
3

2
ζ (J(X))1+ζ ≥ 1. (29)

On account of [31], a doubling constantd(X) > 1 is a weaker assumption than presence of a spectral gap.
Therefore, inequality (24) may be viewed as an improvement on the stability estimate (27) in the sense that a less
restrictive hypothesis is required.

In closing, we remark that the inequality (28) also holds forR
n (with 2 + 2ζ replaced by4 + 4ζ), provided the

the density ofX is log-concave [32]. Thus, Corollary 3 can be modified accordingly.

C. Converse for the Two-Encoder Quadratic Gaussian Source Coding Problem

Characterizing the rate region for the two-encoder quadratic Gaussian source coding problem was a longstanding
open problem in the field of network information theory untilits ultimate resolution by Wagneret al. in their
landmark paper [9], which established that a separation-based scheme [33], [34] was optimal. Wagneret al.’s work
built upon Oohama’s earlier solution to the one-helper problem [10] and the independent solutions to the Gaussian
CEO problem due to Prabhakaran, Tse and Ramachandran [19] and Oohama [18] (see [35] for a self-contained
treatment). Since Wagneret al.’s original proof of the sum-rate constraint, other proofs have been proposed based
on estimation-theoretic arguments and semidefinite programming (e.g., [36]), however all known proofs are quite
complex. Below, we show that the converse result for the entire rate region is a direct consequence of Theorem 2,
thus unifying the results of [9] and [10] under a common and succinct inequality.

Theorem 6. [9] Let X,Y = {Xi, Yi}ni=1 be independent identically distributed pairs of jointly Gaussian random
variables with correlationρ. Let φX : Rn → {1, . . . , 2nRX} andφY : Rn → {1, . . . , 2nRY }, and define

dX ,
1

n
E
[

‖X− E[X|φX(X), φY (Y)]‖2
]

(30)

dY ,
1

n
E
[

‖Y − E[Y|φX(X), φY (Y)]‖2
]

. (31)

Then

RX ≥
1

2
log

(

1

dX

(

1− ρ2 + ρ22−2RY
)

)

(32)

RY ≥
1

2
log

(

1

dY

(

1− ρ2 + ρ22−2RX
)

)

(33)

RX +RY ≥
1

2
log

(1− ρ2)β(dXdY )

2dXdY
, (34)
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where andβ(D) , 1 +
√

1 + 4ρ2D
(1−ρ2)2 .

The key ingredient is the following consequence of Theorem 2:

Proposition 1. For X,Y as above,

2−
2

n
(I(Y;U)+I(X;V |U)) ≥ ρ2 2−

2

n
(I(X;U)+I(Y;V |U)) + 1− ρ2 (35)

for anyU, V satisfyingU → X→ Y → V .

Proof: Since mutual information is invariant to scaling, we may assume without loss of generality thatYi =

ρXi + Zi, whereXi ∼ N(0, 1) andZi ∼ N(0, 1− ρ2), independent ofXi. Now, Theorem 2 implies

2
2

n
(h(Y|U)−I(X;V |U)) ≥ 2

2

n
(h(ρX|U)−I(Y;V |U)) + 2

2

n
h(Z) (36)

= ρ22
2

n
(h(X|U)−I(Y;V |U)) + (2πe)(1 − ρ2). (37)

Since2−
2

n
h(Y) = 2−

2

n
h(X) = 1

2πe , multiplying through by 1
2πe establishes the claim.

Proof of Theorem 6: For convenience, putU = φX(X) and V = φY (Y). Using the Markov relationship
U → X→ Y → V , we may rearrange the exponents in Proposition 1 to obtain the equivalent inequality

2−
2

n
(I(X;U,V )+I(Y;U,V )) ≥ 2−

2

n
I(X,Y;U,V )

(

1− ρ2 + ρ22−
2

n
I(X,Y;U,V )

)

. (38)

The left- and right-hand sides of (38) are monotone decreasing in 1
n(I(X;U, V )+I(Y;U, V )) and 1

nI(X,Y;U, V ),
respectively. Therefore, if

1

n
(I(X;U, V ) + I(Y;U, V )) ≥ 1

2
log

1

D
and

1

n
I(X,Y;U, V ) ≤ R (39)

for some pair(R,D), then we haveD ≥ 2−2R
(

1− ρ2 + ρ22−2R
)

, which is a quadratic inequality with respect to
the term2−2R. This is easily solved using the quadratic formula to obtain:

2−2R ≤ 2D

(1− ρ2)β(D)
⇒ R ≥ 1

2
log

(1− ρ2)β(D)

2D
, (40)

whereβ(D) , 1 +
√

1 + 4ρ2D
(1−ρ2)2 . Note that Jensen’s inequality and the maximum-entropy property of Gaussians

imply 1
nI(X;U, V ) ≥ 1

2 log
1
dX

and 1
nI(Y;U, V ) ≥ 1

2 log
1
dY

, so that

1

n
(I(X;U, V ) + I(Y;U, V )) ≥ 1

2
log

1

dXdY
, (41)

establishing (34) since1nI(X,Y;U, V ) ≤ 1
n (H(U) +H(V )) ≤ RX +RY . Similarly, Proposition 1 implies

22RX+log dX ≥ 2
2

n
(I(X;U |V )−I(X;U,V )) = 2−

2

n
I(X;V ) ≥ (1− ρ2) + ρ22−

2

n
I(Y;V ) ≥ (1− ρ2) + ρ22−2RY . (42)

Rearranging (and symmetry) yields (32)-(33).

Remark 1. Proposition 1 (a special case of Theorem 2) was first established by the author and Jiao in [37]. In
fact, Proposition 1 establishes a stronger result than the converse for the two-terminal Gaussian source coding
problem; it shows that the rate regions coincide for the problems when distortion is measured under quadratic loss
and logarithmic loss [38], [39].
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D. One-sided Gaussian Interference Channel

The one-sided Gaussian interference channel (IC) (or Z-Gaussian IC) is a discrete memoryless channel, with
input-output relationship given by

Y1 = X1 +W (43)

Y2 = αY1 +X2 +W2, (44)

whereXi andYi are the channel inputs and observations corresponding to Encoderi and Decoderi, respectively, for
i = 1, 2. Here,W ∼ N(0, 1) andW2 ∼ N(1−α2) are independent of each other and of the channel inputsX1,X2.
We have assumed|α| < 1 since the setting where|α| ≥ 1 is referred to as thestrong interferenceregime, and
the capacity is known to coincide with the Han-Kobayashi inner bound [6], [35], [40], [41]. Observe that we have
expressed the one-sided Gaussian IC indegraded form, which has capacity region identical to the corresponding
non-degraded version as proved by Costa [6]. Despite receiving significant attention from researchers over several
decades, the capacity region of the one-sided Gaussian IC remains unknown in the regime of|α| < 1 described
above.

Having already discussed connections between Costa’s EPI (7) and Theorem 2 above, we remark that Costa’s
EPI was apparently motivated by the Gaussian IC [6]. Since Theorem 2 generalizes Costa’s result, the one-sided
Gaussian IC presents itself as a natural application. Toward this end, we establish a new multi-letter outer bound
to give a simple demonstration of how Theorem 2 might be applied to the one-sided Gaussian IC.

Theorem 7. (R1, R2) ∈ C (α,P1, P2) only if

R1 ≤
1

2
log(1 + P1) (45)

R2 ≤
1

2
log(1 + P2) (46)

2−2R2+o(1) ≥ 2−
2

n
I(Xn

1 ,X
n
2 ;Y

n
2 ) sup

V :Y n
1 →Y n

0 →V

{

α222R1− 2

n
I(Y n

0 ;V |Y n
1 ) + (1− α2)2

2

n
I(Y n

1 ;V )
}

, (47)

for some independentXn
1 ,X

n
2 satisfying the power constraintsE[‖Xn

i ‖2] ≤ nPi, i = 1, 2.

Proof: The only nontrivial inequality to prove is (47). Thus, we begin by noting that Theorem 2 implies

2
2

n
(h(Y n

2 |Xn
2 )−I(Y n

1 ;V |Xn
2 )) ≥ 2

2

n
(h(αY n

1 |Xn
2 )−I(Y n

2 ;V |Xn
2 )) + 2

2

n
h(Wn

2 |Xn
2 ) (48)

= α22
2

n
(h(Y n

1 )−I(Y n
2 ;V |Xn

2 )) + (1 − α2)2
2

n
h(Wn) (49)

for all V such thatY n
1 → Y n

2 → V |Xn
2 . Since h(W n) = h(Y n

2 |Xn
1 ,X

n
2 ) = h(Y n

1 |Xn
1 ), I(Y n

2 ;V |Xn
2 ) =

I(Y n
0 ;V,Xn

2 ) andI(Y n
1 ;V |Xn

2 ) = I(Y n
1 ;V,Xn

2 ), this can be rewritten as

2−
2

n
I(Xn

2 ;Y
n
2 )+ 2

n
I(Xn

1 ,X
n
2 ;Y

n
2 ) ≥ sup

V :Y n
1 →Y n

0 →V

{

α22
2

n
I(Xn

1 ;Y
n
1 )− 2

n
I(Y n

0 ;V |Y n
1 ) + (1− α2)2

2

n
I(Y n

1 ;V )
}

. (50)

Therefore,

2−2(R2−ǫn) ≥ 2−
2

n
I(Xn

2 ;Y
n
2 ) (51)

≥ 2−
2

n
I(Xn

1 ,X
n
2 ;Y

n
2 ) sup

V :Y n
1 →Y n

0 →V

{

α22
2

n
I(Xn

1 ;Y
n
1 )− 2

n
I(Y n

0 ;V |Y n
1 ) + (1− α2)2

2

n
I(Y n

1 ;V )
}

(52)

≥ 2−
2

n
I(Xn

1 ,X
n
2 ;Y

n
2 ) sup

V :Y n
1 →Y n

0 →V

{

α222(R1−ǫn)− 2

n
I(Y n

0 ;V |Y n
1 ) + (1− α2)2

2

n
I(Y n

1 ;V )
}

, (53)

where (51) and (53) hold forǫn → 0 due to Fano’s inequality. Multiplying both sides by22ǫn proves the claim.
The Han-Kobayashi achievable region [35], [41] evaluated for Gaussian inputs (without power control) can be

expressed as the set of rate pairs(R1, R2) satisfying (45), (46) and

2−2R2 ≥ α2 P2 2
2R1

(P2 + 1− α2)(1 + α2P1 + P2)
+

1− α2

P2 + 1− α2
. (54)

7



Interestingly, (54) this takes a similar form to (47); however, it is known that transmission without power control
is suboptimal for the Gaussian Z-interference channel in general [42], [43]. Nevertheless, it may be possible to
identify a random variableV in (47), possibly depending onX2, which ultimately improves known bounds. We
leave this for future work.

E. Relationship to Strong Data Processing

Strong data processing inequalities and their connection to hypercontractivity have garnered much recent attention
[44]–[51]. For random variablesA,B, the standard data processing inequality asserts thatI(V ;A) ≤ I(V ;B) for
any random variableV satisfyingA → B → V . For A,B ∼ PAB , it is natural to define the best-possible data
processing function

gI(t, PAB) = sup
V :A→B→V

{I(V ;A) : I(V ;B) ≤ t} , (55)

so thatI(V ;A) ≤ gI(I(V ;B), PAB) ≤ 1 is the sharpest possible data processing inequality for thejoint distribution
PAB . Thus, Theorem 1 may be rephrased as:

22(h(Y )−gI(t,PXY )) ≥ 22(h(X)−t) + 22h(W ) ∀t ≥ 0, (56)

whereY = X +W . Given the close relationship between the sharpened EPI (56) and strong data processing, it
might be appropriate to call Theorem 1 astrong entropy power inequality. In any case, on rearranging, we find the
following simple bound ongI for Gaussian channels:

Corollary 4. Let X ∼ PX andZ ∼ N(0, 1) be independent. ForY = X + Z,

gI(t, PXY ) ≤ I(X;Y )− 1

2
log

(

1 +
1

2πe
22(h(X)−t)

)

. (57)

Moreover, for GaussianX, the inequality(57) is an equality.

We remark that Calmon, Polyanskiy and Wu [48], [49] have recently considered a complementary setting where
they bound the best-possible data processing function defined according to

FI(t, γ) = sup {I(Y ;U) : I(X;U) ≤ t, U → X → Y } , (58)

whereY = X + Z, and the supremum is over allPUX such thatE[X2] ≤ γ.

III. PROOF OFMAIN RESULTS

Here we give the main ideas behind proving Theorem 1. Technical details are provided in Section V and referred
to as needed. For random variablesX,Y ∼ PXY , we writeX|{Y = y} to denote the random variableX conditional
on {Y = y}. Note thatX|{Y = y} is uniquely defined in the sense that different versions of the same are equal
PY -a.e. A sequence of random variablesX1,X2, . . . indexed byn ∈ N will be denoted by the shorthand{Xn},
and convergence of{Xn} in distribution to a random variableX∗ is written Xn

D−→ X∗.
In order to minimize the difference in inequality (3), we would like to simultaneously minimize the exponent

h(X+W )−I(X;V ), while maximizing the exponenth(X)−I(X+W ;V ) over all valid choices ofX,V . Toward
this end, for a random variableX ∼ PX , let Y be defined via the additive Gaussian noise channelPY |X given by
Y =

√
snrX + Z, whereZ ∼ N(0, 1) and define the family of functionals

sλ(X, snr) = −h(X) + λh(Y ) + inf
V :X→Y→V

{

I(Y ;V )− λI(X;V )
}

(59)

parameterized byλ ≥ 1. Similarly, for (X,Y,Q) ∼ PXQPY |X , define the functional ofPXQ

sλ(X, snr|Q) = −h(X|Q) + λh(Y |Q) + inf
V :X→Y→V |Q

{

I(Y ;V |Q)− λI(X;V |Q)
}

, (60)
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and letC (sλ(X, snr)) denote the lower convex envelope ofsλ(·, snr) at X. That is,

C (sλ(X, snr)) = inf
PQ|X

sλ(X, snr|Q). (61)

We consider the optimization problem

Vλ(snr) = inf
PX :E[X2]≤1

C (sλ(X, snr)) = inf
PXQ :E[X2]≤1

sλ(X, snr|Q). (62)

Remark 2. Note that, in the optimization problem(62), it suffices to considerQ ∈ Q with |Q| ≤ 2. Indeed, by
Fenchel-Caratheodory-Bunt [52, Theorem 18(ii)], taking Q supported on two points is sufficient to preserve the
values ofE[X2] =

∑

q p(q)E[X
2|Q = q] and sλ(X, snr|Q) =

∑

q p(q)sλ(X, snr|Q = q).

We have the following explicit characterization ofVλ(snr):

Theorem 8.

Vλ(snr) =







1
2

[

λ log
(

λ2πe
λ−1

)

− log
(

2πe
λ−1

)

+ log(snr)
]

if snr ≥ 1
λ−1

1
2

[

λ log (2πe(1 + snr))− log (2πe)
]

if snr ≤ 1
λ−1 .

(63)

The essential idea needed to establish Theorem 8 is that we only need to consider Gaussian random variables
in optimization problem (62). We establish this using a weakconvergence argument; the critical ingredients are
proved in Sections V-C and V-D, and respectively assert:

Claim I: There exists a sequence{Xn, Qn} satisfying

lim
n→∞

sλ(Xn, snr|Qn) = Vλ(snr) (64)

E[X2
n] ≤ 1 n = 1, 2, . . . (65)

and (Xn, Qn)
D−→ (X∗, Q∗), with X∗|{Q∗ = q} ∼ N(µq, σ

2
X) for PQ∗

-a.e.q, with σ2
X ≤ 1 not depending on

q.
Claim II: If Xn

D−→ X∗ ∼ N(µ, σ2
X) and supn E[X

2
n] <∞, then

lim inf
n→∞

sλ(Xn, snr) ≥ sλ(X∗, snr). (66)

In words, Claim I states that there exists a sequence{Xn, Qn} which approaches the infimum of the optimization
problem (62), withXn converging weakly to Gaussian. Claim II notes that the functional sλ(X, snr) is weakly
lower semicontinuous at GaussianX. Combining the two claims allows us to restrict attention toGaussianX in
optimization problem (62).

With these facts in hand, the proof of Theorem 8 follows from elementary calculus and the classical EPI. We
require the following proposition, which is a consequence of the conditional EPI, and a dual formulation of an
inequality observed by Oohama [10].

Proposition 2. Let X ∼ N(0, γ) andZ ∼ N(0, 1) be independent, and defineY =
√
snrX + Z. Then forλ ≥ 1,

inf
V :X→Y→V

(

I(Y ;V )− λI(X;V )
)

=

{

1
2

[

log ((λ− 1)γ snr)− λ log
(

λ−1
λ (1 + γ snr)

)]

if γ snr ≥ 1
λ−1

0 if γ snr ≤ 1
λ−1 .

Proof: Let V be such thatX → Y → V , and letX|{V = v}, Y |{V = v} denote the random variables
conditioned on{V = v}. SinceX,Y are jointly Gaussian andV → Y → X, we haveX|{V = v} = ρY |{V =

v} +W , whereρ := γ
√
snr

1+γ snr
andW ∼ N

(

0, γ − γ2
snr

1+γ snr

)

is independent ofY |{V = v}. By the entropy power
inequality, it holds that

22h(X|V =v) ≥ 22h(ρY |V=v) + 22h(W ) =
γ2 snr

(1 + γ snr)2
22h(Y |V=v) + 2πe

(

γ − γ2 snr

1 + γ snr

)

(67)
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which, upon applying Jensen’s inequality and rearranging,yields

2−2I(X;V ) ≥ 1 + γ snr 2−2I(Y ;V )

1 + γ snr
. (68)

It follows that

I(Y ;V )− λI(X;V ) ≥ I(Y ;V ) +
λ

2
log

(

1 + γ snr 2−2I(Y ;V )
)

− λ

2
log(1 + γ snr) (69)

≥
{

1
2

[

log ((λ− 1)γ snr)− λ log
(

λ−1
λ (1 + γ snr)

)]

if γ snr > 1
λ−1

0 if γ snr ≤ 1
λ−1 ,

(70)

where the second inequality follows by minimizing overI(Y ;V ) ≥ 0. Whenγ snr ≤ 1
λ−1 , this is trivially achieved

by settingV = constant. On the other hand, ifγ snr > 1
λ−1 , then it is easy to see that the lower bound is achieved

by takingV = Y + U , whereU ∼ N(0, 1+γ snr

γ snr(λ−1)−1 ).
Proof of Theorem 8:Noting thatsλ(X, snr) is invariant to translations ofE[X], it follows from Claims I and

II that

Vλ(snr) = inf
0≤γ≤1

sλ(Xγ , snr), whereXγ ∼ N(0, γ). (71)

Recalling the definition ofsλ( · , snr), Proposition 2 implies

sλ(Xγ , snr) =







1
2

[

λ log
(

λ2πe
λ−1

)

− log
(

2πe
λ−1

)

+ log(snr)
]

if γ snr ≥ 1
λ−1

1
2 [λ log (2πe (1 + γ snr))− log (2πeγ)] if γ snr ≤ 1

λ−1 .
(72)

Differentiating with respect to the quantityγ, we find that12 [λ log (2πe (1 + γ snr))− log (2πeγ)] is decreasing in
γ providedγ snr ≤ 1

λ−1 . Therefore, takingγ = 1 minimizessλ(Xγ , snr) over the intervalγ ∈ [0, 1], proving the
claim.

Given the explicit characterization ofVλ(snr), which is a dual form of inequality (3), we are now in a position
to prove Theorem 1.

Proof of Theorem 1:We first establish (3) under the additional assumption thatE[X2] <∞, and generalize at
the end via a truncation argument. Toward this goal, since mutual information is invariant to scaling, it is sufficient
to prove that, forY =

√
snrX + Z with E[X2] ≤ 1 andZ ∼ N(0, 1) independent ofX, we have

22(h(Y )−I(X;V )) ≥ snr 22(h(X)−I(Y ;V )) + 22h(Z) (73)

for V satisfyingX → Y → V . Multiplying both sides byσ2 and choosingsnr := Var(X)
σ2 gives the desired

inequality (3) whenE[X2] <∞. Thus, to prove (73), observe by definition ofVλ(snr) that

−h(X) + I(Y ;V ) ≥ λ(I(X;V )− h(Y )) + Vλ(snr). (74)

Minimizing the RHS overλ proves the inequality. In particular, the RHS of (74) is concave inλ, with derivative
given by

∂

∂λ

{

λ(I(X;V )− h(Y )) + Vλ(snr)
}

=







I(X;V )− h(Y ) + 1
2 log

(

λ2πe
λ−1

)

if snr ≥ 1
λ−1

I(X;V )− h(Y ) + 1
2 log (2πe(1 + snr)) if snr < 1

λ−1 .

Sinceh(Y ) ≤ 1
2 log (2πe(1 + snr)) by the maximum entropy property of Gaussians, it follows that I(X;V )−h(Y )+

1
2 log (2πe(1 + snr)) ≥ 0, implying that ∂

∂λ

{

λ(I(X;V ) − h(Y )) + Vλ(snr)
}

= 0 for λ satisfyingsnr ≥ 1
λ−1 . In

particular, the RHS of (74) is minimized whenλ satisfies

λ

λ− 1
=

1

2πe
2−2(I(X;V )−h(Y )). (75)

10



Substituting into (74) and recalling that22h(Z) = 2πe proves (73).
Now, we eliminate the assumption thatE[X2] < ∞. Toward this end, letX have density, letW be Gaussian

independent ofX, and considerV satisfyingX → Y → V , whereY = X + W . DefineXn to be the random
variableX conditioned on the event{|X| ≤ n}, let Yn = Xn +W and defineVn via PV |Y : Yn 7→ Vn. SinceXn

is bounded,E[X2
n] <∞ so that

22(h(Yn)−I(Xn;Vn)) ≥ 22(h(Xn)−I(Yn;Vn)) + 22h(W ). (76)

It follows by [53, Lemma 3] thatlimn→∞ h(Xn) = h(X), providedh(X) exists. Moreover, sinceXn
D−→ X,

Lemma 2 (see Section V-A) asserts thatlimn→∞ h(Xn +W ) = h(X +W ), so thath(Yn) → h(Y ). It is easy to

see that(Xn, Vn)
D−→ (X,V ), so lim infn→∞ I(Xn;Vn) ≥ I(X;V ) by lower semicontinuity of relative entropy.

Finally, the chain rule for mutual information implies

I(Y ;V ) +H(1{|X|≤n}) ≥ I(Y ;V |1{|X|≤n}) ≥ I(Yn;Vn)P{|X| ≤ n}, (77)

giving lim supn→∞ I(Yn;Vn) ≤ I(Y ;V ). Putting these observations together, we have established

22(h(Y )−I(X;V )) ≥ 22(h(X)−I(Y ;V )) + 22h(W ) (78)

as desired.

IV. EXTENSION TO RANDOM VECTORS

The vector generalization of the classical EPI is usually proved by a combination of conditioning, Jensen’s in-
equality and induction (e.g., [35, Problem 2.9]). The same argument does not appear to readily apply in generalizing
Theorem 1 to its vector version due to complications arisingfrom the Markov constraintX → (X +W) → V .
However, the desired generalization may be established by noting an additivity property enjoyed by the dual form.

For a random vectorX ∼ PX, let Y be defined via the additive Gaussian noise channelY = Γ1/2X+Z, where
Z ∼ N(0, I) is independent ofX andΓ is a diagonal matrix with nonnegative diagonal entries. Analogous to the
scalar case, define the family of functionals

sλ(X,Γ) = −h(X) + λh(Y) + inf
V :X→Y→V

{

I(Y;V )− λI(X;V )
}

(79)

parameterized byλ ≥ 1. Similarly, for (X,Y, Q) ∼ PXQPY|X, define

sλ(X,Γ|Q) = −h(X|Q) + λh(Y|Q) + inf
V :X→Y→V |Q

{

I(Y;V |Q)− λI(X;V |Q)
}

, (80)

and consider the optimization problem

Vλ(Γ) = inf
PXQ :E[X2

i ]≤1,i∈[n]
sλ(X,Γ|Q). (81)

Theorem 9. If Γ = diag(snr1, snr2, . . . , snrn), then

Vλ(Γ) =

n
∑

i=1

Vλ(snri). (82)

Proof: Let Γ be a block diagonal matrix with blocks given byΓ = diag(Γ1,Γ2). PartitionX = (X1,X2) and
Z = (Z1,Z2) such thatYi = Γ

1/2
i Xi + Zi for i = 1, 2. Then, for anyV such thatX → Y → V |Q, it follows

from Lemma 10 (see Section V-C) that

sλ(X,Γ|Q) ≥ sλ(X1,Γ1|X2, Q) + sλ(X2,Γ2|Y1, Q). (83)

Hence,Vλ(Γ) ≥ Vλ(Γ1) + Vλ(Γ2) by definition, so induction proves the claim.
Proof of Theorem 2: Define Y = X + W for convenience. As in the scalar setting, we establish the

unconditional claim (whereQ is constant) under the constraintE[‖X‖2] < ∞. The general result follows by a
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truncation argument exactly as in the scalar setting. Moreover, we may assumeΣW ≻ 0, else the inequality reduces
to h(Y) + I(Y;V ) ≥ h(X) + I(X;V ), which is trivially true by the data processing inequality and the fact that
conditioning reduces entropy.

Thus, due to positive definiteness ofΣW and invariance of mutual information under one-one transformations,
we may multiply both sides of (6) by|ΣW|−1/n to obtain the equivalent inequality

2
2

n
(h(Σ

−1/2
W

Y)−I(Σ
−1/2
W

X;V )) ≥ 2
2

n
(h(Σ

−1/2
W

X)−I(Σ
−1/2
W

Y;V )) + 2
2

n
h(Σ

−1/2
W

W). (84)

However,Σ−1/2
W W ∼ N(0, I) and ,E[‖Σ−1/2

W X‖2] <∞ providedE[‖X‖2] <∞, so we may assume without loss
of generality thatW ∼ N(0, I) in establishing the unconditional version of (6).

To simplify further, putsnr := max1≤i≤n E[X
2
i ]. Note that we may assumesnr > 0, else the claimed inequality

is trivial sinceh(X) = −∞ andh(Y)− I(X;V ) ≥ h(Y)− I(X;Y) = h(W). Therefore, (6) is equivalent to

2
2

n
(h(Y)−I(X;V )) ≥ snr 2

2

n
(h(X)−I(Y;V )) + 2

2

n
h(Z) (85)

holding forX→ Y → V , whereY =
√
snrX+ Z, Z ∼ N(0, I) is independent ofX, andmax1≤i≤n E[X

2
i ] ≤ 1.

This is established exactly as in the proof of Theorem 1, since Vλ(snr · I) = nVλ(snr).

V. PROOF OFCLAIMS I AND II

This section is dedicated to the proof of Claims I and II of Section III. Several of the steps in the proof require
properties and characterizations of Gaussian random variables, which are recalled and proved as needed in the first
two subsections. The third subsection is dedicated to the proof of Claim I, and the fourth subsection is dedicated
to the proof of Claim II.

A. Properties of Gaussian Perturbation

We collect below a few facts about random variables that are contaminated by Gaussian noise. Of particular
interest to us will be weakly convergent sequences of randomvariables, and corresponding continuity properties
under perturbation by Gaussian noise.

Lemma 1. [54, Lemma 5.1.3] IfX,Z are independent random variables andZ is normal, thenX + Z has a
non-vanishing probability density function which has derivatives of all orders.

Lemma 2. [55, Propositions 16 and 18] LetXn
D−→ X∗ with supn E[‖Xn‖2] <∞, and letZ ∼ N(0, σ2I) be a

non-degenerate Gaussian, independent of{Xn},X∗. LetYn = Xn +Z andY∗ = X∗ +Z. Finally, let fn(y) and
f∗(y) denote the density ofYn andY∗, respectively. Then

1. Yn
D−→ Y∗

2. ‖fn(y) − f∗(y)‖∞ → 0

3. h(Yn)→ h(Y∗).

Lemma 3. Suppose(X1,n,X2,n)
D−→ (X1,∗,X2,∗) with supn E[X

2
i,n] <∞ for i = 1, 2. Let (Z1, Z2) ∼ N(0, σ2I) be

pairwise independent of(X1,n,X2,n) and(X1,∗,X2,∗), and, fori = 1, 2, defineYi,n = Xi,n+Zi andYi,∗ = Xi,∗+Zi.

Then(Y1,n, Y2,n)
D−→ (Y1,∗, Y2,∗) and

lim inf
n→∞

I(X1,n;X2,n|Y1,n, Y2,n) ≥ I(X1,∗;X2,∗|Y1,∗, Y2,∗). (86)

Proof: The fact that(Y1,n, Y2,n)
D−→ (Y1,∗, Y2,∗) follows from Lemma 2. Lemma 2 also establishes that

h(Y1,n, Y2,n)→ h(Y1,∗, Y2,∗). (87)

On account of the Markov chains(X2,n, Y2,n) → X1,n → Y1,n and (X1,n, Y1,n) → X2,n → Y2,n, we have the
identity

I(X1,n;X2,n|Y1,n, Y2,n) = I(X1,n, Y2,n;Y1,n,X2,n)− I(X1,n,X2,n;Y1,n, Y2,n). (88)
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Observe thatlim infn→∞ I(X1,n, Y2,n;Y1,n,X2,n) ≥ I(X1,∗, Y2,∗;Y1,∗,X2,∗) due to lower semicontinuity of
relative entropy, andlimn→∞ I(X1,n,X2,n;Y1,n, Y2,n) = I(X1,∗,X2,∗;Y1,∗, Y2,∗) due to (87) and the fact that
h(Y1,∗, Y2,∗|X1,∗,X2,∗) = h(Y1,n, Y2,n|X1,n,X2,n) = h(Z1, Z2) is constant. Thus, (86) is proved by applying the
identity (88) again for(X1,∗,X2,∗, Y1,∗, Y2,∗).

Lemma 4. Let {Yn}, Y∗ be as in Lemma 2. Fixb > 0 and a channelPV |Y , and define{Vn}, V∗ according to
PV |Y : Yn 7→ Vn andPV |Y : Y∗ 7→ V∗. There exists a sequence{ǫn} depending onb and {Yn}, but not onPV |Y ,
satisfyinglimn→∞ ǫn = 0 and

I(Vn;Yn | |Yn| ≤ b) ≤ (1 + ǫn)
2I(V∗;Y∗ | |Y∗| ≤ b)− (1 + ǫn)

2 log(1− ǫn)
2, (89)

I(Vn;Yn | |Yn| ≤ b) ≥ (1− ǫn)
2I(V∗;Y∗ | |Y∗| ≤ b)− (1− ǫn)

2 log(1 + ǫn)
2, (90)

∣

∣

∣

∣

P(|Yn| ≤ b)

P(|Y∗| ≤ b)
− 1

∣

∣

∣

∣

≤ ǫn. (91)

Proof: Let fn(y) and f∗(y) denote the density ofYn and Y∗, respectively. By Lemma 1, the densityf∗ is
continuous and does not vanish, and is therefore bounded away from zero on the intervalB = [−b, b]. By Lemma
2, ‖fn(y)− f∗(y)‖∞ → 0, so it follows that

sup
y∈B

∣

∣

∣

∣

1− fn(y)

f∗(y)

∣

∣

∣

∣

≤ ǫn and sup
y∈B

∣

∣

∣

∣

1− f∗(y)
fn(y)

∣

∣

∣

∣

≤ ǫn (92)

for someǫn → 0 asn→∞ (note thatǫn does not depend onPV |Y ). As a consequence,

P(Y∗ ∈ B) =

∫

B
f∗(y)dy ≤ (1 + ǫn)

∫

B
fn(y)dy = (1 + ǫn)P(Yn ∈ B). (93)

Hence, fory ∈ B, the conditional densities ofYn|{Yn ∈ B} andY∗|{Y∗ ∈ B} satisfy

fYn|{Yn∈B}(y)

fY∗|{Y∗∈B}(y)
=

fn(y)

f∗(y)
· P(Y∗ ∈ B)

P(Yn ∈ B)
≤ (1 + ǫn)

2. (94)

By a symmetric argument,fYn|{Yn∈B}(y) ≥ (1− ǫn)
2fY∗|{Y∗∈B}(y) for all y ∈ B. Therefore, for any Borel setA,

P(Vn ∈ A|Yn ∈ B) =

∫

B

∫

A
PV |Y=y(dv)fYn|{Yn∈B}(y)dy ≥ (1− ǫn)

2

∫

B

∫

A
PV |Y=y(dv)fY∗|{Y∗∈B}(y)dy (95)

= (1− ǫn)
2
P(V∗ ∈ A|Y∗ ∈ B). (96)

As a consequence,dPVn|Yn∈B

dPV∗|Y∗∈B
(v) ≥ (1− ǫn)

2. Combining the above observations we have

I(Vn;Yn|Yn ∈ B) =

∫

B

∫

fYn|{Yn∈B}(y) log

(

dPV |Y=y

dPVn|Yn∈B
(v)

)

PV |Y=y(dv)dy (97)

≤ (1 + ǫn)
2

∫

B

∫

fY∗|{Y∗∈B}(y) log

(

1

(1− ǫn)2
dPV |Y=y

dPV∗|Y∗∈B
(v)

)

PV |Y=y(dv)dy (98)

= (1 + ǫn)
2I(V∗;Y∗|Y∗ ∈ B)− (1 + ǫn)

2 log(1− ǫn)
2. (99)

By a symmetric argument, we also have

I(Vn;Yn|Yn ∈ B) ≥ (1− ǫn)
2I(V∗;Y∗|Y∗ ∈ B)− (1− ǫn)

2 log(1 + ǫn)
2, (100)

which proves (89)-(90). Inequality (91) is established by the same logic as (93).

Lemma 5. Let X ∼ PX and letZ ∼ N(0, σ2) be a non-degenerate Gaussian, independent ofX. It holds that

lim
b→∞

P(|X| > b)I(X;X + Z | |X| > b) = 0. (101)
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Proof: The proof follows that of [56, Theorem 6]. By lower semicontinuity of relative entropy, we have

lim inf
b→∞

I(X;X + Z | |X| ≤ b) ≥ I(X;X + Z). (102)

Also,

I(X;X + Z) ≥ P(|X| ≤ b)I(X;X + Z | |X| ≤ b), (103)

so thatlimb→∞ I(X;X + Z | |X| ≤ b) = limb→∞ P(|X| ≤ b)I(X;X + Z | |X| ≤ b) = I(X;X + Z). By the
chain rule

P(|X| > b)I(X;X + Z | |X| > b) = I(X;X + Z)− I(1{|X|≤b};X + Z)− P(|X| ≤ b)I(X;X + Z | |X| ≤ b),

so the claim is proved sinceI(1{|X|≤b};X + Z) vanishes asb→∞.

B. Characterizations of Gaussian Random Variables

The goal of this subsection is to establish the following characterization of Gaussian random variables:

Lemma 6. Suppose(X1,n,X2,n)
D−→ (X1,∗,X2,∗) with supn E[X

2
i,n] < ∞ for i = 1, 2. Let (Z1, Z2) ∼ N(0, σ2I)

be pairwise independent of(X1,n,X2,n) and, for i = 1, 2, defineYi,n = Xi,n + Zi. If X1,n,X2,n are independent
and

lim inf
n→∞

I(X1,n +X2,n;X1,n −X2,n|Y1,n, Y2,n) = 0, (104)

thenX1,∗,X2,∗ are independent Gaussian random variables with identical variances.

We require two facts. First, a fundamental result of Bernstein [57] asserts the following:

Lemma 7. [54, Theorem 5.1.1] IfX1,X2 are independent random variables such thatX1 + X2 and X1 −X2

are independent, thenX1 andX2 are normal, with identical variances.

Remark 3. Formally, Bernstein’s theorem does not comment on the identical variances ofX1,X2. However,
assuming without loss of generality thatX1,X2 are zero-mean, the observation thatX1 and X2 have identical
variances is immediate sinceE[X2

1 ] − E[X2
2 ] = E[(X1 − X2)(X1 + X2)] = 0. This fact was explicitly noted by

Geng and Nair [55].

Second, we will need the following observation:

Lemma 8. Let Y = X +Z, whereZ ∼ N(0, σ2) is a non-degenerate Gaussian, independent ofX. If X|{Y = y}
is normal forPY -a.e.y, with varianceσ2

X not depending ony, thenX is normal with variance σ2σ2
X

σ2−σ2
X

.

Proof: If X|{Y = y} is normal forPY -a.e.y with varianceσ2
X not depending onY , thenX = E[X|Y ] +W

a.s., whereW ∼ N(0, σ2
X ) is independent ofY . In particular,X has densityfX by Lemma 1. Also, by Lemma 1,

Y has densityfY . The conditional densityfY |X exists and is Gaussian by definition, andfX|Y is a valid Gaussian
density forPY -a.e.y, with corresponding varianceσ2

X not depending ony. Thus, we have

log fX(x) = log fY (y) + log fY |X(y|x)− log fX|Y (x|y). (105)

The key observation is that the RHS of (105) is a quadratic function in x. SincefX is a density and must integrate
to unity, it must therefore be Gaussian. Direct computationreveals thatX has varianceσ2σ2

X

σ2−σ2
X

.
Proof of Lemma 6: Let Yi,∗ be as in the statement of Lemma 3, and recall that the same lemma asserts

(Y1,n, Y2,n)
D−→ (Y1,∗, Y2,∗). By definition ofZ1, Z2, the random variables(Z1+Z2) and(Z1−Z2) are independent

and Gaussian with respective variances2σ2. Thus, noting that assumption (104) is equivalent to

lim inf
n→∞

I(X1,n +X2,n;X1,n −X2,n|Y1,n + Y2,n, Y1,n − Y2,n) = 0, (106)
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we may apply Lemma 3 to the sequences{X1,n +X2,n,X1,n −X2,n} and{Y1,n + Y2,n, Y1,n − Y2,n} to obtain

I(X1,∗ +X2,∗;X1,∗ −X2,∗|Y1,∗, Y2,∗) = I(X1,∗ +X2,∗;X1,∗ −X2,∗|Y1,∗ + Y2,∗, Y1,∗ − Y2,∗) = 0. (107)

Using independence ofX1,n,X2,n, Lemma 3 applied directly yields

I(X1,∗;X2,∗|Y1,∗, Y2,∗) = 0. (108)

In particular, forPY1,∗Y2,∗
-a.e.y1, y2, the random variablesX1,∗|{Y1,∗, Y2,∗ = y1, y2} andX2,∗|{Y1,∗, Y2,∗ = y1, y2}

are independent, and(X1,∗ +X2,∗)|{Y1,∗, Y2,∗ = y1, y2} and (X1,∗ −X2,∗)|{Y1,∗, Y2,∗ = y1, y2} are independent.
Therefore, Lemma 7 implies thatX1,∗|{Y1,∗, Y2,∗ = y1, y2} andX2,∗|{Y1,∗, Y2,∗ = y1, y2} are normal with identical
variances. Starting with the third claim of Lemma 2 and applying lower semicontinuity of relative entropy, we
observe

I(X1,∗;Y1,∗) = lim
n→∞

I(X1,n;Y1,n) = lim
n→∞

I(X1,n;Y1,n, Y2,n) (109)

≥ I(X1,∗;Y1,∗, Y2,∗) (110)

= I(X1,∗;Y1,∗) + I(X1,∗;Y2,∗|Y1,∗), (111)

so it follows thatX1,∗ → Y1,∗ → Y2,∗, and thereforeX1,∗|{Y1,∗, Y2,∗ = y1, y2} ∼ X1,∗|{Y1,∗ = y1}. Similarly,
X2,∗|{Y1,∗, Y2,∗ = y1, y2} ∼ X2,∗|{Y2,∗ = y2}. So, we may conclude that the random variablesX1,∗|{Y1,∗ = y1}
andX2,∗|{Y2,∗ = y2} are normal, with identical variances not depending ony1, y2. Invoking Lemma 8, we find
that bothX1,∗ andX2,∗ are normal with identical variances, completing the proof.

C. Existence of sequences satisfyinglimn→∞ sλ(Xn, snr|Qn) = Vλ(snr) that converge weakly to Gaussian

The goal of this section is to prove the following result, which was the first essential ingredient needed for the
proof of Theorem 8 (i.e., Claim I).

Lemma 9. There exists a sequence{Xn, Qn} satisfying

lim
n→∞

sλ(Xn, snr|Qn) = Vλ(snr) (112)

E[X2
n] ≤ 1 n ≥ 1 (113)

and (Xn, Qn)
D−→ (X∗, Q∗), with X∗|{Q∗ = q} ∼ N(µq, σ

2
X) for PQ∗

-a.e.q, with σ2
X ≤ 1 not depending onq.

A rough outline of the proof is as follows: We first establish asuperadditivity property ofsλ(X, snr|Q), and
then exploit this property in conjunction with the characterization of Gaussians proved in Lemma 6 to verify
the existence of sequence{Xn, Qn} satisfying limn→∞ sλ(Xn, snr|Qn) = Vλ(snr) which converges weakly to
Gaussian. We begin with a straightforward observation:

Lemma 10. Let X = (X1,X2), Y = (Y1, Y2), andQ have joint distributionPXYQ = PX1X2QPY1|X1
PY2|X2

. If V
satisfiesX→ Y → V |Q, then forλ ≥ 1, we have

I(Y1, Y2;V |Q)− h(X1,X2|Q)− λ (I(X1,X2;V |Q)− h(Y1, Y2|Q))

≥ I(Y1;V |X2, Q)− h(X1|X2, Q)− λ (I(X1;V |X2, Q)− h(Y1|X2, Q)) (114)

+ I(Y2;V |Y1, Q)− h(X2|Y1, Q)− λ (I(X2;V |Y1, Q)− h(Y2|Y1, Q)) .

Moreover,X1 → Y1 → V |(X2, Q) andX2 → Y2 → V |(Y1, Q).

Proof: The second claim is straightforward. Indeed, usingPXYQ = PX1X2QPY1|X1
PY2|X2

, we can factor
the joint distribution of(X,Y, V,Q) as PXYV Q = PX1X2QPY1|X1

PY2|X2
PV |Y1Y2Q = PX1X2QPY1|X1

PY2V |Y1X2Q.
Marginalizing overY2, we find thatX1 → Y1 → V |(X2, Q). The symmetric Markov chain follows similarly by
writing PXYV,Q = PX1X2Y1QPY2|X2

PV |Y1Y2Q and marginalizing overX1.
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To prove the claimed inequality, note the following identities:

I(Y1, Y2;V |Q)− h(X1,X2|Q)

= I(Y1;V |Q) + I(Y2;V |Q,Y1)− h(X2|Q)− h(X1|Q,X2) (115)

= I(Y1;V |Q) + I(Y2;V |Q,Y1)− h(X2|Q,Y1)− h(X1|Q,X2)− I(X2;Y1|Q) (116)

= I(Y1;V |Q,X2) + I(Y2;V |Q,Y1)− h(X2|Q,Y1)− h(X1|Q,X2)− I(X2;Y1|Q,V ), (117)

and

I(X1,X2;V |Q)− h(Y1, Y2|Q)

= I(X2;V |Q) + I(X1;V |Q,X2)− h(Y1|Q)− h(Y2|Q,Y1) (118)

= I(X2;V |Q) + I(X1;V |Q,X2)− h(Y1|Q,X2)− h(Y2|Q,Y1)− I(X2;Y1|Q) (119)

= I(X2;V |Q,Y1) + I(X1;V |Q,X2)− h(Y1|Q,X2)− h(Y2|Q,Y1)− I(X2;Y1|Q,V ). (120)

Therefore,

I(Y1, Y2;V |Q)− h(X1,X2|Q)− λ (I(X1,X2;V |Q)− h(Y1, Y2|Q)) (121)

= I(Y1;V |X2, Q)− h(X1|X2, Q)− λ (I(X1;V |X2, Q)− h(Y1|X2, Q)) (122)

+ I(Y2;V |Y1, Q)− h(X2|Y1, Q)− λ (I(X2;V |Y1, Q)− h(Y2|Y1, Q))

+ (λ− 1)I(X2;Y1|V,Q),

which proves the inequality (114) sinceλ ≥ 1.
Lemma 10 leads to the desired superadditivity property ofsλ(X, snr|Q):

Lemma 11. Let PY |X be the Gaussian channelY =
√
snrX + Z, whereZ ∼ N(0, 1) is independent ofX. Now,

suppose(X,Y,Q) ∼ PXQPY |X , and let(X1, Y1, Q1) and(X2, Y2, Q2) denote two independent copies of(X,Y,Q).
Define

X+ =
X1 +X2√

2
X− =

X1 −X2√
2

, (123)

and in a similar manner, defineY+, Y−. LettingQ = (Q1, Q2), we have forλ ≥ 1

2sλ(X, snr|Q) ≥ sλ(X+, snr|X−,Q) + sλ(X−, snr|Y+,Q) (124)

and

2sλ(X, snr|Q) ≥ sλ(X+, snr|Y−,Q) + sλ(X−, snr|X+,Q). (125)

Proof: The crucial observation is that the unitary transformation(Y1, Y2) 7→ (Y+, Y−) preserves the Gaussian
nature of the channel. That is, ifYi =

√
snrXi + Zi, thenY+ =

√
snrX+ + 1√

2
(Z1 + Z2) andY− =

√
snrX− +

1√
2
(Z1 − Z2), where the pair( 1√

2
(Z1 + Z2),

1√
2
(Z1 − Z2)) is equal in distribution to(Z1, Z2).

Thus, consider an arbitraryV satisfying (X+,X−) → (Y+, Y−) → V |Q. By Lemma 10 and the above
observation, we have

I(Y1, Y2;V |Q)− h(X1,X2|Q)− λ (I(X1,X2;V |Q)− h(Y1, Y2|Q))

= I(Y+, Y−;V |Q)− h(X+,X−|Q)− λ (I(X+,X−;V |Q)− h(Y+, Y−|Q)) (126)

≥ I(Y+;V |X−, Q)− h(X+|X−,Q)− λ (I(X+;V |X−,Q)− h(Y+|X−,Q)) (127)

+ I(Y−;V |Y+,Q)− h(X−|Y+,Q)− λ (I(X−;V |Y+,Q)− h(Y−|Y+,Q))

≥ sλ(X+, snr|X−,Q) + sλ(X−, snr|Y+,Q). (128)
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This proves (124) since

inf
V :X→(Y,Q)→V

I(Y1, Y2;V |Q)− h(X1,X2|Q)− λ (I(X1,X2;V |Q)− h(Y1, Y2|Q)) (129)

≤
2

∑

i=1

inf
V :Xi→Yi→V |Qi

I(Yi;V |Qi)− h(Xi|Qi)− λ (I(Xi;V |Qi)− h(Yi|Qi)) (130)

= 2 sλ(X, snr|Q), (131)

where the inequality follows since the infimum is taken over asmaller set.

Remark 4. In some sense, Lemma 11 is the key to the whole proof. The subadditivity property ultimately implies
that the optimizing distribution in optimization problem(62) is rotationally invariant, and therefore Gaussian. This
idea was introduced to the information theory literature byGeng and Nair [55], but has origins in a ‘doubling
trick’ which has been used to great success in the literatureon functional inequalities [24], [58] and has been
attributed to K. Ball [59]. The reader is referred to [60], [61] for a detailed discussion of the duality between
extremisation of information measures and functional inequalities.

We are now ready to prove Lemma 9.
Proof of Lemma 9: For convenience, we will refer to any sequence{Xn, Qn} satisfying (112)-(113) as

admissible. Sincesλ(Xn, snr|Qn) is invariant to translations of the mean ofXn, we may restrict our attention to
admissible sequences satisfyingE[Xn] = 0 without any loss of generality.

Begin by letting{Xn, Qn} be an admissible sequence with the property that

lim
n→∞

(h(Yn|Qn)− h(Xn|Qn)) ≤ lim inf
n→∞

(

h(Y ′
n|Q′

n)− h(X ′
n|Q′

n)
)

(132)

for any other admissible sequence{X ′
n, Q

′
n}. Clearly, such a sequence can always be constructed by a diagonaliza-

tion argument. Moreover, the LHS of (132) must be finite. To see this, note first thath(Yn|Qn)− h(Xn|Qn) ≥ 0

since conditioning reduces entropy. On the other hand,sλ(Xn, snr|Qn) < Vλ(snr) + 1 for n sufficiently large.
Hence, there is someVn satisfyingXn → Yn → Vn|Qn for which

h(Yn|Qn)− h(Xn|Qn) ≤ Vλ(snr) + 1 + λI(Xn;Vn|Qn)− I(Yn;Vn|Qn)− (λ− 1)h(Yn|Qn) (133)

≤ Vλ(snr) + 1 + (λ− 1)I(Xn;Vn|Qn)− (λ− 1)h(Yn|Qn) (134)

≤ Vλ(snr) + 1 + (λ− 1)I(Xn;Yn|Qn)− (λ− 1)h(Yn|Qn) (135)

= Vλ(snr) + 1− (λ− 1)h(Yn|Xn), (136)

where (134) and (135) are both due to the data processing inequality. SinceVλ(snr) <∞ trivially and h(Yn|Xn) =

h(Z) = 1
2 log 2πe, we conclude that the LHS of (132) is finite as claimed.

By the same logic as in the remark following (62), we may assume thatQn ∈ Q, where|Q| = 3, since this is
sufficient to preserve the values ofE[X2

n], sλ(Xn, snr|Qn) and (h(Yn|Qn)− h(Xn|Qn)). Thus, sinceQ is finite
andE[X2

n] ≤ 1, the sequence{Xn, Qn} is tight. By Prokhorov’s theorem [62], we may assume that there is some

(X∗, Q∗) for which (Xn, Qn)
D−→ (X∗, Q∗) by restricting our attention to a subsequence of{Xn, Qn} if necessary.

Moreover,E[X2
∗ ] ≤ lim infn→∞ E[X2

n] ≤ 1 by Fatou’s lemma.
Next, for a givenn, let (X1,n, Q1,n) and (X2,n, Q2,n) denote two independent copies of(Xn, Qn). Define

X+,n =
X1,n +X2,n√

2
X−,n =

X1,n −X2,n√
2

, (137)

In a similar manner, defineY+,n, Y−,n, and putQn = (Q1,n, Q2,n). Applying Lemma 11 to the variablesQn →
(X+,n,X−,n)→ (Y+,n, Y−,n), we obtain

2sλ(Xn, snr|Qn) ≥ sλ(X+,n, snr|X−,nQn) + sλ(X−,n, snr|Y+,nQn), (138)
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and the symmetric inequality

2sλ(Xn, snr|Qn) ≥ sλ(X+,n, snr|Y−,nQn) + sλ(X−,n, snr|X+,nQn). (139)

By independence ofX1,n andX2,n and the assumption thatE[Xn] = 0, we have

E[X2
+,n] = E[X2

−,n] =
1

2
E[X2

1,n] +
1

2
E[X2

2,n] = E[X2
n] ≤ 1. (140)

Hence, it follows that the terms in the RHS of (138) and the RHSof (139) are each lower bounded byVλ(snr).
Sincelimn→∞ sλ(Xn, snr|Qn) = Vλ(snr) by definition, we must also have

lim
n→∞

1

2

(

sλ(X+,n, snr|Y−,nQn) + sλ(X−,n, snr|Y+,nQn)
)

= Vλ(snr). (141)

In particular, by letting the random pair(X ′
n, Q

′
n) correspond to equal time-sharing between the pairs

(X+,n, (Y−,nQn)) and (X−,n, (Y+,nQn)), we have constructed an admissible sequence{X ′
n, Q

′
n} which satisfies

lim
n→∞

sλ(X
′
n, snr|Q′

n) = Vλ(snr). (142)

Using Markovity, the following identity is readily established

h(Yn|Qn)− h(Xn|Qn) =
1

2
(h(Y+,n, Y−,n|Qn)− h(X+,n,X−,n|Qn)) (143)

=
1

2
(h(Y−,n|Y+,n,Qn)− h(X−,n|Y+,n,Qn)) (144)

+
1

2
(h(Y+,n|Y−,n,Qn)− h(X+,n|Y−,n,Qn))

+
1

2
I(X+,n;X−,n|Y+,n, Y−,n,Qn)

= h(Y ′
n|Q′

n)− h(X ′
n|Q′

n) +
1

2
I(X+,n;X−,n|Y+,n, Y−,n,Qn). (145)

Since the sequence{X ′
n, Q

′
n} is admissible, it must also satisfy (132). Therefore, in view of (145) and the fact that

the LHS of (132) is finite, this implies that

lim inf
n→∞

I(X1,n +X2,n;X1,n −X2,n|Y1,n, Y2,n,Qn) = 0. (146)

In particular, forPQ∗
× PQ∗

-a.e.(q1, q2),

lim inf
n→∞

I(X1,n +X2,n;X1,n −X2,n|Y1,n, Y2,n, (Qn = q1, q2)) = 0. (147)

This completes the proof since Lemma 6 guarantees that, forPQ∗
-a.e. q, the random variableX∗|{Q∗ = q} is

normal with variance not depending onq, and moreover we have already observed thatE[X2
∗ ] ≤ 1, so the variance

of X∗|{Q∗ = q} is at most unity as claimed.

D. Weak Semicontinuity ofsλ(·, snr)
This subsection is devoted to establishing the following semicontinuity property ofsλ(·, snr), which was the

second essential ingredient needed for the proof of Theorem8 (i.e., Claim II).

Lemma 12. If Xn
D−→ X∗ ∼ N(µ, σ2

X) and supn E[X
2
n] <∞, then

lim inf
n→∞

sλ(Xn, snr) ≥ sλ(X∗, snr). (148)

Recall thatsλ(X, snr) is defined in terms of the Gaussian channelY =
√
snrX + Z. However, for the purposes

of the proof, it will be convenient to omit thesnr scaling factor, and instead parametrize the channel in terms of
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the noise variance. Toward this end, letZ ∼ N(0, σ2). For λ > 0 and a random variableX ∼ PX , independent of
Z, defineY = X + Z and the functionals

Fλ,σ2(X) = inf
V :X→Y→V

(

I(Y ;V )− λI(X;V )
)

(149)

Gλ,σ2(X) = −h(X) + λh(Y ). (150)

Lemma 12 is an immediate corollary of weak lower semicontinuity of Gλ,σ2(X) and Fλ,σ2(X) at GaussianX.
These facts are established separately below in Lemmas 13 and 15, respectively. The former is straightforward,
while the latter requires some effort.

Lemma 13. If Xn
D−→ X∗ ∼ N(µ, σ2

X) and supn E[X
2
n] <∞, then

lim inf
n→∞

Gλ,σ2(Xn) ≥ Gλ,σ2(X∗). (151)

Proof: Fix δ > 0 and defineNδ ∼ N(0, δ), pairwise independent of{Xn},X∗. Observe that

Gλ,σ2(Xn) = −h(Xn) + λh(Yn) ≥ −h(Xn +Nδ) + λh(Yn). (152)

By the third claim of Lemma 2, we have−h(Xn +Nδ) + λh(Yn)→ −h(X∗ +Nδ) + λh(Y∗) asn→∞. Thus,

lim inf
n→∞

Gλ,σ2(Xn) ≥ −h(X∗ +Nδ) + λh(Y∗). (153)

Sinceh(X∗ +Nδ) =
1
2 log

(

2πe(σ2
X + δ)

)

is continuous inδ, we may takeδ ↓ 0 to prove the claim.

Lemma 14. Fλ,σ2(X) is continuous inλ. Furthermore, ifX ∼ N(µ, σ2
X), then

Fλ,σ2(X) =







1
2

[

log
(

(λ− 1)σ
2
X

σ2

)

− λ log
(

λ−1
λ

(

1 + σ2
X

σ2

))]

If λ ≥ 1 + σ2

σ2
X

0 If 0 ≤ λ ≤ 1 + σ2

σ2
X

.
(154)

In particular, Fλ,σ2(X) is continuous in the parametersσ2, σ2
X and λ for GaussianX.

Proof: The functionFλ,σ2(X) is the pointwise infimum of linear functions inλ, and is therefore concave
and continuous on the open intervalλ ∈ (0,∞) for any distributionPX . The explicit expression (154) follows by
identifying γ snr← σ2

X

σ2 in Proposition 2.

Lemma 15. If Xn
D−→ X∗ ∼ N(µ, σ2

X) and supn E[X
2
n] <∞, then

lim inf
n→∞

Fλ,σ2(Xn) ≥ Fλ,σ2(X∗). (155)

Proof: Fix an intervalB = [−b, b], a channelPV |Y , andδ satisfying0 < δ < σ2/2. Recalling the definition
of Z ∼ N(0, σ2), decomposeZ = N1 +N2 +N3, whereN1 ∼ N(0, δ), N2 ∼ N(0, σ2 − 2δ) andN3 ∼ N(0, δ)

are mutually independent. DefineXδ
n = Xn + N1 and Y δ

n = Yn − N3 = Xn + N1 + N2. Note that we have
Xn → Xδ

n → Y δ
n → Yn → Vn, whereVn is defined by the stochastic transformationPV |Y : Yn 7→ Vn. Using

the notation of Lemma 2, we also haveX∗ → Xδ
∗ → Y δ

∗ → Y∗ → V∗, whereY∗ = X∗ + Z, Xδ
∗ = X∗ + N1,

Y δ
∗ = Y∗ −N3 andV∗ is defined viaPV |Y : Y∗ 7→ V∗. With these definitions in hand, we may apply Lemma 4 to

the processes{Xδ
n}, {Y δ

n } to conclude the existence of a sequenceǫn → 0, not depending onPV |Y , that satisfies

I(Vn;X
δ
n|Xδ

n ∈ B) ≤ (1 + ǫn)
2I(V∗;X

δ
∗ |Xδ

∗ ∈ B)− (1 + ǫn)
2 log(1− ǫn)

2 (156)

I(Vn;Y
δ
n |Y δ

n ∈ B) ≥ (1− ǫn)
2I(V∗;Y

δ
∗ |Y δ

∗ ∈ B)− (1− ǫn)
2 log(1 + ǫn)

2 (157)

P(Xδ
n ∈ B) ≤ (1 + ǫn)P(X

δ
∗ ∈ B) (158)

P(Y δ
n ∈ B) ≥ (1− ǫn)P(Y

δ
∗ ∈ B). (159)
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Now, we have the following sequence of inequalities

I(Yn;Vn)− λI(Xn;Vn)

≥ I(Y δ
n ;Vn)− λI(Xδ

n;Vn) (160)

= I(Y δ
n ,1{Y δ

n∈B};Vn)− λI(Xδ
n,1{Xδ

n∈B};Vn) (161)

= P(Y δ
n ∈ B)I(Y δ

n ;Vn|Y δ
n ∈ B) + P(Y δ

n /∈ B)I(Y δ
n ;Vn|Y δ

n /∈ B) + I(1{Y δ
n∈B};Vn) (162)

− λ
(

P(Xδ
n ∈ B)I(Xδ

n;Vn|Xδ
n ∈ B) + P(Xδ

n /∈ B)I(Xδ
n;Vn|Xδ

n /∈ B) + I(1{Xδ
n∈B};Vn)

)

≥ P(Y δ
n ∈ B)I(Y δ

n ;Vn|Y δ
n ∈ B) (163)

− λ
(

P(Xδ
n ∈ B)I(Xδ

n;Vn|Xδ
n ∈ B) + P(Xδ

n /∈ B)I(Xδ
n;Yn|Xδ

n /∈ B) +H(1{Xδ
n∈B})

)

≥ P(Y δ
n ∈ B)(1− ǫn)

2I(Y δ
∗ ;V∗|Y δ

∗ ∈ B)− P(Y δ
n ∈ B)(1− ǫn)

2 log(1 + ǫn)
2 (164)

− λ
(

P(Xδ
n ∈ B)(1 + ǫn)

2I(Xδ
∗ ;V∗|Xδ

∗ ∈ B)− P(Xδ
n ∈ B)(1 + ǫn)

2 log(1− ǫn)
2
)

− λ
(

P (Xδ
n /∈ B)I(Xδ

n;Yn|Xδ
n /∈ B) +H(1{Xδ

n∈B})
)

≥ P(Y δ
n ∈ B)

P(Y δ∗ ∈ B)
(1− ǫn)

2
(

I(Y δ
∗ ;V∗)− P(Y δ

∗ /∈ B)I(Y δ
∗ ;V∗|Y δ

∗ /∈ B)− I(1{Y δ
∗ ∈B};V∗)

)

(165)

− λ(1 + ǫn)
2P(X

δ
n ∈ B)

P(Xδ∗ ∈ B)
I(Xδ

∗ ;V∗)

− P(Y δ
n ∈ B)(1− ǫn)

2 log(1 + ǫn)
2 + λP(Xδ

n ∈ B)(1 + ǫn)
2 log(1− ǫn)

2

− λ
(

P(Xδ
n /∈ B)I(Xδ

n;Yn|Xδ
n /∈ B) +H(1{Xδ

n∈B})
)

≥ (1− ǫn)
3I(Y δ

∗ ;V∗)− λ(1 + ǫn)
3I(Xδ

∗ ;V∗) (166)

− (1− ǫn)
3
(

P(Y δ
∗ /∈ B)I(Y δ

∗ ;Y∗|Y δ
∗ /∈ B) +H(1{Y δ

∗ ∈B})
)

− P(Y δ
n ∈ B)(1− ǫn)

2 log(1 + ǫn)
2 + λP(Xδ

n ∈ B)(1 + ǫn)
2 log(1− ǫn)

2

− λ
(

P(Xδ
n /∈ B)I(Xδ

n;Yn|Xδ
n /∈ B) +H(1{Xδ

n∈B})
)

≥ (1− ǫn)
3
Fλn,(σ2−2δ)(X

δ
∗) (167)

− (1− ǫn)
3
(

P(Y δ
∗ /∈ B)I(Y δ

∗ ;Y∗|Y δ
∗ /∈ B) +H(1{Y δ

∗ ∈B})
)

− P(Y δ
n ∈ B)(1− ǫn)

2 log(1 + ǫn)
2 + λP(Xδ

n ∈ B)(1 + ǫn)
2 log(1− ǫn)

2

− λ
(

P(Xδ
n /∈ B)I(Xδ

n;Yn|Xδ
n /∈ B) +H(1{Xδ

n∈B})
)

,

whereλn := λ
(

1+ǫn
1−ǫn

)3
. The above steps are justified as follows:

• (160) follows by the data processing inequality.
• (161) follows since1{Y δ

n∈B} and1{Xδ
n∈B} are functions ofY δ

n andXδ
n, respectively.

• (162) follows from the chain rule for mutual information.
• (163) follows from non-negativity of mutual information, the fact thatI(1{Xδ

n∈B};Vn) ≤ H(1{Xδ
n∈B}), and

the data processing inequality which impliesI(Xδ
n;Vn|Xδ

n /∈ B) ≤ I(Xδ
n;Yn|Xδ

n /∈ B).
• (164) follows from (156) and (157).
• (165) follows from the chain rule for mutual information, which implies

I(Y δ
∗ ;V∗|Y δ

∗ ∈ B) =
1

P(Y δ∗ ∈ B)

(

I(Y δ
∗ ;V∗)− P(Y δ

∗ /∈ B)I(Y δ
∗ ;V∗|Y δ

∗ /∈ B)− I(1{Y δ
∗ ∈B};V∗)

)

(168)
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and, combined with non-negativity of mutual information,

I(Xδ
∗ ;V∗|Xδ

∗ ∈ B) ≤ 1

P(Xδ∗ ∈ B)
I(Xδ

∗ ;V∗). (169)

• (166) follows from (158), (159), the fact thatI(1{Y δ
∗ ∈B};Vn) ≤ H(1{Y δ

∗ ∈B}), and the data processing inequality
which impliesI(Y δ

∗ ;V∗|Y δ
∗ /∈ B) ≤ I(Y δ

∗ ;Y∗|Y δ
∗ /∈ B).

• (167) follows from the definition ofFλn,(σ2−2δ)(X
δ
∗ ) by taking the infimum overV∗ satisfyingXδ

∗ → Y δ
∗ → V∗.

Summarizing above, we have shown

I(Yn;Vn)− λI(Xn;Vn) ≥ (1− ǫn)
3
Fλn,(σ2−2δ)(X

δ
∗ ) (170)

− (1− ǫn)
3
(

P(Y δ
∗ /∈ B)I(Y δ

∗ ;Y∗|Y δ
∗ /∈ B) +H(1{Y δ

∗ ∈B})
)

− P(Y δ
n ∈ B)(1− ǫn)

2 log(1 + ǫn)
2 + λP(Xδ

n ∈ B)(1 + ǫn)
2 log(1− ǫn)

2

− λ
(

P(Xδ
n /∈ B)I(Xδ

n;Yn|Xδ
n /∈ B) +H(1{Xδ

n∈B})
)

,

Note that the RHS of (170) does not depend onVn (i.e., PV |Y ). Thus, taking the infimum overVn satisfying
Xn → Yn → Vn and then lettingn→∞, we arrive at

lim inf
n→∞

Fλ,σ2(Xn) ≥ Fλ,(σ2−2δ)(X
δ
∗ )−

(

P(Y δ
∗ /∈ B)I(Y δ

∗ ;Y∗|Y δ
∗ /∈ B) +H(1{Y δ

∗ ∈B})
)

(171)

− λ
(

P(Xδ
∗ /∈ B)I(Xδ

∗ ;Y∗|Xδ
∗ /∈ B) +H(1{Xδ

∗∈B})
)

,

which follows due toǫn → 0 and the following:

• Fλn,(σ2−2δ)(X
δ
∗)→ Fλ,(σ2−2δ)(X

δ
∗) by continuity ofFλ,σ2(X) in λ (Lemma 14).

• P(Xδ
n /∈ B)→ P(Xδ

∗ /∈ B) sinceXδ
n

D−→ Xδ
∗ by the first claim of Lemma 2. By the same token,H(1{Xδ

n∈B})→
H(1{Xδ

∗∈B}) by continuity of the binary entropy function.

• I(Xδ
n;Yn|Xδ

n /∈ B)→ I(Xδ
∗ ;Y∗|Xδ

∗ /∈ B) by the third claim of Lemma 2 sincelim supn E[
(

Xδ
n

)2 |Xδ
n /∈ B] <

∞ due to the fact thatsupn E[X
2
n] <∞ andP(Xδ

n /∈ B)→ P(Xδ
∗ /∈ B), a positive constant.

As we takeb→∞, continuity of the binary entropy function and Lemma 5 together imply the latter two terms in
the RHS of (171) vanish, yielding the inequality

lim inf
n→∞

Fλ(Xn) ≥ Fλ,(σ2−2δ)(X
δ
∗ ). (172)

Sinceδ was arbitrary andFλ,(σ2−2δ)(X
δ
∗) is continuous inδ by Lemma 14, the proof is complete by lettingδ ↓ 0.

Remark 5. Given the tedious chain of inequalities in the proof of Lemma15, it is easy to lose sight of the overall
picture. The crucial idea is that perturbingXn → Xδ

n andYn → Y δ
n allows us to eventually eliminate dependence

on the channelPV |Y in the RHS of(167). Resisting the temptation to take limitsn → ∞ or b → ∞ until after
dependence on any particular channelPV |Y is eliminated (i.e., inequality(170)) is also essential.

We note that the hypothesis thatX∗ ∼ N(0, σ2) was not needed in the proof of Lemma 15 until the very last step.
Indeed, we may actually conclude that the following generalresult holds, which may be of independent interest:

Proposition 3. SupposeXn
D−→ X∗ and supn E[X

2
n] <∞, then for all 0 < δ < δ′ < σ2, the following holds:

lim inf
n→∞

Fλ,σ2(Xn) ≥ Fλ,(σ2−δ′)(X∗ +Nδ) (173)

whereNδ ∼ N(0, δ) is independent ofX∗.

Proof: The claim follows from the proof of Lemma 15, but stopping at (172) and not particularizing to Gaussian
X∗. The replacement of2δ by δ′ is straightforward by decomposingZ differently in the first step of the proof.

Remark 6. It is possible to establish weak upper semicontinuity ofFλ,σ2(·), but that is not needed for our purposes.
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[61] Jingbo Liu, Thomas A. Courtade, Paul Cuff, and Sergio Verdú. Information theoretic perspectives on Brascamp-Lieb inequalities.2016

International Symposium on Information Theory (submitted), 2016.
[62] Rick Durrett. Probability: theory and examples. Cambridge university press, 2010.

23


	I Introduction and Main Result
	II Applications
	II-A Generalized Costa's Entropy Power Inequality
	II-B A Reverse EPI and a Refinement of Stam's Inequality
	II-C Converse for the Two-Encoder Quadratic Gaussian Source Coding Problem
	II-D One-sided Gaussian Interference Channel
	II-E Relationship to Strong Data Processing

	III Proof of Main Results
	IV Extension to Random Vectors
	V Proof of Claims I and II
	V-A Properties of Gaussian Perturbation
	V-B Characterizations of Gaussian Random Variables
	V-C Existence of sequences satisfying limn s(Xn,snr|Qn) = V(snr) that converge weakly to Gaussian
	V-D Weak Semicontinuity of s(,snr) 

	References

