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Abstract

We tighten the Entropy Power Inequality (EPI) when one offirelom summands is Gaussian. Our strengthening
is closely connected to the concept of strong data proaggsinGaussian channels and generalizes the (vector
extension of) Costa’s EPI. This leads to a new reverse eppower inequality and, as a corollary, sharpens Stam’s
inequality relating entropy power and Fisher informatiéwpplications to network information theory are given,
including a short self-contained proof of the rate region tlee two-encoder quadratic Gaussian source coding
problem.

Our argument is based on weak convergence and a techniqueyetaipy Geng and Nair for establishing
Gaussian optimality via rotational-invariance, whichcea its roots to a ‘doubling trick’ that has been successfull
used in the study of functional inequalities.
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|. INTRODUCTION AND MAIN RESULT
For a random variabl& with density f, the differential entropy ofX is defined by

W) = [ fa)log Fa)da. 1)

Similarly, h(X) is defined to be the differential entropy of a random ve®oe R™ having density orR™. The
celebrated Entropy Power Inequality (EPI) put forth by Stan[1] and rigorously established by Stam [2] and
Blachman[[8] asserts that foX, W independent

Under the assumption th&t” is Gaussian, we prove the following strengtheningldf (2):

Theorem 1. Let X ~ Py, and letiW ~ N(0,0?) be independent k. For anyV satisfyingX — (X +W) — V,

92(h(X+W)=I(X:V)) 5 g2(h(X)=I(X+WiV)) 4 g2h(W). 3)

The notationX — (X+W) — V in Theorentl follows the usual convention, indicating tiet tandom variables
X, X +W andV form a Markov chain, in that order. Throughout, we wriXe— Y — V|@ to denote random
variablesX, Y, V, @ with joint distribution factoring as’xyvq = PxqPy|xqPv|yq- Thatis,X — Y — V form
a Markov chain conditioned o).

When the integral{1) does not exist, otifdoes not have density, then we adopt the conventiomhtta) = —oc.

In this case, the inequality](3) is a trivial consequencehef data processing inequality. So, as with the classical
EPI, TheoreniIl is only informative wheki has density and(X) exists.

A conditional version of the EPI is often useful in applicais. Theoreri]1 easily generalizes along these lines.

Indeed, due to joint convexity dbg(2* + 2¥) in z,y, we obtain the following corollary of Theorenh 1:

This work was supported by NSF Grants CCF-1528132 and C@B3¥® (Center for Science of Information).
Email: courtade@berkeley.edu


http://arxiv.org/abs/1602.03033v1

Corollary 1. SupposeX, W are conditionally independent giveép, and moreover thall is conditionally Gaussian
given@. Then, for anyV satisfyingX — (X + W) — V|Q,

92h(X+W|Q)-I(X:VIQ) > 92(h(XIQ)-I(X+W3VIQ) | 92h(W|Q). )

It is interesting to note that the conditional version of ttassical EPI assumes a form symmetric[fb (3). In
particular, forQ — X — (X + W), it holds that

2(h(XAW)~I(X+W;Q)) > 92(h(X)-1(X;Q)) 4 92h(W) (5)

Note that the mutual informations in the exponents on the BHERHS of[(B) and{5) respectively correspond to the
smaller and larger mutual informations in the correspogdiata processing inequalitidé X; V) < I(X + W; V)
andI(X +W;Q) < I(X; Q).

As one would expect, Theordm 1 also admits a vector genatializ which may be regarded as our main result:

Theorem 2. SupposeX, W are n-dimensional random vectors that are conditionally indegent given?, and
moreover thatW is conditionally Gaussian give®. Then, for anyV” satisfyingX — (X + W) — V|Q,

02 (MX+WIQ)-IXVIQ) > 92 (HXIQ-IX+WVIQ) | 92 h(WIQ), )

In the following section, we will see that the strengthenifighe classical EPI afforded by Theor€in 2 generalizes
Costa’s EPI[[4] (and the vector generalizatibh [5]), whi@s fliound applications ranging from interference channels
to secrecy capacity (e.gl/[5]+[8]). It also leads to a newerse EPI, which can be applied to improve Stam’s
inequality or, equivalently, the Gaussian logarithmic &ek inequality. Moreover, we will see that Theorém 2
leads to a very brief proof of the converse for the rate regibthe quadratic Gaussian two-encoder source-coding
problem [9], [10]. Applications to one-sided interferendf®annels and strong data processing inequalities are also
given.

We remark that the restriction &V to be conditionally Gaussian in Theorém 2 should not be aredimitation
in practice. Indeed, in applications of the EPI, it is typiigdhe case that one of the variables is Gaussian. As
noted by Rioul [11], examples include the scalar Gaussiaadwast channel problern J12] and its generalization
to the multiple-input multiple-output case [13[, [14]; tlsecrecy capacity of the Gaussian wiretap charnél [15]
and its multiple access extensidn [16]; determination @& torner points for the scalar Gaussian interference
channel problem [6]/]7]; the scalar Gaussian source meftescription probleni[17]; and characterization of the
rate-distortion regions for several multiterminal Gaasssource coding schemés [10], [[18].1[19]. It is tempting to
conjecture that{{6) holds when the distributionVdf is unconstrained, however we suspect this is not true (but no
counterexample was immediately apparent).

[I. APPLICATIONS
A. Generalized Costa’s Entropy Power Inequality
Costa’s EPI[[4] states that, for independentlimensional random vectoX ~ Px andW ~ N(0,Y),

2. MX+aW) > (1 _ ¢2)220 ) 4 0297 MXAW) - for o < 1. )

This result was generalized to a vector setting by éfual. using perturbation and I-MMSE arguments [5]. We
demonstrate below that this generalization follows as ay earollary to Theoremil2 by takiny equal toX
contaminated by additive Gaussian noise. In this sensegréhé2 may be interpreted as a further generalization
of Costa’'s EPI, where the additive noise is no longer resiico be Gaussian.

Theorem 3. [5] Let X ~ Px and W ~ N(0,X) be independent;-dimensional random vectors. For a positive
semidefinite matrix4 < I,

2%h(X+A1/2w) > ‘[ _ A,l/n2%h(X) + ‘Ayl/n2%h(X+W). (8)



Proof: Let W, W, denote two independent copies W, and putY = X + AY?W; andV =Y + (I —
A)Y/?W,. Note thatV = X + W in distribution so thatl (X; V) = k(X + W) — h(W). Similarly, I(Y;V) =
h(X + W) — h((I — A)'>W). Now, (8) follows from Theorerfil2 since

92 (W(XAAY2W) —h(XAW)+h(W)) _ o2 (h(Y)~1(X:V)) ©)

S Q2 I(YV)) 4 92h(A12W)) (10)

_ 92 (HO)-A(X+W)Hh((I-A)2W)) | | 711/ng2h(W) (11)

_ ‘[ N A,l/n2%(h(X)—h(X—l—W)—i—h(W)) + ‘Ayl/n2%h(W) (12)

Multiplying both sides by2= ("X+W)=hW)) completes the proof. [

Costa’s EPI may be interpreted as a concavity property edjdyy entropy powers. The proof of Theoréin 3
suggests a generalization of this property to non-Gaussigse. Indeed, we have the following, which may be
viewed as a reverse EPI:

Theorem 4. Let X ~ Px,Z ~ Pz and W ~ N (0, %) be independent;-dimensional random vectors. Then

92 (MXAW)+Hh(ZHW)) 5 92(W(X)Hh(Z)) | o2 (MX+Z+W)+h(W)) (13)

Proof: This is an immediate consequence of Thedrém 2 by putting X +Z+ W and rearranging exponents.
[ |
We briefly remark that Madiman observed the following indijpan submodularity of differential entropy [20],
which can be proved via data processingXifZ, W are independent random variables, then

Q2R(XAW)+h(Z4+W)) 5 2(h(X+Z+W)+h(W)) (14)

WhenW is Gaussian, Theorehi 4 sharpens inequdlily (14) by redubimd HS by a factor oR2(#(X)+h(2)),

B. A Reverse EPI and a Refinement of Stam’s Inequality

Theorem[# admits several interesting corollaries which deeply connected to the celebrated Gaussian
Logarithmic Sobolev Inequality (LSI). To start, define thetrepy powerN (X) and the Fisher Informatiod (X)
of a random vectoX with density f with respect to Lebesgue measure as follows:
Lz IVf(X)|1?
27 MX) JX)cE |2 15
To avoid degeneracy, we assume throughout this sectiorettiedpies and Fisher informations exist and are finite.
In exploring the similarity between the Brunn-Minkowskemuality and the EPI, Costa and Coverl[21] proved
the following “information isoperimetric inequality” fon-dimensionalX

N(X) =

N(X)J(X) > n. (16)

This inequality is commonly referred to as Stam’s ineqyatiue to the fact that he first observed it in his classic
1959 paper([2] in the one-dimensional case. In 1975, Gradisaevered[(16) by establishing the (mathematically
equivalent) LSI for the standard Gaussian measyren R" [22]: For everyh on R™ with gradient inL?(,,)

h*log h2dy, <2 | |Vh|*dy, + < / h2d7n> log< h? d%) . (17)
R~ R™ Rn R~

In the same paper, Gross also proved that (17) is equivadethitet hypercontractivity of the Ornstein-Uhlenbeck
semigroup([28]. It wasn'’t until the 1990’s that Carlén [24osved the equivalence between Stam’s inequality and
Gross’ LSI. We refer the reader to [25] for a concise proof amther historical details.

Since [[16) is proved using de Bruijn’s identity and the specase of Shannon’s EPlI when one summand is
Gaussian, Theorem 4 naturally leads to a sharpening_of Qu&prisingly, this strengthening takes the form of a
reverse EPI, which upper bound§(X + Z) in terms of the marginal entropies and Fisher informations.
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Theorem 5. If X and Z are independent-dimensional random vectors, then
N(X)N(Z) (J(X)+ J(Z)) > nN(X + Z). (18)

Proof: We may assumé(X) < oo andJ(Z) < oo, else there is nothing to prove. To begin, @t~ N (0, I)
be independent oK, Z and recall de Bruijn’s identity[[Z]:dith(X +VIG) = ﬁJ(X ++/tG). In particular, we
have

d 1

FNX+VIQ)| = ~N(X)J(X). (19)

Identifying W = /tG in Theoren{# and rearranging, we find
N(X 4+ VtG)N(Z + VtG) — N(X)N(Z)

t
Letting t — 0 and applying[(19) proves the claim. [ |

It is straightforward to recover Stam’s inequality from Binem[5. Indeed, leZ ~ N(0,02I) with variance
chosen such tha¥(Z) = N(X), then [18) reduces to

> N(X +Z+VtG) > N(X + Z). (20)

N(X+7Z) 2N (X)
> =
NX) S NX) A
where the second inequality follows from the EPI. Sii¢€Z).J(Z) = n, (18) follows.
Stated another way, (1L6) reagsJ(X) > ﬁ Using the EPI, we may sandwich the (appropriately norrad)z
entropy power of the surX + Z according to

N(X)J(X) + N(Z)J(Z) > n (21)

1 1 N(X+1Z) 1 1
—J(X —J(Z) > >
X0 2 SNz 2 N T V@)
which is met with equality throughout K andZ are Gaussian with proportional covariance matrices.
Next, let X/, X be independent and identically distributed with finite epy; and define theloubling constant

of X (cf. [26]), denoted byd(X), as
L V()

N(X)
We remark that the doubling constant and its relationshiptt®r functionals is discussed in_[26] for the one-
dimensional setting, and in [27] for general dimension.

By letting Z and X be independent and identically distributed, Theokém Sdgi¢he following inequality, which
expresses the deficit il _(116) in terms of the doubling corstéX):

(22)

d(X) (23)

Corollary 2. For any n-dimensional random vectdX,
N(X)J(X) > nd(X). (24)

Recalling the conditions for equality in the ERIX) > 1 with equality if and only ifX is Gaussian. Therefore,
Corollary[2 represents a strict strengthening[ofl (16). &ifiB) is equivalent to the Gaussian LSI, Corollaty 2
provides a bound on the deficit in the LSI. Such bounds have b&escent interest [28]=[30], and are interpreted
as a stability estimate for the LSI.

Let X be a random vector having densifywith respect toy,. Then the LSI[(1l7) may be written@as

L[|V
[ flogf i < g / e (25)

In fact, this is completely equivalent to Gross’ formulatifd7).



Under the assumptions that is zero-mean and satisfies the Poincaré inequality

CE[s*(X)] <E[[Vs(X)[’] (26)
for every smooths : R — R such thatE[s(X)] = 0, the LSI [25) may be improved to
Q) [ VP
[ pogf < “30 [ Bdba, @7

wherec(¢) < 1 for ‘spectral gap’¢ > 0 [29]. In fact, by using Corollar{]2 and the self-strengtlmenargument of
[28], the constant({) established in[[29] may be improved by incorporati(&).
Whenn = 1, Var(X) = 1 andh(X) > —oc, Ball, Barthe and Naor [31] showed that the Poincaré inkigua

(28) implies
d(X) > (N(X)) = . (28)
Since N(X) < 1 due toVar(X) = 1, we obtain a sharpening of Stam’s inequality:

Corollary 3. Let X be a zero-mean random variable withar(X) = 1 and finite entropy. IfX satisfies the Poincér
inequality (28), then

(N (X)) > 1 (29)

On account of[[31], a doubling constadX) > 1 is a weaker assumption than presence of a spectral gap.
Therefore, inequality{24) may be viewed as an improvemarthe stability estimatd (27) in the sense that a less
restrictive hypothesis is required.

In closing, we remark that the inequalify {28) also holdsdr (with 2 + 2¢ replaced by + 4¢), provided the
the density ofX is log-concave[[32]. Thus, Corollafy 3 can be modified acicwyly.

C. Converse for the Two-Encoder Quadratic Gaussian Sourmming Problem

Characterizing the rate region for the two-encoder quad@dussian source coding problem was a longstanding
open problem in the field of network information theory untdl ultimate resolution by Wagnest al. in their
landmark paper |9], which established that a separaticedacheme [33], [34] was optimal. Wagmtral's work
built upon Oohama'’s earlier solution to the one-helper [@mwb[10] and the independent solutions to the Gaussian
CEO problem due to Prabhakaran, Tse and Ramacharidran [d9Pahama([18] (see [35] for a self-contained
treatment). Since Wagnet al’s original proof of the sum-rate constraint, other prooésé been proposed based
on estimation-theoretic arguments and semidefinite progriag (e.g.,[36]), however all known proofs are quite
complex. Below, we show that the converse result for ther@méte region is a direct consequence of Thedrem 2,
thus unifying the results of [9] and [10] under a common anccict inequality.

Theorem 6. [9] Let X, Y = {X;,Y;}” , be independent identically distributed pairs of jointly @aaian random

variables with correlationo. Letoy : R" — {17 o 72nRx} and ¢y : R" — {1, e ,2”RY}1 and define
1
dy 2 ~E [|IX - EX|¢x(X), oy (Y)][1?] (30)
1
dy 2 LB Y ~ E[Y(ox(X), oy (V)]I7]. D
Then
1 1
1 1
Ry > log (E (=7 +”22_2RX)> >
1. (1—p%)B(dxdy)
Rx + Ry > 1 ’ ”
X Y = 2 0g 2dXdY ( )



4p°D
p?)*

The key ingredient is the following consequence of Thedrém 2

where and3(D) £ 1+ /1 + 7255

Proposition 1. For X,Y as above,
9= 2(I(Y;U)+HI(X;V|U)) > p? o= IXU)HI(Y;VIU)) 4 1 0’ (35)
for any U,V satisfyingU — X - Y — V.

Proof: Since mutual information is invariant to scaling, we mayuass without loss of generality thaf =
pX; + Z;, where X; ~ N(0,1) and Z; ~ N(0,1 — p?), independent ofX;. Now, Theoreni2 implies

02 (MY~ IOGVIL) 5 o2 (WX}~ I(YVID)) 4 92 h(Z) (36)
= p22u (MXIN-IVIV)) o (97e) (1 — p?). (37)
Since2~ "Y) = 2=7h(X) — _L_ 'multiplying through by- establishes the claim. [

Proof of Theoreni]6: For convenience, pu/ = ¢x(X) and V' = ¢y (Y). Using the Markov relationship
U— X —Y — V, we may rearrange the exponents in Proposfiion 1 to obt&retfuivalent inequality

9= FUKUVIHI(YUV)) > 9= 21X Y;UV) (1 _ 2y p22—%I(X,Y;U,V)> ' (38)

The left- and right-hand sides ¢f(38) are monotone deangasi (1(X; U, V)+I(Y;U,V)) andi1(X,Y;U, V),
respectively. Therefore, if
1 1 1 1
E(I(X; UV)+I(Y;UV)) > 5 logﬁ and EI(X,Y; UV)<R (39)
for some pair(R, D), then we haveD > 272f (1 —p*+ p22‘2R), which is a quadratic inequality with respect to
the term2~2%, This is easily solved using the quadratic formula to obtain
B 2D 1. (1-p*)B(D)
PRI G — > —log—-— Lt~
Sa-pem)  tERrTap
2D

where3(D) 21+ /1 + (lp e Note that Jensen’s inequality and the maximum-entroppgny of Gaussians
imply =1(X;U,V) > {log 7= and +I(Y;U,V) > 3log 7 , so that

(40)

%(I(X; UV)+ I(Y;U,V)) > (41)

28 dxdy”
establishing[(34) sinceé I(X,Y;U,V) < 2 (H(U) + H(V)) < Rx + Ry. Similarly, Propositiof 1L implies
22Rx+10gdx 2 2%(I(X;U|V)—I(X;U,V)) — 2—%I(X;V) 2 (1 p )+p22 (Y V) > (1 _ p2) +p22—2Ry‘ (42)

Rearranging (and symmetry) yields {3P)4(33). [ |

Remark 1. Proposition[1 (a special case of Theoréin 2) was first estadtisby the author and Jiao in [37]. In
fact, Proposition ]l establishes a stronger result than tbaeverse for the two-terminal Gaussian source coding
problem; it shows that the rate regions coincide for the peofis when distortion is measured under quadratic loss

and logarithmic loss[[38], [[39].



D. One-sided Gaussian Interference Channel

The one-sided Gaussian interference channel (IC) (or Zs§an IC) is a discrete memoryless channel, with
input-output relationship given by

Vi=X 4+ W (43)
Yy = aY) + Xo + Wa, (44)

whereX; andY; are the channel inputs and observations correspondingdoden and Decodef, respectively, for
i=1,2. Here,IW ~ N(0,1) andW, ~ N(1—a?) are independent of each other and of the channel infyts,.

We have assumefdy| < 1 since the setting whergy| > 1 is referred to as thstrong interferenceegime, and
the capacity is known to coincide with the Han-Kobayasheinbound [[6], [[35], [[40], [411]. Observe that we have
expressed the one-sided Gaussian |Q@égraded formwhich has capacity region identical to the corresponding
non-degraded version as proved by Costa [6]. Despite niegesignificant attention from researchers over several
decades, the capacity region of the one-sided Gaussianni@ime unknown in the regime d&| < 1 described
above.

Having already discussed connections between Costa’s[lRInNd Theoren]2 above, we remark that Costa’s
EPI was apparently motivated by the Gaussian[IC [6]. Sinceofém[2 generalizes Costa’s result, the one-sided
Gaussian IC presents itself as a natural application. Tawds end, we establish a new multi-letter outer bound
to give a simple demonstration of how TheorEim 2 might be egpid the one-sided Gaussian IC.

Theorem 7. (Ri, R2) € €(«, P, P») only if

1
R < 3 log(1+ Pp) (45)

1
Ry < 3 log(1+ P) (46)
9—2Rs+o(1) > o= 2I(X7, X333 sup {a22le—§I(YO";V\Y1") +(1- a2)2%I(Y1";V)} , 47)

VYo Ye V.
for some independent?, X7 satisfying the power constrain{|| X" |?] < nP;, i = 1,2.
Proof: The only nontrivial inequality to prove i§ (#7). Thus, we begy noting that Theorerml 2 implies
9n (WYX =TIV VIXE)) > of (h(aYy[X5)—I(Yy5VIXD)) | 9 Th(W3|X) (48)
= 222 (MO =TOFSVIXD) 4 (1 — g2)2a (V) (49)
for all V' such thatY]” — YJ'* — V|X7. Since h(W") = h(Yy'| X7, Xy) = h(Y"|XT), I3, VIXE) =
I(Yy, V, X3) and (Y VXS ) = I(Y]"; V, X3), this can be rewritten as

SRICEYIHRITXEYS) > qup {a22%I<X;L;Y1">—%1(YO";V|Y1">+(1_a2)2§1(w;v>}. (50)
VY=Y -V

Therefore,
9 2(Ra=en) > 9= 7 I(X3:Y3") (51)
> 9= 2 T(XT X35y sup {a22%I(X1";Y1")—%I(YO";V\YI") r(1- a2)2%I(Y{‘;V)} (52)
VY=Y =V
> 90— HIOTXEY) gy {azzz(Rl—sn>—%I<Y0";V|Y1"> T (1- a2)231(w;v>} , (53)

VY=Y =V
where [51) and{83) hold far,, — 0 due to Fano’s inequality. Multiplying both sides By~ proves the claim.m
The Han-Kobayashi achievable region|[35],1[41] evaluamdGaussian inputs (without power control) can be
expressed as the set of rate pdiRy, R) satisfying [45), [(46) and

. 54
_(P2+1—a2)(1+a2P1+P2)+P2+1—042 (54)




Interestingly, [G#) this takes a similar form {0 {47); howe\it is known that transmission without power control
is suboptimal for the Gaussian Z-interference channel imegd [42], [43]. Nevertheless, it may be possible to
identify a random variablé” in (47), possibly depending o5, which ultimately improves known bounds. We
leave this for future work.

E. Relationship to Strong Data Processing

Strong data processing inequalities and their conneatitnypercontractivity have garnered much recent attention
[44]-[51]. For random variabled, B, the standard data processing inequality assertsi{atA) < I(V; B) for
any random variablé” satisfyingA — B — V. For A, B ~ P4p, it is natural to define the best-possible data
processing function

g1(t,Pap) = sup {I(V;A):I(V;B) <t}, (55)
V:A—B—V

sothatl(V; A) < g;(I(V; B), Pag) < 1is the sharpest possible data processing inequality fojothedistribution
Psp. Thus, Theorerh]1 may be rephrased as:

92(h(Y)=gr(t,Pxv)) > 92(h(X)—t) + 92h(W) vt >0, (56)

whereY = X + W. Given the close relationship between the sharpened[ERIla@® strong data processing, it
might be appropriate to call Theordm Ist&ong entropy power inequalityn any case, on rearranging, we find the
following simple bound ory; for Gaussian channels:

Corollary 4. Let X ~ Px and Z ~ N(0,1) be independent. Fo¥ = X + Z,
1 1 _
gr1(t, Pxy) <I(X;Y) — 3 log (1 + ﬁf(h(x) t)> . (57)

Moreover, for GaussiarX, the inequality(57) is an equality.

We remark that Calmon, Polyanskiy and Wul[48],][49] have ndgeconsidered a complementary setting where
they bound the best-possible data processing functionettficcording to

Fr(t,y) =sup{I(Y;U): I(X;U) <t,U - X - Y}, (58)
whereY = X + Z, and the supremum is over d;x such thatE[X?] < .

[1l. PROOF OFMAIN RESULTS

Here we give the main ideas behind proving Theorém 1. Teehditails are provided in Sectid V and referred
to as needed. For random variablésY” ~ Pxy, we write X |{Y = y} to denote the random variahlé conditional
on{Y = y}. Note thatX |{Y = y} is uniquely defined in the sense that different versions efsame are equal
Py-a.e. A sequence of random variabl&s, X, ... indexed byn € N will be denoted by the shorthandX, },
and convergence ofX,,} in distribution to a random variabl&, is written X, 2 X..

In order to minimize the difference in inequalityl (3), we viiike to simultaneously minimize the exponent
h(X+W)—I(X;V), while maximizing the exponerit(X)—I(X +W; V) over all valid choices o, V. Toward
this end, for a random variabl& ~ Px, letY be defined via the additive Gaussian noise chaihel given by
Y = /sntX + Z, whereZ ~ N(0,1) and define the family of functionals

s\(X.snr) = —h(X) + A(Y) + inf {I(Y; V) — A(X; V)} (59)

parameterized by > 1. Similarly, for (X,Y, Q) ~ PxqPy|x, define the functional oPyq

S\(X,smrlQ) = —h(X|Q) + M(YIQ) + inf {10V VIQ) - M(X:VIQ) (60)



and let€ (s)(X,snr)) denote the lower convex envelopesf-,snr) at X. That is,

€ (sa(X,snr)) :;nf sa(X,snr|@). (61)
QX
We consider the optimization problem
Vi(snr) = . :IiEI[I)£2}§l ¢ (sx(X,snr)) = Pe :iﬁaz]gls,\(X,sndQ). (62)

Remark 2. Note that, in the optimization proble@2), it suffices to conside) € Q with |Q| < 2. Indeed, by
Fenchel-Caratheodory-Bunt [52, Theorem(%§], taking @ supported on two points is sufficient to preserve the
values ofE[X?] = 3~ p(¢q)E[X?|Q = q] ands(X,snr|Q) = >, p(q)sx(X,snr|Q = q).

We have the following explicit characterization 6§ (snr):

Vi(snr) = {

The essential idea needed to establish Theddem 8 is that lyenead to consider Gaussian random variables
in optimization problem[(82). We establish this using a weakvergence argument; the critical ingredients are
proved in Sections VAC ardd VAD, and respectively assert:

Claim I: There exists a sequen¢&,,, @),,} satisfying
li_>m sa(Xn,snr|@yp) = Va(snr) (64)
EX2|<1 n=12,... (65)

Theorem 8.

>
—

(63)

Nl—= N[

Alog (%) — log (ffel) +log(snr)} if snr> -
Alog (2me(1 + snr)) — log (27‘(’6)] if snr < ﬁ

and (X,, Qn) = (X.,Q.), with X, |[{Q. = q} ~ N(uq,0%) for Py_-a.e.q, with ¢% < 1 not depending on
q.
Claim II: If X,, 2 X, ~ N(u,0%) andsup, E[X2] < co, then

lim inf sy (X,,, snr) > sy (X, snr). (66)

n— o0

In words, Claim | states that there exists a sequei€g, @,,} which approaches the infimum of the optimization
problem [62), withX,, converging weakly to Gaussian. Claim Il notes that the fiometl s)(X,snr) is weakly
lower semicontinuous at Gaussiagh Combining the two claims allows us to restrict attentionGaussianX in
optimization problem[(G2).

With these facts in hand, the proof of Theoreim 8 follows froleneentary calculus and the classical EPI. We
require the following proposition, which is a consequente¢he conditional EPI, and a dual formulation of an
inequality observed by Oohamla [10].

Proposition 2. Let X ~ N(0,v) and Z ~ N(0,1) be independent, and definé= /snrX + Z. Then forA > 1,

5 [log (A = 1)ysnr) — Alog (252 (L +snr))] if ysnr > L5

0 if ysnr < =5.

Proof: Let V' be such thatX — Y — V, and letX{V = v},Y|{V = v} denote the random variables
conditioned on{V' = v}. SinceX,Y are jointly Gaussian an’ — Y — X, we haveX{V = v} = pY{V =
v} + W, wherep := WS and W ~ N (077 _ 4Zsor ) is independent ol |{V = v}. By the entropy power

V:X—=Y—->V

inf (I(Y;V) - )\I(X;V)) - {

1+ snr 1+~ snr
inequality, it holds that
2 2
92h(X|V=v) > 22h(pY [V=v) 4 92h(W) _ o snr 222h(Y|V:v) tome (v — - snr (67)
(14 ysnr) 1+ ~ysnr



which, upon applying Jensen’s inequality and rearrangimgds

g-20(X;V) 5 L+ snr 9—21(Y;V) -
n 14 ~ysnr ‘
It follows that
A . A
IY;V) = M(X;V) 2 1(Y; V) + 5 log (1 ¥ 7snr2—zlr(y,v>> ~Xlog(1 +75m) ©9)
o 3 [log (= ysnn) = Aog (35 (1 ysn0) ] if ysnr > 525 0
0 if ysnr < <5,

where the second inequality follows by minimizing ovél™; V) > 0. When~y snr < ﬁ, this is trivially achieved

by settingV” = constant. On the other hand, i snr > ﬁ then it is easy to see that the lower bound is achieved

by takingV' = Y + U, whereU ~ N (0, =5 —). u
Proof of Theorenil8:Noting thats, (X, snr) is invariant to translations dE[X], it follows from Claims | and

I that

V(snr) = 0<i]gf<1 sa(Xy,snr),  whereX, ~ N(0,7). (71)

Recalling the definition o, ( - ,snr), Propositio 2 implies

S)\(X snr) = [)\ log (A27re> log (27re> + log(snr)} if ysnr> %1 2
v % [Alog (2me (1 + ysnr)) — log (2me)] if ysnr < <.

>

Differentiating with respect to the quantity, we find that% [Aog (2me (1 + ~ysnr)) — log (2me)] is decreasing in
~ provided~ysnr < ﬁ Therefore, takingy = 1 minimizessy(X,,snr) over the intervaly € [0, 1], proving the
claim. |

Given the explicit characterization &fy(snr), which is a dual form of inequality_{3), we are now in a positio
to prove Theoreril1.

Proof of Theorerfil1:We first establish{3) under the additional assumption#jat?] < oo, and generalize at
the end via a truncation argument. Toward this goal, sinceiatinformation is invariant to scaling, it is sufficient
to prove that, fory’ = \/snrX + Z with E[X?] <1 andZ ~ N(0, 1) independent of{, we have

22(h(Y)=1(X;V)) > gy 22(h(X)=1(Y5V)) 4 92h(Z) (73)
for V satisfying X — Y — V. Multiplying both sides byos? and choosingsnr := Var(X) gives the desired
inequality [3) whenE[X?] < co. Thus, to provel(73), observe by definition \6f (snr) that

—h(X)+ I(Y;V) > AI(X;V) = h(Y)) + Vx(snr). (74)

Minimizing the RHS over\ proves the inequality. In particular, the RHS bf(74) is carein \, with derivative
given by

9

8/\{/\(I(X§V)h(Y))+VA(snr)}{I(X;V)h(y) L1og (32 ) if snr > <L,

I(X;V) = h(Y) + 3 log (2me(1 +snr))  if snr < L.
Sinceh(Y) < £ log (2me(1 + snr)) by the maximum entropy property of Gaussians, it follows #{&;

V)-
Llog (2me(1 +snr)) > 0, implying that Z 4 A(I(X;V) — h(Y)) + V,\(snr)} = 0 for A satisfyingsnr > 1. In
particular, the RHS of_ (74) is minimized whensatisfies

AL yeueavyony), (75)

A—1 2me

10



Substituting into[{74) and recalling that"(?) = 2re proves [7B).

Now, we eliminate the assumption th]EtXQ] < oo. Toward this end, letX have density, letl” be Gaussian
independent ofX, and considelV satisfyingX — Y — V, whereY = X + . Define X,, to be the random
variable X conditioned on the everf{ X| < n}, letY, = X,, + W and defineV;, via Pyy : Y, — V,,. Since X,
is boundedE[X?2] < oo so that

92(h(Y)=1(Xo5V0)) > 92h(X)=I(YaiVa)) | 92h(W). (76)

It follows by [53, Lemma 3] thatim,,_,., h(X,) = h(X), providedh(X) exists. Moreover, since, ENS'S
Lemmal2 (see Sectidn ' VtA) asserts thiat,, ., (X, + W) = h(X + W), so thath(Y,,) — h(Y). It is easy to
see that(X,,, V},) 2, (X, V), soliminf, o I(X,;V,) > I(X;V) by lower semicontinuity of relative entropy.
Finally, the chain rule for mutual information implies

I(Y;V) + H(Ljx|<ny) = I3 VI x|1<ny) > 1(Yo; Va)P{X| < n}, (77)

giving limsup,,_,. I(Y,; Vi) < I(Y; V). Putting these observations together, we have established
22(h(Y)=I(X;V)) > 92(M(X)—=1(Y3V)) | 92h(W) (78)
as desired. [

IV. EXTENSION TORANDOM VECTORS

The vector generalization of the classical EPI is usuallyvpd by a combination of conditioning, Jensen’s in-
equality and induction (e.g!, [35, Problem 2.9]). The sangeiment does not appear to readily apply in generalizing
Theorent to its vector version due to complications ariiogn the Markov constrainK — (X + W) — V.
However, the desired generalization may be establishedtiggnan additivity property enjoyed by the dual form.

For a random vectaK ~ P, let Y be defined via the additive Gaussian noise chaihet I''/2X + Z, where
Z ~ N(0,1) is independent oK andT is a diagonal matrix with nonnegative diagonal entries. |8gaus to the
scalar case, define the family of functionals

S\(X,T) = <h(X) + A(Y) + _inf {I(Y; V) — A(X; V)} (79)
parameterized by > 1. Similarly, for (X, Y, Q) ~ PxqPyx, define
S(CTIQ) = ~h(XIQ) + M(YIQ) + | inf  {I(Y:VIQ) = AI(X:VIQ) |, (80)
and consider the optimization problem
V\(T') = inf X, T'Q). 81
() . s\(X, T1Q) (81)
Theorem 9. If T' = diag(snry,snro,...,snry,), then
Vi) = Va(snry). (82)
i=1

Proof: Let I" be a block diagonal matrix with blocks given by= diag(T';,T'2). PartitionX = (X, X2) and
Z = (Z,,Zy) such thatY; = FZWX,- + Z; for ¢ = 1,2. Then, for anyV such thatX — Y — V|Q, it follows

from Lemmal1D (see Sectidn V-C) that
sA(X, T1Q) = sa (X1, I'1[Xs, Q) + sa (X2, 2| Y1, Q). (83)

Hence,V,(T') > V(1) + V(') by definition, so induction proves the claim. [ |
Proof of Theoreni]2: Define Y = X + W for convenience. As in the scalar setting, we establish the
unconditional claim (wher&) is constant) under the constraifif|X||?] < oo. The general result follows by a
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truncation argument exactly as in the scalar setting. Meeave may assumew > 0, else the inequality reduces
to h(Y) + I(Y;V) > h(X) + I(X; V), which is trivially true by the data processing inequalitydathe fact that
conditioning reduces entropy.

Thus, due to positive definiteness Bfy and invariance of mutual information under one-one tramsétions,
we may multiply both sides of{6) byw|~/" to obtain the equivalent inequality

93 (MW" Y)=1(5w " X;V) > 92 (h(Sw " X)=I(Sw *YiV)) | 92h(Sw/* W) (84)

However,E;‘}/ZW ~ N(0,I) and ,E[HE;‘}/ZXHQ] < oo providedE[||X||?] < oo, SO we may assume without loss
of generality thatW ~ N (0, ) in establishing the unconditional version f (6).

To simplify further, putsnr := max;<;<, E[X?]. Note that we may assumser > 0, else the claimed inequality
is trivial sinceh(X) = —oo andh(Y) — I(X;V) > h(Y) — I(X;Y) = h(W). Therefore,[(B) is equivalent to

27 (MY)=IXV) > gpp o7 (WX)=I(Y5V)) | 97h(Z) (85)
holding for X — Y — V, whereY = \/snrX + Z, Z ~ N(0,1) is independent oX, andmax;<;<, E[X?] < 1.
This is established exactly as in the proof of Theofém 1,es\fdsnr - I) = nV,(snr). [ |

V. PROOF OFCLAIMS | AND I

This section is dedicated to the proof of Claims | and Il of t®edIll] Several of the steps in the proof require
properties and characterizations of Gaussian randomblesiawhich are recalled and proved as needed in the first
two subsections. The third subsection is dedicated to thefmf Claim I, and the fourth subsection is dedicated
to the proof of Claim II.

A. Properties of Gaussian Perturbation

We collect below a few facts about random variables that argagninated by Gaussian noise. Of particular
interest to us will be weakly convergent sequences of randarables, and corresponding continuity properties
under perturbation by Gaussian noise.

Lemma 1. [64, Lemma 5.1.3] IfX, Z are independent random variables aidis normal, thenX + Z has a
non-vanishing probability density function which has detives of all orders.

Lemma 2. [55| Propositions 16 and 18] LeX,, 2, X, with sup,, E[[|X,,||?] < oo, and letZ ~ N(0,02I) be a
non-degenerate Gaussian, independentXf,}, X... LetY,, = X,, + Z and Y, = X, + Z. Finally, let f,,(y) and
f«(y) denote the density df,, and Y., respectively. Then

1.Y,2Y,

2. ”fn(y) - f*(y)Hoo — 0
3. h(Y,) — h(Y,).

Lemma 3. SUpPOSEX ., Xon) = (Xi.., Xo.,) With sup,, E[X?,] < oo fori =1,2. Let(Z1, Zy) ~ N(0,0%I) be
pairwise independent ¢X; ,,, X3 ,) and (X, ., X2..), and, fori = 1, 2, defineY; ,, = X; ,+Z; andY; , = X; .+Z;.
Then(Yi,, Yan) = (Y1, Ys.) and

lim inf I(Xl,n§ X2,n’Y1,n7 Y2,n) > [(Xl,*§ XQ,* ’Y1,*7 YQ,*)- (86)

n—oo
Proof: The fact that(Y; ,,, Y2 ,,) N (Y14, Y2,) follows from LemmdR. LemmBl2 also establishes that
h(yi,na Yé,n) — h(Yl,*a Yé,*) (87)

On account of the Markov chainsXs ,,,Y2,) — X1, — Y1, and (X1,,Y1,,) = X2, — Ya2,, we have the
identity

I(Xl,n§ X2,n‘Yl,na YZ,n) = I(Xl,ru Y2,n§ Yl,n7 X2,n) - I(Xl,ru X2,n§ Yl,ny YQ,n)- (88)
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Observe thatliminf, o (X1 5, Y20; Y10, Xop) > I(Xi4, Y2.:;Y1 4, Xo,) due to lower semicontinuity of
relative entropy, andim,, o I(X1 ., X203 Y10, Yon) = [(X1 4, Xo4; Y14, Y2,) due to [8Y) and the fact that
h(Y1,«, Yo u| X1 .6, Xo4) = h(Y1 00, Yo | X1 m, Xon) = h(Z1, Z2) is constant. Thus[(86) is proved by applying the
identity (88) again for( X ., X2 ., Y1, Y2 4). ]

Lemma 4. Let {Y,},Y, be as in Lemmal2. Fix > 0 and a channelPyy, and define{V},}, V. according to
Pyy : Yo, =V, and Pyy @ Y = Vi, There exists a sequenée, } depending orb and {Y,,}, but not onPyy,
satisfyinglim,, .~ €, = 0 and

T(Vi; Yo | 1Y <b) < (14 €,)2T(Vi; Ya | [Yal D) — (1 + €,)?log(1 — ), (89)
I(Vi; Yo | [Ya] <0) 2 (1= ) I(Vis Y| [Ya| <0) = (1 — ) log(1 + €n)?, (90)
P([Yn| < b)
_~ = 7 _ < .
EArURRES &)
Proof: Let f,(y) and f.(y) denote the density of,, and Y., respectively. By Lemmal 1, the densify is
continuous and does not vanish, and is therefore boundeyl fa@ra zero on the intervaB = [—b,b]. By Lemma
2, || fn(y) — f<(¥)|lo — 0, so it follows that
sup |1 — fn(y)‘ <e, and sup|l-— 1e(y) <en (92)
yeB f*(y) yeB fn(y)

for somee,, — 0 asn — oo (note thate,, does not depend of|y’). As a consequence,

PO €B) = [ fw)dy < () [ fulo)dy = (1+ )PV, € B). (93)
Hence, fory € B, the conditional densities df,,|{Y,, € B} andY,|{Y. € B} satisfy

FvatvaesyW) _ fuly) P(Yi € B) )
frapeenr(y) — foly) P(Yn € B) < (L+en)” (94)

By a symmetric argumentfy, (v, epy(y) > (1 — En)sz*HY*GB} (y) for all y € B. Therefore, for any Borel set,

B(V, € AlY, € B) = /B /A Puty—y(@0) fy v e 0y > (1 — e0)? /B /A Puty—y (@) fy- v ()dy  (95)

= (1 —€,)*P(V, € A|Y, € B). (96)
As a consequenc%(v) > (1 — ¢,)%. Combining the above observations we have
dPyy—y
I(Vn§ Yn|Yn S B) = fYn\{YnEB}(y) lOg dpi(v) PV|Y:y(d'U)dy (97)
B Va|Y.€B
1 dPV\Y:
g1+en2// lo< yv)P _,(dv)d 98
( ) : fy.lqv.eBy(y) log A= dPV*|Y*€B( ) ) Pyjy=y(dv)dy  (98)
= (1 +en)2I(Vis Ya|Va € B) — (1 + ) log(1 — €)% (99)
By a symmetric argument, we also have
I(Vo; YalYn € B) > (1 = )2 1(Vs; YalYa € B) = (1 = ¢,)log(1 + €)?, (100)
which proves[(89)E(90). Inequality (P1) is established bg same logic as (93). [ |

Lemma 5. Let X ~ Py and letZ ~ N(0,0?) be a non-degenerate Gaussian, independent oft holds that

Jim P(IX| > D)I(X; X +7 | |X] > ) =0. (101)
—00
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Proof: The proof follows that of[[56, Theorem 6]. By lower semicaoniity of relative entropy, we have
liminf I(X; X +Z [ |X] <0) > I(X; X + 2). (102)
Also,
I(X;X+2)>P(|X| <h)I(X; X+ Z | |X|<b), (203)

so thatlimp oo I(X; X + Z | | X]| < b) = limp oo P(|X| < OI(X;X +Z | |X]| <b) =I(X;X + Z). By the
chain rule

P(X[>0)I(X; X+ Z | [X|>b)=1(X;X +2) - I(Ijxj<py; X +2) =PI X[ <O I(X; X + Z | | X]|<b),
so the claim is proved sincB(1{x|<y); X + Z) vanishes a$ — oo. |

B. Characterizations of Gaussian Random Variables
The goal of this subsection is to establish the followingrahterization of Gaussian random variables:

Lemma 6. Suppos€ X ,,, Xa.,) o, (X1 .4, X2,,) With suan[Xi%n] < oo fori=1,2. Let (71, Z5) ~ N(0,0%1)
be pairwise independent ¢ ,,, X ,) and, fori = 1,2, defineY; ,, = X, ,, + Z;. If X; ,,, X2, are independent
and

llmlan(Xln +X2 n;Xln X27n’Y17n7Y27n) = O, (104)

n—oo

then X, ., X, . are independent Gaussian random variables with identieaiances.
We require two facts. First, a fundamental result of Belinsfg7] asserts the following:

Lemma 7. [B4, Theorem 5.1.1] IfX;, X, are independent random variables such tht + X, and X; — X,
are independent, theX; and X, are normal, with identical variances.

Remark 3. Formally, Bernstein’'s theorem does not comment on the icEnvariances of X1, X». However,
assuming without loss of generality that, Xo are zero-mean, the observation th&; and X, have identical
variances is immediate sind&[X?] — E[X3] = E[(X; — X3)(X1 + X2)] = 0. This fact was explicitly noted by
Geng and Nair [55].

Second, we will need the following observation:

Lemma 8. LetY = X + Z, whereZ ~ N(O o?) is a non-degenerate Gaussian, mdependenXoif XN{Y =y}
is normal for Py-a.e.y, with varlanceo—X not depending omy, then X is normal with varlancea"—

Proof: If X|{Y =y} is normal for Py-a.e.y with variances% not depending ofY’, thenX = E[X|Y]+ W
a.s., wherdV ~ N(0,0%) is independent of . In particular, X has densityfx by Lemmal. Also, by Lemmi 1,
Y has densityfy. The conditional densityy | x exists and is Gaussian by definition, afig)y is a valid Gaussian
density for Py-a.e.y, with corresponding variances, not depending ory. Thus, we have

log fx(z) =log fy (y) + log fy|x(ylz) — log fxy (z|y). (105)
The key observation is that the RHS bf (105) is a quadratictfan in z. Sincefx is a denS|ty and must integrate
to unity, it must therefore be Gaussian. Direct computatevreals thatX has varlanceﬂ [ |

Proof of Lemmdl6: Let Y; . be as in the statement of Lemrhh 3, and recaII that the same deasserts

(Y1, YM) (Y1 4, Ya ). By definition of Z1, Z,, the random variablesZ; + Z;) and(Z; — Z,) are independent
and Gaussian with respective varian@es. Thus, noting that assumption (104) is equivalent to

lim inf I(Xl n+ X2 s Xl n X2,n‘Y1,n + Y2,n7 Yl,n - Y2,n) = O, (106)

n— o0
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we may apply Lemmal3 to the sequenges, ,, + Xo , X1, — Xon} and{Y1, + Y2,,Y1, — Y2, } to obtain
(X1 s+ Xow; Xiw — Xou Y14, Yo) = I( X w + Xow; X1 v — Xo x|V + Yo, Y1, — Yo ,) =0. (107)
Using independence oX; ,,, X2, Lemma[3 applied directly yields
I(X14; Xo x| Vi, Yau) = 0. (108)

In particular, forPy, _y, .-a.e.yi,y2, the random variableX . |[{Y1 ., Y2« = y1, 92} and Xy . [{Y1 +, Y2« = y1, 92}
are independent, and\; . + X2 . ){Y1+, Y2« = y1,92} and (X« — Xo . ){Y1+, Yo« = y1,y2} are independent.
Therefore, LemmAl]7 implies thaf; .[{Y7 ., Y2.. = y1,y2} and Xy . |[{Y1 «, Yo« = y1,y2} are normal with identical
variances. Starting with the third claim of Lemrh 2 and ajmgylower semicontinuity of relative entropy, we
observe

I(X14Y14) = li_lgl (X1 Y1) = li_>m I(X1n; Y10, Yon) (109)
> I( X145 Y14, Yo ) (110)
= I(X1,5 Y1) + 1( X103 Vo[ Y14), (111)

so it follows thatX,;, — Yi . — Y5,, and thereforeX ,[{Y1.,Y2. = y1,y2} ~ X1 [{Y1« = y1}. Similarly,
Xo [ {Y1, Yoo = y1, 92} ~ Xo . [{Y2. = y2}. SO, we may conclude that the random variab¥as, |[{Y] « = y1}
and X, . |{Y>. = y2} are normal, with identical variances not dependingyeny,. Invoking LemmaB, we find
that both.X; ., and X, , are normal with identical variances, completing the proof.
[ |
C. Existence of sequences satisfying,,_,. sy (X, snr|@,) = Va(snr) that converge weakly to Gaussian
The goal of this section is to prove the following result, @hiwas the first essential ingredient needed for the

proof of TheoreniB (i.e., Claim I).
Lemma 9. There exists a sequené¢&,,, Q,,} satisfying

lim sy (X,,snr|@y) = Va(snr) (112)

n—o0

EXZ <1 n>1 (113)

and (X,,, Qn) = (X.,Q.), With X, [{Q. = ¢} ~ N(uy,0%) for Py -a.e.q, with ¢% < 1 not depending on.

A rough outline of the proof is as follows: We first establists@peradditivity property of, (X, snr|@), and
then exploit this property in conjunction with the charaiztgtion of Gaussians proved in Lemrha 6 to verify
the existence of sequendeX,,,Q,} satisfyinglim,,,~ sx(X,,snr|@,) = Vx(snr) which converges weakly to
Gaussian. We begin with a straightforward observation:

Lemma 10. Let X = (X, X3), Y = (Y1,Y2), and @ have joint distributionPxyq = Px, x,o Py, 1x, Pry x,- FV
satisfiesX — Y — V|Q, then for\ > 1, we have
I(Y1,Y2; V]Q) — h(X1, X2|Q) — A (I(X1, X2; V|Q) — h(Y1,Y2(|Q))
> I(Y;VI[X2,Q) — M(X1|X2,Q) — AN(I(X1; V[ X2, Q) — h(Y1]X2,Q)) (114)
Moreover,X; — Y1 — V|(X2,Q) and Xy — Y5 — V|(Y1,Q).
Proof: The second claim is straightforward. Indeed, usifigyqo = Px,x,qQPy;|x, Py.|x,» We can factor
the jOint distribution Of(X, Y, ‘/, Q) as PXYVQ = PX1X2QPY1\X1 PYQ\X2PV|Y1Y2Q = PX]XQQPY]\Xl PY2V|Y1X2Q'

Marginalizing overYs, we find thatX; — Y7 — V|(X2,@). The symmetric Markov chain follows similarly by
writing Pxyv,g = Px, x.v,Q Py, x, Pv|viv,@ @and marginalizing ovei’.
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To prove the claimed inequality, note the following idertt

I(Y1,Y2; V]Q) — h(X1, X2|Q)

=1(Y;;V|Q) + I(Y2; V|Q, Y1) — h(X2|Q) — h(X1]Q, X2) (115)
=I1(Y;;V|Q) + 1(Y2; V|Q, Y1) — h(X2|Q, Y1) — h(X1]|Q, X2) — I(X2; V1[Q) (116)
= I(Y1;V|Q, X2) + I(Y2; V]Q, Y1) — h(X2|Q, Y1) — h(X1]Q, X2) — I(X2;Y11Q, V), (117)
and
I(X1, X2;V|Q) — h(Y1,Y2|Q)
= I(Xo; V|Q) + I(X1; V]Q, X2) — h(Y1]Q) — h(Y2|Q, Y1) (118)
= I[(X2;V]Q) + I(X1; V|Q, X2) — h(Y1]|Q, X2) — h(Y2|Q, Y1) — I(X2;Y1|Q) (119)
= I1(X; V|Q, Y1) + I(X1;V|Q, X2) — h(V1|Q, X2) — h(Y2|Q, Y1) — I(X2; 1]Q, V). (120)
Therefore,
I(Y1,Y2; V|Q) — h(X1, X5|Q) — A (I(X1, X2; V[Q) — h(Y1,Y2(Q)) (121)
= I1(Y1;V[X2,Q) — h(X1]X2, Q) — A(I(X1; V[ X2, Q) — h(Y1]X2,Q)) (122)

+1(Ya; VY1, Q) — h(Xa2|Y1, Q) — A (I(X2; VY1, Q) — h(Y2[Y1,Q))
which proves the inequality (1114) since> 1. [
Lemmal10 leads to the desired superadditivity property, 0¥, snr|Q):

Lemma 11. Let Py x be the Gaussian channgl = /snrX + Z, whereZ ~ N(0,1) is independent oX. Now,
suppose X, Y, Q) ~ PxqPy|x, and let(Xy, Y1, Q1) and (X2, Y2, Q2) denote two independent copies(df, Y, Q).
Define

X1+ X X1 —X
X, = 1+ X2 x - 27 (123)
V2 V2
and in a similar manner, defing, ,Y_. Letting Q = (Q1,Q2), we have forA > 1
253 (X, snr[Q) > sy (X4, snr|X_, Q) + sy(X_,snr|Ys, Q) (124)
and
255 (X, snr|Q) > sa (X4, snr|Y_, Q) + sa(X_,snr| X4+, Q). (125)

Proof: The crucial observation is that the unitary transformativn Y>) — (Y, Y_) preserves the Gaussian
nature of the channel. That is, ¥; = \/snrX; + Z;, thenY, = {/snrX, + %(Zl + Z;) andY_ = \/snrX_ +
%(Zl ~ Zy), where the pgil(%(Zl + 22), %(Zl — 7Z,)) is equal in distribution tqZ;, Z).

Thus, consider an arbitrary” satisfying (X, X_) — (Y;,Y_) — V|Q. By Lemmal[ID and the above
observation, we have

I(Y1,Y2; V[Q) — h(X1, X2|Q) — A (I(X1, X2; V[Q) — h(Y1,Y2(|Q))

= I(Y., Y5 V|Q) - h(Xy, X_|Q) - A (I(X4, X_:V|Q) - h(Y, Y_|Q)) (126)

> I(Yai VIX-, Q) — (X4 |X_, Q) — A(I(X4:VIX_,Q) — h(Ys|X_,Q)) (127)
IV VIYE, Q) — M(X-[YL, Q) = A(J(X—; VY5, Q) — M(Y-|Y4, Q))

> sy (X4, snr| X, Q) +sa(X_,snr|Y,, Q). (128)

16



This proves[(124) since

V:X%%gij)_}Vf(Yl, Y2; VIQ) — h(X1, X2[Q) — A (I(X1, X2;V|Q) — h(Y1,Y2|Q)) (129)

2
< ;V:Xi;%ﬁm (Yis VIQ:) — h(XilQi) = M (I(Xi5 VIQs) — h(Yi|Qs) (130)
= QSA(X,SHF|Q), (131)
where the inequality follows since the infimum is taken ovesnzaller set. ]

Remark 4. In some sense, Lemrhal 11 is the key to the whole proof. Theditibiad property ultimately implies
that the optimizing distribution in optimization proble@2) is rotationally invariant, and therefore Gaussian. This
idea was introduced to the information theory literature ®gng and Nair [[55], but has origins in a ‘doubling
trick’ which has been used to great success in the literatmefunctional inequalities[[24],[]58] and has been
attributed to K. Ball [59]. The reader is referred td_[60][_[§ for a detailed discussion of the duality between
extremisation of information measures and functional iradigjes.

We are now ready to prove Lemrha 9.

Proof of Lemmd19: For convenience, we will refer to any sequenck,,Q,} satisfying [11R){II3) as
admissible Sinces) (X, snr|@,,) is invariant to translations of the mean &f,, we may restrict our attention to
admissible sequences satisfyiRgX,,| = 0 without any loss of generality.

Begin by letting{X,,, @,,} be an admissible sequence with the property that

for any other admissible sequent&/, @/ }. Clearly, such a sequence can always be constructed by andibzp-
tion argument. Moreover, the LHS df (132) must be finite. Te #@s, note first thab(Y;,|Q,) — h(X,|Q,) >0
since conditioning reduces entropy. On the other handX,,snr|Q,) < Vi(snr) + 1 for n sufficiently large.
Hence, there is somg, satisfying X,, — Y,, — V,,|Q,, for which

h(Yn|@n) — h(Xn|Qn) < Val(snr) + 1+ M (Xp; Vo Qn) — (Vs Vi |Qn) — (A = DA(Yn[Qn) (133)
<Vi(snr) + 14+ (A= DI(X0; Val@n) — (A= 1D)h(Y,|@Qn) (134)
<Vi(snr) + 14+ (A= DI(X; Yo |Qn) — (N = 1)A(Y,|@Qn) (135)
=V (snr)+1— (A —1)h(Y,|X,), (136)

where [[13%) and (135) are both due to the data processingatigg SinceV,(snr) < oo trivially and (Y, | X,,) =
h(Z) = }log 2me, we conclude that the LHS of {IB2) is finite as claimed.

By the same logic as in the remark followirlg {62), we may asstinat, € Q, where|Q| = 3, since this is
sufficient to preserve the values BfX?2], s\ (X,,snr|Q,) and (h(Y,|Qn) — h(X,|Qx)). Thus, sinceQ is finite
andE[X?] < 1, the sequencéX,,,Q,} is tight. By Prokhorov's theorem [62], we may assume thatetie some
(X4, Q) for which (X,,, @y,) 2, (X4, Q) by restricting our attention to a subsequencd &f,, Q,,} if necessary.
Moreover,E[X?] < liminf, ., E[X2] < 1 by Fatou’s lemma.

Next, for a givenn, let (X, ,,, Q1) and(Xs ,, Q2,,) denote two independent copies ©f,,, Q,,). Define

Xin + Xon Xin—Xop
X n = et bt X_ n = y s ’
. NG | NG
In a similar manner, defin&, ,,Y_ ,,, and putQ,, = (Q1,,, Q2,,). Applying Lemma[1ll to the variable,, —
(X-i-,naX—,n) — (Y+,n,Y_7n), we obtain

25y (Xp,snr|Qy) > SA(X+,n>5nr|X—,nQn) + s,\(X_,n,snr|Y+,nQn), (138)

(137)
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and the symmetric inequality
255 (Xy, snr|Qn) > sa( X4 pn,snr|YZ Q) + sx(X— oy, snr| X4 Q). (139)

By independence ok ,, and X, and the assumption th&.X,,] = 0, we have

%E[an] + %E[Xin] = E[X2] < 1. (140)

Hence, it follows that the terms in the RHS &f (138) and the RHI$139) are each lower bounded B (snr).
Sincelim,,—,« sx(Xn, snr|@,) = Vi (snr) by definition, we must also have

E[X},]=E[X2,]=

1
lim 5(sA(XM,srlr\y_,nQn) +s,\(X_7n,snr\Y+,nQn)> — V) (snr). (141)

n—oo

In particular, by letting the random paifX/,Q,) correspond to equal time-sharing between the pairs
(X4, (Y- Q) and(X_ ,,, (Y4 ,Q,)), we have constructed an admissible seque¢g, ), } which satisfies

Tim s (X7, snr|Q),) = Va(snr). (142)
Using Markovity, the following identity is readily establied
MYl @) = B IQn) = 5 (A(Yi Y-l Q) = h(X 0, X 0]Qu) (143
= 5 Y Vi, Qu) = A Y, Q) (14)
g (Ve alY 0 Qu) — (X Y Q)
1

+ §I(X+,n§ X—,n|Y+,m Y—,na Qn)
1
= h(Yr”an) - h(XMQ;z) + §I(X+JL; X—,n|Y+,nv Y—le Qn) (145)

Since the sequendeX/,, @', } is admissible, it must also satisfy (132). Therefore, inwa (143) and the fact that
the LHS of [132) is finite, this implies that

lim inf I(Xl,n + X27n; le — X27n‘Y17n, ng, Qn) =0. (146)

n— o0

In particular, forPy, x Pg.-a.e.(q1,¢2),
lim inf[()(l,n + X2,n§ Xl,n - X2,n‘Yl,na YZ,Tw (Qn = d1, QZ)) = 0. (147)

n— o0

This completes the proof since Lemin 6 guarantees thatPdora.e. ¢, the random variableX, [{Q. = ¢} is
normal with variance not depending gnand moreover we have already observed Bjaf2] < 1, so the variance
of X.|[{Q« = ¢} is at most unity as claimed. [ |

D. Weak Semicontinuity &f (-, snr)

This subsection is devoted to establishing the followinghisentinuity property ofs,(-,snr), which was the
second essential ingredient needed for the proof of The@¢ne., Claim II).

Lemma 12. If X,, 2 X, ~ N(u,0%) andsup, E[X2] < oo, then
liminf sy (X, snr) > sy(X,,snr). (148)
n—o0

Recall thatsy (X, snr) is defined in terms of the Gaussian chanviet \/snrX + Z. However, for the purposes
of the proof, it will be convenient to omit thenr scaling factor, and instead parametrize the channel insterin
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the noise variance. Toward this end, Bt~ N(0,0?). For A > 0 and a random variabl& ~ Py, independent of
7, defineY = X + Z and the functionals

Fao:(X) = inf (I(Y; V) — A(X; V)) (149)
G oz (X) = —h(X) + Ah(Y). (150)

LemmalI? is an immediate corollary of weak lower semicoritynaf G, ,2(X) andF, ,2(X) at GaussianX.
These facts are established separately below in Leninlas d@3nrespectively. The former is straightforward,
while the latter requires some effort.

Lemma 13. If X,, 2 X, ~ N(u,0%) andsup, E[X2] < oo, then

lim inf Gy o2 (X,) > G2 (X2). (151)
Proof: Fix 6 > 0 and defineNs ~ N(0,0), pairwise independent dfX,}, X.. Observe that
Gao2(Xn) = —h(X,) + Ar(Y,) > —h(X,, + Ns) + Ah(Yy,). (152)
By the third claim of Lemmal2, we haveh(X,, + Ns) + Ah(Y,) — —h(X. + Ns) + Ah(Y) asn — oo. Thus,
liminf Gy o2 (Xp) > —h(Xs + Np) + Ah(Y.). (153)
Sinceh(X, + Nj) = 3log (2me(c% + 4)) is continuous ins, we may take’ | 0 to prove the claim. [ |

Lemma 14. F, ,2(X) is continuous in\. Furthermore, ifX ~ N (u,0%), then

bllog (A-1)%) —xog (32 (1+%F))| taz1+2

F)\O'2X: 2
(%) 0 |f0§A§1+g—§(

(154)

In particular, Fy ,2(X) is continuous in the parametetg, o3 and A for GaussianX.

Proof: The functionF), ,-(X) is the pointwise infimum of linear functions in, and is therefore concave
and continuous on the open intervak (0, 00) for any distributionPx. The explicit expressioi (15b4) follows by
identifying v snr < 2% in Propositior P. [

Lemma 15. If X,, 2 X, ~ N(u,0%) andsup, E[X2] < oo, then
hIIl)lIlf F)\Jz (Xn) > F)\Jz (X*) (155)

Proof: Fix an interval B = [-b,b], a channelPy |y, andé satisfying0 < § < 02/2. Recalling the definition
of Z ~ N(0,0%), decompose = N; + N2 + N3, where Ny ~ N(0,6), No ~ N(0,0% —25) and N3 ~ N(0,6)
are mutually independent. Defin?é,‘i = X, + Ny and Yj =Y, — N3 = X,, + N; + No. Note that we have
X, - X - Y? — Y, — V,, whereV,, is defined by the stochastic transformatiéyy - : Y, — V;,. Using
the notation of Lemma&al2, we also have, — X — Y? — Y, — Vi, whereY, = X, + Z, X9 = X, + Ny,
Y? =Y, — N3 andV; is defined viaPy |y : Yy — V.. With these definitions in hand, we may apply Lemima 4 to
the processe§X?},{Y;?} to conclude the existence of a sequenge- 0, not depending oy |y, that satisfies

(Vs X2|X0 € B) < (1 + €)% 1(Vi; X2| X0 € B) — (1 4 €,)%log(1 — €,)? (156)
IV, YOIV € B) > (1 — ,)*I(Vi; YOIV € B) — (1 — ¢,,)* log(1 + €,,)? (157)
P(XS € B) < (1 +¢€,)P(X? € B) (158)
P(Y? € B) > (1 — e,)P(Y? € B). (159)
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Now, we have the following sequence of inequalities

[(Yn§ Vn) - )‘[(Xn; Vn)

> 1(Y2: Vi) — M(X2: V) (160)

= I(er’]l{YjeB}Q Vo) = M(X), Lixseny: Vo) (161)

=PV € B)I(Y,;V,|Y,) € B) + P(Y,) ¢ B)I(Y; VoY, ¢ B) + I(Liysepy; Vo) (162)
~ A(P(Xh € B)I(X3; V2l X3 € B) +P(X) ¢ BYI(X): Val X3 ¢ B) + I(1xsenyi Vo))

> P(Y; € B)I(Y?; V,|Y? € B) (163)
—A(P(X) € BYI(X0: Vil Xh € B) + P(X) ¢ B)I(X):Yal X} ¢ B) + H(Lixsen)))

>P(Y? € B)(1—€,)?1(Y2; V,|Y? € B) = P(Y? € B)(1 — €,)%log(1 + €,)? (164)

P(X® € B)(1 + e)2I(X2; Vi|X® € B) — P(X? € B)(1 + €,)? log(1 — en)2)

(
P(Xh ¢ B)I(X3: YalX) ¢ B) + H(L(xscp)))
> B D0 - e (10372) B0 ¢ B VAYS € B) -~ 18 31cy:14) (165)
— A1+ en)z%l(Xf; Vi)
—P(Y? e B)(l - en) log(1 + €,) + AP(XS € B)(1 + ¢,)%log(1 — €,)?
A(P(XS ¢ BYI(X3: Yal X ¢ B) + H( (xsen) )
> (1- en>3I<Y3, v*> = M1+ &) 1(X2; Vi) (166)
— (1= ) (PO ¢ BV YAY? ¢ B) + H(lpysen)))
—P(Y;? € B)(1 — €,)?log(1 + €,)> + AP(X? € B)(1 + €,)*log(1 — ¢,)?
~A(P(XS ¢ BYI(X; YalX) ¢ B) + H( (xsep)) )
> (1= €0)°F, (02-20)(X2) (167)
— (1= )P (PO ¢ BV YAIY? ¢ B) + H(lysep)) )
—P(Y? € B)(1 —¢,)%log(1 4 €,)? + A\P(X% € B)(1 + €,)*log(1 — €,)?

~A(P(X) ¢ B)I(X):YalX) ¢ B) + H(Lixsen))),

A
A

where )\, := A (“E") The above steps are justified as follows:

(@80) follows by the data processing inequality.
(161) follows sincel ;yscpy and 1 xscpy are functions ofY;? and X2, respectively.
(@62) follows from the chain rule for mutual information.
(163) follows from non-negativity of mutual informatiorhe fact thatl (1 xscpy; Vi) < H(l{xscpy), and
the data processing inequality which implie&X?; V,,| X2 ¢ B) < I(X2;Y,|X? ¢ B).
([@64) follows from [156) and (1%7).
(@83) follows from the chain rule for mutual information, iwh implies
1
P(Y? € B)

1YV, Y] € B) = (1077 va) = (Y ¢ BYIOYS VYD & B) = I yscpyi Vi) (168)
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and, combined with non-negativity of mutual information,
-
P(X? € B)
« (168) follows from [(I58),[(159), the fact thatl ;yscpy; Vi) < H(1{ysepy), and the data processing inequality
which impliesI(Y; V.|Y? ¢ B) < I(Y?; Y.|Y? ¢ B).
« (I67) follows from the definition oF , (,=_5 (X?) by taking the infimum oveV. satisfyingX? — Y} — V.
Summarizing above, we have shown
I(Yn; Vi) = A(Xn; Vi) > (1= En)gFAn,(o2—25) (Xf) (170)
— (1= ) (PO ¢ BV YAIY? ¢ B) + H(Ljysep)) )
—P(Y? € B)(1 — €)% log(1 + €,)2 + AP(X? € B)(1 +¢,,)? log(1 — ¢,,)?
—\(P(XS ¢ BYI(X; Yl X3 ¢ B) + H(Lxscp) )
Note that the RHS of[(170) does not dependign (i.e., Pyy). Thus, taking the infimum oveV;, satisfying
X, =Y, =V, and then letting» — oo, we arrive at

liminf Fy 02 (X,) > Fy (o2_ag)(X?) — (]P(Yj ¢ BYI(YS;Y.|Y? ¢ B) + H(Lpyse B})) (171)

n—oo

I(X2;Vi|X!) € B) < I(X3;Va). (169)

~A(P(x2 ¢ BYI(XEY.IXD ¢ B) + H(l(xsen) )

which follows due toe,, — 0 and the following:
o F (02-25)(X2) = F) (5225 (X?) by continuity of F) 5> (X) in A (Lemma[1%).
« P(X? ¢ B) - P(X? ¢ B)sinceX? 2 X3 by the first claim of Lemmal2. By the same tokéh( 1 xscpy) —
H(1;xscpy) by continuity of the binary entropy function.
o I(X2;Y,|X] ¢ B) = I(X3;Y.|X? ¢ B) by the third claim of Lemm&l2 sindém sup,, E[(X?)” | X2 ¢ B] <
oo due to the fact thatup, E[X?2] < co andP(X? ¢ B) — P(X? ¢ B), a positive constant.
As we takeb — oo, continuity of the binary entropy function and Lemina 5 tdgetimply the latter two terms in
the RHS of [I711) vanish, yielding the inequality

lim inf Fy(X,) > Fy (52—26) (X2). (172)

n— oo

Sinced was arbitrary andry, (,2_25) (X?) is continuous iy by LemmalI#, the proof is complete by lettidg, 0.
[ |

Remark 5. Given the tedious chain of inequalities in the proof of Lerifait is easy to lose sight of the overall
picture. The crucial idea is that perturbing,, — X2 andY,, — Y; allows us to eventually eliminate dependence
on the channel |y in the RHS of(167) Resisting the temptation to take limits— oo or b — oo until after
dependence on any particular chanr@}y- is eliminated (i.e., inequalitfI70d) is also essential.

We note that the hypothesis th&t, ~ N (0, 02) was not needed in the proof of Lemind 15 until the very last.step
Indeed, we may actually conclude that the following genegallt holds, which may be of independent interest:

Proposition 3. SupposeX,, = X, and sup, E[X2] < oo, then for all0 < § < &' < o2, the following holds:
lim inf F)\’U2 (Xn) > F>\ (0.2_5/)(X* + N(S) (173)
n—00 ’

where N5 ~ N(0,9) is independent o¥.,.

Proof: The claim follows from the proof of Lemniall5, but stopping®BfZ) and not particularizing to Gaussian
X.. The replacement dij by ¢’ is straightforward by decomposing differently in the first step of the proofm

Remark 6. It is possible to establish weak upper semicontinuit of-(-), but that is not needed for our purposes.
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