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Coded Compressive Sensing:
A Compute-and-Recover Approach

Namyoon Lee and Song-Nam Hong

Abstract—In this paper, we propose coded compressive sensing
that recovers an n-dimensional integer sparse signal vector from
a noisy and quantized measurement vector whose dimension m
is far-fewer than n. The core idea of coded compressive sensing
is to construct a linear sensing matrix whose columns consist of
lattice codes. We present a two-stage decoding method named
compute-and-recover to detect the sparse signal from the noisy
and quantized measurements. In the first stage, we transform
such measurements into noiseless finite-field measurements using
the linearity of lattice codewords. In the second stage, syndrome
decoding is applied over the finite-field to reconstruct the sparse
signal vector. A sufficient condition of a perfect recovery is
derived. Our theoretical result demonstrates an interplay among
the quantization level p, the sparsity level k, the signal dimension
n, and the number of measurements m for the perfect recovery.
Considering 1-bit compressive sensing as a special case, we show
that the proposed algorithm empirically outperforms an existing
greedy recovery algorithm.

I. INTRODUCTION

Compressive sensing (CS) [1], [2] is a promising technique
that recovers a high-dimensional signal represented by a few
non-zero elements using far-fewer measurements than the
signal dimension. This technique has immense applications
ranging from image compression to sensing systems requiring
lower power consumption. The mathematical heart of CS is
to solve a under-determined linear system of equations by
harnessing an inherent sparse structure in the signal.

Let x ∈ Rn and Φ ∈ Rm×n be a real-valued spare signal
vector and a compressive sensing matrix that linearly projects
a high-dimensional signal in Rn to a low-dimensional signal
in Rm where m < n, respectively. Formally, the noiseless CS
problem is to reconstruct sparse signal vector x by solving the
following `0-minimization problem:

min ‖x‖0 subject to y = Φx, (1)

where the collection of non-zero elements’ positions in x,
supp(x), is defined as T = {i | xi 6= 0, i ∈ [1 : n]}, with
cardinality |T | = k. Unfortunately, computational complexity
for solving this problem is NP-hard, implying that, in practice,
it is computationally infeasible to obtain the optimal solution
when n is very large. There exists many practical algorithms
that perfectly reconstruct the sparse signal with polynomial
time computational complexity, provided that a measurement
matrix has a good incoherence property. Greedy sparse signal
recovery algorithms [3]–[6] became popular due to the com-
putational efficiency in implementing these algorithms.
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In practice, obtaining the measurement vector y with infinite
precision is infeasible. This is because, in many image sensors
or communication systems, signal acquisition is performed by
using analog-to-digital converters (ADCs) that quantizes each
measurement to a predefined value with a finite number of bits.
This quantization process makes difficulty in recovering sparse
signals, as it might give rise to significant measurement errors,
especially when the number of quantization bits is small.
Numerous sparse signal recovery algorithms with quantized
measurements in [10]–[15] were proposed to overcome the
impact of the quantization errors. In particular, under the
premise that each measurement is quantized with just one-bit
(i.e., an extreme case of quantization errors), a compressive
sensing problem was introduced in [12]. For given Φ and x,
the measurements are obtained using their signs as

y = sign (Φx) , (2)

where the measurement vector is in the Boolean cube, i.e., y ∈
{−1, 1}m. It was shown that, with the one-bit measurements,
sparse signal vectors with unit-norm can be recovered with
high probability by convex optimization techniques [13] or
iterative greedy algorithms [14].

In this paper, we study a generalized compressive sensing
problem in which each measurement is quantized with p levels
where p (≥ 2) is a prime number. We also consider a quantized
source signal, i.e., the non-zero elements of a sparse signal are
chosen from a set of integer values, i.e., x ∈ Znp . Such setting
can be found in many applications. For instance, in a random
access wireless system, active users among all users in the
system send quadrature amplitude modulated symbols (i.e., p-
level quantized signals) to a receiver, and it detects the active
users’ signals using a p-level ADC.

A fundamental question we ask in this paper is: what is
the sufficient condition for the perfect recovery of the integer
sparse signal with p-level per measurement in the presence of
Gaussian noise? To shed light on the answer to this question,
we develop a new sparse signal recovery framework, which
is referred to as “coded compressive sensing.” The core idea
of coded compressive sensing is to exploit both source and
channel coding techniques in information theory. The proposed
scheme consists of two cascade encoding and decoding phases.
The first phase of encoding is the compression phase, in which
a high dimensional sparse signal vector in Znp is compressed
to a low dimensional signal vector using a parity check matrix
of a maximum distance separable (MDS) linear code. The
second phase is the dictionary coding phase. In this phase,
each dictionary vector (each column vector of the parity check
matrix) is encoded to a coded dictionary vector by exploiting a
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(near) capacity-achieving lattice code for a Gaussian channel.
We propose a two-stage decoding method called “compute-
and-recover.” In the first stage of decoding, a linear combi-
nation of the encoded dictionary vectors corresponding the
non-zero elements in x ∈ Znp is decoded. We call this as the
dictionary equation decoding stage that produces a noise-free
measurement vector. Once the dictionary equation is perfectly
decoded, in the second stage of decoding, we apply syndrome
decoding to the equivalent finite field representation of the
dictionary equation for the sparse signal recovery. Using the
proposed scheme, we derive a lower bound of the number
of measurements for the perfect recovery as a function of
important system parameters: the quantization level p, the
sparsity level k, the signal dimension n, and the number
of measurements m. Considering p = 2 as a special case,
we compare the proposed scheme with existing algorithms
developed for the one-bit compressive sensing problem [12].
Numerical results show that the proposed scheme outperforms
than binary iterative hard thresholding (BITH) [14] in a low
signal-to-noise ratio (SNR) regime.

II. CODED COMPRESSIVE SENSING PROBLEM

In this section, we present a coded compressive sensing
framework for an integer sparse signal recovery in the presence
Gaussian noise.

A. Signal Model

We are interested in a sparse signal detection problem
from a compressed measurement in the presence of noise. Let
x = [x1, x2, . . . , xn]> ∈ Zn×1

p be an unknown sparse signal
vector whose sparsity level is equal to k, i.e., ‖x‖0 = k � n.
The measurement equation of quantized compressed sensing
is given by

y = Sp (Φx + n) , (3)

where Sp denotes the p-level scalar quantizer that applied
component-wise, and y ∈ Rm×1 = [y1, . . . , ym]> and n ∈
Rm×1 = [n1, . . . , nm]> denote the measurement and noise
vector, respectively. All entries of the noise vector are assumed
to be independent and identically distributed (IID) Gaussian
random variables with zero mean and variance σ2/m, i.e.,
ni ∼ N

(
0, σ

2

m

)
for all i.

Our objective is to reliably estimate the unknown sparse
signal vector x given y in the presence of Gaussian noise n, by
appropriately constructing a linear measurement matrix Φ and
p-level scalar quantizer Sp. We define a sparse signal recovery
decoder D : Rm → Znp , which maps the measurement vector y
to an estimate x̂ = D(y) of the original sparse signal vector
x. It is said that the average probability of error is at most
ε > 0 if P[x̂ 6= x] ≤ ε.

B. Sensing Matrix Construction

A linear encoding function is represented by a sensing ma-
trix Φ ∈ Rm×n, which linearly maps the n-dimensional sparse
vector to an m-dimensional output vector, where m� n. We
construct the sensing matrix Φ using the proposed idea, which
is referred to as dictionary coding.

1) Dictionary Basis Vector Selection: Let H̃ ∈ Fm̃1×n
q be

a parity check matrix of a q-ary [n, b] MDS code, where q
is a prime power ps for any positive integer s ∈ Z+. In this
paper we focus on a q-ary [n, b] Reed-Solomon (RS) code
with field size constraint q ≥ n. Thus, the parity check matrix
of the RS code has m̃1 full-rank where m̃1 = n − b ∈ Z+.
The `th column vector of H̃ is denoted by h̃` ∈ Fm̃1

ps where
` ∈ [1 : n]. We define the one-to-one mapping h : Fm̃1

ps →
Fm̃1s
p that maps each element of Fps into an s-length word

in Fp. For instance, when p = 2, it is possible to express
an element of F2s as a binary vector of length s. Using this
mapping, we can transform each dictionary vector h̃` ∈ Fm̃1

ps

into h` = h(h̃`) ∈ Fm1
p where m1 = m̃1s. The transformed

column vector h` is referred to as the `th dictionary basis
vector.

2) Dictionary Coding via a Lattice Code: Dictionary cod-
ing is to map a dictionary basis vector in Fm1

p into a lattice
point in Rm using lattice encoding where m ≥ m1.

We commence by providing a brief background for a lattice
construction. Let Z be the ring of Gaussian integers and p be
a Gaussian prime. Let us denote the addition over Fp by

⊕
,

and let g : Fp → R be the natural mapping of Fp onto {a : a ∈
Zp} ⊂ R. We recall the nested lattice code construction given
in [14]. Let Λ = {λ = Tz : z ∈ Zm} be a lattice in Rm, with
full-rank generator matrix T ∈ Rm×m. Let C = {c = wG :
w ∈ Fm1

p } denote a linear code over Fp with block length m
and dimension m1, with generator matrix G ∈ Fm1×m

p where
m ≥ m1. The lattice Λ1 is defined through “construction A”
(see [8] and references therein) as

Λ1 = p−1g(C)T + Λ, (4)

where g(C) is the image of C under the mapping function g.
It follows that Λ ⊆ Λ1 ⊆ p−1Λ is a chain of nested lattices,
such that

∣∣Λ1

Λ

∣∣ = pm1 and
∣∣∣p−1Λ

Λ1

∣∣∣ = p(m−m1).
For a lattice Λ and r ∈ Rm, we define the lattice quantizer

QΛ(r) = arg minr∈Λ ‖r−λ‖2, the Voronoi region VΛ = {r ∈
Rm : QΛ(r) = 0} and [r] mod Λ = r − QΛ(r). For Λ and
Λ1 given above, we define the lattice code L = Λ1 ∪VΛ with
rate R = 1

m log |L| = m1

m log(p).
Construction A provides an encoding function that maps a

dictionary basis vector h` ∈ Fm1
p into a codeword in L. Notice

that the set p−1g(C)T is a system of coset representatives of
the cosets of Λ in Λ1. Hence, the encoding function f : Fm1

p →
L is defined by

f(h`) =
[
p−1g(c`)T

]
mod Λ, (5)

where
(c`)

> = (h`)
>G. (6)

Consequently, the `th codeword vector t` is produced by the
encoding function

t` = f(h`), (7)

where each dictionary vector is chosen from lattice codewords
in the nested lattice codebook L, i.e., t` ∈ L. Using this con-
struction method, we have a linear sensing matrix consisting
of n column vectors as

Φ = [t1, t2, . . . , tn] . (8)
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The average power of each codeword is assumed to be

1

m
E[‖t`‖22] ≤ 1. (9)

Finally, in this paper, we choose the shaping lattice Λ as a
cubic lattice, namely T = τI, which enables that a lattice
decoding is implemented by a scalar quantizer (see [16] for
more details). Here, τ is chosen to satisfy the power constraint
in (9) as τ =

√
8 for p = 2 and τ =

√
12 for p ≥ 3. Then,

the element-wise SNR is defined as

SNR =
τ2

σ2/m
. (10)

C. Proposed Scalar Quantizer

We propose a p-level scalar quantizer called sawtooth
transform as depicted in Fig. 1, which can be implemented
by the modulo operation followed by the scalar quantization
as

Sp(·) =
[
Q(τ/p)Z(·)

]
mod τZ. (11)

III. MAIN RESULT

In this section, we characterize the sufficient condition for
the exact recovery of an integer sparse signal vector. The
following theorem is the main result of this paper.

Theorem 1. The proposed coded compressive sensing method
perfectly reconstructs the sparse signal vector x ∈ Znp with
‖x‖0 ≤ k, with vanishing error probability for large enough
n, provided that

m ≥
2k logp n

1−Hp(Z)
, (12)

where Hp(·) represents a p-ary entropy function and Z
denotes an effective quantized noise obtained from the p-
level quantizer as Z = g−1 ([QZ (N)] mod pZ), where
N ∼ N

(
0, p2

SNR

)
.

Proof:
The proof of this theorem is based on the proposed two-

stage decoding method called “compute-and-recover”. In the
first stage, we decode an integer linear combination of coded
dictionary vectors by removing noise, which essentially yields
a finite-field sparse signal recovery problem. In the second
stage, we apply syndrome decoding over the finite-field to
reconstruct the sparse signal vector.

A. Step 1: Computation of Dictionary Equation

In this stage, we decode a noise-free measurement vector
ỹ ∈ Fm1

p from y ∈ Rm using the key property of a
lattice code. Recall that dictionary vector is a lattice code;
thereby, any integer-linear combination of lattice codewords is
again a lattice codeword [8]. Thus we have that [

∑
`∈T t`x`]

mod Λ ∈ L due to x ∈ Zn×1
p . We will first exploit this fact

to decode a noise-free measurement vector.

Letting T be the support set of x, the noisy measurement
vector with the p-level quantizer is given by

y = Sp

(∑
`∈T

t`x` + n

)

=

[
Q(τ/p)Z

(∑
`∈T

t`x` + n

)]
mod τZ, (13)

where the second equality follows from (11).
We transform this noisy and quantized measurement into

a noiseless finite-field measurement as follows. From the
quantized sequence y, we produce the sequence ŷ ∈ Fmp with
components

ŷi = g−1
(p
τ

y
)

= g−1

([
QZ

(
p

τ

(∑
`∈T

t`,i + ni

))]
mod pZ

)
, (14)

for i = 1, . . . ,m. Since p
τ t`,i ∈ Z by construction, and using

the obvious identity QZ(v + ζ) = v +QZ(ζ) with v ∈ Z and
ζ ∈ R, we arrive at

ŷ =

(⊕
`∈T

c`g
−1(x`)

)
⊕ z, (15)

where the elements of the discrete additive noise vector z are
given by

zi = g−1
([
QZ

(p
τ
ni

)]
mod pZ

)
, (16)

for i = 1, . . . ,m. Since, by linearity, v =
⊕

`∈T c`g
−1(x`)

is a codeword of C, the above channel can be considered as
a point-to-point channel with discrete additive noise over Fp.
Then, we can reliably decode v if

m1

m
≤ 1−Hp(Z), (17)

This is an immediate consequence of the well-known fact
that linear codes achieve the capacity of symmetric discrete
memoryless channel [17]. From this result, we can obtain that
the sufficient condition for the perfect recovery of the noise-
free measurement vector is

m ≥ m1

1−Hp(Z)
. (18)

B. Step 2: Recovery via Syndrome Decoding

Recall that, in the first stage, the decoder has recovered
the dictionary equation, i.e., v =

⊕
`∈T c`x̃` where x̃` =

g−1(x`). Using the linearity of code C, we have:

ỹ =
⊕
`∈T

h`x̃`, (19)

where ỹ represents the effective measurement vector in Fm1
p .

As a result, the measurement equation can be equivalently
rewritten in a matrix form over Fp as

ỹ = Hx̃. (20)
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where H ∈ Fm1×n
p denotes the effective sensing matrix whose

column vectors are selected from dictionary basis vectors h` ∈
Fm1×1
p .
We would like to recover x = g(x̃) ∈ Znp from the

effective measurement vector ỹ = Hx̃ ∈ Fm1
p in a noiseless

setting and using one-to-one mapping g(·). Unlike the sparse
recovery algorithm in a finite field in [9], we apply a syndrome
decoding method [18], [19]. Syndrome decoding harnesses the
fact that there is a bijection mapping between a sparse signal
(error) vector x and the effective measurement (syndrome)
vector ỹ, provided that x contains at most bdmin

2 c non-zero
entries, i.e, k ≤ bdmin

2 c. Recall that, in our construction, the
`th dictionary vector h` ∈ Fmp in H was generated from the
mapping h : Fm̃1

ps → Fm1
p where m1 = m̃1s, i.e., h` = h(h̃`).

Since h is bijection, applying the inverse mapping function
ȳ = h−1(ỹ) ∈ Fm̃1

ps , we obtain the resultant measurement
equation over Fps as

ȳ = h−1 (Hx̃) = h−1 (H) x̃ = H̃x̃, (21)

where the second equality follows from Fnp ⊂ Fnps and the last
equality is due to the one-to-one mapping between H and H̃
by h(·). Since H̃ was selected from the parity-check matrix
of the ps-ary [n, b]-RS code whose minimum distance, dmin

achieves a singleton bound, i.e., dmin = n−b+1 = m̃1+1. As
a result, the syndrome decoding method allows us to recover
the sparse signal perfectly, provided that

k ≤
⌊
m̃1 + 1

2

⌋
. (22)

Putting two inequalities in (18) and (22) together and using
the fact m1 = m̃1s and s = logp(n), the number of required
measurements for the sparse signal recover in the presence of
Gaussian noise boils down to

m ≥
2k logp n

1−Hp(Z)
, (23)

which completes the proof.
Remark 1 (Decoding complexity): The proposed two-

stage decoding method can be implemented with a polynomial
time computational complexity. In the first stage, the lattice
equation can be efficiently decoded with the p-level scalar
quantizer in [16] and the successive decoding algorithm of
the polar code [20], which essentially uses O(m log(m))
operations. Syndrome decoding used in the second stage
can be implemented with polynomial time computational
complexity algorithms such as Berlekamp-Massey algorithm,
which requires O(nk) operations in Fps . Considering Fps is
a vector space over Fp, this amount corresponds to O(nks2)
operations in Fp. Since n > m and s = logp(n), the overall
computational complexity of the proposed method is at most
O
(
nk log2(n)

)
operations for recovery.

Remark 2 (Universality of the measurement matrix): The
proposed coded compressive sensing method is universal, as it
is possible to recover all k sparse signals using a fixed sensing
matrix Φ. This universality is practically important, because
one may needs to randomly construct a new measurement
matrix Φ for each signal. Some existing one-bit compressive

Fig. 1. The proposed coded compressive sensing framework for the binary
sparse signal vector x ∈ {0, 1}n with one-bit and noisy measurements.

sensing algorithms [13]–[15] do not hold the universality
property.

Remark 3 (Non-integer sparse signal case): One potential
concern for our integer sparse signal setting is that a sparse
signal can have real value components in some applications.
This concern can be resolved by exploiting an integer-forcing
technique in which x ∈ Rn is quantized into an integer
vector xint ∈ Zn and interpreting the residual Φ(x − xint)
as additional noise. Then, the effective measurements are
obtained as

y = Sp (Φxint + ñ) , (24)

where ñ = n + Φ(x−xint) denotes effective noise. Utilizing
this modified equation, we are able to apply the proposed
coded compressive sensing method to estimate the integer
approximation xint. Assuming the non-zero values in x are
bounded as |xi| ≤ U for some U ∈ R+, we conjecture that
the proposed scheme guarantees to recover the sparse signal
with a bounded estimation error ‖x − xint‖22 ≤ kU

2

p2 with an
increased number of measurements than that in Theorem 1.
The rigorous proof of this conjecture will be provided in our
journal version [21].

Remark 4 (Noiseless one-bit compressive sensing): One
interesting scenario is that when a one-bit quantizer and a
binary signal are used. In the case of noise-free, the number
of required measurements for the perfect recovery is lower
bounded by

m ≥ 2k log2 n. (25)

IV. NUMERICAL EXAMPLE

In this section, we provide the signal recovery performance
of the proposed coded compressive sensing method for p = 2,
i.e., one-bit compressive sensing, by numerical experiments.

To test the proposed algorithm, k-sparse binary vector
x ∈ Z511

2 is generated in which the non-zero positions of
x is uniformly distributed between 1 and 511. A fixed binary
sensing matrix Φ ∈ F180×511

2 is designed by the concatenation
of compression matrix H ∈ F90×511

2 and the generator matrix
GT ∈ F180×90

2 of polar code (which is completely determined
by the rate-one Arikan’s kernal matrix and the information
set [20]), as illustrated in Fig. 1. In particular, the binary
compression matrix H is obtained from H̃ that is the parity
check matrix of GF(29)-ary [511, 501] RS code with the
minimum distance of 10. Therefore, it is perfectly able to
perform syndrome decoding up to the sparsity level of 5 in a
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TABLE I
A CONVEX OPTIMIZATION ALGORITHM FOR BINARY SPARSE SIGNAL

1) Initialization:
Given k, m, n, σ2, ΦG, y, and T := {∅}

2) Find x̂ solving the following convex optimization problem:
min ‖x‖1

subject to (ΦGx)iyi ≥ 0 for i ∈ {1, . . . ,m},∑m
i=1(ΦGx)iyi = m,

x ≥ 0.
3) Select the k largest index in x̂:

T =: arg max|T |=K {|x̂|}.
4) Binary signal assignment in T :

x̂T =: 1 and x̂T c =: 0.
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Fig. 2. Coded one-bit compressive sensing for the binary sparse signal
vector x ∈ {0, 1}n.

noiseless case. In addition, we pick the binary polar generator
matrix GT ∈ F180×90

2 of code rate 1
2 . We evaluate the perfect

recovery probability, i.e., E[1 (x = x̂)] of the sparse signal in
the presence of noise with variance σ2 when the proposed
algorithm is applied.

We compare our coded compressive sensing algorithm with
the following two well-known one-bit compressive sensing
algorithms with some modification for a binary signal.
• Convex optimization: a variant of the `1-minimization

method proposed in [13] for a binary sparse signal, which
is summarized in Table I;

• Binary iterative hard thresholding (BIHT): a heuristic
algorithm in [14] with some modifications for the binary
signal recovery as in step 3) and 4) of Table I.

For the two modified reference algorithms, we use a Gaussian
sensing matrix ΦG ∈ R180×511 whose elements are drawn
from IID Gaussian distribution N (0, 1

m ). For each setting of
m, n, k, and σ2, we perform the recovery experiment for
500 independent trials, and compute the average of perfect
recovery rate.

Fig. 2 plots the perfect recovery probability versus SNR
for each algorithm, when n = 511, m = 180, and k = 5.
As can be seen in Fig. 2, the proposed method outperforms
BIHT significantly in terms of the perfect signal recovery
performance. Specifically, BIHT is not capable of recovering
the signal with high probability until SNR=12 dB, because
there are a lot of sign flips in the measurements due to noise.
Whereas the proposed algorithm is robust to noise; thereby it

recovers the signal with probability one when SNR is 6 dB
above. The convex optimization approach provides a better
performance than the other algorithms; yet, it requires the
computational complexity order of O(m2n3), which is much
higher than that of the proposed one.

V. CONCLUSION

In this paper, we proposed a novel compressive sensing
framework with noisy and quantized measurements for integer
sparse signals. With this framework we derived the sufficient
condition of the perfect recovery as a function of important
system parameters. Considering one-bit compressive sensing
as a special case, we demonstrated that the proposed algo-
rithm empirically outperforms the existing greedy recovery
algorithm.
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