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A Sharp Condition for Exact Support Recovery of

Sparse Signals With Orthogonal Matching Pursuit

Jinming Wen, Zhengchun Zhou, Jian Wang, Xiaohu Tang and Qun Mo

Abstract—Support recovery of sparse signals from noisy mea-
surements with orthogonal matching pursuit (OMP) has been
extensively studied in the literature. In this paper, we show that
for any K-sparse signal x, if the sensing matrix A satisfies the
restricted isometry property (RIP) of order K+1 with restricted
isometry constant (RIC) δK+1 < 1/

√
K + 1, then under some

constraint on the minimum magnitude of the nonzero elements
of x, the OMP algorithm exactly recovers the support of x from
the measurements y = Ax + v in K iterations, where v is the
noise vector. This condition is sharp in terms of δK+1 since for
any given positive integer K ≥ 2 and any 1/

√
K + 1 ≤ t < 1,

there always exist a K-sparse x and a matrix A satisfying
δK+1 = t for which OMP may fail to recover the signal x in K
iterations. Moreover, the constraint on the minimum magnitude
of the nonzero elements of x is weaker than existing results.

Index Terms—Compressed sensing (CS), restricted isometry
property (RIP), orthogonal matching pursuit (OMP), support
recovery.

I. INTRODUCTION

In compressed sensing (CS), we usually observe the follow-

ing linear model [1]–[4]:

y = Ax+ v (1)

where x ∈ R
n is an unknown K-sparse signal, (i.e.,

|supp(x)| ≤ K , where supp(x) = {i : xi 6= 0} is the support

of x and |supp(x)| is the cardinality of supp(x)), A ∈ R
m×n

(with m ≪ n) is a known sensing matrix, v ∈ R
m is a

noise vector, and y ∈ R
m is the observation vector. There

are many types of noises, for example, the l2 bounded noise

(‖v‖2 ≤ ǫ for some constant ǫ) [5]–[7], the l∞ bounded noise

(‖ATv‖∞ ≤ ǫ) [8], and Gaussian noise (vi ∼ N (0, σ2)) [9].

In this paper, we consider only the l2 bounded noise.

One of the central goals of CS is to recover the signal

x based on the sensing matrix A and measurement y. It
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has been revealed that under appropriate constraints on A,

reliable recovery of x can be achieved via properly designed

algorithms (see, e.g., [10], [11]). Orthogonal matching pursuit

(OMP) [12] is a widely used algorithm for recovering sparse

signals. For any set S ⊂ {1, 2, . . . , n}, let AS be the submatrix

of A that contains only the columns indexed by S, and xS be

the subvector of x that contains only the entries indexed by

S. The OMP algorithm is described in Algorithm 1 [12].

Algorithm 1 OMP

Input: measurement y, sensing matrix A and sparsity K .

Initialize: k = 0, r0 = y, S0 = ∅.

until stopping criterion is met

1: k = k + 1,

2: sk = arg max
1≤i≤n

|〈rk−1,Ai〉|,
3: Sk = Sk−1

⋃{sk},

4: x̂Sk
= argmin ‖y −ASk

x‖2,

5: rk = y −ASk
x̂Sk

.

Output: x̂ = arg min
x:supp(x)=SK

‖y −Ax‖2.

A commonly used framework for analyzing CS recovery

algorithms is the restricted isometry property (RIP) [1]. For

any m × n matrix A and any integer K, 1 ≤ K ≤ n, the

order K restricted isometry constant (RIC) δK is defined as

the smallest constant such that

(1 − δK)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK)‖x‖22 (2)

for all K-sparse vectors x.

Many RIC-based conditions have been proposed to ensure

exact recovery of sparse signals with OMP in the noise-free

case. It has respectively been shown in [13] and [14] that

δK+1 < 1
3
√
K

and δK+1 < 1
(1+

√
2)

√
K

are sufficient for OMP

to recover any K-sparse x in K iterations. The condition has

been improved to δK+1 < 1
1+

√
K

in [15], [16], and further

improved to δK+1 <
√
4K+1−1
2K in [17]. Recently, it is shown

in [18] that if δK+1 < 1√
K+1

, then OMP exactly recovers

the K-sparse signal x in K iterations. On the other hand,

it was conjectured in [19] that there exist a matrix A with

δK+1 ≤ 1√
K

and a K-sparse x such that OMP fails to recover

x in K iterations. Examples provided in [15], [16] confirmed

this conjecture. Later, the example in [20] showed that for any

given positive integer K ≥ 2 and for any given t satisfying
1√
K+1

≤ t < 1, there always exist a K-sparse x and a matrix

A satisfies the RIP of order K + 1 with δK+1 = t such that
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OMP may fail to recover the signal x in K iterations. In

other words, the sufficient condition for recovering x cannot

be weaker than δK+1 < 1√
K+1

. Thus, δK+1 < 1√
K+1

[18]

is a sharp condition guaranteeing exact recovery of K-sparse

signals with the OMP algorithm.

For the noisy case, we are interested in recovering the

support of x, since the signal can be estimated by an ordinary

least squares regression on the recovered support [8]. It was

shown in [21] that under some condition on the minimum

magnitude of the nonzero elements of x, δK+1 < 1√
K+3

is sufficient for exact recovery of supp(x) with OMP under

the l2 bounded noise. This condition has been improved to

δK+1 < 1√
K+1

[22]. And the best existing condition in terms

of δK+1 is δK+1 <
√
4K+1−1
2K [17].

In this paper, we investigate the RIP condition and the

minimum magnitude of the nonzero elements of the K-sparse

signal x that guarantee the recovery of supp(x) with OMP

under the l2 bounded noise (‖rk‖ ≤ ǫ). We show that if A

and v in (1) respectively satisfy the RIP of order K + 1 with

δK+1 <
1√

K + 1
, (3)

then the OMP algorithm with stopping criterion ‖rk‖ ≤ ǫ

exactly recovers supp(x) provided that

min
i∈supp(x)

|xi| >
2ǫ

1−
√
K + 1δK+1

. (4)

By the aforementioned analysis, condition (3) is sharp in terms

of δK+1. We also show that condition (4) on mini∈supp(x) |xi|
is also weaker than existing results.

The rest of the paper is organized as follows. In section II,

we present a sharp condition for the exact support recovery of

the K-sparse signal x by OMP under the l2 bounded noise. In

section III, we compare our sufficient condition with existing

ones. Finally, we summarize this paper in section IV.

Notation: Let R be the real field. Boldface lowercase letters

denote column vectors, and boldface uppercase letters denote

matrices, e.g., x ∈ R
n and A ∈ R

m×n. Let Ω = supp(x),
then |Ω| ≤ K for any K-sparse signal x, where |Ω| is the

cardinality of Ω. Let Ω \ S = {k|k ∈ Ω, k 6∈ S} for set S.

Let Ωc and Sc be the complement of Ω and S, i.e., Ωc =
{1, 2, . . . , n} \ Ω, and Sc = {1, 2, . . . , n} \ S. Let AS be the

submatrix of A that contains only the columns indexed by S,

and xS be the subvector of x that contains only the entries

indexed by S, and AT
S be the transpose of AS . For full column

rank matrix AS , let P S = AS(A
T
SAS)

−1AT
S and P⊥

S = I−
P S denote the projector and orthogonal complement projector

on the column space of AS , respectively.

II. A SHARP CONDITION FOR EXACT SUPPORT RECOVERY

UNDER THE l2 BOUNDED NOISE

In this section, we show that if A satisfies the RIP of order

K+1 with δK+1 < 1√
K+1

, then under some condition on the

minimum magnitude of the nonzero elements of the K-sparse

signal x, supp(x) can be exactly recovered by OMP under the

l2 bounded noise.

Before introducing our main result, we present the following

lemma which is inspired by [18].

Lemma 1: Suppose that A in (1) satisfies the RIP of order

K+1 with 0 ≤ δK+1 < 1. Let S be a subset of Ω = supp(x)
with |S| < |Ω|. Then,

‖AT
Ω\SP

⊥
SAΩ\SxΩ\S‖∞ − ‖AT

ΩcP
⊥
SAΩ\SxΩ\S‖∞

≥ (1−
√

|Ω| − |S|+ 1δ|Ω|+1)‖xΩ\S‖2
√

|Ω| − |S|
. (5)

Due to the page limit, we skip the proof of Lemma 1 and

only give an easily-checked example to explain the lemma.

Interested readers are referred to [23] for a detailed proof.

Example: Let K = 2 and S = {1}. For 0 ≤ δ < 1, let

A =





√
1 + δ 0 0

0
√
1− δ 0

0 0
√
1 + δ



 and x =





1
1
0



 ,

then x is 2-sparse and Ω = {1, 2}. It is clear that

P⊥
S = P⊥

{1} =





0 0 0
0 1 0
0 0 1



 .

Also, it is easily checked that δ3 = δ and

‖AT
Ω\SP

⊥
SAΩ\SxΩ\S‖∞ − ‖AT

ΩcP
⊥
SAΩ\SxΩ\S‖∞

=|AT
{2}P

⊥
{1}A{2}x{2}| − |AT

{3}P
⊥
{1}A{2}x{2}|

=1− δ.

One can show that

(1−
√

|Ω| − |S|+ 1δ|Ω|+1)‖xΩ\S‖2
√

|Ω| − |S|
= 1−

√
2δ.

By the aforementioned two equations, (5) obviously holds in

this case.

Since |Ω| ≤ K , from (5) it is not hard to see that under (3),

the right-hand side of (5) is positive.

The following theorem gives a sufficient condition for

exactly recovering supp(x) with OMP.

Theorem 1: Suppose that A and v in (1) satisfy (3) and

‖v‖2 ≤ ǫ, respectively. Then the OMP algorithm with stopping

criterion ‖rk‖ ≤ ǫ exactly recovers the support Ω of the K-

sparse signal x provided that

min
i∈Ω

|xi| >
2ǫ

1−
√
K + 1δK+1

. (6)

Before proving Theorem 1, we introduce three lemmas that

are useful for our analysis.

Lemma 2 ( [1]): If A satisfies the RIP of orders k1 and k2
with k1 < k2, then δk1

≤ δk2
.

Lemma 3 ( [24]): Let A satisfy the RIP of order k and S

be a set with |S| ≤ k, then for any x ∈ R
m,

‖AT
Sx‖22 ≤ (1 + δk)‖x‖22.



Lemma 4 ( [25]): Let sets S1, S2 satisfy |S2 \ S1| ≥ 1 and

matrix A satisfy the RIP of order |S1∪S2|, then for any vector

x ∈ R
|S2\S1|,

(1−δ|S1∪S2|)‖x‖22 ≤ ‖P⊥
S1
AS2\S1

x‖22 ≤ (1+δ|S1∪S2|)‖x‖22.

Proof of Theorem 1. We prove the theorem in two steps.

First, we show that OMP selects correct indexes in all itera-

tions. In the second step, we prove that the algorithm performs

exactly |Ω| iterations before stopping.

We prove the first step by induction. Suppose that OMP

selects correct indexes in the first k − 1 iterations, i.e.,

Sk−1 ⊆ Ω. Then, we will show that the OMP algorithm also

selects a correct index in the k-th iteration, that is, sk ∈ Ω.

Here, we assume 1 ≤ k ≤ |Ω|, thus the proof for the first

selection is contained in the case that k = 1. Also, the

induction assumption Sk−1 ⊆ Ω holds in this case since

S0 = ∅.

Obviously, for i ∈ Sk−1, 〈rk−1,Ai〉 = 0. Thus by line 2

of Algorithm 1, to show sk ∈ Ω, it suffices to show

max
i∈Ω\Sk−1

|〈rk−1,Ai〉| > max
j∈Ωc

|〈rk−1,Aj〉|. (7)

From line 4 of Algorithm 1, we have

x̂Sk−1
= (AT

Sk−1
ASk−1

)−1AT
Sk−1

y. (8)

Thus, by line 5 of Algorithm 1 and (8), we have

rk−1 = y −ASk−1
x̂Sk−1

=
(

I −ASk−1
(AT

Sk−1
ASk−1

)−1AT
Sk−1

)

y

(a)
= P⊥

Sk−1
(Ax+ v)

(b)
= P⊥

Sk−1
(AΩxΩ + v)

(c)
= P⊥

Sk−1
(ASk−1

xSk−1
+AΩ\Sk−1

xΩ\Sk−1
+ v)

(d)
= P⊥

Sk−1
AΩ\Sk−1

xΩ\Sk−1
+ P⊥

Sk−1
v, (9)

where (a), (b), (c) and (d) follow from the definition of P⊥
Sk−1

,

the fact that Ω = supp(x), the induction assumption Sk−1 ⊆
Ω, and P⊥

Sk−1
ASk−1

= 0, respectively.

Then it follows from (9) that

max
i∈Ω\Sk−1

|〈rk−1,Ai〉|

=‖AT
Ω\Sk−1

(

P⊥
Sk−1

AΩ\Sk−1
xΩ\Sk−1

+ P⊥
Sk−1

v
)

‖∞
≥‖AT

Ω\Sk−1
P⊥

Sk−1
AΩ\Sk−1

xΩ\Sk−1
‖∞

− ‖AT
Ω\Sk−1

P⊥
Sk−1

v‖∞, (10)

and

max
j∈Ωc

|〈rk−1,Aj〉|

=‖AT
Ωc

(

P⊥
Sk−1

AΩ\Sk−1
xΩ\Sk−1

+ P⊥
Sk−1

v
)

‖∞
≤‖AT

ΩcP
⊥
Sk−1

AΩ\Sk−1
xΩ\Sk−1

‖∞ + ‖AT
ΩcP

⊥
Sk−1

v‖∞.

(11)

Therefore, from (10) and (11), to show (7), it suffices to

show

‖AT
Ω\Sk−1

P⊥
Sk−1

AΩ\Sk−1
xΩ\Sk−1

‖∞
−‖AT

ΩcP
⊥
Sk−1

AΩ\Sk−1
xΩ\Sk−1

‖∞
>‖AT

Ω\Sk−1
P⊥

Sk−1
v‖∞ + ‖AT

ΩcP
⊥
Sk−1

v‖∞. (12)

By induction assumption Sk−1 ⊆ Ω, we have

|supp(xΩ\Sk−1
)| = |Ω|+ 1− k. (13)

Thus,

‖xΩ\Sk−1
‖2 ≥

√

|Ω|+ 1− k min
i∈Ω\Sk−1

|xi|

≥
√

|Ω|+ 1− kmin
i∈Ω

|xi|. (14)

In the following, we give a lower bound on the left-hand

side of (12). Since Sk−1 ⊆ Ω and |Sk−1| = k − 1, using

Lemma 1, we have

‖AT
Ω\Sk−1

P⊥
Sk−1

AΩ\Sk−1
xΩ\Sk−1

‖∞
−‖AT

ΩcP
⊥
Sk−1

AΩ\Sk−1
xΩ\Sk−1

‖∞

≥(1 −
√

|Ω| − k + 2δ|Ω|+1)‖xΩ\Sk−1
‖2

√

|Ω|+ 1− k

(a)

≥ (1 −
√
K + 1δ|Ω|+1)‖xΩ\Sk−1

‖2
√

|Ω|+ 1− k

(b)

≥ (1 −
√
K + 1δK+1)‖xΩ\Sk−1

‖2
√

|Ω|+ 1− k

(c)

≥(1 −
√
K + 1δK+1)min

i∈Ω
|xi|, (15)

where (a) is because k ≥ 1 and x is K-sparse (i.e., |Ω| ≤ K);

(b) follows from Lemma 2; and (c) follows from (3) and (14).

Next, we give an upper bound for the right-hand side of

(12). Clearly there exist i0 ∈ Ω \ Sk−1 and j0 ∈ Ωc such that

‖AT
Ω\Sk−1

P⊥
Sk−1

v‖∞ = |AT
i0
P⊥

Sk−1
v|, (16)

‖AT
ΩcP

⊥
Sk−1

v‖∞ = |AT
j0
P⊥

Sk−1
v|. (17)

Therefore

‖AT
Ω\Sk−1

P⊥
Sk−1

v‖∞ + ‖AT
ΩcP

⊥
Sk−1

v‖∞
=|AT

i0
P⊥

Sk−1
v|+ |AT

j0
P⊥

Sk−1
v|

=‖AT
i0∪j0

P⊥
Sk−1

v‖1
(a)

≤
√
2‖AT

i0∪j0
P⊥

Sk−1
v‖2

(b)

≤
√

2(1 + δK+1)‖P⊥
Sk−1

v‖2
(c)

≤
√

2(1 + δK+1)ǫ, (18)

where (a) is because AT
i0∪j0

P⊥
Sk−1

v is a 2 × 1 vector, (b)

follows from Lemma 3, and (c) is because

‖P⊥
Sk−1

v‖2 ≤ ‖P⊥
Sk−1

‖2‖v‖2 ≤ ‖v‖2 ≤ ǫ. (19)



Finally, from (15) and (18), (12) (or equivalently (7)) is

guaranteed by

(1−
√
K + 1δK+1)min

i∈Ω
|xi| >

√

2(1 + δK+1)ǫ.

from which we obtain (3). Therefore, under (6), the OMP

algorithm selects a correct index in each iteration.

Now we proceed to the second step of our proof. We show

that the OMP algorithm performs exactly |Ω| iterations before

stopping. That is, ‖rk‖2 > ǫ for 1 ≤ k < |Ω| and ‖r|Ω|‖2 ≤ ǫ.

Since the OMP algorithm selects a correct index in each

iteration under (6), by (9), we have that for 1 ≤ k < |Ω|,
‖rk‖2 = ‖P⊥

Sk
AΩ\Sk

xΩ\Sk
+ P⊥

Sk
v‖2

≥ ‖P⊥
Sk
AΩ\Sk

xΩ\Sk
‖2 − ‖P⊥

Sk
v‖2

(a)

≥ ‖P⊥
Sk
AΩ\Sk

xΩ\Sk
‖2 − ǫ

(b)

≥
√

1− δ|Ω|‖xΩ\Sk
‖2 − ǫ

(c)

≥
√

1− δK+1

√

|Ω| − kmin
i∈Ω

|xi| − ǫ

≥
√

1− δK+1 min
i∈Ω

|xi| − ǫ, (20)

where (a) is from (19); (b) is from Lemma 4; and (c) follows

from Lemma 2 and (14). Thus, if

min
i∈Ω

|xi| >
2ǫ

√

1− δK+1

, (21)

then ‖rk‖2 > ǫ for each 1 ≤ k < Ω.

Furthermore, by noting that

1−
√
K + 1δK+1 ≤ 1− δK+1 ≤

√

1− δK+1.

we have

2ǫ

1−
√
K + 1δK+1

≥ 2ǫ
√

1− δK+1

. (22)

This, together with (21), implies that if (6) holds, ‖rk‖2 > ǫ

for each 1 ≤ k < Ω. In other words, the OMP algorithm does

not terminate before the |Ω|-th iteration.

Similarly, by (9),

‖r|Ω|‖2 = ‖P⊥
S|Ω|

AΩ\S|Ω|
xΩ\S|Ω|

+ P⊥
S|Ω|

v‖2
(a)
= ‖P⊥

S|Ω|
v‖2

(b)

≤ ǫ,

where (a) is because S|Ω| = |Ω| and (b) follows from

(19). Therefore, under stopping condition ‖rk‖2 > ǫ, the

OMP algorithm performs |Ω| iterations before stopping. This

completes the proof. �

From Theorem 1, if ǫ = 0, then ‖v‖2 = 0 and (6)

holds. Hence, supp(x) can be exactly recovered in |supp(x)|
iterations if δK+1 satisfies (3). We thus have the following

result, which is equivalent to [18, Theorem III.1].

Corollary 1: Suppose that A and v in (1) satisfy the RIP

of order K + 1 with δK+1 satisfying (3) and ‖v‖2 = 0,

respectively. Then the OMP algorithm exactly recovers the

K-sparse signal x in K iterations.

The example in [20] showed that for any given positive

integer K ≥ 2 and for any 1√
K+1

≤ t < 1, there always

exist a K-sparse x and a matrix A satisfying the RIP of order

K + 1 with δK+1 = t such that the OMP algorithm may fail

to recover x. Thus, the sufficient condition, given in Theorem

1, is sharp in terms of δK+1 for guaranteeing exact recovery

of supp(x).

III. COMPARISON WITH EXITING SUFFICIENT CONDITIONS

In this section, we show that our sufficient condition given

in Theorem 1 is weaker than existing sufficient conditions.

In [17], [22], A was assumed to be column normalized, i.e.,

‖Ai‖2 = 1 for i = 1, 2, . . . , n. Note that Theorem 1 obviously

holds if A is column normalized. In fact, our result in Theorem

1 outperforms those in [17], [21], [22] in terms of both δK+1

and the requirement on mini∈Ω |xi|. For simplicity, we only

compare our condition with the so far best result [17].

It was shown in [17] that if A in (1) is column normalized

and satisfies the RIP of order K + 1 with δK+1 satisfying

δK+1 <

√
4K + 1− 1

2K

and v in (1) satisfies ‖v‖2 ≤ ǫ. Then the OMP algorithm with

stopping criterion ‖rk‖ ≤ ǫ exactly recovers the support Ω of

the K-sparse signal x if

min
i∈Ω

|xi| >
(
√

1 + δK+1 + 1)ǫ

1− δK+1 −
√

1− δK+1

√
KδK+1

.

By Theorem 1, to show our condition is better (weaker), we

only need to show that
√
4K + 1− 1

2K
<

1√
K + 1

(23)

and that

(
√

1 + δK+1 + 1)ǫ

1− δK+1 −
√

1− δK+1

√
KδK+1

≥ 2ǫ

1−
√
K + 1δK+1

(24)

for δK+1 satisfying (3). In particular, if δK+1 6= 0, then the

strict inequality in (24) holds.

Clearly to show (23), it suffices to show
√

(4K + 1)(K + 1) < 2K +
√
K + 1.

Equivalently,

4K2 + 5K + 1 < 4K2 +K + 1 + 4K
√
K + 1.

In fact, since K ≥ 1, the above equation holds trivially, and

hence (23) is true.

Next, we assume δK+1 6= 0 satisfies (3) and then show the

strict inequality in (24) holds. Since δK+1 6= 0,
√

1 + δK+1 + 1 > 2.

Thus, it suffices to show

1− δK+1 −
√

1− δK+1

√
KδK+1 < 1−

√
K + 1δK+1,



or equivalently,

1 +
√

1− δK+1

√
K >

√
K + 1. (25)

Obviously, (25) holds if

√

1− δK+1 >

√
K + 1− 1√

K
,

which is equivalent to

δK+1 <
2(
√
K + 1− 1)

K
.

Thus, a sufficient condition of (24) is

1√
K + 1

<
2(
√
K + 1− 1)

K
.

By some simple calculations, one can easily show that the

aforementioned inequality holds. Therefore, the strict inequal-

ity in (24) holds if δK+1 6= 0 satisfies (3).

IV. CONCLUSION

In this paper, we have studied the condition for exact support

recovery of sparse signals from noisy measurements with

OMP. We have shown that if the sensing matrix A satisfies

δK+1 < 1√
K+1

, then under some constraint on the minimum

magnitude of the nonzero elements of the K-sparse signal x,

the support of the signal can be exactly recovered under the l2
bounded noise. This condition is sharp in terms of δK+1 and

also the constraint on the minimum magnitude of the nonzero

elements of x is weaker than existing ones.
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