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Abstract— In this paper, we consider a discrete time linear
quadratic Gaussian (LQG) control problem in which state
information of the plant is encoded in a variable-length binary
codeword at every time step, and a control input is determined
based on the codewords generated in the past. We derive a
lower bound of the rate achievable by the class of prefix-free
codes attaining the required LQG control performance. This
lower bound coincides with the infimum of a certain directed
information expression, and is computable by semidefinite
programming (SDP). Based on a technique by Silva et al., we
also provide an upper bound of the best achievable rate by
constructing a controller equipped with a uniform quantizer
with subtractive dither and Shannon-Fano coding. The gap
between the obtained lower and upper bounds is less than
0.754r + 1 bits per time step regardless of the required LQG
control performance, where r is the rank of a signal-to-noise
ratio matrix obtained by SDP, which is no greater than the
dimension of the state.

I. INTRODUCTION

Motivated by control systems implemented by digital
computers, we consider a discrete-time optimal control prob-
lem in which state information of the plant is encoded
using a variable-length binary sequence (codeword) at every
time step, and control actions are determined based on the
codewords generated in the past. The performance of such a
control system is characterized in a trade-off between control
theoretic (e.g., the LQG control cost, γ) and communication
theoretic (e.g., expected codeword length in average, R)
criteria. We say that a pair (γ,R) is achievable if there exists
a design attaining the control performance γ and the rate
R. Understanding the achievable (γ,R) region is of great
interest from both theoretical and practical perspectives.

Unfortunately, explicit descriptions of the achievable re-
gions are rarely available, even for relatively simple control
problems. Consequently, our focus is to obtain tight inner and
outer bounds of the region, or equivalently, upper and lower
bounds of the trade-off function R(γ) that carves out the
achievable region. Recently, Silva et al. [1] showed that the
rate of an arbitrary prefix-free code, if it is used in feedback
control, is lower bounded by the directed information from
the output y of the plant to the control input u. They also
showed that the conservativeness of this lower bound is
strictly less than 1

2 log 2πe
12 + 1 ≈ 1.254 bits per time step,

by constructing an entropy coded dithered quantizer (ECDQ)
achieving this performance. These observations suggest that
directed information is a relevant quantity to study the best
achievable rate by prefix-free codes in a control system.

Following this suggestion, we start our discussion with
a characterization of the minimum directed information,

denoted by DI(γ),1 that needs to be “processed” by any
control law (without quantization and coding) in order to
achieve the desired LQG control performance γ. It turns out
that finding DI(γ) is a convex optimization problem, and the
previous discussion implies DI(γ) ≤ R(γ). Then, invoking
the idea of [1] and [3], we construct a control system
involving an ECDQ that attains the LQG control performance
γ. Using standard properties of dithered quantizers [4], we
then show that the rate of the designed controller is less than
DI(γ) + r

2 log 4πe
12 + 1, where r is some integer no greater

than the state space dimension of the plant. This establishes
upper and lower bounds of R(γ) as

DI(γ) ≤ R(γ) < DI(γ) +
r

2
log

4πe

12
+ 1,

which is the main result of this paper.
Our result is applicable to MIMO plants, while the result

of [1] is restricted to SISO plants. The restriction there is
due to the difficulty of obtaining an analytical expression of
DI(γ) in MIMO cases and a systematic method to design
vector quantizers.2 In this regard, a key contribution of this
paper is the use of semidefinite programming (SDP) [7], both
in the computation of DI(γ) and in the construction of an
ECDQ.3 Although we considered fully observable plants in
this paper, the results can be generalized to partially observ-
able plants using an SDP-based solution to the sequential
rate-distortion problem for partially observable sources [10].

Throughout the paper, we consider uniform quantizers
simply in the interest of mathematical ease of analysis
to obtain an upper bound. Optimal quantizer design in
general requires much more involved procedures. For in-
stance, problems over memoryless noisy channels with finite
input alphabets are considered in [11], where an iterative
encoder/controller design procedure is proposed. General
treatments of joint quantizer/controller design, discussions
towards structural results of optimal policies, and a historical
review of related problems are available in [12, Ch. 10,11].

After the problem formulation in Section II, we derive a
lower bound of R(γ) is Section III. We propose a concrete
quantizer/controller design in Section IV, whose performance
is analyzed in Section V to derive the main result.

1This quantity is related to the sequential rate-distortion function [2].
2In [1], it is suggested to reformulate a rate-constrained control problem

with an SNR-constrained control problem. See, e.g., [5], [6] for a related
discussion. A quantizer is then designed to match the optimal SNR.
However, the SNR of MIMO quantizers are matrix-valued in general, and
no result is available to obtain an optimal matrix-valued SNR.

3This technique was facilitated by the recent advancements in the
sequential rate-distortion theory [8], [9].
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Fig. 1. Feedback control using variable-length binary codewords.

II. PROBLEM FORMULATION

We assume that the plant in Figure 1 has a linear time-
invariant state space model

xt+1 = Axt +But + wt (1)

where matrices A ∈ Rn×n and B ∈ Rn×m are known,
the initial state x1 ∼ N (0, P1|0) has a known prior with
P1|0 � 0, and the process noise wt ∼ N (0,W ) is i.i.d.
with known W � 0. At every time step t = 1, 2, · · · , the
“sensor+encoder” block observes the state xt and produces a
single codeword zt from a predefined set Zt of at most count-
able codewords. Upon receiving zt, the “decoder+controller”
block produces a control input ut. In what follows, the
“sensor+encoder” block is simply referred to as the encoder,
and likewise the “decoder+controller” block as the decoder.
Both encoder and decoder are allowed to have infinite
memories of the past. We assume there is no delay due to
encoding and decoding processes.

In this paper, we restrict ourselves to the class of prefix-
free (instantaneous) binary codewords zt. We allow the code-
book Zt to be time-varying and countably infinite set (hence
zt can be an arbitrarily long binary sequence). We design
a variable-length code where the length of the codeword zt
generated at time step t is a random variable denoted by lt.

Remark 1: Note that prefix-free may not always be a
strict requirement for a code used in feedback control,
although this assumption is taken for granted in the previous
work [1]. For instance, if both the encoder and decoder have
access to a common clock signal, and know that only one
codeword is generated at a time, a set of codewords

{φ (zero-length codeword), 0, 1, 00, 01, 10, 11, 000, · · · }
can be used to decode a message without any confusion,
even though these codewords are not uniquely decodable.
Nevertheless, there are several practical advantages of using
prefix-free codes. For instance, prefix-free allows us to
decode without referring to the common clock signal, which
may simplify the implementation of the algorithm. Thus, the
analysis in this paper is restricted to prefix-free binary codes.

We consider a joint design of a set of codewords Zt for
each t, the encoder’s policy P(z∞1 ‖x∞1 ), and the decoder’s
policy P(u∞1 ‖z∞1 ). Here, we use Kramer’s notation [13]
for the sequence of causally conditioned Borel measurable
stochastic kernels

P(z∞1 ‖x∞1 ) = {P(zt|xt, zt−1)}t=1,2,··· (2)

P(u∞1 ‖z∞1 ) = {P(ut|zt, ut−1)}t=1,2,···. (3)

The purpose of our design is two-fold. First, we require that
the overall control system achieves the LQG control cost
≤ γ. Second, the expected codeword length on average is
minimized. The optimization problem of our interest is

R(γ) , inf lim sup
T→+∞

1

T

∑T

t=1
E(lt) (4)

s.t. lim sup
T→+∞

1

T

∑T

t=1
E
(
‖xt+1‖2Q + ‖ut‖2R

)
≤ γ

where Q � 0 and R � 0. Expectations are evaluated with
respect to the probability law induced by (1), (2) and (3). We
assume that (A,B) is stabilizable and (A,Q) is detectable.

III. LOWER BOUND

For every γ > 0, define a function DI(γ) as the optimal
value of the following convex optimization problem.

DI(γ) , inf lim sup
T→+∞

1

T
I(xT → uT ) (5)

s.t. lim sup
T→+∞

1

T

∑T

t=1
E
(
‖xt+1‖2Q + ‖ut‖2R

)
≤ γ.

We use Massey’s definition of the directed information [14]:

I(xT → uT ) ,
∑T

t=1
I(xt;ut|ut−1).

The infimum in (5) is taken over the sequence of causally
conditioned Borel measurable stochastic kernels

P(u∞1 ‖x∞1 ) , {P(ut|xt, ut−1)}t=1,2,···.

Under the aforementioned stabilizability/detectability as-
sumption, the optimization problem (5) is always feasible and
DI(γ) < +∞. However, there is no need to solve an infinite-
dimensional optimization problem (5) to compute DI(γ).

Proposition 1: ([8]) Let S be the unique positive definite
solution to the algebraic Riccati equation

A>SA− S −A>SB(B>SB +R)−1B>SA+Q = 0,

and K,−(B>SB+R)−1B>SA, Θ,K>(B>SB+R)K.
Then DI(γ) is computable by semidefinite programming:

DI(γ) = min
P,Π�0

1

2
log det Π−1 +

1

2
log detW (6)

s.t. Tr(ΘP ) + Tr(WS) ≤ γ,
P � APA> +W,[
P −Π PA>

AP APA> +W

]
�0.

Let P (γ) be an optimal solution to (6), and define SNR(γ) ,
P (γ)−1 − (AP (γ)A> + W )−1, and r , rank(SNR(γ)).
Let C ∈ Rr×n be a matrix with orthonormal columns and
V ∈ Sr++ be a diagonal matrix satisfying C>V −1C =
SNR(γ). Then, an optimal solution P(u∞1 ‖x∞1 ) to (5) can
be realized by (i) an additive white Gaussian noise channel
yt = Cxt + vt where vt ∼ N (0, V ) is i.i.d., (ii) a Kalman
filter x̂t = E(xt|yt,ut−1), and (iii) a certainty equivalence
controller ut = Kx̂t. An equivalent block diagram is shown
in Figure 2.
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Fig. 2. A realization of an optimal solution P(u∞1 ‖x∞1 ) to problem (5).
Matrix L is the optimal Kalman gain.

The next result, appearing in [1, Theorem 4.1], claims that
DI(γ) provides a lower bound of R(γ).

Theorem 1: For every γ > 0, we have DI(γ) ≤ R(γ).
Proof: The inequality is directly verified as follows.

I(xT → uT ) (7a)

≤ I(xT → zT ‖uT−1) (7b)

=
∑T

t=1
I(xt; zt|zt−1,ut−1) (7c)

=
∑T

t=1
(H(zt|zt−1,ut−1)−H(zt|xt, zt−1,ut−1)) (7d)

≤
∑T

t=1
H(zt|zt−1,ut−1) (7e)

≤
∑T

t=1
H(zt) (7f)

≤
∑T

t=1
E(lt) (7g)

The first step (7b) is due to the feedback data processing
inequality discussed in [1], [8]. The definition of causally
conditioned directed information [13] is used in step (7c).
The final step (7g) is due to the fact that any prefix-free
code is a prefix-free code of itself, and its expected length
is greater or equal to its entropy [15, Theorem 5.3.1].

Note that there exists a nonsingular code whose expected
codeword length is less that the entropy of the source [15,
Problem 5.31]. Hence, Theorem 1 does not hold in general
if we allow a code that is not uniquely decodable.

It can also be shown [8] that, if the control system in Fig-
ure 2 is designed according to the procedure in Proposition 1,
and if yt = Cxt + vt, then

I(xT → uT ) =
∑T

t=1
I(xt;yt|yt−1). (8)

IV. UNIFORM QUANTIZATION WITH ENTROPY CODING

The rest of the paper is devoted to obtain an upper
bound of the best achievable rate (4). To this end, we
consider a concrete quantization/coding scheme and analyze
its worst case rate. For the ease of analysis, we focus on a
uniform scalar quantization with subtractive dither followed
by entropy coding, following the ideas of [1], [3]. However,
our coding scheme is designed based on the SDP-based
solution to (5), which did not appear previously.

Let Q∆(·) be a scalar quantizer defined by

Q∆(x) = i∆ for i∆− ∆
2 ≤ x < i∆ + ∆

2 .

A scalar quantizer with subtractive dither QS.D.
∆ (·) is defined

by QS.D.
∆ (x) = Q∆(x+ξ)−ξ, where ξ is a random variable

uniformly distributed over [−∆/2,∆/2].
Remark 2: QS.D.

∆ (·) has some convenient mathematical
properties (presented in Lemma 1 below) that will simplify
the rate analysis. However, note that implementation of
QS.D.

∆ (·) requires a shared randomness ξ both at the encoder’s
and the decoder’s ends. In practice, two synchronized pseu-
dorandom number generators can be used at the both ends.

A. Predictive quantizer

The knowledge of the structure of an optimal solution
P(u∞1 ‖x∞1 ) to (5) can be used for an efficient quan-
tizer/encoder design. Intuitively, we design a coding scheme
in such a way that the encoder and decoder policies jointly
define a stochastic kernel that is similar to P(u∞1 ‖x∞1 ).
This can be done, as specified below, by selecting the
quantizer step size ∆ so that the covariance of the resulting
quantization error matches V . However, the encoder shall
not quantize the observed state xt directly. In order to
minimize the entropy of the quantizer input while keeping
the contained information statistically equivalent, it is more
advantageous to quantize the deviation of xt from the linear
least mean square estimate x̂t|t−1 of xt given (yt−1,ut−1).
This technique is related to the innovations approach [16],
which is also used in [17].4

In particular, consider a feedback control system illustrated
in Figure 3. Matrices C, K and L are chosen to be the same
as in Figure 2. Based on the output x̂t|t−1 of the Kalman
filter block, consider a (scaled) estimation error

θt = C(xt − x̂t|t−1).

Note that this is an Rr-valued random process. Let Vi >
0, i = 1, · · · , r be the i-th diagonal entry of V , and choose
∆i > 0, i = 1, · · · , r such that ∆2

i

12 = Vi. We apply the
uniform quantizers with step sizes ∆i with subtractive dither
separately to each component of θt, i.e.,

qt,i = QS.D.
∆i

(θt,i), i = 1, · · · , r
and define an Rr-valued process qt = (qt,1, · · · ,qt,r). More
precisely, letting ξt = (ξt,1, · · · , ξt,r) be an Rr-valued
dither signal whose components are mutually independent
and ξt,i ∼ U [−∆i

2 ,
∆i

2 ], the quantizer output is given by

q̃t,i = Q∆i(θt,i + ξt,i), i = 1, · · · , r.
Notice that q̃t = (q̃t,1, · · · , q̃t,r) takes countably infinite
possible values. At every time step t, we apply an en-
tropy coding scheme (described below) to q̃t to generate
a codeword zt. The decoder then reproduces q̃t and qt by
subtracting the dither signal.

Notice that the Kalman filter in Figure 3 may not be the
least mean square estimator anymore since signals are no
longer Gaussian because of the dithered quantizers.

4It is known that a predictive quantizer can be used without loss of
performance in the joint control/quantizer design for LQG systems [11],
[18].
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Fig. 3. Proposed feedback control architecture. For simplicity, a feedback
link from the decoder to encoder that transmits x̂t|t−1 is shown, but this
link is unnecessary in practice, since the value of x̂t|t−1 can be completely
estimated by the encoder alone.

B. Entropy coding

At every time step t, we assume that a message q̃t is
mapped to a codeword zt ∈ {0, 1}lt designed by Shannon-
Fano coding.

Theorem 2: (Shannon-Fano code, [15, Problem 5.28])
Let x be a random variable that takes countably infinite
values {1, 2, · · · } with probabilities p1, p2, · · · . Assume pi >
0 and pi ≥ pi+1 for all i = 1, 2, · · · . Define Fi =

∑i−1
k=1 pk,

and let a codeword Wi for i to be the binary expression of
Fi rounded off to li digits, where li = dlog 1

pi
e. Then the

constructed code is prefix-free and the average length E(l)
satisfies H(x) ≤ E(l) ≤ H(x) + 1.

Theorem 2 implies that for each t there exists a code
whose expected codeword length satisfies H(q̃t|ξt) ≤
E(lt) ≤ H(q̃t|ξt)+1. Here, we only consider time-invariant
codebooks whose codewords are adapted to the stationary
conditional distribution of q̃t given ξt.

Remark 3: However, for a fixed code, obtaining the true
stationary distribution of q̃t given ξt may not be a trivial
process. In this context, one may need an online algorithm
to estimate the true conditional distribution, or a variation of
the universal coding that adapts its codewords.

V. ANALYSIS

In this section, we analyze the LQG control performance
and the worst case rate of the encoding/control law designed
in the previous section. We will make use of the following
technical lemma, which is a straightforward extension of the
main results of [4]. Proofs are provided in Appendix.

Lemma 1: Let x be an Rr-valued random variable such
that h(x) is finite, and ∆ = (∆1, · · · ,∆r) be a tuple of
positive quantizer step sizes. Let ξ be the Rr-valued dither
independent of x such that ξi ∼ U [−∆i

2 ,
∆i

2 ], and suppose
entries of ξ are mutually independent. Let q and q̃ be Rr-
valued random variables whose i-th entries are defined by

qi = Q∆i
(xi + ξi)− ξi

(
= QS.D.

∆i
(xi)

)
q̃i = Q∆i

(xi + ξi).

Then, the following statements hold.
(a) The i-th entry of the quantization error ηi = qi−xi is in-

dependent of x and is uniformly distributed on [−∆i

2 ,
∆i

2 ].
Moreover, entries of η are mutually independent.

+x y

⌘

⌘i

⇠i

�i

2

�i

2

��i

2

��i

2
�x⇤

i

0

Fig. 4. Auxiliary r-dimensional additive noise channel with input x
and output y = x + η. Additive noise η is independent of x, and
ηi ∼ U [−∆i

2
, ∆i

2
] for i = 1, · · · , r. Channel is subject to an input power

constraint E‖x‖2 ≤ D =
∑r

i=1 ∆2
i /12.

(b) Let n be an Rr-valued random variable. Suppose that n is
independent of x, entries of n are mutually independent,
and ni ∼ U [−∆i

2 ,
∆i

2 ] for i = 1, · · · , r. If y = x+n, then

H(q̃|ξ) = H(q|ξ) = h(y)−
∑r

i=1
log ∆i = I(x;y).

(c) Let RDFx(D) = infP(u|x):E‖x−u‖2≤D I(x;u) be the
rate-distortion function of the source x, and C∆(D) =
supP(x):E‖x‖2≤D I(x;y) be the capacity of a channel

shown in Figure 4, where D =
∑r
i=1

∆2
i

12 . Then, we have

H(q̃|ξ)− RDFx(D) ≤ C∆(D).

(d) For every positive ∆1, · · · ,∆r and D such that D =∑r
i=1

∆2
i

12 , the capacity C∆(D) defined above satisfies

C∆(D) <
r

2
log

4πe

12
.

A. Control performance

An implication of Lemma 1(a) is that the uniform quan-
tizer with subtractive dither can be equivalently modeled
as an additive uniform noise channel. Thus, Figure 3 can
be written as Figure 5, and in both figures, xt and ut
have the same stationary joint distributions. Also, notice that
the only difference between Figure 2 and Figure 5 is the
noise statistics of vt and ηt. In order to distinguish these
two cases, denote by (xG

t ,u
G
t ) the jointly Gaussian random

variables having the stationary joint distribution of (xt,ut)
in Figure 2, and by (xNG

t ,uNG
t ) the non-Gaussian random

variables having the stationary joint distribution of (xt,ut)
in Figure 3 and 5.

Lemma 2: The joint distributions of (xG
t ,u

G
t ) and

(xNG
t ,uNG

t ) have the same mean and covariance.
Proof: Notice that we have chosen the dither step sizes

in such as way that ηt has a covariance matrix V . Since all
operations in Figures 2 and 5 are linear, it can be shown by
induction (in t) that xt and ut in Figures 2 and 5 have the
same first and second moments for all t = 1, 2, · · · .

Since the LQG control performance depends only on the
second moments of the stationary distribution, it follows
from Lemma 2 that the control system in Figure 3 attains
the same control performance as Figure 2 which is γ.

B. Rate analysis

We are now ready to prove the main result of this paper.
Theorem 3: For every γ > 0, we have

R(γ) < DI(γ) +
r

2
log

4πe

12
+ 1 ≈ DI(γ) + 0.754r + 1

where r = rank(SNR(γ)).
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Fig. 5. Equivalent system.

Proof: Set D =
∑r
i=1

∆2
i

12 = Tr(V ). If θG
t is a random

variable with the stationary distribution of θt in Figure 2 and
θNG
t is a random variable with the stationary distribution of

θt in Figure 5, we have

E(lt) ≤ H(q̃t|ξt) + 1 (9a)

< RDFθNG
t

(D) +
r

2
log

4πe

12
+ 1 (9b)

≤ RDFθG
t
(D) +

r

2
log

4πe

12
+ 1. (9c)

Step (9a) follows from the discussion in Section IV-B, while
Lemma 1 is used in (9b). The last inequality (9c) follows
from the fact that θG

t is Gaussian with the same mean and
covariance as θNG

t , and that among all distributions sharing
the same mean and covariance, the Gaussian one has the
largest rate-distortion function [15, Problem 10.8].

Next, notice that for T = 1, 2, · · · , the following inequality
holds for random variables in Figure 2.

I(xT → uT ) (10a)

=
∑T

t=1
I(xt;yt|yt−1) (10b)

=
∑T

t=1
I(xt−x̂t|t−1;C(xt−x̂t|t−1)+vt|yt−1) (10c)

=
∑T

t=1
I(et;Cet + vt|yt−1) (10d)

=
∑T

t=1
I(et;Cet + vt) (10e)

≥
∑T

t=1
I(θt;θt + vt). (10f)

The identity (8) is used in step (10b). Equation (10c) holds
since x̂t|t−1 is measurable with respect to the σ-algebra
generated by yt−1. Due to the property of the least mean
square error estimation, et is independent of yt−1. Since vt
is also independent of yt−1, (10e) holds. Finally, (10f) is a
consequence of the data processing inequality since (θt+vt)
– et – θt form a Markov chain. Finally, for t = 1, 2, · · · ,

I(θt;θt + vt) ≥
{

minP(ut|θt) I(θt;ut)

s.t. E‖θt − ut‖2 ≤ D
= RDFθG

t
(D) (11)

since ut = θi + vt satisfies the distortion constraint.
Combining (9), (10) and (11), for T = 1, 2, · · · , we obtain

1

T

T∑
t=1

E(lt) <
1

T
I(xT→uT ) +

r

2
log

4πe

12
+ 1.

For SISO plants, the gap obtained above is read as
1
2 log 4πe

12 + 1 ≈ 1.754. This value should not be confused
with the value 1.254 obtained in [1], since considered lower
bounds are not equivalent. In [1], the lower bound is written
in terms of the directed information from xNG

t to uNG
t ,

while in Theorem 3, it is written in terms of the directed
information from xG

t to uG
t .

If Shannon-Fano coding is applied to entries of q̃t sepa-
rately, we obtain a larger gap of r

2 log 4πe
12 + r bits per time

step. If an appropriate lattice (vector) quantizer is used, we
obtain a tighter gap of r

2 log 4πeGr + 1, where Gr is the
normalized second moment of the lattice [4].

APPENDIX

Proof of Lemma 1

(a) For i = 1, · · · , r, let x∗i = xi − ∆ib xi

∆i
+ 1

2c be the
nearest value to the origin selected from

· · · ,xi − 2∆i,xi −∆i,xi,xi + ∆i,xi + 2∆i, · · · .

Then,

ηi = Q∆i
(xi + ξi)− ξi − xi

=


x∗i − ξi −∆i for − ∆i

2 ≤ ξi ≤ −x∗i − ∆i

2

x∗i − ξi for − x∗i − ∆i

2 < ξi ≤ −x∗i + ∆i

2

x∗i − ξi + ∆i for − x∗i + ∆i

2 < ξi ≤ ∆i

2 .

For any realization of xi, this function maps a density
U [−∆i

2 ,
∆i

2 ] on the ξi-axis to a density U [−∆i

2 ,
∆i

2 ] on the
ηi-axis. Thus, ηi ∼ U [−∆i

2 ,
∆i

2 ] and this is independent of
xi. Moreover, if i 6= j, then ηi and ηj are independent, since
ξi and ξj are independent.

(b) It is straightforward to prove the first and the third
equalities. Thus we prove the second equality. Denote by

q̃kii = ki∆i, ki ∈ Z

the ki-th possible value that q̃i can take. Given a realization
ξ of the dither random variable ξ, q takes discrete values of
the form

qk = q̃k − ξ, k ∈ Zr

where qk = (qk1
1 , · · · , qkrr ) and q̃k = (q̃k1

1 , · · · , q̃krr ). To
compute H(q|ξ), notice that the p.m.f. of q given ξ is

P (qk|ξ) = Prob

{
r∧
i=1

(
q̃kii − ∆i

2 ≤ xi + ξi ≤ q̃kii + ∆i

2

)}

= Prob

{
r∧
i=1

(
qkii − ∆i

2 ≤ xi ≤ qkii + ∆i

2

)}
=

∫
×r

i=1[q
ki
i −

∆i
2 ,q

ki
i +

∆i
2 ]

fx(x)dx (12)

which is a p.d.f. fx(·) integrated over an r-dimensional
hypercube. The p.d.f. of y = x + n is given by

fy(y) =

∫
Rr

fx(x)fn(y − x)dx.



Notice that fn(y−x) =
∏r
i=1

1
∆i

if y−x is in the hypercube
×ri=1[−∆i

2 ,
∆i

2 ], or equivalently if x is in ×ri=1[yi− ∆i

2 , yi+
∆i

2 ], and is zero otherwise. Hence

fy(y) =

(∏r

i=1

1

∆i

)∫
×r

i=1[yi−∆i
2 ,yi+

∆i
2 ]

fx(x)dx. (13)

Comparing (12) and (13), we can write

P (qk|ξ) = (
∏r

i=1
∆i)fy(qk) = (

∏r

i=1
∆i)fy(q̃k − ξ).

Thus H(q|ξ) is given by

H(q|ξ)

= Eξ

[
−
∑

k∈Zk
P (qk|ξ) logP (qk|ξ)

]
= Eξ

[
−
∑

k∈Zk

(∏r

i=1
∆i

)
fy(q̃k − ξ) log fy(q̃k − ξ)

]
−
∑r

i=1
log ∆i

=

∫
×r

i=1[−∆i
2 ,

∆i
2 ]

[
−
∑

k∈Zk
fy(q̃k − ξ) log fy(q̃k − ξ)

]
dξ

−
∑r

i=1
log ∆i

= −
∫
Rr

fy(y) log fy(y)dy −
∑r

i=1
log ∆i

= h(y)−
∑r

i=1
log ∆i.

(c) Suppose P(u|x) attains the rate-distortion function and
let u be defined by P(x) and P(u|x). (If the infimum is
not attained, alternatively consider a sequence of random
variables uk such that P(uk|x) asymptotically attains the in-
fimum.) Without loss of generality, assume u is independent
of η. Then

H(q̃|ξ)− I(x;u) = I(x;y)− I(x;u) (14a)
= I(x;y|u)− I(x;u|y) (14b)
≤ I(x;y|u) (14c)
= h(y|u)− h(η) (14d)
= h(y − u|u)− h(η) (14e)
≤ h(y − u)− h(η) (14f)
= I(x− u;y − u) (14g)
≤ C∆(D) (14h)

The result of part (b) is used in (14a), and (14b) holds since

I(x;y)−I(x;u) = h(x)− h(x|y)− h(x) + h(x|y)

= h(x|u)− h(x|y)

= h(x|u)−h(x|y,u)−h(x|y)+h(x|y,u)

= I(x;y|u)− I(x;u|y).

The final inequality (14h) holds by definition of C∆(D),
since the random variable x−u satisfies the power constraint
by construction of u.
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Fig. 6. Illustration of a map ηi = Q∆i
(xi + ξi)− ξi − xi.

(d) The claim is directly shown by the following chain of
inequalities.

C∆(D) = sup
P(x):E‖x‖2≤D

I(x;y) (15a)

= sup
P(x):E‖x‖2≤D

h(y)−
∑r

i=1
log ∆i (15b)

= sup
P(x):E‖x‖2≤D

∑r

i=1
(h(xi + ηi)−log ∆i) (15c)

< max
pi > 0∑r

i=1 pi = D

r∑
i=1

(
1

2
log 2πe

(
∆2
i

12
+ pi

)
− log ∆i

)
(15d)

=
r

2
log

2πe

12
+ max

pi > 0∑r
i=1 pi = D

r∑
i=1

1

2
log

(∆2
i /12) + pi
(∆2

i /12)
(15e)

=
r

2
log

2πe

12
+
r

2
log 2 (15f)

=
r

2
log

4πe

12
(15g)

In step (15d), we assumed that the power pi is allocated
to xi. Since the covariance of ηi is ∆2

i

12 , the covariance of
xi+ηi is ∆2

i

12 +pi. The entropy of xi+ηi is upper bounded
by the entropy of the Gaussian random variable with the
same covariance. However, since xi+ηi cannot be Gaussian,
the upper bound (15d) is strict. Finally, (15f) is a simple
application of the log-sum inequality.
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