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Abstract

Lattice based encryption schemes and linear code basegptinarschemes have received extensive
attention in recent years since they have been considepabsaguantum candidate encryption schemes.
Though LLL reduction algorithm has been one of the major tagplysis techniques for lattice based
cryptographic systems, key recovery cryptanalysis tephes for linear code based cryptographic sys-
tems are generally scheme specific. In recent years, seéugyaftant techniques such as Sidelnikov-
Shestakov attack, filtration attacks, and algebraic astéwekve been developed to crypt-analyze linear
code based encryption schemes. Though most of these cayydgetechniques are relatively new, they
prove to be very powerful and many systems have been brokegthem. Thus it is important to design
linear code based cryptographic systems that are immurniesagfzese attacks. This paper proposes lin-
ear code based encryption scheme RLCE which shares margctérdstics with random linear codes.
Our analysis shows that the scheme RLCE is secure agaisthepé@ttacks and we hope that the security
of the RLCE scheme is equivalent to the hardness of decodirdpm linear codes. Example parameters
for different security levels are recommended for the scheme RLCE.

Key words. Random linear codes; McEliece Encryption scheme; seauvkgkey encryption scheme;
linear code based encryption scheme
M SC 2010 Codes. 94B05; 94A60; 11T71; 68P25

1 Introduction

With rapid development for quantum computing techniques,society is concerned with the security of
current Public Key Infrastructures (PKI) which are fundautaé for Internet services. The core compo-
nents for current PKI infrastructures are based on publiptographic techniques such as RSA and DSA.
However, it has been shown that these public key cryptogeaichniques could be broken by quantum
computers. Thus it is urgent to develop public key cryptpgia systems that are secure against quantum
computing.

Since McEliece encryption schenie [24] was introduced mioaa thirty years ago, it has withstood
many attacks and still remains unbroken for general caskaslbeen considered as one of the candidates for
post-quantum cryptography since it is immune to existingngum computer algorithm attacks. The original
McEliece cryptographic system is based on binary Goppasco8everal variants have been introduced to
replace Goppa codes in the McEliece encryption scheme. rstarice, Niederreitef [27] proposed the
use of generalized Reed-Solomon codes and later, Bergdradibau [5] proposed the use of sub-codes
of generalized Reed-Solomon codes. Sidelnikav [32] pregdke use of Reed-Muller codes, Janwa and
Moreno [17] proposed the use of algebraic geometry codddj 8&zal [1] proposed the use of LDPC codes,
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Misoczki et al [26] proposed the use of MDPC codes, Londald dohanssori [20] proposed the use of
convolutional codes, and Berger et(al [4] and Misoczki-Bar25] proposed quasi-cyclic and quasi-dyadic
structure based compact variants of McEliece encryptiberses. Most of them have been broken though
MDPC/LDPC code based McEliece encryption scheme [1, 26] and tiginal binary Goppa code based
McEliece encryption scheme are still considered secure.

Goppa code based McEliece encryption scheme is hard tkaitace Goppa codes share many char-
acteristics with random codes. Motivated by Faugere effEb$algebraic attacks against quasi-cyclic and
guasi-dyadic structure based compact variants of McEbkeceyption schemes, Faugere ef al [14] designed
an dficient algorithm to distinguish a random code from a high @tppa code. Marquez-Corbella and
Pellikaan [21] simplified the distinguisher in [14] usinghiic component-wise product of codes.

Sidelnikov and ShestakoV [31] showed, for the generalizeddRSolomon code based McEliece en-
cryption scheme, one caffigiently recover the private parameters for the generalkeed-Solomon code
from the public key. Using component-wise product of codes te@chniques from [31], Wieschebrirk [37]
showed that Berger and Loidreau’s proposal [5] could be dmadficiently also. Couvreur et al[9] pro-
posed a general distinguisher based filtration techniquectver keys for generalized Reed-Solomon code
based McEliece scheme and Couvreur, Marquez-CorbelibPalikaan[[10] used filtration attacks to break
Janwa and Moreno’s [17] algebraic geometry code based Eo&kncryption scheme. The filtration attack
was recently used by Couvreur et[al[11] and Faugere ét altfiléjtack Bernstein et al's [6] wild Goppa
code based McEliece scheme.

General Goppa code based McEliece schemes are still immametifiese attacks. However, based on
the new development of cryptanalysis techniques againséiicode based cryptographic systems in the
recent years, it is important to systematically design oamdinear code based cryptographic systems de-
feating these attacks. Motivated by this observation, ghjser presents a systematic approach of designing
public key encryption schemes using any linear code. Fanglg we can even use Reed-Solomon codes to
design McEliece encryption scheme while it is insecure ®Rised-Solomon codes in the original McEliece
scheme. Since our design of linear code based encrypti@nslembeds randomness in each column of
the generator matrix, it is expected that, without the @poading private key, these codes are as hard as
random linear codes for decoding.

The most powerful message recovery attacks (not key regateacks) on McEliece cryptosystem is
the information-set decoding attack which was introducgdtange([2B]. In an information-set decoding
approach, one finds a set of coordinates of a received cgtievhich are error-free and that the restriction
of the code’s generator matrix to these positions is invkerti The original message can then be computed
by multiplying the ciphertext with the inverse of the subtmma Improvements of the information-set de-
coding attack have been proposed by Lee-Brickell [18], LiE®), Stern [33], May-Meurer-Thomaé [22],
Becker-Joux-May-Meurel_[3], and May-Ozerdv [23]. Bermstd.ange, and Peters][7] presented an ex-
act complexity analysis on information-set decoding &t@gainst McEliece cryptosystem. The attacks in
[BL[7,[18,19[ 2P, 23, 33] are against binary linear codes amdat applicable when the underlying field
is GF(p™) for a primep. Peters[[2B] presented an exact complexity analysis omnrgtion-set decoding
attack against McEliece cryptosystem o@#(p™). These information-set decoding techniques (in partic-
ular, the exact complexity analysis in [7,128]) are used tecteexample parameters for RLCE scheme in
Sectior{b.

Unless specified otherwise, we will uge= 2™ or g = p™ for a primep and our discussion are based on
the fieldGF(q) through out this paper. Bold face letters suclads e, f, g are used to denote row or column
vectors ovelGF(q). It should be clear from the context whether a specific bata:fletter represents a row
vector or a column vector.



2 Goppa codes and McEliece Public Key Encryption scheme

In this section, we briefly review Goppa codes and McEliedees®. For given parametegsn < q,
andt, let g(xX) be a polynomial of degreeover GF(q). Assume thag(x) has no multiple zero roots and
@o, -+, an-1 € GF(Q) be pairwise distinct which are not root gx). The following subspac€goppd9)
defines the code words of an, k, d] binary Goppa code wherd > 2t + 1. This binary Goppa code
Ccoppd0) has dimensiok > n — tmand corrects errors.

n-1

Ccoppd9) = {C e{o, " o =0 mOdg(X)}

i= 0

Furthermore, ifg(x) is irreducible, therCgoppd9) is called an irreducible Goppa code. The parity check
matrix H for the Goppa codes looks as follows:

1 1 --- 1 1
1 1 1 9(@o)
ao al ... a _l
Vi(x.y) = " 1)
... PR 1
a,to a/g_ . a/}']—l g(an-1)
1 1

wherex = [aq, ..., an-1] andy = [ T T

The McEliece schemé [24] is described’ as foIIows For thergparametera andt, choose a binary
Goppa code based on an irreducible polynorg{a) of degreet. Let Gg be thek x n generator matrix for
the Goppa code. Select a random dekgek nonsingular matrixS and a randonm x n permutation matrix
P. Note that the permutation matriXis required only if the suppotkto, - - -, an—1 is known to the public.
Then the public key i& = S GsP which generates a linear code with the same rate and mininistande
as the code generated By. The private key €.
Encryption For ak-bit message blockn, choose a random row vecteof lengthn and weight. Compute
the cipher texy = mG + e
Decryption For a received cipherteyt first computey’ = yP~1. Next use an error-correction algorithm to
recoverm’ = mS and compute the messageasm = m’S™,

3 Random linear code based encryption scheme RLCE

The protocol for the Random Linear Code based EncryptioersehRLCE proceeds as follows:

Key Setup.Let n, k,d,t > O, andr > 1 be given parameters such tmat- k+1 > d > 2t + 1. Let
Gs = [0Qo, - -»On-1] be ak x n generator matrix for annjk, d] linear code such that there is affieient
decoding algorithm to correct at ledastrrors for this linear code given lfys.

1. LetCo,Cy,---,Cn1 € GF(q)*" bek x r matrices drawn uniformly at random and let

G1=1[9.C0,01.C1---,0n-1,Cn-1] 2)
be thek x n(r + 1) matrix obtained by inserting the random matriGnto Gs.

2. LetAy, - --,An1 € GF(q)*Dx(+1) pe dense nonsingular ¢ 1) x (r + 1) matrices chosen uniformly
at random and let
Ao

A= . 3)

Ana



be ann(r + 1) x n(r + 1) nonsingular matrix.
3. LetS be a random dendex k nonsingular matrix an@ be ann(r + 1) x n(r + 1) permutation matrix.
4. The public key is th& x n(r + 1) matrixG = S G AP and the private key is3, Gg, P, A).

Encryption For a row vector message € GF(q)¥, choose a random row vecter= [ey, .. S EBn(r+1)-1] €
GF(g)""+D such that the Hamming weight efis at mostt. The cipher text iy = mG + e.
Decryption For a received cipher text= [yo, . .., Ynr+1)-1], COMpute

YPAT = [¥p, s Yirs1)-a] = MS G+ ePTIAT

where

A= b (4)
A

Lety = [Yg Vi ’yfn—l)(r+1)] be the row vector of length selected from the length(r + 1) row vector
yPIA"l, Theny = mSG + € for some error vecto€ € GF(Q)". Lete” = eP! = CORTEN P
ande’ = [e{(’Hl), . .,elf(’Hl)H] be a sub-vector o’ for i < n— 1. Then€T[i] is the first element o&’ A"
Thus€[i] # O only if & is non-zero. Since there are at moston-zero sub-vectorg’, the Hamming
weight ofe € GF(q)" is at most. Using the @icient decoding algorithm, one can compuate= mS and

m = m’S~L. Finally, calculate the Hamming weigtt = weight(y — mG). If w < t then outpuim as the
decrypted plaintext. Otherwise, output error.

Comment 1. In the design of RLCE scheme, the permutation mafrixas two purposes. The first pur-
pose is to hide the supports of the underlying encoding sehgenerator matrix (this is necessary if the
supports of the underlying encoding scheme are unknowrg.s€hond purpose is to hide the positions and
combinations of the column vectogsandC;.

Comment 2. In the RLCE decryption process, one checks whether the Hagweightw = weight(y —
mG) is smaller thart. This step is used to defeat chosen ciphertext attacks (CldAg CCA atack, an
adversary gives a random vector= [yo, ..., Ynr+1)-1] (Which is not a valid ciphertext) to the decryption
oracle to learn a decrypted value. This decrypted valueddoeiused to obtain certain information about the
private generator matri@s (see Section 412 for details). Alternatively, one may usaegpropriate padding
scheme to pad a message before encryption. Then iffisisat for the decryption process to verify whether
the decrypted message has the correct padding stringsaatdeé CCA attacks.

4 Robustness of RL CE codes against existing attacks

4.1 Randomness of generator matrix columns

We first use the following theorem to show that any single mwiwf the underlying generator matrXs
could be completely randomized in a RLCE public k&y

Theorem 4.1 Let G = [go, - - -» On-1] € GF(Q)®(™D be a linear code generator matrix. For any randomly
chosen full rank k (r +1) matrix Ry € GF(q)*(+1, there exists akk nonsingular matrix S, & +1)x(r +1)
matrix Ay, and a kx r matrix Cy € GF(q)*" such that

Ro = S[go. Co] Ao (5)
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Proof. By the fundamental properties of matrix equivalence, fav mx n matricesA, B of the same
rank, there exist invertiblen x m matrix P andn x n invertible matrixQ such thatA = PBQ. The theorem
could be proved using this property and the details are edliere. O

Let R = [Ro,...,R1] € GF(@®"*D pe a fixed random linear code generator matrix. Theorem
[4.7 shows that for any generator mat@x (e.g., a Reed-Solomon code generator matrix), we can choose
matricesS andAg so that the first + 1 columns of the RLCE scheme public k&y(constructed fronGg)
are identical tdR,. However, we cannot use Theoréml4.1 to continue the prodet®osingA;, ..., An 1
to obtainG = R sinceS is fixed afterAg is chosen. Indeed, it is straightforward to show that oneusan
Theoren{ 411 to continue the process of choo#ag . ., A,_1 to obtainG = Rif and only if there exists a
k x k nonsingular matri>s such that, for each< n - 1, the vectoiSg; lies in the linear space generated by
the column vectors dR,. A corollary of this observation is that R, generates the fuk dimensional space,
then each linear code could have any random matrix as its RWOEC key.

Theorem 4.2 Let R = [Ry,...,Ry-1] € GF(@*"*D and Gs = [go, -+, gn1] € GF(Q)*" be two fixed
MDS linear code generator matrices. If#1 > k, then there exist A - -, An_1 € GF(q)"+Dx(+1) and
Co, - -, Cn-1 € GF(Q)®" such that R= [go, Co, - - -, gn-1, Cn-1] A Where A is in the format of¥3).

Proof. Without loss of generality, we may assume that k — 1. For each O< i < n- 1, choose a
random matr>xC; € GF(g)®" such thaG; = [g;, Ci] is ank x k invertible matrix. LetA = Gi‘lRi. Then the
theorem is proved. ]

Theoren 4.2 shows that in the RLCE scheme, we must havd — 1. Otherwise, for a given public
key G € GF(q)*"*1) the adversary can choose a Reed-Solomon code generatdx @ae GF(q)"
and computé\, - - -, Ay_1 € GF(q)™" andCq, - - -, Cn_1 € GF(q)*®" such thaG = [go, Co, - - -, On-1, Cn_1] A.

In other words, the adversary can use the decryption afgord@orresponding to the generator matéixto
break the RLCE scheme

Theorem 4R also implies arffigient decryption algorithm for randonm,[K] linear codes with sfii-
ciently smallt of errors. Specifically, for ann[k] linear code with generator matrik € GF(q)®", if
t < ”g—l'(‘z then one can divid® into m = 2t + k blocksR = [Ry,---,Rn.1]. Theorem4.R can then be
applied to construct an equivalemn,[k] Reed-Solomon code with generator mat@ix € GF(q)*™. Thus
it is sufficient to decrypt the equivalent Reed-Solomon code instédtewriginal random linear code. For
McEliece based encryption scheme, Bernstein, Lange, ammisF&] recommends the use of 0.75K/n)
as the code rate. Thus Theoreml 4.2 has no threat on theseexchem

Fort < ”g—l'(‘z the adversary is guaranteed to succeed in breaking thensyStince multiple errors might
be located within the same blo&k with certain probability, for a givehthat is slightly larger tharﬁg—l‘(‘z, the
adversary still has a good chance to break the system ustrapthve approach. It is recommended thiat
significantly larger tharﬁ‘g—i‘f. For the RLCE scheme, this means thatould be significantly smaller than
k. This is normally true sinck is very larger for secure RLCE schemes.

In following sections, we list heuristic and experimentaldences that the RLCE public k&y shares
the properties of random linear codes. Thus the securityeoRLCE scheme is believed to be equivalent to
decoding a random linear code whichN®-hard.

4.2 Chosen ciphertext attacks (CCA)

In this section, we show that certain information about thigape generator matrits is leaked if the
decryption process does neither include padding schendatiah nor include ciphertext correctness vali-
dation. However, it is not clear whether this kind of infotina leakage would help the adversary to break
the RLCE encryption scheme. We illustrate this using thaipater = 1.
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Assume thatG; = [go,r0,01,r1,- -, 0On-1,n-1] and G = SGAP. The adversary chooses a random
vectory = [yo,...,Yon-1] € GF(q)?! and gives it to the decryption oracle which outputs a vegter

GF(Q)*. LetyPA™L = [y ...y, ,]andA = [ 00 a01

]. Then we have
410 4,11

XG -y xS[Qo.r0,01.71,- -+, On-1, In-1]AP -y

[---.xS[gi. ri]A, - ]P -y

[“‘,[y,2i,XS|'i]Ai,"']P+e—y (6)
[ Yo Yol A - IP + [+, [0,XSTi = Yo 4 ]A, - ]P +e—y
y+[--.[0,xSri -y, A, - ]IP+e-y

[+, [(XSri = Y5, 1)ai 10, (XSTi = Y5, )ai ], - ]P + €

wheree is a row vector of Hamming weight at most From the identity[(6), one can calculate a list of
potential values foc; = g 10/8;11. The size of this list is(22”). For each value in this list, one obtains the
corresponding two column vectorig [f1] = S[g;, ri]A from the public keyG. Then we have

1 O 00 Qo1
fo, f = 9[g;, r; ’ ’
lfo 1][ -G 1 ] L I][ Cigi11 @11

That is,fp — ¢if1 = (a,00 — Cia@01)Sgi. Thus, for each candidate permutation mafixone can calculate
a matrixS GsB whereB = diag[ap oo — Co@0,01, - - - » @n-1,00 — Ch-18n-1,01] iS @ann x n diagonal matrix with
unknown diagonal elemen&s oo — Cod0,01, - - -, @Ndan-1,00 — Cn-18n-1,01-

On the other hand, for each ciphertgxt= [yo, ..., Yon-1] € GF(@)?" 1, letyP™ = [29, 21, - -, Zon-1].
The codeword corresponding to the secret generator maw@xis [y;, Y5, ..., Y5, o] Where yP 1AL =
(Yo - - - » Yo_1)- By the fact that

1 0 _ 1| @00~ Cdio1 4aio1
¢ 1]—8[9.,r.][ 0 an (7)

Yo Voieal = [220. Zoica] ATY = Wl_|[22ia22i+1][ _Z';’lll a?'(’)?)l ]

we havey,, = %(za — Gizjy1). For each candidate permutation mateixone first choosek independent
messagexso, - - -, Xk-1 and calculates the correspondikindependent ciphertexys, - - -, yk-1. UsingP and
the above mentioned technique, one obtain a generatorn@gri= S’Gsdiag[%,m,%]. Thus in
order to decode a cipherteyt it is suficient to decode the error correcting code given by the gémrera
matrix G;. This task becomes feasible for certain codes. For exartiptetask is equivalent to the prob-
lem of attacking a generalized Reed-Solomon code basediéfaiel encryption scheme @5 generates a
generalized Reed-Solomon code.

In order for the attacks in the preceding paragraphs to vibekadversary needs to have the knowledge
of the permutation matri®. Since the number of candidate permutation matrleés huge, this kind of
attacks is still infeasible in practice.

4.3 Niederreiter's scheme and Sidelnikov-Shestakov's attack

Sidelnikov and Shestakov’s cryptanalysis techniqué [343 wsed to analyze Niederreiter's scheme which
is based on generalized Reed-Solomon codesa Eefaq, . . . , #n-1) bendistinct elements dBF(q) and let

v = (Vo,...,Vn-1) be nonzero (not necessarily distinct) element&6{qg). The generalized Reed-Solomon
(GRS) code of dimensiok, denoted byGRS(a, V), is defined by the following subspace.

GR&(@, V) = {(vof(ao),...,Vn-1f(an-1)) : F(X) € GR(Q)[X])}
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whereGF(g)[X]k is the set of polynomials iGF(g)[X] of degree less thak GF(q)[X]k is a vector space of
dimensiork overGF(q). For each code word= (Vo f (o), . . ., Va1 f(@n-1)), F(X) = fo+ fix+...+ fog X<t
is called the associate polynomial of the code wotkat encodes the messadg, (. ., fk-1). GRS(«, V) is
an [n,k,d] MDS code wherel = n—k + 1.

Niederreiter's scheme [27] replaces the binary Goppa ciodeleEliece scheme using GRS codes. The
first attack on Niederreiter scheme is presented by Sidalrakd ShestakoV [31]. Wieschebrink [36] revised
Niederreiter's scheme by inserting random column vectusriandom positions dbg before obtaining the
public keyG. Couvreur et al[[9] showed that Wieschebrink’s revised sehés insecure under the product
code attacks.

Berger and Loidreau [5] recommend the use of sub codes ofeligiter's scheme to avoid Sidelnikov
and Shestakov's attack. Specifically, in Berger and Loidleescheme, one uses a randdm-() x k matrix
S’ of rankk — | instead of the&k x k matrix S to compute the public ke = S’'Gs.

For smaller values df Wieschebrinkl[[3[7] shows that a private key ¥) for Berger and Loidreau scheme
[5] could be recovered using Sidelnikov-Shestakov alpaorit For larger values df Wieschebrink used
Schur product code to recover the secret values for Bergieiréau scheme. L& = SGsbe the k—1) xn
public key generator matrix for Berger-Loidreau scheme, - -, r_j_1 be the rows of5, andfy, - - -, fi_i_1
be the associated polynomials to those rows. For two rowoveetb € GF(q)", the component wise
producta = b € GF(q)" is defined as

ax* b = (a0b05 Y an—lbn—l) (8)

By the definition in[(8), it is straightforward to observe tha
ri« 1) = (G fi(o) fj(@o). - - - . Va_y fien-1) fjan-1))- )

For X -1 < n- 2, if the code generated by = rj equalsGRSy_1(e, V') for v = (v%, - -,vﬁ_l), then the
Sidelnikov-Shestakov algorithm could be used to recoventiluese andv. For X -1 < n - 2, if the
code generated by * r; does not equabRSy_1(n, V'), then the attack fails. Wieschebrink claimed that
the probability that the attack fails is very small. For tlese of X — 1 > n — 2, Wieschebrink applied
Sidelnikov-Shestakov algorithm on the component wise pebdode of a shortened code of the original
GR&(a, V).

The crucial step in Sidelnikov and Shestakov attack is tahesechelon fornie(G) = [1/G’] of the public
key to get minimum weight codewords that are co-related ¢b esher supports. In the encryption scheme
RLCE, each column of the public k& contains mixed randomness. Thus the echelon fe(@) = [I|G’]
obtained from the public ke could not be used to build any useful equation system. Inrotioeds, it is
expected that Sidelnikov and Shestakov attack does not against the RLCE scheme.

4.4 Filtration attacks

Using distinguisher techniques[14], Couvreur etlal. [9igred a filtration technique to attack GRS code
based McEliece scheme. The filtration technique was furdiegeloped by Couvreur et al[11] to attack
wild Goppa code based McEliece scheme. In the following, vieflip review the filtration attack in [11].
For two code®>1 andC; of lengthn, the star product codg; = C» is the vector space spanneddy b for

all pairs @, b) € C1 x Co wherea = b is defined in[(B). Fo€1 = C», C1 = C1 is called the square code 6f.

It is showed in[[11] that

dimCy x Gy < {n, dimC, dimC, — (d'm(cl n Cl))} .

5 (10)
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Furthermore, the equality in{JL0) is attained for most ramlyoselected code§; andC» of a given length
and dimension. Note that faf = C; = C, and dimC = k, the equation[{10) becomes d@? <
; k+1
min n, (%31)). |
Couvreur et al[[111] showed that the square code of an altecwte of extension degree 2 may have
an unusually low dimension when its actual rate is largen fteadesigned rate. Specifically, Couvreur et al

created a family of nested codes (called a filtration) defasetbllows, for anya € {0,---,n—1}:
C*0)2C*(1)2---2C*q+1). (12)

Roughly speaking??(j) consists in the codewords 6fwhich correspond to polynomials which have a zero
of order j at positiona. The first two elements of this filtration are just punctured ahortened versions of

C and the rest of them can be computed fr@ry computing star products and solving linear systems. The
support valuegy, - - -, an-1 (the private key) for the Goppa code could be recovered ukisghested family

of codes €iciently.

The crucial part of the filtration technique is thfigent algorithm to compute the nested family of
codes in[(1ll). For our RLCE scheme, the public key generatdrixiG contains random columns. Thus
linear equations constructed in Couvreur ef al [11] couldh@osolved and the nested family{11) could not
be computed correctly. Furthermore, the important charestics for a cod€ to be vulnerable is that one
can find a related cod@; of dimensionk such that the dimension of the square cod€phas a dimension
significantly less than mifm, (3*)}.

To get experimental evidence that RLCE codes share sityilaith random linear codes with respect to
the above mentioned filtration attacks, we carried out s¢experiments using Shoup’s NTL library ]30].
The source code for our experiments is availablé 2t [35]héneixperiments, we used Reed-Solomon codes
overGF(219). The RLCE parameters are chosen as the 80-bit securitynesean = 560,k = 380,t = 90,
andr = 1 (see Sectionl5 for details). For each given 3&5H0 generator matrigs of Reed-Solomon code,
we selected another random 38660 matrixC € GF(210)380<560 gnd selected R 2 matricesAy, . . ., Asso.
Each columng in C is inserted inGg after the columrg;. The extended generator matrix is multiplied
by A = diag[Aq, ..., Assg from the right hand side to obtain the public key mat@xe GF(210)380x1120,

For eachi = 0,---,1119, the matrixG; is used to compute the product code, wh@ras obtained from

G by deleting thath column vector. In our experiments, all of these productesohave dimension 1119.
We repeated the above experiments 100 times for 100 digtieetd-Solomon generator matrices and the
results remained the same. Since :{m‘mg (321 = 1119, the experimental results meet our expectation
that RLCE behaves like a random linear code. We did the saperiexents for the dual code of the above
code. That is, for a 188 560 generator matrigs of the dual code, the same procedure has been taken.
In this time, after deleting one column from the resultinglikey matrix, the product code always had
dimension 1119 which is the expected dimension for a randueal code. In an early draft of this paper, we
used Maple 2015 to carry out the experiments. In that expgarisy we did not check the invertible property
of the randomly generated>22 matricesAy, ..., Asse. Thus the previously reported experimental results
are not accurate. The experimental evidence confirms owcéiohn that RLCE scheme behaves like a
random linear code.

45 Algebraic attacks

Faugere, Otmani, Perret, and Tillich [15] developed anlalge attack against quasi-cyclic and dyadic

structure based compact variants of McEliece encryptidrer®@. In a high level, the algebraic attack

from [15] tries to findx*,y* € GF(q)" such thatVy(x*,y*) is the parity check matrix for the underlying

alternant codes of the compact variants of McEliece enmy@chemeV(x*, y*) can then be used to break

the McEliece scheme. Note that thigx*,y*) is generally diferent from the original parity check matrix
8



Vi(x,y) in (@). The parity check matrix;(x*,y*) was obtained by solving an equation system constructed
from
Vi(x*,y")G" =0, (12)

whereG is the public key. The authors df [15] employed the speciapprties of quasi-cyclic and dyadic
structures (which provide additional linear equationgktarite the equation system obtained fréml(12) and
then calculaté/y(x*, y*) efficiently.

Faugere, Gauthier-Umafia, Otmani, Perret, and Tillich (4d the algebraic attack in [15] to design an
efficient Goppa code distinguisher to distinguish a randomirfrrm the matrix of a Goppa code whose
rate is close to 1. For instance, [14] showed that the binaryp@ code obtained wittm = 13 andr = 19
corresponding to a 90-bit security key is distinguishable.

It is challenging to mount the above mentioned algebraiacktt on the RLCE encryption scheme.
Assume that the RLCE scheme is based on Reed-Solomon cod@. deethe public key andS, Gg, A, P)
be the private key. The parity check matrix for a Reed-Solomde is in the format of

1 « o .- a1
1 o2 oA .. R

Vile) =] .. : . : : (13)
i at.+1 aZ(.t+l) . a,(t+l.)(n—l)

The algebraic attack in_[14, 115] requires one to obtain atpatieck matrixVi(a*) for the underlying
Reed-Solomon code from the public k& wherea* may be diferent froma. Assume thaw(a*) =
[Vo,- - -, Vn-1] € GF(Q)®D*" is a parity check matrix for the underlying Reed-Solomonecdcet Vi (¢*) €
GF(Q®D>n(+1) pe a ¢+ 1) x n(r + 1) matrix obtained fromV;(*) by insertingr column vectors after
each column oV (a*). That is,

Vt'(a*) = [Vo, O, Vi, O, s+, Vn-1, 0] (14)
Then we have
= Vt(a*)[gC)’ T gl’l—l]
— Vt((l’*)Gl— (15)
0.

We cannot build an equation system for the unkna¥*) from the public keyG = S G AP directly
since the identity[(15) only shows the relationship betweégn*) andG;. In other words, in order to build
an equation system far{ (a*), one also needs to use unknown variables for the non-singutrix A and
the permutation matrif. That is, we have

V{(@)AHTPHTGT = V(o) (GP A = V/(a")G]ST = 0. (16)

with an unknowne*, an unknown permutation matri®, and an unknown matrid = diag[Ao, - - -, An-1]
which consists ofi dense nonsingular ¢ 1)x (r +1) matricesA; € GF(g)(+Dx(+1) as defined ir({3). In order
to find a solutionz*, one first needs to take a potential permutation marixto reorganize columns of the
public keyG. Then, using the identity; (a*)(A"H)T(P~1)TGT = 0, one can build a degree£ 1)(n— 1)+ 1
equation system df(t + 1) equations im(r + 1)?> + 1 unknowns. In case th&ft+ 1) > n(r + 1) + 1, one may
use Buchberger's Grobner basis algorithms a5 ih [15] todisdlutiona*. However, this kind of algebraic
attacks are infeasible due to the following two challend@sst the number of permutation matridess too
large to be handled practically. Secondly, even if one camaga to handle the large number of permutation
matricesP, the Grobner basis (or the improved variants suchyas s in Faugere[[13,12]) are impractical
for such kind of equation systems.

9



The Grobner basis algorithm eliminates top order monotiiah given order such as lexicographic
order) by combining two equations with appropriate fiognts. This process continues until one obtains
a univariate polynomial equation. The resulting univaripblynomial equation normally has a very high
degree and Buchberger’s algorithm runs in exponential imaverage (the worst case complexity is double
exponential time). Thus Buchberger’s algorithm cannotesolonlinear multicariate equation systems with
more than 20 variables in practice (see, e.g., Courtois[8])alBut it should also be noted that though the
worst-case Grobner basis algorithm is double exponeritialgeneric behavior is generally much better. In
particular, if the algebraic system has only a finite numbieroonmon zeros at infinity, then Grobner basis
algorithm for any ordering stops in a polynomial timedhwhered = maxd; : d; is the total degree of;}
andn is the number of variables (see, e.gl, [2]).

5 Practical considerations

In order to reduce the message expansion ratio which is definghe rate of ciphertext size and corre-
sponding plaintext size, it is preferred to use a smalléor the RLCE encryption scheme. Indeed, the
experimental results show thiats 1 is suficient for RLCE to behave like a random linear code. As men-
tioned in the introduction section, the most powerful mgeseecovery attack (not private key recovery
attack) on McEliece encryption schemes is the informasiendecoding attack. For the RLCE encryption
scheme, the information-set decoding attack is based omuitm&er of columns in the public k&y instead

of the number of columns in the private k&y. For the same error weightthe probability to find error-free
coordinates inr(+ 1)n coordinates is dierent from the probability to find error-free coordinates roordi-
nates. Specifically, the cost of information-set decoditgcis on anr, k, t; r]-RLCE scheme is equivalent
to the cost of information-set decoding attacks on a stahidar 1)n, k; t]-McEliece scheme.

Taking into account of the cost of recovering McEliece eption scheme secret keys from the public
keys and the cost of recovering McEliece encryption schelaiatpxt messages from ciphertexts using the
information-set decoding methods, we generated a recouhedelist of parameters for RLCE scheme in
Table[1 using the PARGP script by Peters's [28]. For the recommended paraméberslefault underlying
linear code is taken as the Reed-Solomon code G¥Q) and the value of is taken as 1. For the purpose
of comparison, we also list the recommended parameters [fpfor binary Goppa code based McEliece
encryption scheme. The authors[in[[7] 28] proposed the useméntic secure message coding approach so
that one can store the public key as a systematic generatoxnféor binary Goppa code based McEliece
encryption scheme, the systematic generator matrix pkéliacsk(n—Kk) bits. For RLCE encryption scheme
overGF(q), the systematic generator matrix public kek(s(r + 1) — k) log g bits. It is observed that RLCE
scheme generally has larger but acceptable public key Specifically, for the same security level, the
public key size for the RLCE scheme is approximately fourve fimes larger than the public key size for
binary Goppa code based McEliece encryption scheme. Fon@gafor the security level of 80 bits, the
binary Goppa code based McEliece encryption scheme hadia ey of size 562KB, and the RLCE-MDS
scheme has a public key of size 265 x 56.2KB.

6 Conclusions

In this paper, we presented techniques for designing gersrdom linear code based public encryption
schemes using any linear code. Heuristics and experimeotaigages us to think that the proposed schemes
are immune against existing attacks on linear code basegion schemes such as Sidelnikov-Shestakov
attack, filtration attacks, and algebraic attacks. In &oldito being a post-quantum cryptographic tech-
nique, our scheme RLCE has recently been used by Wang andeldes84] to design fully homomorphic
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Table 1: Parameters for RLCE;K, t, g, key size ( = 1 for all parameters), where “36200 80, 28 101KB”
under column “RLCE-MDS code” represemts- 360 k = 200t = 80, andq = 28,

Security | RLCE-MDS code binary Goppa codé [7]
60 360,200, 80, %, 101KB 1024, 524, 50, 19.8KB
80 560, 380, 90, 2, 267KB 1632, 1269, 34, 56.2KB
128 1020, 660, 180, 2 0.98MB 2960, 2288, 57, 187.7KB
192 1560, 954, 203,72, 2.46MB | 4624, 3468, 97, 489.4KB
256 2184, 1260, 412,%, 4.88MB | 6624, 5129, 117, 0.9MB

encryption schemes.
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