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Abstract—In this work, we investigate the design of
information-update systems, where incoming update packets are
forwarded to a remote destination through multiple servers (each
server can be viewed as a wireless channel). One important
performance metric of these systems is the age-of-information
or simply age, which is defined as the time elapsed since
the freshest packet at the destination was generated. Recent
studies on information-update systems have shown that the age-
of-information can be reduced by intelligently dropping stale
packets. However, packet dropping may not be appropriate in
many applications, such as news and social updates, where users
are interested in not just the latest updates, but also past news.
Therefore, all packets may need to be successfully delivered. In
this paper, we study how to optimize age-of-information without
throughput loss. We consider a general scenario where incoming
update packets do not necessarily arrive in the order of their
generation times. We prove that a preemptive Last Generated
First Served (LGFS) policy simultaneous optimizes the age,
throughput, and delay performance in infinite buffer queueing
systems. We also show age-optimality for the LGFS policy for
any finite queue size. These results hold for arbitrary, including
non-stationary, arrival processes. To the best of our knowledge,
this paper presents the first optimal result on minimizing the
age-of-information in communication networks with an external
arrival process of information update packets.

I. INTRODUCTION

The ubiquity of mobile devices and applications, has in-

creased the demand for real-time information updates, such as

news, weather reports, email notifications, stock quotes, social

updates, mobile ads, etc. Also, in network-based monitoring

and control systems, timely status updates are crucial. These

include, but are not limited to, sensor networks used in

temperature or other physical phenomenon, and autonomous

vehicle systems.

A common objective in these applications is to keep the

destination updated with the latest information. To identify the

timeliness of the updates, a metric called age of information,

or simply age, was defined in [1]–[4]. At time t, if U(t) is the

time when the freshest update at the destination was generated,

age ∆(t) is ∆(t) = t− U(t). Hence, age is the time elapsed

since the freshest packet was generated.

There have been several recent works on characterizing

the time-average age of different information-update policies

under Poisson arrival process, and finding policies with a small

time-average age [4]–[10]. In [4]–[6], the update generation

rate was optimized to improve data freshness in First-Come

First-Served (FCFS) information-update systems. To improve

the age, these studies also reduced the update generation rate,
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Figure 1: System model.

which in turn sacrificed the system throughput. In [7], [8], it

was found that the age can be improved by discarding old

packets waiting in the queue if a new sample arrives. This can

greatly reduce the impact of queueing delay on data freshness.

However, many applications may not want to discard packets,

e.g., where the users are interested in not just the latest

updates, but also past news, in which case all packets must be

successfully delivered. In [9], [10], the time-average age was

characterized for Last-Come First-Served (LCFS) information-

update systems with and without preemption; and FCFS with

two servers under a Poisson arrival process. Applications

of information updates in channel information feedback and

sensor networks were considered in [11]–[13].

Another important problem is how to maximize data fresh-

ness in information-update systems. This involves jointly con-

trolling both the generation and transmission of packet updates

[12]–[14]. An information update policy was developed in

[14], which was proven to minimize the time-average age and

time-average age penalty among all causally feasible policies.

In this setting, a counter-intuitive phenomenon was revealed:

While a zero-wait or work-conserving policy, that generates

and submits a fresh update once the server becomes idle,

achieves the maximum throughput and the minimum average

delay, surprisingly, this zero-wait policy does not always

minimize the age. This implies that there is no policy that

can simultaneously minimize age and maximize throughput, if

the generation and transmission of update packets are jointly

controlled.

In this paper, we consider an information-update system

which enqueues incoming update packets and forwards them

to a remote destination through multiple servers, as shown in

Fig. 1. In this setting, the updates are generated exogenously

to the system, which is different from [14]. We aim to answer

the following questions: How to establish age-optimality in a
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general policy space and under arbitrary arrival process? Is

it possible to simultaneously optimize multiple performance

metrics, such as age, throughput, and delay? To that end, the

following are the key contributions of this paper:

• We consider a general scenario where the update packets

do not necessarily arrive in the order of their genera-

tion times, which has not been considered before. We

prove that, if the packet service times are i.i.d. expo-

nentially distributed, then for an arbitrary arrival process

and any queue size, a preemptive Last-Generated First-

Served (LGFS) policy achieves an age process that is

stochastically smaller than any causally feasible policies

(Theorem 1). This implies that the preemptive LGFS

policy minimizes any non-decreasing functional of the

age process. Examples of non-decreasing age penalty

functionals include time-average age [4], [5], [7]–[9],

[12], [13], average peak age [6], [7], [12], and time-

average age penalty function [14]. The intuition is that

the freshest update packets are served as early as pos-

sible in the preemptive LGFS policy. In particular, the

distribution of the age process of the preemptive LGFS

policy is invariant over all queue sizes. To the best of

our knowledge, this paper presents the first optimal result

on minimizing the age-of-information in communication

networks with an external arrival process of information

update packets.

• In addition, we show that if the buffer has an infinite

size, then the preemptive LGFS policy is also throughput-

optimal and delay-optimal among all causally feasible

policies (Theorem 6).

We note that when the incoming update packets are arriving

in the same order of their generation times, the proposed

LGFS policy is identical to the LCFS policy studied in [9].

In particular, the time-average age of preemptive and non-

preemptive LCFS policies are analyzed in [9] for single-server

queueing systems with Poisson arrival process and a queue size

of one packet. This paper complements and generalizes the

results in [9] by (i) allowing the incoming updates to not arrive

in the order of their generation times, (ii) considering more

general multi-server queueing systems with arbitrary update

arrivals and arbitrary queue size, and (iii) providing an age-

optimality proof.

II. MODEL AND FORMULATION

A. Notations and Definitions

Throughout this paper, for any random variable Z and

an event A, let [Z|A] denote a random variable with the

conditional distribution of Z for given A, and E[Z|A] denote

the conditional expectation of Z for given A.

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be two

vectors in R
n, then we denote x ≤ y if xi ≤ yi for i =

1, 2, . . . , n. A set U ⊆ R
n is called upper if y ∈ U whenever

y ≥ x and x ∈ U . We will need the following definitions:

Definition 1. Univariate Stochastic Ordering: [15] Let

X and Y be two random variables. Then, X is said to be

stochastically smaller than Y (denoted as X ≤st Y ), if

P{X > x} ≤ P{Y > x}, ∀x ∈ R.

Definition 2. Multivariate Stochastic Ordering: [15] Let

X and Y be two random vectors. Then, X is said to be

stochastically smaller than Y (denoted as X ≤st Y), if

P{X ∈ U} ≤ P{Y ∈ U}, for all upper sets U ⊆ R
n.

Definition 3. Stochastic Ordering of Stochastic Processes:

[15] Let {X(t), t ∈ [0,∞)} and {Y (t), t ∈ [0,∞)} be two

stochastic processes. Then, {X(t), t ∈ [0,∞)} is said to be

stochastically smaller than {Y (t), t ∈ [0,∞)} (denoted by

{X(t), t ∈ [0,∞)} ≤st {Y (t), t ∈ [0,∞)}), if, for all choices

of an integer n and t1 < t2 < . . . < tn in [0,∞), it holds that

(X(t1), X(t2), . . . , X(tn))≤st (Y (t1), Y (t2), . . . , Y (tn)), (1)

where the multivariate stochastic ordering in (1) was defined

in Definition 2.

B. Queuing System Model

We consider an information-update system with m identical

servers as shown in Fig. 1. Each server could be a wireless

channel, a TCP connection, etc. The update packets are

generated exogenously to the system and then are stored in

a queue, waiting to be assigned to one of the servers. Let B
denote the buffer size of the queue which can be infinite, finite,

or even zero. If B is finite, the queue buffer may overflow and

some packets are dropped, which would incur a throughput

loss. The packet service times are exponentially distributed

with rate µ, which are i.i.d. across time and servers.

C. Scheduling Policy

The system starts to operate at time t = 0. A sequence of

n update packets are generated at time instants s1, . . . , sn,

where n can be an arbitrary finite or infinite number, and

0 ≤ s1 ≤ s2 ≤ . . . ≤ sn. Let ai be the arrival time of

the packet generated at time si, such that si ≤ ai. We let π
denote a scheduling policy that assigns update packets to the

servers over time. The i-th generated packet, called packet i,
completes service at time ci, which depends on the scheduling

policy. The packet generation times (s1, s2, . . . , sn) and packet

arrival times (a1, a2, . . . , an) at the system are arbitrary given,

which are independent of the scheduling policy. Note that

the update packets may arrive at the system out of the order

of their generation times. For example, it may happen that

ai > ai+1 but si < si+1.

Let Π denote the set of all causal policies, in which

scheduling decisions are made based on the history and current

state of the system. We define several types of policies in Π:

A policy is said to be preemptive, if a server can switch

to send any packet at any time; the preempted packets will be

stored back into the queue if there is enough buffer space and

sent at a later time when the servers are available again. In
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Figure 2: Evolution of the age-of-information ∆(t).

contrast, in a non-preemptive policy, a server must complete

delivering the current packet before starting to send another

packet. A policy is said to be work-conserving, if no server

is idle when there are packets waiting in the queue.

D. Performance Metric

Let U(t) = max{si : ci ≤ t} be the generation time of

the freshest packet at the destination at time t, where U(0−)
is invariant of the policy π ∈ Π. The age-of-information, or

simply the age, is defined as

∆(t) = t− U(t). (2)

As shown in Fig. 2, the age increases linearly with t but is

reset to a smaller value with the arrival of a fresher packet.

The age process is given by

∆ = {∆(t), t ∈ [0,∞)}. (3)

Definition 4. Age Penalty Functional: A functional g(∆) is

said to be an age penalty functional, if g is non-decreasing in

the following sense:

g(∆1) ≤ g(∆2),

whenever ∆1(t) ≤ ∆2(t), ∀t ∈ [0,∞).
(4)

This type of age penalty functional represents the level of

“dissatisfaction” for data staleness in the network and the

“need” for fresher information updates. Existing examples of

age penalty functionals include:

• Time-average age [4], [5], [7]–[9], [12], [13]: The time-

average age is defined as

g1(∆) =
1

T

∫ T

0

∆(t)dt, (5)

• Average peak age [6], [7], [12]: The average peak is

defined as

g2(∆) =
1

K

K∑

k=1

Ak, (6)

where Ak denotes the k-th peak value of ∆(t) since time

t = 0.

• Time-average age penalty function [14]: The time-

average age penalty function is defined as

g3(∆) =
1

T

∫ T

0

h(∆(t))dt, (7)

where h : [0,∞) → [0,∞) can be any non-negative and

non-decreasing function.

Algorithm 1: Preemptive Last Generated First Served

policy.

1 α := 0;

2 while the system is ON do

3 if a new packet with generation time s arrives then

4 if all servers are busy then

5 if s ≤ α then

6 Store the packet in the queue;

7 else // The packet carries fresh information.

8 The new packet is assigned to a server by

preempting the packet with generation

time α;

9 The preempted packet with generation

time α is stored back to the queue;

10 Set α as the smallest generation time of

the packets under service;

11 end

12 else // At least one of the servers is idle.

13 Assign the new packet to one idle server;

14 Set α as the smallest generation time of the

packets under service;

15 end

16 end

17 if a packet is delivered then

18 if the queue is not empty then

19 Pick the freshest packet in the queue and

assign it to the idle server;

20 Set α as the smallest generation time of the

packets under service;

21 end

22 end

23 end

III. OPTIMALITY ANALYSIS

In this section, we study a LGFS policy, in which the

packets under service are generated the latest (i.e., the fresh-

est) among all packets in the queue; after service, the next

freshest packet in the queue is assigned to the idle server. The

implementation details of a preemptive LGFS (prmp-LGFS)

policy is depicted in Algorithm 1, where α is the smallest

generation time of the packets under service.

Define a set of parameters I = {n, (si, ai)
n
i=1, B}, where

n is the total number of packets, si and ai are the generation

time and the arrival time of packet i, respectively, and B is the

queue buffer size. Let ∆π = {∆π(t), t ∈ [0,∞)} be the age

processes under policy π. The age performance of prmp-LGFS

policy is provided in the following theorem.

Theorem 1. Suppose that the packet service times are expo-

nentially distributed and i.i.d. across time and servers, then for

all I and π ∈ Π

[∆prmp-LGFS|I] ≤st [∆π|I], (8)



or equivalently, for all I and non-decreasing functional g

E[g(∆prmp-LGFS)|I] = min
π∈Π

E[g(∆π)|I], (9)

provided the expectations exist.

We need to define the system state of any policy π:

Definition 5. At any time t, the system state of policy π is

specified by Vπ(t) = (Uπ(t), α1,π(t), . . . , αm,π(t)), where

Uπ(t) is the generation time of the freshest packet that have

already been delivered to the destination. Define αi,π(t) as

the i-th largest generation time of the packets being processed

by the servers. Without loss of generality, if k servers are

sending stale packets (i.e., αm,π(t) ≤ α(m−1),π(t) . . . ≤
α(m−k+1),π(t) ≤ Uπ(t)) or k servers are idle, then we set

αm,π(t) = . . . = α(m−k+1),π(t) = Uπ(t). Hence,

Uπ(t) ≤ αm,π(t) ≤ . . . ≤ α1,π(t). (10)

Let {Vπ(t), t ∈ [0,∞)} be the state process of policy

π, which is assumed to be right-continuous. For notational

simplicity, let policy P represent the prmp-LGFS policy. By

the construction of policy P , α1,P (t), α2,P (t), . . . , αm,P (t)
are the generation times of m freshest packets among all

packets arrived during [0, t].

The key step in the proof of Theorem 1 is the following

lemma, where we compare policy P with any work-conserving

policy π.

Lemma 2. Suppose that VP (0
−) = Vπ(0

−) for all work

conserving policies π, then for all I

[{VP (t), t ∈ [0,∞)}|I]≥st [{Vπ(t), t ∈ [0,∞)}|I]. (11)

We use coupling and forward induction to prove Lemma

2. For any work-conserving policy π, suppose that stochastic

processes ṼP (t) and Ṽπ(t) have the same stochastic laws as

VP (t) and Vπ(t). The state processes ṼP (t) and Ṽπ(t) are

coupled in the following manner: If the packet with generation

time α̃i,P (t) is delivered at time t as ṼP (t) evolves, then the

packet with generation time α̃i,π(t) is delivered at time t as

Ṽπ(t) evolves. Such a coupling is valid since the service time

is exponentially distributed and thus memoryless. Moreover,

policy P and policy π have identical packet generation times

(s1, s2, . . . , sn) and packet arrival times (a1, a2, . . . , an). Ac-

cording to Theorem 6.B.30 in [15], if we can show

P[ṼP (t) ≥ Ṽπ(t), t ∈ [0,∞)|I] = 1, (12)

then (11) is proven. To ease the notational burden, we will

omit the tildes henceforth on the coupled versions and just

use VP (t) and Vπ(t). Next, we use the following lemmas to

prove (12):

Lemma 2*. Suppose that the system state of policy P is

{UP , α1,P , . . . , αm,P }, and meanwhile the system state of

policy π is {Uπ, α1,π, . . . , αm,π}. If

UP ≥ Uπ, (13)

then,

αi,P ≥ αi,π, ∀i = 1, . . . ,m. (14)

Proof. See Appendix A.

Lemma 3. Suppose that under policy P ,

{U ′

P , α
′

1,P , . . . , α
′

m,P } is obtained by delivering a packet with

generation time αl,P to the destination in the system whose

state is {UP , α1,P , . . . , αm,P }. Further, suppose that under

policy π, {U ′

π, α
′

1,π, . . . , α
′

m,π} is obtained by delivering a

packet with generation time αl,π to the destination in the

system whose state is {Uπ, α1,π, . . . , αm,π}. If

αi,P ≥ αi,π, ∀i = 1, . . . ,m, (15)

then,

U ′

P ≥ U ′

π, α
′

i,P ≥ α′

i,π , ∀i = 1, . . . ,m. (16)

Proof. See Appendix B.

Lemma 4. Suppose that under policy P ,

{U ′

P , α
′

1,P , . . . , α
′

m,P } is obtained by adding a packet

with generation time s to the system whose state is

{UP , α1,P , . . . , αm,P }. Further, suppose that under policy

π, {U ′

π, α
′

1,π, . . . , α
′

m,π} is obtained by adding a packet

with generation time s to the system whose state is

{Uπ, α1,π, . . . , αm,π}. If

UP ≥ Uπ, (17)

then

U ′

P ≥ U ′

π, α
′

i,P ≥ α′

i,π , ∀i = 1, . . . ,m. (18)

Proof. See Appendix C.

Proof of Lemma 2. For any sample path, we have that

UP (0
−) = Uπ(0

−) and αi,P (0
−) = αi,π(0

−) for i =
1, . . . ,m. This, together with Lemma 3 and 4, implies that

[UP (t)|I] ≥ [Uπ(t)|I], [αi,P (t)|I] ≥ [αi,π(t)|I],

holds for all t ∈ [0,∞) and i = 1, . . . ,m. Hence, (12) follows

which implies (11) by Theorem 6.B.30 in [15]. This completes

the proof.

Proof of Theorem 1. As a result of Lemma 2, we have

[{UP (t), t ∈ [0,∞)}|I] ≥st [{Uπ(t), t ∈ [0,∞)}|I],

holds for all work-conserving policies π, which implies

[∆P |I] ≤st [∆π |I], (19)

holds for all work-conserving policies π.

For non-work-conserving policies, since the service times

are exponentially distributed and i.i.d. across time and servers,

service idling only increases the waiting time of the packet

in the system. Therefore, the age under non-work-conserving

policies will be greater. As a result, we have

[∆P |I] ≤st [∆π|I], ∀π ∈ Π.

Finally, (9) follows directly from (8) using the properties of

stochastic ordering [15]. This completes the proof.



Theorem 1 tells us that for arbitrary number n, packet gener-

ation times (s1, s2, . . . , sn) and arrival times (a1, a2, . . . , an),
and buffer size B, the prmp-LGFS policy can achieve age-

optimality within the policy space Π. In addition, (9) tells

us that the prmp-LGFS policy minimizes any non-decreasing

age penalty functional g, including the time-average age (5),

average peak age (6), and average age penalty (7).

As a result of Theorem 1, we can deduce the following

corollary:

Corollary 5. Suppose that the packet service times are expo-

nentially distributed and i.i.d. across time and servers, then for

all I, the age performance of the prmp-LGFS policy remains

the same for any queue size B ≥ 0.

Proof. From the definition of policy prmp-LGFS, its queue

is used to store the preempted packets and outdated arrived

packets. Since the delivery of these packets doesn’t affect the

age process of prmp-LGFS policy, the age performance of the

prmp-LGFS policy is invariant for any queue size B ≥ 0. This

completes the proof.

Finally, the delay and throughput optimality of the prmp-

LGFS policy is stated as follows:

Theorem 6. Suppose that the packet service times are i.i.d.

exponentially distributed across time and servers, then for all

I such that B = ∞, the prmp-LGFS policy is throughput-

optimal and mean-delay-optimal among all policies in Π.

In particular, any work-conserving policy is throughput-

optimal and mean-delay-optimal. The proof details are pro-

vided in Appendix D.

IV. NUMERICAL RESULTS

We present some numerical results to illustrate the age

performance of different policies. The packet service times are

exponentially distributed with mean 1/µ = 1, which is i.i.d.

across time and servers. The inter-generation times are i.i.d.

Erlang-2 distribution with mean 1/λ. The number of servers

is m. Hence, the traffic intensity is ρ = λ/mµ. The queue

size is B, which is a non-negative integer.

Figure 3 illustrates the time-average age versus ρ for an

information-update system with m = 1 server. The time

difference between packet generation and arrival (ai − si) is

zero, i.e., the update packets arrive in the same order of their

generation times. One can observe that the preemptive LGFS

policy achieves a better (smaller) age than the FCFS policy

analyzed in [4], and the non-preemptive LCFS policy with

queue size B = 1 [9] which was also named “M/M/1/2*”

in [7]. Note that in these prior studies, the time-average

age was characterized only for the special case of Poisson

arrival process. Moreover, with ordered arrived packets at the

server, the LGFS policy and LCFS policy have the same age

performance.

Figure 4 plots the time-average age versus ρ for an

information-update system with m = 5 servers. The time

difference between packet generation and arrival, i.e., ai − si,
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Figure 3: Average age versus traffic intensity ρ for an update

system with m = 1 server and queue size B.
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Figure 4: Average age versus traffic intensity ρ for an update

system with m = 5 servers and queue size B.

is modeled to be either 1 or 100, with equal probability. We

found that the age performance of each policy is better than

that in Fig. 3, because of the diversity provided by five servers.

In addition, the preemptive LGFS policy achieves the best

age performance among all plotted policies. It is important to

emphasize that the age performance of the preemptive LGFS

policy remains the same for any queue size B ≥ 0. However,

the age performance of the non-preemptive LGFS policy and

FCFS policy varies with the queue size B when there are

multiple servers. We also observe that the average age in

case of FCFS policy with B = ∞ blows up when the traffic

intensity is high. This is due to the increased congestion in the

network which leads to a delivery of stale packets. Moreover,

in case of FCFS policy with B = 10, the average age is high

but bounded at high traffic intensity, since the fresh packet has

a better opportunity to be delivered in a relatively short period

compared with FCFS policy with B = ∞. These numerical

results validate Theorem 1.

V. CONCLUSION

In this paper, we considered an information-update system,

in which update packets are forwarded to a destination through

multiple network servers. It was showed that, if the packet



service times are i.i.d. exponentially distributed, then for any

given arrival process and queue size, the preemptive LGFS pol-

icy simultaneously optimizes the data freshness, throughput,

and delay performance among all causally feasible policies.

We will extend these results to more general system settings

with general service time distributions.

APPENDIX A

PROOF OF LEMMA 2*

Let S denote the set of packets that have arrived to the

system at the considered time epoch. It is important to note

that the set S is invariant of the scheduling policy. We use s[i]
to denote the i-th largest generation time of the packets in S.

From the definition of the system state and policy P , we have

αi,P = max{s[i], UP}, ∀i = 1, . . . ,m. (20)

Since policy π is arbitrary policy, the i-th freshest packet

being processed by the servers under policy π is either the

i-th freshest packet in the set S (the best choice that can be

done) or older one. Hence, we have

αi,π ≤ max{s[i], Uπ}, ∀i = 1, . . . ,m, (21)

where the maximization here follows from the definition of

the system state. Since the set S is invariant of the scheduling

policy and UP ≥ Uπ, this with (20) and (21) imply

αi,P ≥ αi,π, ∀i = 1, . . . ,m, (22)

which completes the proof.

APPENDIX B

PROOF OF LEMMA 3

Since the packet with generation time αl,P is delivered

under policy P , the packet with generation time αl,π is

delivered under policy π, and αl,P ≥ αl,π , we get

U ′

P = αl,P ≥ αl,π = U ′

π. (23)

From U ′

P ≥ U ′

π and using Lemma 2*, we obtain

α′

i,P ≥ α′

i,π, i = 1, . . . ,m. (24)

Hence, (16) holds for any queue size B ≥ 0, which completes

the proof.

APPENDIX C

PROOF OF LEMMA 4

Since there is no packet delivery, we have

U ′

P = UP ≥ Uπ = U ′

π, (25)

From U ′

P ≥ U ′

π and using Lemma 2*, we obtain

α′

i,P ≥ α′

i,π, i = 1, . . . ,m. (26)

Hence, (18) holds for any queue size B ≥ 0, which completes

the proof.

APPENDIX D

PROOF OF THEOREM 6

We follow the same proof technique of Theorem 1. We start

by comparing policy P (prmp-LGFS policy) with an arbitrary

work-conserving policy π. For this, we need to define the

system state of any policy π:

Definition 8. At any time t, the system state of policy π is

specified by Hπ(t) = (Nπ(t), γπ(t)), where Nπ(t) is the total

number of packets in the system at time t. Define γπ(t) as the

total number of packets that are delivered to the destination at

time t. Let {Hπ(t), t ∈ [0,∞)} be the state process of policy

π, which is assumed to be right-continuous.

To prove Theorem 6, we will need the following lemma.

Lemma 7. For any work-conserving policy π, if HP (0
−) =

Hπ(0
−) and B = ∞, then [{HP (t), t ∈ [0,∞)}|I] and

[{Hπ(t), t ∈ [0,∞)}|I] are of the same distribution.

Suppose that {H̃P (t), t ∈ [0,∞)} and {H̃π(t), t ∈ [0,∞)}
are stochastic processes having the same stochastic laws as

{HP (t), t ∈ [0,∞)} and {Hπ(t), t ∈ [0,∞)}. Now, we

couple the packet delivery times during the evolution of H̃P (t)
to be identical with the packet delivery times during the

evolution of H̃π(t).
To ease the notational burden, we will omit the tildes

henceforth on the coupled versions and just use {HP (t)}
and {Hπ(t)}. The following two lemmas are needed to prove

Lemma 7:

Lemma 8. Suppose that under policy P , {N ′

P , γ
′

P } is obtained

by delivering a packet to the destination in the system whose

state is {NP , γP }. Further, suppose that under policy π,

{N ′

π, γ
′

π} is obtained by delivering a packet to the destination

in the system whose state is {Nπ, γπ}. If

NP = Nπ, γP = γπ,

then

N ′

P = N ′

π, γ
′

P = γ′

π. (27)

Proof. Since there is a packet delivery, we have

N ′

P = NP − 1 = Nπ − 1 = N ′

π,

γ′

P = γP + 1 = γπ + 1 = γ′

π.

Hence, (27) holds, which complete the proof.

Lemma 9. Suppose that under policy P , {N ′

P , γ
′

P } is obtained

by adding a new packet to the system whose state is {NP , γP }.

Further, suppose that under policy π, {N ′

π, γ
′

π} is obtained by

adding a new packet to the system whose state is {Nπ, γπ}.

If

NP = Nπ, γP = γπ,

then

N ′

P = N ′

π, γ
′

P = γ′

π. (28)

Proof. Because B = ∞, no packet is dropped in policy P and

policy π. Since there is a new added packet to the system, we

have

N ′

P = NP + 1 = Nπ + 1 = N ′

π.



Also, there is no packet delivery, hence

γ′

P = γP = γπ = γ′

π.

Thus, (28) holds, which complete the proof.

Proof of Lemma 7. For any sample path, we have that

NP (0
−) = Nπ(0

−) and γP (0
−) = γπ(0

−). This, together

with Lemma 8 and 9, implies that

[NP (t)|I] = [Nπ(t)|I], [γP (t)|I] = [γπ(t)|I],

holds for all t ∈ [0,∞). This implies that [{HP (t), t ∈
[0,∞)}|I] and [{Hπ(t), t ∈ [0,∞)}|I] are of the same

distribution, which completes the proof.

Proof of Theorem 6. As a result of Lemma 7, [{γP (t), t ∈
[0,∞)}|I] and [{γπ(t), t ∈ [0,∞)}|I] are of the same

distribution for any work-conserving policy π. This implies

that all work conserving policies have the same throughput

performance. Also, from Lemma 7, we have that [{NP (t), t ∈
[0,∞)}|I] and [{Nπ(t), t ∈ [0,∞)}|I] are of the same dis-

tribution for any work-conserving policy π. Hence, all work-

conserving policies have the same mean-delay performance.

Finally, since the service times are i.i.d. across time and

servers, service idling only increases the waiting time of the

packet in the system. Therefore, the throughput and mean-

delay performance under non-work-conserving policies will be

worse. As a result, the preemptive LGFS policy is throughput-

optimal and mean-delay-optimal among all policies in Π
(indeed, any work-conserving policy with infinite queue size

B = ∞ is throughput-optimal and mean-delay-optimal).

REFERENCES

[1] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying update streams
in a soft real-time database system,” in ACM SIGMOD Record, vol. 24,
no. 2, 1995, pp. 245–256.

[2] J. Cho and H. Garcia-Molina, “Synchronizing a database to improve
freshness,” in ACM SIGMOD Record, vol. 29, no. 2, 2000, pp. 117–
128.

[3] L. Golab, T. Johnson, and V. Shkapenyuk, “Scheduling updates in a real-
time stream warehouse,” in Proc. IEEE 25th International Conference

on Data Engineering, March 2009, pp. 1207–1210.
[4] S. Kaul, R. D. Yates, and M. Gruteser, “Real-time status: How often

should one update?” in Proc. IEEE INFOCOM, 2012, pp. 2731–2735.

[5] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,”
in IEEE International Symposium on Information Theory (ISIT), July
2012, pp. 2666–2670.

[6] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in IEEE International Symposium on Informa-
tion Theory (ISIT), June 2015, pp. 1681–1685.

[7] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with
packet management,” in IEEE International Symposium on Information

Theory (ISIT), June 2014, pp. 1583–1587.
[8] N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. Angelakis,

“Age of information of multiple sources with queue management,” in
Proc. IEEE ICC, June 2015, pp. 5935–5940.

[9] S. Kaul, R. D. Yates, and M. Gruteser, “Status updates through queues,”
in Conf. on Info. Sciences and Systems, Mar. 2012.

[10] C. Kam, S. Kompella, and A. Ephremides, “Effect of message transmis-
sion diversity on status age,” in Proc. IEEE Int. Symp. Inform. Theory,
June 2014, pp. 2411–2415.

[11] M. Costa, S. Valentin, and A. Ephremides, “On the age of channel
information for a finite-state markov model,” in Proc. IEEE ICC, June
2015, pp. 4101–4106.

[12] T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of information
under energy replenishment constraints,” in Proc. Info. Theory and Appl.
Workshop, Feb. 2015.

[13] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE Int. Symp. Inform. Theory, 2015.

[14] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B.
Shroff, “Update or wait: How to keep your data fresh,” in Proc. IEEE

INFOCOM, April 2016.
[15] M. Shaked and J. G. Shanthikumar, Stochastic orders. Springer Science

& Business Media, 2007.


	I Introduction
	II Model and Formulation
	II-A Notations and Definitions
	II-B Queuing System Model
	II-C Scheduling Policy
	II-D Performance Metric

	III Optimality Analysis
	IV Numerical Results
	V Conclusion
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Lemma ??
	Appendix D: Proof of Theorem ??
	References

