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Abstract—We consider the peak age-of-information (PAol)
in an M/M/1 queueing system with packet delivery error,
i.e., update packets can get lost during transmissions to their
destination. We focus on two types of policies, one is to adopt
Last-Come-First-Served (LCFS) scheduling, and the other is to
utilize retransmissions, i.e., keep transmitting the most recent
packet. Both policies can effectively avoid the queueing delay
of a busy channel and ensure a small PAol. Exact PAol
expressions under both policies with different error probabilities
are derived, including First-Come-First-Served (FCFS), LCFS
with preemptive priority, LCFS with non-preemptive priority,
Retransmission with preemptive priority, and Retransmission
with non-preemptive priority. Numerical results obtained from
analysis and simulation are presented to validate our results.

I. INTRODUCTION

Many information systems work in such a mode that status
updates are first collected from a time-varying environment,
and then control decisions are made based on these infor-
mation. Examples include sensor networks for large-scale
monitoring [1]], vehicular networks where vehicle position
and velocity information are disseminated to assist safe and
intelligent transportation [2[], and wireless networks where
scheduling is carried out based on channel state information
[3]]. A key to these systems is to ensure timely delivery of status
updates, since out-of-date information can lead to incorrect
system status estimation and result in severe performance loss.

Age-of-information (Aol), first proposed in [4]], provides a
measure for the “freshness” of the current status information,
and is an important metric for measuring quality-of-service
(QoS) of a system. Different from typical performance metrics
such as delay or throughput, Aol jointly captures the latency in
transmitting updates and the rate at which they are delivered.

There have been various recent works on understanding
Aol. [4] analyzes Aol for queueing models including M /M /1,
M/D/1 and D/M/1. A more complicated case with multiple
update sources is analyzed in [S[]. [6]] studies Aol in a Last-
Come-First-Served (LCFS) M/M/1 queueing system with
or without preemption. The case when the destination may
receive out-of-order packets is considered in [7]]. In [8], the
authors introduce a notion peak age-of-information (PAol) and
consider systems with packet management, i.e., the queue can
choose to only keep a subset of update packets. Aol in a
multi-class M /G /1 queueing system is studied in [9]. In [|10],
the authors study optimal update scheduling in a discrete-time
multi-source system. The optimal update generating policy is
explored in [11].
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We notice that one common assumption made in most
aforementioned works is that update packet delivery is always
perfect, and Aol has been investigated mostly under the First-
Come-First-Served (FCFS) principle. An exception is [6],
which studies Aol under the LCFS principle, but also assumes
perfect packet delivery. However, in practical systems, packet
transmissions often contain errors and losses, e.g., due to
interference or buffer overflow at intermediate routers in a
multi-hop network. To study the impact of such delivery errors
on Aol, in this paper, we focus on an M /M /1 queueing model
where each packet, upon service completion, arrives at the
destination with a nonzero probability. Our model captures (i)
the queueing effect, which approximates the process where
update packets are sent over a channel or a network and
can cause congestion (This is different from [10], which also
considers transmission errors), and (ii) the error component,
which models the fact that update packets can get lost during
the delivery process.

We first focus on the LCFS service principle and derive
the exact PAol for both the systems with preemptive priority
and non-preemptive priority. Intuitively, LCFS is good for two
reasons. (i) Compared to packet management schemes, e.g,
[8]l, LCFS similarly avoids delaying new update packets with
queueing by letting them go first. This results in significant
reduction of Aol compared to FCFS, especially when the
channel utilization is high. (ii) When there are errors in packet
transmissions, packet management schemes can suffer severely
due to the lack of updates to deliver, while LCFS still ensures
a good delivery rate and does not affect Aol significantly.

Next we analyze the PAol under retransmission schemes.
Here we do not assume feedback, since retransmissions based
on feedback may suffer from waste of time waiting for
feedback, or interference between update packets and feedback
information. Thus, the Retransmission policies refer to keep
transmitting the most recent packet repeatedly until a new
packet arrives. Compared to LCFS, retransmission policies
have an advantage of always transmitting the most recent
updates, at the cost of additional packet state management.
We also derive the exact PAol expressions for retransmission
with or without preemption.

In this work LCFS and Retransmission policies are both
studied to cover various scenarios. Although utilizing retrans-
missions is expected to contribute to a small Aol, it does not
apply to scenarios where transmissions are not guaranteed,
e.g., UDP and some wireless sensor networks. The rest of
the paper is organized as follows. In Section [IIj we introduce



the model. In Sections and we present
our analysis for the FCFS, LCFS preemptive, LCFS non-

preemptive, Retransmission preemptive and Retransmission
non-preemptive cases. In Section we present numerical
results. We conclude the paper in Section

II. SYSTEM MODEL

We consider a system where a source transmits updates
(packets) to a remote destination through a queue. The source
generates packets according to a Poisson process with rate .
The service time for each packet is exponentially distributed
with service rate p.

Different from previous works, we assume that upon service
completion, each packet arrives at the destination indepen-
dently with probability p € [0, 1]. Such a system is modeled
by an M /M /1 queueing system with packet loss, as shown in
Fig. [I] The packet loss model captures real-world situations
where update packets can get lost during delivery to their
destination, e.g., interference or buffer overflow, and has not

yet been studied.
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Fig. 1. The packet delivery process in a queueing system with packet loss.

We study the peak age-of-information (PAol) in this system,
which is defined as follows. Suppose each update packet has
a time-stamp, marking its generation time. Denote the time-
stamp of the most recently received update at time ¢ as 6(t).
Then, the status age is defined as [4]:

At) £t —4(t),
and the set of peak ages is defined as:
{A(t;)|Fe > 0st. Vt € (t; —e) U (t; +€), At) < A(t;)}-
Then, PAol [8] is defined to be:

I
=1

where A; = A(t;) is the i-th peak of A(t) (See Fig. [2). The
last equality follows from the ergodicity of A;. As shown in
[9], PAoI is closely related to the average Aol, but is much
more tractable.

We first introduce some useful definitions. Denote /N the
set of all packets, according to the order in which they arrive.
For a packet n, denote a(n) its arrival time, d(n) its departure
time, and u(n) the time it starts to receive service. Let ®
denote the set of all successfully transmitted packets. Under
the LCFS service discipline, a successfully transmitted packet
may be outdated when arriving at the destination. Thus, we
further define the set of informative packets U as:

U 2 {ned|dn)—aln) <Aldn))}.
That is, ¥ = {ny,ng,...,n;, ...} contains the packets which
offer new information (so the system age decreases) when they
reach the destination.

Regarding the evolution of the system, we define the fol-
lowing random variables:
X, =aln+1) —a(n),
W, = u(n) — a(n),
Sy = d(n) —u(n),
i.e., X,, is the inter-arrival time between n and n + 1; W,, is
the waiting time of n; S, is the “service time” of n. Note that

in the LCFS with preemptive priority case, .S, may include
service time of later packets if n is preempted by other packets.

> > e

III. PAol uNDER FCFS

For the basic First-Come-First-Served (FCFS) case with
packet loss, PAol can be easily obtained. Define the first
informative packet which arrives no earlier that n as

a(n) £ min{n;|n; € ¥, a(n;) > a(n)}.

Moreover, define the inter-arrival time between n and «(n) as
X, £ a(a(n)) - a(n),

and define S‘n as the time duration from the moment n starts

to receive service to the moment «(n) departs, i.e.,
S, 2 d(a(n)) — u(n).

Note that if n € ¥, we have a(n) = n, X,=0and S, = S,.

Since ® = ¥ under FCFS, PAol is composed of the (expected)

inter-arrival time of two successfully transmitted packets, plus

the time a packet spends in the system. Thus,

A£CFS = E{Xm + Xﬂi+1 + W"'Li+1 + Sni+1 |ni7 Ni41 € (I)}v

1 A 1
= - +E{X,, _
5 Bl ,Z+1}+M_)\

where n; + 1 is n;’s next packet and n;41 is n;’s next packet

in ®. Moreover,

E{Xni+1} = pE{Xni+1|ni +1le (D} +

(1= p)E{Xn 41+ Xnq2lni +1 ¢ @}

1 N

= 0+(1 —P)(X + E{Xn,+1}),

where we have used E{X,, 41} = E{X,,,42}. Thus,

E{Xn1} = —F

pA
which implies:
pA = A

However, the FCFES policy, as discussed above, can suffer from
traffic congestion, under which each packet will take a long
time to get through the queue and the PAol can be poor. Thus,
in this work, we focus on the Last-Come-First-Served (LCFS)
as well as Retransmission policies and consider the following
two scheduling schemes.

1 1
ApETS = — (1

1) Preemptive priority: If a new packet arrives while the
server is busy, it preempts the current packet and starts
service immediately.

2) Non-preemptive priority: The server always completes
the current packet and then starts serving the most recent
packet in the queue.

The reasons to focus on PAol with LCFS are as follows:
(i) Intuitively, letting later packets go earlier should make
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Fig. 2. Evolution of status age in the LCFS M /M /1 system. PAol is divided
in different ways under the preemptive and non-preemptive cases.

the status at the destination fresher. Hence, the PAol will be
much smaller. (ii) Compared to packet management schemes
where packets are often dropped for queue size reduction, e.g.,
[8], LCFES still transmits all packets. Thus, in the case when
errors can occur and packets can get lost, LCFS ensures that
the destination still gets updates more regularly, maintaining
a lower level of PAol. Note that characterizing PAol under
LCFS, even with perfect delivery, is nontrivial and has not
been studied before, especially for the non-preemptive case.

We also analyze the PAol under Retransmission policies,
which have an advantage over LCFS, as they always deliver
the most latest information. On the other hand, retransmission
requires additional packet state management.

IV. PAOI UNDER LCFS WITH PREEMPTIVE PRIORITY

We begin with LCFS with preemptive priority. Note that
in this case, u(n) = a(n),Vn, ie., packets get served im-
mediately upon arrival. Moreover, in this case {S’n}n are
statistically the same. As shown in Fig. 2(a)l PAol is the
elapsed time from the moment when a packet n; € W
arrives, until the moment when n;,y; € ¥ departs (recall
that ¥ denotes the set of informative packets). Define the first
informative packet which arrives after n’s departure as

B(n) £ min{n;|n; € ¥, a(n;) > d(n)},
and the inter-departure time between n and ((n):
Y, £d(B(n)) - d(n).
Since the packets arriving after a(n;) but before d(n;) preempt
n; and get lost upon departure (because n; € W), we have (see

Fig. ()):

LCFS,pre __
Ap =

', + Yo Ing € UL 2)

A. Analyzing a Service Process

Here we use S,, to also denote the process of serving a
packet n. For simplicity, we define the following symbols
(notice that in other sections these symbols may have different
definitions):

P(S,, < Sn),

E{Sn|Sn < Sn},

E{S,|S, > Sn},

i.e., p is the probability that there exists a packet that reaches
the destination successfully during S,, (including n and the
packets arriving after a(n) but before d(n)) .

W o
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We first have the following lemma, based on which we will
derive ¢ and 3.

Lemma 1. For a nonnegative random variable X, an event
FE and a sequence of events E1, Es, ..., Ex which satisfies
E;NE; =0,Yi# jand E = UleEk, we have

K
B(E)E{X|E} = 3 P(EOE{X|EL}.
k=1
Proof.
P(E)E{X|E} = IP’(E)/ P(X > z|E)dx
0

P(X > z,E)

B(E) dx

- P(E)/Oo

The probability that X, <5, is )\— If that happens, the
system will first serve packet n + 1 (durmg which other new
packets may come and complete service before n + 1), then
continue the service of n. Based on this observation, we have:

~ 1% ~ ~
p )\+MP >\+M[ (Snt1 < Snga) (Snt1 +1)
X P(g < S’!l|X < Sna Sn-i—l > S7z+1)]
"
(1 3
A+#19+ [p+ p)p)- 3)

Furthermore we have

- A
5 = E{S,| X, > Sp,n € ®} + — [FR{ X, +
b AJF o PE{S,| n € @)+ - [PE{
n+1|X7’L S Sn7Sn+1 S Sn+1}’ + (1 _p)p
X E{Sn‘Xn < Snagn+1 > Sn+17‘§’n < Sn}]
n 1 A -
= t
)\+up)\+u+)\+u[p()\+,u+ )
1 -
1—p)p(—— + 35 4
+ (1= Pp(5, T3+ D), )
p(1 = p)

w0
I

A
1—p E{S,| X, > S, Pl + —(1—-p)?
(1= p)5 =5 “ELS| n¢ o)+ (1)

X E{Snlxn S Sna 5'n-l-l > Sn+1; Sn > Sn}

p(l—p) 1 A Y.
= + 1-— — 42
Adp A+p )\—i—u( p) ()\—i-u 5)-
)]
In the above, we have used
P(gn S Sn‘Xn S SnagnJrl > SnJrl)
- P(Sn - Xn - Sn+1 S Sn - Xn - n+1|

Sn > Xn + Sn+1)
=D,



and that
E{§n|Xn S Snvgn+1 > Sn-i—len S Sn}
- ]E{Xn + Sn+1 + Sn - Xn - n+1|
Xn S Sn; §n+1 > Sn—&-ly Sn S Sn}
= ]E{Xn|Xn < Sn} + E{STL+1|S7L+1 > Sn—i—l}
"HE{Sn - Xn - Sn+1‘5n > Xn + SnJrla Sn S Sn}
1 -
= ——+5+t,
A+
since both the services and arrivals are memoryless. We get
from (@) that:

AP? + (= A\)p— pp = 0, (6)
which leads to:
o —(p=X)+ — A2 +4 up
5= (=M + 2(u )? P )
Solving (@) and (3), and using (6) glve us:
1—
1-— = — 8
-0 = e ®)
57 D+ M,)\ig)\ﬁ (ﬁ - p) ©)
P LA+ \p
On the other hand, n € ¥ means that only n reaches

the destination successfully during S,, which is equivalent
to S,, = S,,. Therefore, we get:

Pie®) = tHopt (-7
KP(Sp — X — Spy1 = Sn — X — Sns1),
Pn € WE{Syln € ¥} = —H pt A 1-p)
Adp  A4+p At+p

xP(S, = S, )(% +5

+E{Sp|n € T}),
where we have used E{S,,— X,, — Sp+1|Sn > X+ Sn+1,n €
U} =E{S,|n € U}. As a result,

up
PneW) = =
(new) PESY;
1

E{S,n€W)} = — +

{Snln € ¥} LA+ 2\

B. Computing PAol

Now consider E{Y},,|n; € ¥} = E{Y,,}. Suppose the first
packet which arrives after d(n;) is 7;. Since the exponential
d1str1but10n is memoryless, the expected time from d(nz) to
a(f;) is 1. 1If S, < Si,, the (expected) remaining time of Y},
from a(i;) is t. Otherwise the remaining time is 5+ E{Y7 }
Based on the above analysis,

E{Yo,} = 5+ + (1 - )+ E{Ta,}),
from which we obtaln
E{Y,} = ];[i +pt+ (1 - p)3].
Substituting (8) and (9) into the above gives us:
E{Y, } = p(p = A) + 2 up + A(f + p)p
Aup(p — A+ 2AP)

As a result,
ALCESPre _RLS n; € U} +E{Y,,}

_ 1 (g — A) + 22up + AMA + p)p
w—A+2\p Aup(pe — X+ 2Ap)
Pl = A) + 3 up + A\ + p)p (10)

App(p — A+ 2Xp)
where p is given in ( . In the case when p = 1, the above
result becomes PAol = 51— + 3 + 1

V. PAoI UNDER LCFS WITH NON-PREEMPTIVE PRIORITY

In this case, if a new packet arrives while the server is busy,
it cannot interrupt the current service. From Fig. 2(b)] we see
that PAol is similarly the elapsed time from the moment when
a packet n; € U arrives, to the moment when n;y; departs.
Define the first informative packet which arrives after n starts
to receive service as

v(n) £ min{n;|n; € ¥, a(n;) > u(n)}.
and the time duration from the moment n starts to receive
service to the moment y(n) departs as
Zn £ d(y(n))
Since the packets arriving after a(n;) but before u(n;) are
served before n; and get lost upon departure (because n; € ¥),
we have (see Fig. 2(b)):
AéCFS,non _ E{Wnl + Z )

—u(n).

€U (11)

A. Analyzing a Service Process

We first define S,, as the process since u(n) till the first time
the server becomes free or starts to serve a packet that arrives
no later than u(n) (excluding n). Since S,, is determined by the
services and arrivals after «u(n) and independent of the system
state at u(n) and the history before u(n), the S, processes
induced by different packets n are identically distributed. We
re-define the following symbols:

P(Zn < Sp),

E{Zn|Zn < Sn},

E{S.|Z, > 5.},

i.e., p is the probability that there exists a packet which arrives
after u(n) and reaches the destination successfully during S,,.

Consider S,,. Suppose the number of packets arriving during
Sp is o(S,). We have Vk > 0,

M
> > >

poS) =) = ()i
E{S.Jo(Sn) =K} = 1o

If 0(S,) = k > 0 (which is needed for Z, < S,), when n
completes service, the system will serve the (n+ k)-th packet
and enter Sn+k- If n+k € @, then 2n < S, and the remaining
time of Z,, from d(n) is E{S, 1|0 (S,) = k,n+k € ®} = L
If n+k ¢ ®, then if ZH_k < Sn+k, Z, < S, and the
remaining time of Z,, from d(n) is E{Zn+k|o( n) = k,n+
k ¢ @ Zn+k < SnJrk} - E{Zn+k|Zn+k < SnJrk} = t
Similar analysis applies to the (n + k — 1)-th, the (n+k — 2)-

th, ---, and the (n + 1)-th packet. Thus, using Lemma
- > 1% A k -
P /\+M(A+u) {p+ 0 —-p)p



+(1-p) X =pP)p+ (1 —p)p|+---
+(1=p)* 1 =p) I+ (1 - p)pl}
o g (L= p(1-5) 12
= — - .
At Adpl—5(1-p)(1-p)
- - Ao B+l 1
t = 4+ =
o= G {pgw )
_k+1
1-— — +t 1-— 1-—
+( p)p(A+M+)+( p)(1-p)
k+1 _ 1 _k+1
- = 1— >r-
(G, T8+ D+ -5
+5 D]+ (- p) T =)
+1 I
k+1
1— — + kS — t
LG k54D |
oo " A k—1
- S Ta-wa -y
kzl)\—s—u At p =
><[(k+1+'§+l
p/\+u st
k+
+(1—p)ﬁ(/\7 +j5+1) } (13)
and \
o\~ B k
1— - -
(1=p)s /\+u/\+u kz)\+u /\+u)
A k+1
1-— 1—p)(—— . 14
<= (1= Gy + 49 (14)
From (12, we get:
A1 =p)p” + (= A+ 2Xp)p — Ap = 0, (15)
which leads to
—(B=A+2Xp)++/(A+p)?—4Au(1—p)
5= ™A—p) , O<p<1. (16)
A p=1
A—s—u’
Solving (I3) and (T4), and using (13) give us
17
1— , 17
U=PF = S —aa-ni-p 4
- 2\p? —2A\p? — D
5 AP + 2Ap” + (A = 2Ap° — i+ up)p (18)

pp[A + 1 —2X(1 = p)(1 - p)]

B. Computing PAol

Now we compute PAol shown in Fig. Define 7 (t)
as the number of packets in the system (including the packet
being served) at time ¢. So 7(¢) = 0 means the system is free
at time ¢. Different from the preemptive case, here 7(a(n;))
and (u(n;)) will respectively affect W,,, and Z,,, in that
they affect the degree to which new packets need to wait for
service completion.

We first compute the number of packets an arrival in ¥ sees
when it arrives. Since W is a special set of packets, they do
not see exactly as what an ordinary packet will see. To this
end, we define for each k

pr = Plr(a(n)) =kln € 7]

Plr(a(n)) = k,n € ¥]
P(n € ¥) '
Consider the waiting time W, of packet n. If w(a(n)) = 0
then W,, = 0. Otherwise n needs to wait for the completion
of the current service and the services of packets which arrive
during the current service, till the server starts to serve a packet
arriving no later that a(n). Since the exponential distribution is
memoryless, for w(a(n)) > 0, W, is the same as the process
Sy of a virtual packet 7 with u(n) = a(n), and n € ¥ is
equivalent to (Z, > S»)N(n € ®). For a steady-state M /M /1
queue, we know that P[r(t) = k] = (1 — 2)(3)*. Thus,

19)

=2
po = Pln € ¥]’
(1= 2)(2)k(1 - p)p
P = ok >1
Pln € 7]
Moreover, Y-, pi=1. Therefore,
p o= L2
0 - )\ZNJ’
p—=A Ak
= 1-9)(=)",k>1.
o= s p)(G) k>
Hence, the waiting tlme can be computed as:
wlni € W = > pR{W, [m(a(ni)) = k,n; € ¥}
k=0
= po-0+(1—po)s
_ A1 —p)
A (1= AP)A + = 2A(1 = p)(1 = P)]
For E{Z,,|n; € ¥}, define:

21 £ E{Zu|m(u(n)) = k,n € U} = E{Zy|n(u(n)) = k}.
For E{Z,|m(u(n)) = k}, if a packet n; arrives during S(n)
(with probability ﬁ) it will wait W,,, = S before being
served, with 7n; a v1rtua1 packet deﬁned as before. Since
m(u(n;)) = k, if Zﬁj > Si, and n; ¢ @, the (expected)
remaining time of Z, from w(n;) is still z;. Otherwise no
packets arrives during S(n), giving us w(d(n)) = k—1. Based
on the above analysis, we get:

M 1 11
= |— 4= —+(1- 20
1 )\+u[/\+u+)\+p +(1-p)z] (20)
A 1 1
AN P t 1—p)p(§+ =
+)\+,u[>\+ P )(S+u)
+(1=p)(1=p)(5 +21)],
and that for general k,
" 1
= —(— _ 21
2k )\+M()\+M+2k 1) 2D
A 1 1
- t 1—p)p(5+ —
N TP ARG )

+(1=p)(1 = p)(5+ 21)]-
Solving gives us
WA+ X+Ap+ N2
A+ = A1 =p)(1 =p))’

2 = (22)

where
_ At pp+ A+ wp? + A+ (p— Np? — plp
pp[X + = 2X(1 = p)(1 — p)] '

(23)



From (21)), we can get
(=P + A7)

1p
. 1—-p)(1+4+ A7
= (1 - ) - LD,
Hp

The evolution of the LCFS queueing system shows that if a
packet n sees no more than one packet when it arrives, then
there will be only one packet in the system (packet n itself)
when it starts to receive service. Thus,

Plr(u(n)) = 1|n € ¥] = po + p1, 24)
Plr(u(n)) = k|n € 9] = pg, k > 2. (25)
Hence,
E{Zn In; € U}
= ZP = kln; € O|E{Z,, |7 (u(n;)) = k,n; € U}

= (po +p1)z1 + Zpkzk
k=2

oo
=poz1 t+ Zpkzk
k=1

(1-=p)(14+X1)

=poz1 + Y prlak — ]

Pt WP
i 1+)\T)
k=
= 1—p)(1+ A7
:P021+Zpk1— P 1[1—%]
1 up

= 1 A
n Z + 7’)
(u — /\)(u+ A+ Ap+ A%7)
A = Ap) [ — AL = P + pp — A1 = p)(1 - p)]
A2(1—p)%(1+ A7)
(g = Ap) [ — A1 = p)]
Therefore, PAol can be computed as:
ALCFS,non _ )‘(1 B ﬁ)
(1r = AP)IA + = 2M(1 = p)(1 - p)]
(e =N (e + A+ Ap + N°7)
Al = Ap) [ — AL = P + pp — A1 = p)(1 — )]
2(1 - 1
A2(1—p)2(1+ A7) ’ 26)
p(p = Ap) [ — A(1 = p)]
where 7 is given in and p is given in (I6). From this
result, we can see that even in the case of p = 1, the solution
is non-trivial.

+

VI. PAOI UNDER RETRANSMISSION WITH PREEMPTIVE
PRIORITY

In this case, we consider the case when a packet is transmit-
ted repeatedly until it reaches the destination successfully or it
is preempted. Thus, ® = U. Here the “departure” of a packet
means the moment it is transmitted successfully or preempted.
Actually, since we do not assume feedback, a packet will

still be served before the arrival of the next packet even if
it has been transmitted successfully, but that has no influence
to the system due to the preemptive priority. We can regard
this policy as only storing the latest packet and replace it with
a new one as soon as a new packet arrives.

A. Analyzing a Service Process

We divide PAol in the same way as in Section [[V|and again
re-define the following symbols:

p = Pnel),
t & E{S,|nc¥},
5 2 E{S,},

i.e., p is the probability that there is no packets arriving during
Sn, or S = §S,,. Other than the total service time S,,, we
further use S, 1, to denote the k-th service of packet n.

For the S'n process, in S, 1, if n + 1 arrives (with prob-
ability ﬁ), it will preempt n and the remaining time of
S, from a(n + 1) is S,.1. Otherwise if n gets lost upon
service completion, the server will start to retransmit n and
]E{S”n — SpalXn > S’ml,ﬁn > Sp1} = §, since the first
transmission does not influence the following retransmissions.
Based on this observation, we get:

- o’ 1 1 5
= 1—p)(——
5 AJFM[A+ +( p)(AﬂLH)]
A 1
+—A(— +3), 27
AJFM(MLM 5) (27
which leads to: )
§=—. (28)
pu

If n € ¥, we know n has been transmitted successfully before
it is preempted. By considering the number of transmissions it
takes to successfully transmit n and using Lemma I] we have:

= 1— k L k+17 29
p kZ:O( () (29)
o)
- fook k1
t = 1- . 30
P Z( p)*p PG (30)
By solving (29) and @]) we can get
i
, 31
Nt (3D
~ 1
t = . 32
P (32)

B. Computing PAol

Now we are going to compute the PAol. For Y’n the
expected time from d(n;) to a(n; 4+ 1) is + and the process
from a(n; + 1) to d(nit1) is Sp,+1. Hence

- 1
E{Y,,|n;, € U} = X + 5.
Thus, we can compute PAol as
AII-}:T"W@ = E{Sn, + Ymmz € v}
= E{Snl\m S \I/} +E{Kh‘nl S \If}

itz
= —+5
A

= + <+ —. (33)




Remark: 1t turns out that this result corresponds to the result
under the LCFS with preemptive priority policy with a service
rate pu and a success probability 1. This is intuitive since in
the LCFS with preemptive priority case with p = 1, each
packet is either transmitted successfully or preempted, while
in this case each packet is still either transmitted successfully
or preempted, with a mean service time i.

VII. PAoI UNDER RETRANSMISSION WITH
NON-PREEMPTIVE PRIORITY

Under the Retransmission with non-preemptive priority pol-
icy, the server keeps retransmitting the most recent packet no
matter it has been successfully transmitted or not. In this case,
the most recent packet is kept in the queue and the server is
always busy. Since a new arrival can’t interrupt the current
service, a packet may be replaced by a more recent packet
when it is waiting in the queue or upon a service completion.
Here the “departure” of a packet means the moment it is
transmitted successfully or replaced. Let {2 denote the set of
packets which are not replaced while waiting in the queue, i.e.,
the ones that have been served before departure. Note that in
this case ® = ¥ and ¢ C Q.

A. Analyzing a Service Process

We divide PAol in the same way as in Section [V] but here
W, Sn, S and Z are only meaningful for packet n € €2,
which means that there is no packets arriving during W,.
Again we define the following notions for packet n € :
P(n € V),

E{Sn|n € ¥},

E{Sn},

i.e., p is the probability that n has been transmitted success-
fully before it is replaced by a more recent packet, or S, =5,

For the S, process, if n reaches the destination successfully
after S, 1, then S’n ends. Otherwise the server will start to
transmit another packet n € §2 which arrives during S, 1, or
retransmit 7, both resulting in the expected remaining time of
S, as 5. This observation gives us

1 1
s=p—+(1-p)(—
Lt A=)

which leads to:

-

> 1> 1>

S

+5), (34)

1
§=—. (35)

D
If n € ¥, we know n has been transmitted successfully before
it is replaced. By considering the number of transmissions it

takes to successfully transmit » and using Lemma [I] we have:

. - TR
- 1—p)F (L )kp, 36
p ;;:o( PG (36)
_x = TN k 1
i = 1—-p)F p(~——+-). @37
; }j( DA e ) 6D
By solving (36] and , wWe can get
. A+
po= —( ¢ (38)

AN pp

1 (L—p)u
A+ )X +pp)

Sl
\

(39)

B. Computing PAol

Now we are going to compute the PAol. Remember the
server is always busy and n; € ¥ indicates that there is no
arrivals during n;’s waiting time. Thus,

E{W,, -e@}:i.

A+

Consider the period Z,,. We have E{S,,|n; € ¥} =
E{S,, |n; € U} = {.If there is a packet 7i; with a(1i;) > a(n;)
in the queue at d(n;) (17; can only arrives during the last
service of n; before d(n;), and the probability is = + ), the

process from d(n;) to d(n;41) i is S, Otherwise, the expected
time from d(n;) to a(n;+1) is 3. After that, because the server
is always busy, it still needs to complete a service of n; before
it starts to transmit a packet arrives after n;. Based on these

observations, we have:
A " 1

EZ n, €Wy =t4+-—"—35+ +—+5
{Zn,] } e /\+u(/\ )-
So PAol can be computed as:
1 A w11
Agfmer = —— 4 i (=43
P A+ p A+ p )\+u()\ m )
1 1 1 1
= —+ + 5+ —. (40)

Atpp A pp
VIII. NUMERICAL RESULTS

We present numerical evaluations of PAol under differ-
ent scheduling policies, including FCES, FCFS with packet
management (the M/M/1/2* scheme in [8]]), LCFS with
preemptive priority, LCFS with non-preemptive priority, Re-
transmission with preemptive priority and Retransmission with
non-preemptive priority. Note that the M /M /1/2* scheme in
[8] is equivalent to the LCFS with non-preemptive priority
policy that discards all stale packets. The service rate is set to
© = 1 while the arrival rate is varied to show performances
under different channel utilizations p = 2 The cases p=0.1,
p = 0.5 and p = 1 are selected to represent different delivery
error regimes. We present not only the results computed
from our formulas (T), (I0), (26), and (@0), but also
those obtained by simulating real queueing systems with the
corresponding settings.

From Fig. 3] we see that the simulation results match our
theoretical results very well. We can see that when channel
utilization is high, the PAol under FCFES becomes very large
due to large queueing delay, while other policies effectively
avoid this problem. On the other hand, when packet loss
rate is high, FCFS with packet management suffers from
the lack of packet deliveries but LCFS again ensures a low
PAol, matching our intuition about the benefits of LCFS.
Moreover, retransmission policies have significant reductions
on PAol compared to other policies when packet loss rate
is high. But when packet loss rate is low, Retransmission
with non-preemptive priority suffers a performance loss since
retransmissions can also block later packets.



FCFS, theory |

©  FCFS, simulation

o FCFS with packet management, simulation
— — preemptive LCFS, theory
50 fy + preemptive LCFS, simulation
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Fig. 3. PAol in different queueing systems with packet loss.

IX. CONCLUSION

We consider the peak age-of-information (PAol) in an
M /M /1 queueing system with packet delivery failure, a set-
ting that models real-world situations with transmission errors.
We derive exact PAol expressions under different schedul-
ing policies, including FCFS, LCFS with preemptive prior-
ity, LCES with non-preemptive priority, Retransmission with
preemptive priority, and Retransmission with non-preemptive
priority. Our analytical and simulation results show that the
LCFS principle as well as retransmissions can successfully
avoid increments in PAol resulting from large queueing delay
and packet loss.
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