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Abstract—Integral functionals based on convex normal inte-
grands are minimized over convex constraint sets. Generalized
minimizers exist under a boundedness condition. Sequences of the
minimization problems are studied when the constraint sets are
nested. The corresponding sequences of generalized minimizers
are related to the minimization over limit convex sets. Martingale
theorems and moment problems are discussed.

I. INTRODUCTION

Let (Z,Z, µ) be a σ-finite measure space. For real Z-mea-
surable functions g on Z, let

Hβ : g 7→
∫
Z
β(z, g(z)) µ(dz) .

The functional Hβ is based on an integrand β on Z ×R with
values in (−∞,+∞]. Assumptions on β, summarized at the
beginning of Section II, include strict convexity in the second
coordinate, finiteness of β(z, t) for t > 0 and β(z, t) = +∞
for t < 0. Thus, Hβ is finite only when g is nonnegative, µ-a.e.

This work generalizes and strengthens existing results on
minimization of the integral functional Hβ over convex sets C
of functions g for which infC Hβ , infg∈C Hβ(g) is finite. If a
minimizer g in C exists, Hβ(g)= infC Hβ , then it is unique, µ-
a.e., by strict convexity. Otherwise, the minimizing sequences
gn in C, Hβ(gn)→ infC Hβ , are of interest. The minimization
of Hβ over C has a generalized minimizer if all minimizing se-
quences have a common limit, denoted here by ĝC . Theorem 1
implies existence of ĝC when a single minimizing sequence is
bounded. Corollary 1 presents equivalent assumptions.

For a sequence Cn of convex sets of functions g let

( Pn) J [n]

β = infCn Hβ , n > 1.

Assuming monotonicity, either Cn ⊇ Cn+1 or Cn ⊆ Cn+1, let
C∞ denote the intersection or union of the sets Cn, respectively.
The goal is to relate the problems ( Pn) to

( P∞) J [∞]

β = infC∞ Hβ .

Theorems 2 and 3, formulated in Section III, deal with the limit
behavior of the sequence ĝCn of generalized minimizers in the
problems ( Pn). Under some conditions the convergence to the
generalized minimizer ĝC∞ in ( P∞) is established in Bregman
distance based on β.

In Section IV, the results are applied to extend martingale
theorems. Discussion of moment problems is presented in
Section V. Proofs are postponed to Appendix.

II. PRELIMINARIES AND ASSUMPTIONS

It is assumed throughout that β is a normal integrand [7,
Chapter 14] such that β(z, ·), z ∈ Z, belongs to the class Γ of
functions γ on R that are finite and strictly convex for t > 0
and equal to +∞ for t < 0. The integrand is autonomous
when γ ∈ Γ exists such that β(z, ·) = γ for all z ∈ Z.

A function γ is asymptotically nonlinear if either the limit
γ′(+∞) of γ′(t) when t ↑ +∞ is infinite or the increasing
function t 7→ t γ′(+∞) − γ(t) is unbounded. The integrand
β is asymptotically nonlinear if β(z, ·) has the property for
µ-a.a. z ∈ Z.

From now on, all functions f, g, h on Z are assumed to be
nonnegative and Z-measurable. Equalities between them are
considered µ-a.e. If neither the positive nor the negative part
of the function z 7→ β(z, g(z)) is µ-integrable, the integral of
this function over Z is +∞ by convention.

The Bregman distance of g and h, based on β, is given by

Bβ(g, h) ,
∫
Z
∆β(z, g(z), h(z)) µ(dz)

where ∆β is a nonnegative integrand on Z × R2 such that
∆β(z, s, t) for z ∈ Z and s, t > 0 is equal to

γ(s)− γ(t)− γ′sgn(s−t)(t)[s− t] if γ′+(t) is finite,

and s · (+∞) otherwise. Here, γ abbreviates β(z, ·), sgn(r)
denotes + if r > 0 and − if r < 0, and γ′± are the one-sided
derivatives. The Bregman distance is nonnegative and vanishes
if and only if g = h. For more technical details see [5].

A sequence of functions gn on Z converges locally in the
measure µ to a function h, in symbols gn  h, if it converges
in measure on each set C of finite µ-measure, thus

µ(C ∩ {|gn − h| > ε})→ 0 , ε > 0 .

Either of the convergences Bβ(gn, h) → 0 or Bβ(h, gn) → 0
implies gn  h [5, Corollary 2.14].

A set of functionsH on Z is bounded locally in the measure
µ if for each set C ∈ Z with finite µ(C) to every ε > 0 there
exists K such that

suph∈H µ(C ∩ {h > K}) 6 ε .
A set of functions G orH is β-bounded or reversely β-bounded
if there exist functions g, h such that, respectively,

supG Bβ(·, h) < +∞ or supH Bβ(g, ·) < +∞ .



III. MAIN RESULTS

The following assertion extends [3, Theorem 1(c)] that is
confined to autonomous integrands. There, an assumption of
boundedness was missing, though implicitly used in a proof,
see also [5, Example 10.5].

Theorem 1. Let C be a convex set of functions on Z with finite
infC Hβ . If a minimizing sequence gn ∈ C is bounded locally
in measure then there exists a unique function ĝC such that

(1) Hβ(g) > infC Hβ + Bβ(g, ĝC) , g ∈ C .

Remark 1. If the finite infimum in (1) is attained, the function
ĝC from Theorem 1 equals the minimizer and

Hβ(g) > Hβ(ĝC) + Bβ(g, ĝC) , g ∈ C .

Otherwise, ĝC is the generalized minimizer in the sense that
Bβ(gn, ĝC)→ 0 for every minimizing sequence gn in C.
The assumption of boundedness has equivalent reformulations.

Corollary 1. Assuming infC Hβ is finite, the following asser-
tions are equivalent.

(i) A minimizing sequence is bounded locally in measure.
(ii) Every minimizing sequence is eventually β-bounded.
(iii) The generalized minimizer exists.
(iv) The level sets of Hβ intersected with C are β-bounded.

Let Cn be a sequence of convex sets of nonnegative func-
tions and ( Pn) the corresponding minimization problems with
values J [n]

β . When nonincreasing/nondecreasing, in symbols
Cn ↘/Cn ↗, the intersection/union C∞ gives rise to the problem
( P∞). Correspondingly, the sequence of values J [n]

β is nonde-
creasing/nondecreasing and upper/lower bounded by J [∞]

β .

Theorem 2. Let Cn↘ be a sequence of convex sets such that
J [n]

β is finite. Let Hβ have a minimizing sequence in C1 that
is bounded locally in measure. If the sequence J [n]

β has a
finite limit then there exists a unique function h∞ such that
Bβ(h∞, ĝCn)→ 0 and

(2) Hβ(g) > lim
n→∞

J [n]

β + Bβ(g, h∞) , g ∈ C∞ .

If the finite limit of J [n]

β equals J [∞]

β then h∞ = ĝC∞ .

Remark 2. In Theorem 2, let the infima in the problems ( Pn)
be attained. By Remark 1, ĝCn are the unique minimizers. If
the sequence J [n]

β is bounded then a unique function h∞ exists
such that ĝCn converges in the sense Bβ(h∞, ĝCn)→ 0 and

(3) Hβ(g) > lim
n→∞

Hβ(ĝCn) + Bβ(g, h∞) , g ∈ C∞ .

By Lemma 4 in Appendix, ĝCn h∞. Hence, along a subse-
quence ĝCn → h∞, µ-a.e. Often Hβ is lower semicontinuous,
lim infn→∞ Hβ(gn)>Hβ(g) whenever gn→ g, µ-a.e. Then,

J [∞]

β > lim
n→∞

Hβ(ĝCn) > Hβ(h∞) .

If h∞ ∈ C∞ then the inequalities are tight by (3), h∞ = ĝC∞
is the minimizer in the problem ( P∞), Bβ(ĝC∞ , ĝCn)→ 0 and
Hβ(ĝCn)→ Hβ(ĝC∞).

Example 1. Let µ be the measure on R2 expressible as sum
of the probability measure (pm) sitting in the point (0, 1), the
pm sitting in (0, 2) and the pm on (0,+∞)2 with the density
(x1, x2) 7→ e−x1−x2 , see [4, Example 1]. The functional Hγ
is based on the autonomous integrand γ : t 7→ t ln t.

Given s > 1, the functional Hγ is minimized over

Cn =
⋃
{G(ε, s) : 0 6 ε 6 1

n}

where G(a1, a2) for (a1, a2) ∈ R2 denotes the set of nonneg-
ative functions g that satisfy the three moment constraints∫

R2 (1, z1, z2) g(z1, z2)µ(dz1, dz2) = (1, a1, a2) .

The minimum of Hγ over G(ε, s), ε> 0, is attained uniquely
at the function fε,s : (z1, z2) 7→ eϑ

∗
1z1+ϑ

∗
2z2−Λ(ϑ

∗
1 ,ϑ
∗
2) where

Λ : (ϑ1, ϑ2) 7→ ln
[
eϑ2 + e2ϑ2 + 1

1−ϑ1

1
1−ϑ2

]
, ϑ1, ϑ2 < 1 ,

is the log-Laplace transform of µ and (ϑ∗1, ϑ
∗
2) is the unique

solution of ∇Λ(ϑ∗1, ϑ∗2) = (ε, s). Thus,

1
(1−ϑ∗1)2

1
1−ϑ∗2

= ε
[
eϑ
∗
2 + e2ϑ

∗
2 + 1

1−ϑ∗1
1

1−ϑ∗2

]
eϑ
∗
2 + 2e2ϑ

∗
2 + 1

1−ϑ∗1
1

(1−ϑ∗2)2
= s
[
eϑ
∗
2 + e2ϑ

∗
2 + 1

1−ϑ∗1
1

1−ϑ∗2

]
.

For fixed s> s∗ , 1+2e
1+e , the second equation and ϑ∗2 ↗ 1 imply

1
1−ϑ∗1

1
(1−ϑ∗2)2

→ (e+ e2)(s− s∗) and ϑ∗1 → −∞ .

By the first equation, ϑ∗1ε→ 0 and ε→ 0. Hence, when ε↘ 0
the functions fε,s converge to zero on (0,+∞)2, to 1

1+e at
(0,1) and to e

1+e at (0, 2). Further,

minG(ε,s) Hγ = ϑ∗1ε+ ϑ∗2s− Λ(ϑ∗1, ϑ∗2)→ s− 1− ln(1 + e) .

This minimum is actually Λ∗(ε, s) where Λ∗ is the conjugate
of Λ. By calculus, for s > s∗

Λ∗(ε, s) 6 sup
ϑ1,ϑ2<1

[
ϑ1ε+ ϑ2s− ln

[
eϑ2 + e2ϑ2 + 1

1−ϑ1
eϑ2
]]

= s− 1 + sup
ϑ1<1

[
ϑ1ε− ln

[
1 + e+ 1

1−ϑ1

]]
= s− 1− ln(1+e)− 2

√
ε/(1+e) +O(ε) .

The sets Cn intersect to C∞ = G(0, s). For s 6 2 this family
contains the single function f0,s that equals 2−s at (0, 1), s−1
at (0, 2), and 0 otherwise. Hence,

J [∞]

β = (s−1) ln(s−1) + (2−s) ln(2−s) , 1 6 s 6 2 .

If s > 2 then G(0, s) is empty, thus J [∞]

β = +∞.
For s > s∗ it follows that the infimum in J [n]

β is attained and

limn→∞ J [n]

β = s− 1− ln(1 + e) < J [∞]

β .

Thus, the limit is finite but smaller than J [∞]

β , which is even
infinite for s > 2. When n is sufficiently large the minimizer
ĝCn in the problem ( Pn) is equal to the minimizer f1/n,s of
Hγ over G(1/n, s), using the upper bound on Λ∗. Theorem 2
applies. The function h∞ = f0,s∗ is different from ĝC∞ = f0,s
for s∗ < s 6 2, while ĝC∞ is not defined for s > 2.



Theorem 3. Let β be asymptotically nonlinear and Cn↗ be a
sequence of convex sets such that J [n]

β is finite. Let Hβ have a
minimizing sequence in Cn that is bounded locally in measure,
n > 1. If the sequence J [n]

β has a finite limit then the limit
equals J [∞]

β , the minimizing sequences in C∞ are β-bounded
and Bβ(ĝCn , ĝC∞)→ 0.

Example 2. Let µ be the Lebesgue measure on [0, 1]. The
functional Hγ is based on γ : t 7→ t ln t and is minimized over

Cn =
{
g > 0:

∫ 1

0
g dµ = 1 , g(t) = 2t for t 6 1

n

}
.

The minimizer exists, ĝCn(t) = 1 + 1
n , t > 1

n , and

J [n]

β =
∫ 1/n

0
2t ln(2t) dt+ (1− 1

n2 ) ln(1 +
1
n ) ↘ 0 .

By Theorem 3, J [∞]

β =0 and ĝC∞ ≡ 1 is the generalized mini-
mizer in the problem ( P∞), which has however no minimizer
because ĝC∞ is not in C∞ =

⋃
n>1 Cn. Instead, ĝC∞ is a

minimizer when minimizing over all functions integrating to 1.

IV. MARTINGALE THEOREMS

In this section Theorems 2 and 3 are related to convergence
of conditional expectations in Bregman distances.∗

A function f has the covering property w.r.t. a sub-σ-algebra
Y of Z (and µ) if Z is the union of at most countably many
sets Y ∈ Y with

∫
Y
f dµ finite. By Radon-Nikodym theorem,

there exists a Y-measurable function f|Y = f|Y,µ that satisfies∫
Y
f|Y dµ=

∫
Y
f dµ for Y ∈ Y . It is nonnegative and unique.

If f > 0 then f|Y > 0.
Let sub-σ-algebras Yn of Z be nested as Yn ⊆ Yn+1, in

symbols Yn ↗, and generate Y∞. A martingale theorem asserts
that if f has the covering property w.r.t. Y1 then f|Yn

→ f|Y∞ ,
µ-a.e. In a backward martingale theorem, sub-σ-algebras are
nested as Yn ⊇ Yn+1 and intersect to Y∞.

Let DY,f denote the set of nonnegative functions g that
satisfy

∫
Y
g dµ =

∫
Y
f dµ for Y ∈ Y . The minimization of the

functionals Hβ over the convex set C = DY,f is not considered
here in full generality but only for integrands

β : (z, t) 7→ h(z) γ
( t
h(z)

)
, z ∈ Z , t ∈ R ,

where γ ∈ Γ and h is a positive function on Z. If h ≡ 1 then
the integrand is autonomous, which can be arranged replacing
µ by ν with dν = h dµ and g by gh, see [5, Appendix C].

It is further assumed that γ is differentiable, nonnegative and
γ(1) = 0. Then, Hβ(g) becomes the γ-divergence Dγ(g, h) of
a function g from h

Hβ(g) =
∫
Z
h γ
( g
h

)
dµ = Dγ(g, h) .

Lemma 1. If f > 0 and h> 0 have the covering property w.r.t.
a sub-σ-algebra Y of Z and µ then

ming∈DY,f
Dγ(g, h) = Dγ(f|Y , h|Y) .

If finite, the minimum is attained at g = f|Y h/h|Y .

∗Proofs of the assertions presented here are not included. They are available
for reviewer’s purposes at http://staff.utia.cas.cz/matus/

When the minimum in Lemma 1 is finite, Theorem 1 for
Hβ = Dγ(·, h) and C = DY,f features the minimizer ĝDY,f

equal to f|Yh/h|Y . Ineq. (1) is tight

Dγ(g, h) = Dγ(f|Y , h|Y) + Bβ(g, f|Yh/h|Y) , g ∈ DY,f .

In fact, if the right hand side is finite the Bregman distance is∫
Z

[
h γ
(
g
h

)
− h γ

(
f|Y
h|Y

)
− γ′

(
f|Y
h|Y

)[
g −

f|Yh

h|Y

]]
dµ .

The third term can be omitted since g|Y = f|Y . For the au-
tonomous integrand, h≡ 1, ĝDY,f

= f|Y and (1) takes the form

Hγ(g) = Hγ(f|Y) + Bγ(g, f|Y) , g ∈ DY,f .

Lemma 2. If sub-σ-algebras Yn ↗ , generate Y∞, and f > 0
and h> 0 have the covering property w.r.t. Y1 then

Dγ(f|Yn
, h|Yn

)↗Dγ(f|Y∞ , h|Y∞) .

Theorem 2 restricted to the autonomous integrands applies
to sequences of sets of the type DY,f . Lemmas 1 and 2 are
invoked in the proof.

Corollary 2. Under the assumptions of Lemma 2 with h ≡ 1,
if Hγ(f|Y∞) is finite then Bγ(f|Y∞ , f|Yn

)→ 0.

The choice γ : t 7→ t ln t − t + 1 gives the convergence of
relative entropies in Lemma 2, see [6, Theorem 2], while the
assertion of Corollary 2 seems to be new.

A consequence of Theorem 3 is analogous to Corollary 2.

Corollary 3. Let γ be asymptotically nonlinear. If Yn ↘ ,
intersect to Y∞, f > 0 and h> 0 have the covering property
w.r.t. Y∞, and Dγ(f|Y1

, h|Y1
) is finite then

Dγ(f|Yn
, h|Yn

)↘Dγ(f|Y∞ , h|Y∞) ,

and if Hγ(f|Y1
) is finite then Bγ(f|Yn

, f|Y∞)→ 0.

Choosing γ : t 7→ t ln t − t + 1 the convergence of relative
entropies follows, see [6, Theorem 3].

V. DISCUSSION

The minimization of integral functionals studied in this con-
tribution includes a number of special situations that appeared
before. The relations to literature are discussed at length in [5,
Section 11]. The focus here is on sequences of generalized
minimizers for entropy-like functionals, which is of novelty
even for the autonomous integrands. The generalization mat-
ters, see the simple situation in Example 2.

To make Theorem 2 operational, conditions for the conver-
gence J [n]

β → J [∞]

β < +∞ are desirable. By Remark 2, it is
sufficient to have β > 0, making Hβ lower semicontinuous,
and h∞ ∈C∞. An alternative is to assume that µ is finite, and
β bounded below. Likewise, for Theorem 3 boundedness of
J [n]

β should be under control. For more general sequences of
convex sets, see [2], [8].

In moment problems, C is the set of functions g satisfying∫
Z
ϕj g dµ = aj , j = 1, . . . , d,



where ϕj : Z → R are given moment functions and aj ∈ R
are prescribed moments. Feasibility is resolved by the concept
of conic core [5]. If infC Hβ is finite then the boundedness
condition from Theorem 1 is equivalent to the modified dual
constraint qualification. The generalized minimizer can be ex-
plicitly described avoiding primary constraint qualification [5].

A well-understood special limiting situation is when µ is
finite, Hγ is based on γ ∈ Γ with γ(t)/t→ +∞,

Cn =
{
g ∈ L1(µ) :

∫
Z
ϕj g dµ = aj , j = 1, . . . , n

}
where ϕj ∈ L∞(µ), and C∞ =

⋂
n>1 Cn contains a function g

with Hγ(g) finite. Then, Hγ is bounded below, Cn are weakly
closed, Hγ has weakly compact level sets and is strongly lower
semicontinuous in L1(µ). Therefore, ĝCn and ĝC∞ are mini-
mizers [8, Theorem 1]. The convergence J [n]

β → J [∞]

β < +∞
takes place. By Theorem 2, Bγ(ĝC∞ , ĝCn)→ 0. If γ(t) = t ln t
this improves the previously known convergence in L1(µ) [1,
Corollary 3.3]. See also [3] for a sufficient condition on γ to
conclude this convergence.

APPENDIX

Any β-bounded set is bounded locally in measure and so
is any reversely β-bounded set provided β is asymptotically
nonlinear, see Corollary 5.

The following appeared previously as [5, Lemma 2.13].

Lemma 3. To any set C ∈ Z of finite µ-measure and K, ξ, ε
positive there exists δ > 0 such that for functions g and h
either of Bβ(g, h) 6 δ or Bβ(h, g) 6 δ implies

µ(C ∩ {|g − h| > ε}) < ξ + µ(C ∩ {g > K}) .

Lemma 4. If a sequence gn is bounded locally in measure,
hn,m is an array of functions and Bβ(gn, hn,m) → 0 with
n,m → ∞ (n > m or m > n) then gn − hn,m  0 with
n,m→∞ (n > m or m > n).

Proof: Since the sequence is bounded, if C ∈ Z has
finite µ-measure and ξ > 0 then there exists K > 0 such that
µ(C ∩ {gn > K}) < ξ for all n > 1. By Lemma 3, for ε > 0
there exists δ > 0 such that if Bβ(gn, hn,m) 6 δ then

µ(C ∩ {|hn,m − gn| > ε}) < ξ + µ(C ∩ {gn > K}) < 2ξ .

The assumption on convergence implies that this holds even-
tually in n,m. Hence, the local convergence follows.

Corollary 4. If a sequence gn is bounded locally in measure
and Bβ(gn, gm) → 0 with n > m → ∞ or m > n → ∞
then gn converges locally in measure.

Proof: Lemma 4 is applied with hn,m = gm to con-
clude that gn−gm  0 with n,m as above. In either case, gn
is Cauchy locally in measure, and the convergence follows.

Proof of Theorem 1: The main ingredient is the identity
involving integral functionals and Bregman distances

tHβ(g1) + (1−t)Hβ(g2)− Hβ(tg1 + (1−t)g2)
= tBβ(g1, h) + (1−t)Bβ(g2, h)− Bβ(tg1 + (1−t)g2, h)

where g1, g2 and h are nonnegative functions, 0 < t < 1 and
the Hβ-terms and Bβ(tg1 + (1−t)g2, h) are finite.

By assumption, there exists a minimizing sequence gn in C
that is bounded locally in measure and finite Hβ(gn) converge
to finite infC Hβ . Then, the identity implies

1
2Hβ(gn) +

1
2Hβ(gm)− Hβ(hn,m)

= 1
2Bβ(gn, hn,m) + 1

2Bβ(gm, hn,m)

where hn,m = 1
2 (gn+gm). The left-hand side tends to 0 with

n,m→∞ as Hβ(hn,m) converges to infC Hβ due to convex-
ity of Hβ . Then, Bβ(gn, hn,m) → 0 and Bβ(gm, hn,m) → 0.
By Lemma 4, gn − hn,m  0 and gm − hn,m  0. Hence,
gn−gm  0 which expresses that the sequence gn is Cauchy
locally in measure. Going to a subsequence if necessary,
gn → ĝC , µ-a.e., for some function ĝC .

Taking g ∈ C with finite Hβ(g) and hn = tng + (1−tn)gn
with 0 < tn < 1, the identity implies

tnHβ(g) + (1−tn)Hβ(gn)− Hβ(hn)

= tnBβ(g, hn) + (1−tn)Bβ(gn, hn) .

If tn ↓ 0 then Hβ(hn) → infC Hβ . Hence, tn can decrease
slowly enough to make 1

tn
[Hβ(gn) − Hβ(hn)] converging to

zero. Dividing by tn,

Hβ(g)− inf
C

Hβ > lim sup
n→∞

[
Hβ(hn)−Hβ(gn)

tn
+ Bβ(g, hn)

]
.

Since hn → ĝC , µ-a.e., ineq. (1) follows by lower semiconti-
nuity of the Bregman distance [5, Lemma 2.12].

Proof of Theorem 2: By assumptions, Theorem 1 applied
to C1 and Corollary 1, the level sets of Hβ intersected with
C1 are β-bounded. Then, Theorem 1 and Corollary 1 apply to
all Cn and the generalized minimizers ĝCn exist. For n > m,
ineq. (1) and Cn ⊆ Cm imply

(4) Hβ(g) > J [m]

β + Bβ(g, ĝCm) , g ∈ Cn .

If gk ∈ Cn is a minimizing sequence in the problem ( Pn) then
(4) with gk instead of g is limited in k →∞ and gives

(5) J [n]

β > J [m]

β +lim sup
k→∞

Bβ(gk, ĝCm) > J [m]

β +Bβ(ĝCn , ĝCm)

due to gk  ĝCn and lower semicontinuity of the Bregman
distance [5, Lemma 2.12]. Hence, Bβ(ĝCn , ĝCm) → 0 when
n,m→∞ and n > m. In addition, ĝCn is β-bounded as

lim
n→∞

J [n]

β − J [1]

β > sup
n

Bβ(ĝCn , ĝC1) .

By Corollary 4, ĝCn  h∞ for a function h∞. Limiting in (5)
with n→∞ and lower semicontinuity imply

lim
n→∞

J [n]

β > J [m]

β + Bβ(h∞, ĝCm) , m > 1 .

Hence, Bβ(h∞, ĝCm) → 0 with m → ∞. It follows from (4)
restricted to C∞ ⊆ Cn that

Hβ(g) > lim
m→∞

J [m]

β + lim sup
m→∞

Bβ(g, ĝCm) , g ∈ C∞ .

This, ĝCm  h∞ and lower semicontinuity imply ineq. (2).



When the value J [∞]

β in ( P∞) is finite then ineq. (2) implies
that the level sets of Hβ intersected with C∞ are β-bounded.
Theorem 1 together with Corollary 1 imply existence of a
function ĝC∞ such that

(6) Hβ(g) > J [∞]

β + Bβ(g, ĝC∞) , g ∈ C∞ .

When limn→∞ J [n]

β = J [∞]

β , ineqs. (6) and (2) differ only in
h∞ and ĝC∞ . Then, the two functions coincide due to the
uniqueness stated in Theorem 1.
Remark 3. In Theorem 2, if gn ∈ Cn and Hβ(gn)− J [n]

β → 0
then gn  h∞. In fact, ineq. (4) implies

lim
n→∞

J [n]

β > J [m]

β + lim sup
n→∞

Bβ(gn, ĝCm) .

Then, gn is eventually β-bounded. Since Bβ(gn, gCn) → 0,
due to ineq. (4) with n = m, it follows that gn − gCn  0 by
Lemma 4. This and gn  ĝC∞ imply gn  h∞.

The following is an extended version of [5, Lemma 9.9]†.

Lemma 5. Let C ∈ Z have finite µ-measure and L, ξ, δ > 0.
There exists K > L such that if Bβ(g, h) 6 δ for functions
g, h then

µ(C ∩ {g > K}) < ξ + µ(C ∩ {h > L}) .

The assertion holds also assuming instead Bβ(h, g) 6 δ and
the asymptotic nonlinearity of β.

Proof: Let M = 2δ/ξ. By monotonicity, for K > L

Bβ(g, h) >
∫
{g>K,h6L} ∆β(z, g(z), h(z)) µ(dz)

>
∫
{g>K,h6L} ∆β(z,K,L) µ(dz)

>M · µ
(
C ∩ {∆β(·,K, L) >M, g > K, h 6 L}

)
.

Then, µ(C ∩ {g > K}) is at most
1
MBβ(g, h)+µ(C ∩{∆β(·,K, L) < M})+µ(C ∩{h > L}) .

If Bβ(g, h) 6 δ then 1
MBβ(h, g) 6 1

2ξ. By strict convexity,
∆β(z,K,L) increases to +∞ when K ↑ +∞. Therefore, for
K > L sufficiently large µ

(
C ∩ {∆β(·,K, L) < M}

)
< 1

2ξ,
and the assertion follows.

If Bβ(h, g) 6 δ then for K > L

δ >
∫
{g>K,h6L} ∆β(z, h(z), g(z)) µ(dz)

>
∫
{g>K,h6L} ∆β(z, L,K) µ(dz)

>M · µ
(
C ∩ {∆β(·, L,K) >M, g > K, h 6 L}

)
.

Therefore, µ(C ∩ {g > K}) is at most
1
2ξ + µ(C ∩ {∆β(·, L,K) < M}) + µ(C ∩ {h > L}) .

To conclude ∆β(z, L,K) ↑ +∞ with K ↑ +∞, the asymp-
totic nonlinearity of β(z, ·) suffices. The modified assertion
follows as above.

Corollary 5. If a set G of functions is β-bounded then is
bounded locally in measure. The conclusion holds also for

†In Lemma 9.9 the arguments in Bβ(h, g) are erroneously interchanged.

sets H that are reversely β-bounded assuming the asymptotic
nonlinearity of β.

Proof of Theorem 3: By Theorem 1, the generalized
minimizers ĝCn exist. For n > m it follows from ineq. (1) and
Cm ⊆ Cn that

(7) Hβ(g) > J [n]

β + Bβ(g, ĝCn) , g ∈ Cm .
Since the left-hand side of (7) can be finite the sequence ĝCn
is reversely β-bounded. Then, it is bounded locally in measure
by Corollary 5, using that β is asymptotically nonlinear.

For a minimizing sequence gk in Cm, Theorem 1 implies
gk  ĝCm , and then a subsequence converges µ-a.e. Limiting
in (7) along the subsequence

(8) J [m]

β > J [n]

β + Bβ(ĝCm , ĝCn) , n > m,

on account of the lower semicontinuity of Bregman distance
[5, Lemma 2.12]. Since the sequence J [n]

β is bounded and
monotone Bβ(ĝCn , ĝCm) → 0, n > m → ∞. By Lemma 4,
there exists a function h∞ such that ĝCn  h∞.

Limiting in (7) with n→∞, along a subsequence,

Hβ(g) > lim
n→∞

J [n]

β + Bβ(g, h
∞) , g ∈ Cm .

analogously as above. Since m > 1 is arbitrary this inequality
holds even for g ∈ C∞. Then, infC∞ Hβ is at least the finite
limit, and J [∞]

β = limn→∞ J [n]

β by monotonicity. Hence,

Hβ(g) > J [∞]

β + Bβ(g, h
∞) , g ∈ C∞ ,

and the minimizing sequences in C∞ are β-bounded. Theo-
rem 1 applies to C∞ and, by uniqueness, h∞ = ĝC∞ .

Limiting in (8) with n→∞, along a subsequence that gives
ĝCn → ĝC∞ , µ-a.e.,

J [m]

β > lim
n→∞

J [∞]

β + Bβ(ĝCm , ĝC∞) , m > 1 .

Then, Bβ(ĝCm , ĝC∞)→ 0 when m→∞.
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PROOFS OF THE RESULTS FROM SECTION IV

This is an appendix which is not a part of the publication.
It provides supplementary material to Section IV.

Proof of Lemma 1: Let ν denote the measure with the
µ-density h. Assuming the γ-divergence is finite,

Dγ(g, h) =
∫
Z
h γ
( g
h

)
dµ =

∫
Z
γ
( g
h

)
dν =

∫
Z
γ
( g
h

)
|Y,ν dν

=
∫
Z
γ
( g
h

)
|Y,ν h dµ =

∫
Z
γ
( g
h

)
|Y,ν h|Y,µ dµ .

Conditional Jensen’s inequality with γ > 0 implies

γ
( g
h

)
|Y,ν > γ

(( g
h

)
|Y,ν

)
.

By assumptions, f|Y and h|Y are well-defined and so is g|Y
for g ∈ DY,f . For such g and Y ∈ Y∫
Y
g|Y,µ dµ =

∫
Y
g dµ =

∫
Y

g
h
dν

=
∫
Y

( g
h

)
|Y,ν dν =

∫
Y

( g
h

)
|Y,ν h dµ

=
∫
Y

(( g
h

)
|Y,ν h

)
|Y,µ dµ =

∫
Y

( g
h

)
|Y,ν h|Y,µ dµ

Using that h|Y,µ > 0,( g
h

)
|Y,ν =

g|Y,µ
h|Y,µ

.

It follows by g|Y,µ = f|Y,µ that

Dγ(g, h) >
∫
Z
γ
(
g|Y,µ
h|Y,µ

)
h|Y,µ dµ = Dγ(f|Y,µ, h|Y,µ) .

Thus, the minimum is at least Dγ(f|Y , h|Y).
Denoting f|Y h/h|Y by fh, for Y ∈ Y∫

Y
f dµ =

∫
Y
f|Y dµ =

∫
Y
(fh)|Y dµ =

∫
Y
fh dµ

whenever the integral on the left is finite. Therefore, fh

belongs to DY,f . As Dγ(f
h, h) = Dγ(f|Y , h|Y) the minimum

equals Dγ(f|Y , h|Y) and fh is a minimizer.

Proof of Lemma 2: By Lemma 1, Dγ(f|Yn
, h|Yn

)↗ and
the limit of the sequence is at most Dγ(f|Y∞ , h|Y∞). A mar-
tingale theorem implies µ-a.e. convergences f|Yn

→f|Y∞ and
h|Yn
→h|Y∞ . Hence,

lim infn→∞Dγ(f|Yn
, h|Yn

) > Dγ(f|Y∞ , h|Y∞) .

by Fatou lemma and lower semicontinuity of γ > 0.
Proof of Corollary 2: By monotonicity of Yn, DYn,f

↘ .
A function g belongs to the intersection of DYn,f if and only
if
∫
Y
g dµ=

∫
Y
f dµ for Y ∈

⋃
n>1 Yn. The equality holds

also for Y ∈Y∞. Hence, Cn=DYn,f intersect to C∞=DY∞,f .
If Hγ(f|Y∞)=Dγ(f|Y∞ , 1) is finite then, by Lemma 1 with
h≡ 1, ĝCn = f|Yn

and ĝC∞ = f|Y∞ . Lemma 2 and Theorem 2
with h∞ = ĝC∞ imply the convergence.

Proof of Corollary 3: The integrand β is asymptotically
nonlinear and Cn=DYn,f

↗ and have the union C∞ contained
in DY∞,f .‡ Lemma 1 implies that J [n]

β =Dγ(f|Yn
, h|Yn

)↘ .
Then, the sequence is finite and has a nonnegative limit
because γ> 0. It follows by Theorem 3 that Bβ(ĝCn , ĝC∞)→ 0
where ĝCn = f|Yn

h/h|Yn
. Then, by Fatou lemma

0 >
∫
Z

lim inf
n→∞

[
h γ
(
f|Yn
h|Yn

)
− h γ

(
ĝC∞
h

)
− γ′

(
ĝC∞
h

)[
f|Ynh

h|Yn
− ĝC∞

]]
dµ > 0 .

In turn, Bβ(f|Y∞h/h|Y∞ , ĝC∞)= 0, using that f|Yn
→f|Y∞

and h|Yn
→h|Y∞ , µ-a.e. Hence, ĝC∞ = f|Y∞h/h|Y∞ and

Bβ(ĝCn , ĝC∞) = Dγ(f|Yn
, h|Yn

)−Dγ(f|Y∞ , h|Y∞)→ 0 .

This rewrites to Bγ(f|Yn
, f|Y∞)=Hγ(f|Yn

)−Hγ(f|Y∞)→ 0
when h≡ 1.

‡In Example 2, the inclusion was strict.


