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Abstract—We introduce the notion of weakly mutually uncorre- codes and balanced, error-correcting WMU codes. A binairygst
lated (WMU) sequences, motivated by applications in DNA-bsed s called balanced if half of its symbols are zero. On the othe

storage systems and synchronization protocols. WMU sequees are  pang g DNA string is termed balance if it has(% GC content
characterized by the property that no sufficiently long suffix of ’ ’

(O one sequence is the prefix of the same or another sequence. ifepresenting the percentage of symbols that are etther C. i
addition, WMU sequences used in DNA-based storage systemsa Balanced DNA strands are more stable than DNA strands with
required to have balanced compositions of symbols and to be lEarge  lower or higher GC content and they have lower sequencirg-err

(] Mutual Hamming distance from each other. We present a number rates. At the same time, WMU codes at large Hamming distance
of constructions for balanced, error-correcting WMU codesusing it the probability of erroneous codeword selection.

(- Dyc!< paths, Knuth’s balancing principle, prefix synchronized and The paper i ized as foll In Seciion 2 iew MU

G ‘cydlic codes. e paper is organized as follows. In Secfion 2 we review

and introduce WMU codes, and derive bounds on the maximum

) 1. INTRODUCTION size of the latter family of codes. In addition, we outline a

O) - Mutually uncorrelated (MU) codes are a class of block codesnstruction that meets the upper bound. In Seéiion 3 weidesc
in which no proper prefix of one codeword is a proper suffigzonstructions for error-correcting WMU codes, while in Gzd4

.—|°f the same or another codeword. MU codes were extensivelg discuss balanced WMU codes. Our main results are presente

j— studied in the coding theory and combinatorics literatundex in Section[b, where we first propose to use cyclic codes to

= ‘a variety of names. Levenshtein introduced the codes in 196dvise an efficient construction of WMU codes that are both

(/) under the name ‘strongly regular code$’] [1], and suggestat tbalanced and have error correcting capabilities. We theogad

Iglthe codes be used for synchronization. Inspired by applicaidf to improve the cyclic code construction in terms of coding
distributed sequences in frame synchronization as destiily rate through decoupled constrained and error-correctinting

« van Wijngaarden and Willink in[J2], Baji and Stojanovi [3] for binary strings. In this setting, we use Knuth's balaggcin

— rediscovered mutually uncorrelated codes, and studieth theechnique[[11] and DC-balanced codes|[12].

(O under the name of ’'cross-bifix-free’ codes. Constrgctioné a8 2 MU AND WMU CODES DEFINITIONS, BOUNDS AND

™~ 'bounds on the size of MU codes were also reported in a number CONSTRUCTIONS

of recent contributions [4],[]5]. In particular, Blackburr5] Th h h he followi —_—
analyzed these sequences under the name of ‘non-overtgppjn roug qu_t t € paper we use the following nOt"."t'th
notes a finite field of order > 2. If not stated otherwise, we

O_ codes’, and provided a simple construction for a class of MU L
< codes with optimal cardinality. MU codes have also founﬁ‘c'tIy assume that = 2, and that the corresponding field equals

© applications in DNA storage [6]L7]: In this setting, Yazei 2 = {0:1}. We leta = (as,...,a,) € Fy stand for a word of
(O al. [8] developed a new, random-access and rewritable DN/NGthn overFy, anda; = (a;,...,a;), 1 <i < j < n, stand
1 based storage architecture based on DNA sequences endof@ed Substring ot starting at position and ending at position
= with mutually uncorrelated address strings that allow ctale J- Moreover, for two arbitrary worda € Fy,b € Fy' we use
'>2 access to encoded DNA blocks. The addressing scheme badd0 denote a word of length +m generated by appendirig
7> ‘on MU codes was augmented by specialized DNA code5lin [§). the right-hand side od.
(O Here, we generalize the family of MU codes by introducing. MU Codes
weakly mutually uncorrelated (WMU) codes. WMU codes are we say thata = (ay,...,a,) € F7 is self uncorrelated if
block codes in which no “long” prefixes of one codeword argo proper prefix ofa matches its suffix, i.e.(ay,...,a;) #
suffixes of the same or other codewords. WMU codes differ fropg,, _; ;... a,), for all 1 < i < n. One can extend this
MU codes in so far that they allow short prefixes of codeworggfinition to mutually uncorrelated sequences as follows: ot
to also appear as suffixes of codewords. This relaxation gécessarily distinct words, b € F? are mutually uncorrelated
prefix-suffix constraints was motivated il [8] for the purposif no proper prefix ofa appears as a suffix df and vice versa.
of improving code rates while allowing for increased prgis Furthermore, we say that C F? is a mutually uncorrelated
DNA fragment assembly and selective addressing. For mqi@u) code if any two not necessarily distinct elementgimre
details regarding the utility of WMU codes in DNA storagee thmutually uncorrelated.
interested readers are referred to the overview paper [10]. The maximum cardinality of MU codes was determined up to

We are concerned with determining bounds on the size tonstant factor by Blackburnl[5, Theorem 8]. For complessn
WMU codes and efficient WMU code constructions. We consid@fe state this result below.
both binary and quaternary WMU codes, the later class adapte . _
for encoding over the four letters DNA alphabgt,T,c,q}. |heorem 1. Let Anmuv(n, ) denote the maximum size of MU
Our contributions include bounds on the largest size of WMEPAes ovelg, for n > 1 andg > 2. Then there exist constants
codes, construction of WMU codes that achieve the derivqmiaup0 < €1 <y such that
bound as well as results on three important constrainedovers " "

q q
. <A < Co—.
of WMU codes: balanced WMU codes, error-correcting WMU @ n v (n,g) < Co n
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To motivate our WMU code design methods, we next briefly(C,arse) = d(Crr). As ny was chosen so th&t,,,.sc C {0,1}".

outline two known and one new construction of MU codes.

Construction 1. (Prefix-Balanced MU Codes) Bilottet al. [4]

described a simple construction for MU codes based on wi

known combinatorial objects termddlyck words A Dyck word

In addition, the parsing cod€,.... is an MU code, since
it satisfies all the constraints required by Construcfidont@.
gﬁtermine the largest asymptotic size of a parsing coderigtiyb
recall the Gilbery-Varshamov bound.

is a binary string composed af zeros and: ones such that no Theorem 2. (Asymptotic Gilbert-Varshamov bound [15], ]16])

prefix of the word has more zeros than ones. By definition

,For any two positive integers and d <

5, there exists a

Dyck word necessarily starts with a one and ends with a zetdock codeC C {0,1}" of minimum Hamming distancé with

Consider a se®D of Dyck words of length2n and define the
following set of words of lengti2n + 1,

Cp 2 {la:ac D}.

Bilotta et al. proved thatCp is a MU code. An important

normalized rate
RC)>1—h (%) —o(1),

whereh(-) is an entropy function, i.es(z) = zlog, 1 + (1 —

observation is that MU codes constructed using Dyck words log,, ﬁ for0 <z <1.

are inherently balanced or near-balanced. To more rigtrou
describe this property of Dyck words, recall that a Dyck wor
hasheightat mostD if for any prefix of the word, the difference
between the number of ones and the number of zeros is at m
D. Hence, the disbalance of any prefix of a Dyck word is a

most D, and the disbalance of an MU codeworddp is one.

Let Dyck(n, D) denote the number of Dyck words of length

and height at mosD. For fixed values ofD, de Bruijn et al.
n T

[13] proved that
2 m 2n
Dy (D+1)COS (D+1)‘ (1)

Here, f(n) ~ g(n) denoteslim,,—, f(n)/g(n) = 1. Hence,
Billota's construction produces balanced MU codes. In toialj

Dyck(n, D) ~

§orollary 1. For a fixed value ofn, nyg is maximized in the
aforementioned construction by choosifig= /n — 2; in this
caseny = (vn —2—1)2 =n—2y/n —2— 1. By applying the
result from Theorerhl2 and choosidg to be an[nj;, s, d]

block code, withd < ”TH ands = nj; (1 — h(%)), we obtain
an error-correcting MU codé,,,s. with parametersgn, s, d].

B. WMU Codes: Definitions, Bounds and Constructions

The notion of mutual uncorrelatedness may be relaxed by
requiring that only sufficiently long prefixes of one sequedo
not match sufficiently long suffixes of other sequences. We ne
formally introduce codes with such defining properties.

the construction ensures that every prefix of a codeword Refinition 1. Let C C Fy and1 < k£ < n. We say thatC is

balanced as well. By mapping and 1 to {A,T} and {C,G},
respectively, we obtain a DNA MU code.

Construction 2. (General MU Codes, Levenshteinl [1] an
Gilbert [14]). Let/¢,n, 1 < ¢ < n — 1, be two integers and
let ¢ C Fy be the set of all worda = (a,...,ay) such that
(I) (al,...,ag) = (O,...,O)
(i) agy1,an #0
(i) The sequencéayyo,...,a,—1) does not contaid consec-
utive zeros as a subword.

a k-weakly mutually uncorrelatedc§WMU) code if no proper
prefix of length?, for all £ > k, of a codeword irC appears as

d’:l suffix of another codeword, including itself.

Theorem 3. Let Aw nu (n, g, k) denote the maximum size of a
k-WMU code overfy, forn > 1 and¢ > 2. Then, there exist
constant®) < C3 < C4 such that

q q
—L < _
CBn—k—i—l_ n—k+1
Proof: To prove the upper bound, we use an approach first

n n

Awmu (n,q,k) < Cy

Then,C is an MU code. Blackburri [5, Lemma 3] showed thaguggested by Blackburn ifll[5, Theorem 1]. Assume that F?
for ¢ = log,2n this construction is optimal. His proof reliedis ak-WMU code. LetL = (n + 1) (n — k + 1)—1, and consider

on the observation that the number of strifgs s, ..., an—1)

the setX of pairs(a, i) wherea € F, i € {1,..., L}, and where

that do not contairY consecutive zeros as a subword exceedse cyclic subword oh of lengthn starting at positior belongs

(g=1)?(29—1)

et 4" thereby establishing the lower bound of Theoremw C. Note that our choice of the parameteis governed by the
. It is straightforward to modify the second proposed codgerlap lengthk.

construction so as to incorporate error-correcting pridgenn

Note that|X| = L|C|¢“~", since there ard. possibilities

the underlying MU code. We outline our new code modificatiofor the indexi, |C| possibilities for the word starting at position

below.

Construction 3. (Error-Correcting MU Codes) Fix and/ to be
positive integers and consider a binamnyy, s, d] codeC of length
nyg = t(¢ — 1), dimensions and Hamming distancé. For each
codewordb € C, we mapb to a word of lengthn = (t4+1)¢+1

given by

(—13.2(6-1 t(0—1
a= Oglbl llbé( - b(571)2£—1)+11'

Furthermore, we defin€pa.se = {a: b € C}.

It is easy to verify thatCp..sc| = |Cx|, and that the code
Cparse has the same minimum Hamming distanceCas i.e.,

i of a, and ¢”“~" choices for the remaining. — n > 0
symbols ina. Moreover, if (a,i) € X, then (a,j) ¢ X for
jgefi£l,...,itn —k},.q due to the weak mutual uncor-
relatedness property. Hence, for a fixed ward Fg there are at

most {%MJ different pairs(a, i), ..., (a,z’L L J) € X.

n—k+1
This implies thai X | < %MJ g*. Combining the two derived
constraints on the size of, we obtain
L
X|=L[Clgt < | ————| 4",
X| = LIc|gb " < [n_kHJq

J

Therefore,|C| <

q’V
n—k+1"



To prove the lower bound, we introduce a simple WMU code  whereaay, aja € C;. This implies that the string of length
construction, outlined in Constructi@nh 4. at leastk appears both as a proper prefix and suffix of two
not necessarily distinct elements @f. This contradicts the
assumption thaf; is a k-WMU code. It is easy to verify
that the same argument may be used for the caseCthiat
a k-WMU code.

(iii) For any two distinct wordsc, ¢’ € C3 there exista,a’ €
C1,b,b’ € Cy such thatc = ¥ (a,b),c¢’ = ¥ (a’,b’). The

Construction 4. Let k, n be two integers such that< k < n. A
k-WMU code(C € F; may be generated through a concatenation
C={ab|ac(C' be(”}, whereC’ C Fi~! is unconstrained,
andC” C FZ*’““ is an MU code. It is easy to verify that is
an k-WMU code with [C’| |C"| codewords.

LetC’' = F’;‘l and letC” C IF;}—’““ be the largest MU code of Hamming distance betweeanc’ equals
size Ay (n—k+1,q).Then,|C| :qk71 Anu (n—k—i—l,q). no_ p '
The claimed lower bound now follows from the lower bound of 1; Le; # ¢;) = 1<Z_< 1 (i # a5 V' b; 7 b;)
TheorentlL, establishing tht| > C1 L | == —d— fazta

T a a .
3. ERROR-CORRECTINGWMU CODES > {dl it b b > min (dy,d2) .
2

We now turn our attention to WMU code design problems of )
interest in DNA-based storage. The collection of resultshis  This proves the claimed result. u
section pertains to WMU code constructions with error-€oting - construction 5. (Decoupled Binary Code Construction) For
functionalities. given integers: andk < n, letm = n—k-+1. As before, let, b

Let us start by introducing a mapping that allows the DNA  gndc denote the binary component words used in the encoding.
code design problem to be reduced to a binary code constuctiye construct € {4, T, ¢,G}" according to the following steps:

For any two binary stringa = (a1, ...,as),b = (b1,...,bs) € (i) Encodea using a binary block cod€, C {071}1@—1 of

{0,1} N v (a, b). 2 {0,137 x {0, 1} - {AT.C.G} s an length £ — 1, and minimum Hamming distancé Let &,
encoding function that maps the pairb to a DNA string denote the encoding function, so thiag (a) € Cs.

c=(c1,...,¢) € {4,T,C,G}", according to the following rules: (i)) Invoke Constructiofi B witho = m to arrive at a binary MU
A if (a;,b;)=(0,0) codeCy C {0,1}™ of lengthm, and minimum Hamming
' c if (a;,b;) = (0,1) distanced. Encodeb usingCs. Let 5 denote the encoding
for1<i<s, ¢; = T if (aby) = (1,0) 2 function, so thatb, (b) € Cs.
b T A (i) Encodec using a binary block codé; C {0,1}" of length
G if (ai,b;) = (1,1) n and minimum Hamming distancé Let ®3; denote the
Clearly, ¥ is a bijection and¥(a, b)¥(c,d) = ¥(ac, bd). The encoding function, so thab; (c) € Cs.
next lemma lists a number of useful propertieslof The output of the encoder performing the three outlinedsstep

Lemma 1. Suppose thaf;,C2 C {0,1}° are two binary block equalst (2, (a) > (b), @5 (c)).

code of lengths. Encode each paifa,b) € C; x Cy using the  Next, we argue thaC is a WMU code with guaranteed
DNA block codeCs = {¥ (a,b) |a € C;,b € C2}. Then: minimum Hamming distance properties.
(i) C5 is balanced ifC, is balanced.
(i) Csis ak-WMU code if eitherC; or Cs is a k-WMU code.
(iii) If dy andd, are the minimum Hamming distances 6f
andC,, respectively, then the minimum Hamming distanc
of C3 is at leastmin (dy, dz).

Lemma 2. Let C € {A,T,C,G}" denote the code generated by
Constructiori b. Then:

(i) Cis k-WMU code.
Gfii) The minimum Hamming distance @ is at leastd.

Example 1. In Constructiorib, leC; andC3 be [k — 1, s1,d]

and|n, s3, d] block codes, respectively, whesg = (k—1) (1 —

h(+%)),s3 = n(1 — h(£)) andd < %L satisfy the Gilbert-
Varshamov bound of Theorel 2. Construct [an s», d] block
codeC; by using Corollary(lL, withm = n — k + 1,m}; =

m—2ym—2—1,s =m} (1—h(:%)) andd < % For this
choice of component codes, the cal?dinalityCoéquaIs

Proof:

(i) Any ¢ € C3 may be written axz = ¥ (a,b), wherea €
C1,b € C. According to [2), the number aF, C' symbols
in ¢ equals the number of ones I Sinceb is balanced,
exactly half of the symbols in are Gs andC's. This implies
thatC3 has a50% GC content.

(i) We prove the result by contradiction. Suppose tfiats not
a k-WMU code whileC; is a k-WMU code. Then, there C| =2s1+satss — 2(’“*1)(1*’1(%))““2 (A-h(zE))+n (1-h(3)
existc,c’ € C3 such that a proper prefix of length at least

/ 1
k of c appears as a suffix af . Alternatively, there exist _ Anmvnohe
nonempty string®, co, ¢, such thaic = pcg, ¢’ = c,p and o(h=1) h(gtp)tmiy h(Ge )+ h()
the length ofp is at leastk. Next, we use the facl is a
bijection and find binary strings, b, ag, by such that 4. BALANCED WMU CODES

We begin this section by reviewing a simple method for
constructing balanced binary words, introduced by Knuth] [1
Therefore, in 1986. In this scheme, an-bit binary string(as,...,a,) is

. . . sent to an encoder that inverts the fibsbits of the data word
C/_ p/CO =V (a; b)/\Ij (a0, bo) =¥ (aflo’b})o)’ ((a1,...,a,) + 1°0"~?). The value ofb is chosen so that the
¢’ = cop = ¥ (ag, by) ¥ (a,b) = ¥ (aya, byb), encoded word has an equal number of zeros and ones. Knuth

p="Y(a,b),co =V (ag,by),cy, =¥ (ay, by) .



proved that it is always possible to find an indethat ensures a code with parameteD and cardinality
balanced output. The indéxis represented by a balanced binary E—1 n—k
word (by,...,b,) of lengthp. To create the final codeword, the [C| =|Ci|[C[|C2| = A(k — 1,2, T) Dyck(
encoder prependgh,...,b,) to (ai,...,a,) + 1°0"~t. The ol ol
receiver can easily decode the message by first extractiag th 4" tan (D—Jrl) cos” (D—Jrl)
index b from the firstp bits and then inverting the firét bits of ~ V2T (D+1)(k—1)3
the lengthr sequence.

Let A (n,d,w) denote the maximum cardinality of a binary 5. BaALANCED AND ERROR-CORRECTINGWMU CODES
constant weights code of length: and even minimum Hamming
distanced. Knuth [11] proved that

,D)2"

In what follows, we describe the main results of this paper,
pertaining to constructions of balanced, error-correctiMUs.

n n on+1 The first construction is conceptually simple and it lendelit
A (n, 2, —) = < ) ~ to efficient encoding and decoding procedures. The second co
2 2 V2rn3 ICI Ing Ing p u

struction outperforms the first construction in terms of etoolok

which is a simple consequence of Stirling’s approximation f Size, and it utilizes the binary encoding functions desatiln
mulan! ~ v2rnn"e~". Furthermore, Grahaet al.[17] derived the previous sections.

several bounds for the more general functidrin, d,w). An
updated list on the exact values and bounds Am,d, w)
may be found ghttp://codes.se/bounds/l In our future
analysis, we use the well known Johnspn! [18] bound.

A. A Construction Based on Cyclic Codes

The next construction uses ideas similar to Tavares’ synchr
nization technique [19]. We start with a simple lemma andatsh
justification for that.

Theorem 4. (Johnson Bound) For — oo, one has _ ) )
Lemma 4. Let C be a cyclic code of dimensiol. Then the run

on+1 n 9= .2 of zeros in any nonzero codeword is at mést 1.
Vorn= 2 Vorn=T Proof: Assume that there exists a non-zero codewgnd,

) ] ] represented in polynomial form, with a run of zeroes of larigt
Construction 6. (Balanced WMU Codes) For given integers  since the code is cyclic, one may writér) — a(x)g(z), where
andk <n, letm =n—k+1. As before, leta andb denote the ;) is the information sequence corresponding(te) andg(z)
binary words used in the quaternary mapping described ®efqg the generator polynomial. Without loss of generalitye anay

Construct a cod€ € {4, T,C,G}" as follows: assume that the zeros run appears in positions. , k — 1, so
(i) Encodea using ak-WMU codeC; C {0,1}" of lengthn. that> ;.. a;g; =0, fors € {0,...,k —1}. The solution of
For example, one may use Constructidn 4 to genefate the previous system of equationsdg = a; = ... = a1 = 0,

Let ®; denote the encoding function, so thit (a) € ¢;.  contradicting the assumption thatr) is non-zero. ]

(i) Encodeb using a balanced cod® C {0,1}" of lengthn  consiryction 7. Let ¢ be an [n,k — 1,d] cyclic code and let
and sizeA (n,2, 3). Let @, denote the encoding function,, _ (1,0,...,0). ThenC + e is ak-WMU code with distancel.
so that®; (¢) € Co.

The output of the encoder i (®; (a), @» (b)), Proof: Suppose that on the contrary the codeCiss not

WMU. Then there exists a proper prefix of length at least
Lemma 3. Let C € {A,T,C,G}" denote the code generated by: such that bothpa and bp belong toC + e. In other words,
Constructiori 6. Then, (pa) — e and (bp) — e belong toC. Consequently(pb) — €’
. : belongs taC, wheree’ is a cyclic shift ofe. Hence, by linearity
(i(il)) g :2 g:lglr\l/g/lel; code. qf C,z= Q(a— b) TLeI — e belongs taC. Now, observe that the
' first coordinate of is one, and hence nonzero. Bubhas a run of
We discuss next the cardinality of the code generated zeros of length at leagt—1, which is a contradiction. Therefore,
by Construction{6. According to Theorelm 3, one Hdgl = C + e is indeed ak-weakly mutually uncorrelated code. Since
Cs n—2—/:+l for some constant’; > 0. The result is constructive. C + e is a coset oC, the minimum Hamming distance property

In addition,|Cs| ~ 2. Hence, the size af is bounded from follows immediately. _ , u
V2rnz To use the above construction to obtain balanced DNA code-

below by: words, we map the elements#y to {A, T, C, G} via

4n+1

ng/ﬂ(n—k—i—l)n%' o ]

Let a be a word of lengthm. Then it is straightforward to see
Next, we slightly modify the aforementioned constructiamda that the word(a,a+ 1) has balanced?C content. This leads to
combine it with the Prefix-Balanced Constructidn 1 to obtain the simple construction described next.
near-balancedk-WMU code C € {A,T,C,G}" with parameter
D. For this purpose, we generafeaccording to the Balanced
WMU Constructior . We sef; = {0,1}" and construct; by
concatenating’; C {0, l}k’1 andC{ C {0, 1}”7'““. Here,C; {(c+ect+1+e):ceC}
is balanced and/’ is a near-balanced WMU code with parameter

D. It is easy to verify that is a near-balanced-WMU DNA Ids f‘ GC2dbaIanced,k—WMU code with minimum Hamming
istance2d.

O0—A 1—C w—T, w+1—G.

Corollary 2. LetC be an[n,k — 1,d] cyclic code overF, that
contains the all ones vectdr. Then


http://codes.se/bounds/

Table |
SUMMARY OF THE PROPOSED CONSTRUCTIONS FOR= 4.

Code k-WMU k-WMU + Error-Correcting k-WMU + Balanced  k-WMU + Error-Correcting + Balanced
n n—vn-k—1-1% nt1 n—vn—Fk—1
Rate Cp 4 4 _ 2 5 4 4 -
| n7k+.l 2(k—1)}1(kil)+mH h(@%{)#»n n(d) m(7hk+1)n% 27r2(k—1)h,(%)+m-H h,(md%)n%
Construction  Construction] 4 Constructibh 5 Construdciibn 6 Constructior B
Note Cr= 2% mig=n—k—-2/n—k—1 Cs = 2% mg=n—k—2/n—k—1

B. The Decoupled Binary Code Construction LetC ={a;...a, |a; €C; for1 <i<m}. We claim that
The next construction is a combination of the binary code S @ balanced error-correctingWMU code overfy.

Constructions ifi15 and 6. To clarlfy_the res_ult, notice that each glemeni’m; created by

_ _ _ concatenatingn strings, where each string belongsde C F;.

Construction 8. For given integers: andk < n, let m =n — |n addition, the words inC inherit the distance and balanced

k+1 and leta, b andc be the binary component words. Nextproperties ofC,. Therefore,C is balanced and has minimum

constructC € {A, T,C,G}" by applying the following steps:
(i) Encodea using a binary block cod€; C {0,1}*7! of
length £ — 1, and minimum Hamming distancé Let &,
denote the encoding function, so thgt (a) € C;.

Hamming distance at least

Next, for any pair of not necessarily distinetb € C and for
k <1 < n, we show thata} andb”_, , cannot be identical.
This establishes that the constructed concatenated cotibild.

l

(i) Invoke Constructio 3 witm = m to generate an MU code Let [ = is + j, wherei = L;J and0 < j < s. We consider three
Cy C {0,1}™ of lengthm and minimum Hamming distancedifferent scenarios for the index

d. Encodeb usingCs. Let 5 denote the encoding function,
so that®, (b) € Cs.

(iii) Generate a codeword from a balanced codé; of length .
n, minimum Hamming distance and of sizeA (n,d, 2).
Let ®3 denote the underlying encoding function, so that
D3 (C) € Cs.

The output of the encoder i8 (9, (a) D5 (b), D5 (c)).

The following result is a consequence of LemmhE]3, 2. *
Lemma 5. Let C € {A,T,C,G}" denote the code generated by

Constructiorl B. Then,

(i) Cis ak-WMU code.
(ii) C is balanced.
(iii) The minimum Hamming distance d is at leastd.

We

Example 2. ConstructC; andC, according to ExamplEl 1. The [1]

size of the cod€ equals 2
(Cl =ical[CalIcs] = 271+ An,d, )

(3]

_o(k=D) (A=A(EED)+miy (1-h(FE) A(n, d, g)

gn—vn—F 1 [4]
S :
a4

(5]
The last inequality follows from the lower bound of Theoreim 4
(6]

(7]

C. Concatenated Construction

For a given integers > 1, suppose that, is a balanced
error correctings-WMU code overF; with minimum Hamming
distanced. The codeCy may be obtained by using one of the two
methods described in this section. Our goal is to obtain getar
family of balanced error-correctingAWMU codesC C Fy by
concatenating words i@y, wheren = sm, m > 1.

(8]
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Construction 9. Select subset§,, ..

NG, =0
and(C; NCp—1=0)or (CoNCp, =0)

.,Cm C Cp such that
[11]

[12]
[13]

and(C;NCa=0)or ... of (Copue1 NCpp = 0) 4]

j =0; In this case,l < i < m. Therefore(C1 NCp—it1 =
0) or ... or (C; NCy = 0) implies thata! #b"_, ;.

0 < j < k; Again, one can verify that < i < m. Itis easy
to show tharaﬁj-;+1 is a suffix of lengths — j of a word in
Co andb; 7, is a prefix of lengths — j of an element in
C?. Sincek < s—j < s, one hasa, 7 | #b!'”7 . Hence,
aj; # bZ—l+1-

kE<j<s; In_ this case,aLjJrl i_s a proper pref_ix of length
J of aword inCo, andby;,_, ., is a proper suffix of length
j of an element irCy. Sincek < j < s, one hasaf_],rl #*
bl:_;,, andaj #b)_,.,.

summarize the results of our constructions of WMU codes

in Table[].
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