
A Beta-Beta Achievability Bound with Applications
Wei Yang1, Austin Collins2, Giuseppe Durisi3,

Yury Polyanskiy2, and H. Vincent Poor1
1Princeton University, Princeton, NJ, 08544 USA

2Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
3Chalmers University of Technology, 41296 Gothenburg, Sweden

Abstract—A channel coding achievability bound expressed in
terms of the ratio between two Neyman-Pearson β functions is
proposed. This bound is the dual of a converse bound established
earlier by Polyanskiy and Verdú (2014). The new bound turns
out to simplify considerably the analysis in situations where the
channel output distribution is not a product distribution, for
example due to a cost constraint or a structural constraint (such
as orthogonality or constant composition) on the channel inputs.
Connections to existing bounds in the literature are discussed.
The bound is then used to derive 1) an achievability bound on
the channel dispersion of additive non-Gaussian noise channels
with random Gaussian codebooks, 2) the channel dispersion of
an exponential-noise channel, 3) a second-order expansion for
the minimum energy per bit of an AWGN channel, and 4) a
lower bound on the maximum coding rate of a multiple-input
multiple-output Rayleigh-fading channel with perfect channel
state information at the receiver, which is the tightest known
achievability result.

I. INTRODUCTION

We consider an abstract channel that consists of an in-
put set A, an output set B, and a random transformation
PY |X : A → B. An (M, ε) code for the channel (A, PY |X ,B)

comprises a message set M , {1, . . . ,M}, an encoder f :
M→A, and a decoder g : B →M∪{e} (e denotes an error
event) that satisfies the average error probability constraint

1

M

M∑
j=1

(
1− PY |X

(
g−1(j) | f(j)

))
≤ ε. (1)

Here, g−1(j) , {y ∈ Y : g(y) = j}. For a fixed arbitrary
ε ∈ (0, 1), we are interested in finding a lower bound (i.e., an
achievability bounds) on the largest number M∗ of codewords
for which an (M, ε) code exists.

For stationary memoryless channels, Shannon’s channel
coding theorem establishes that the rate of the best code
converges to the channel capacity

C = max
PX

I(X;Y ) (2)

as the blocklength grows to infinity. Here, I(X;Y ) denotes
the mutual information between the channel input and output.
The mutual information can be expressed through an arbitrary
output distribution QY as follows [1, Eq. (8.7)]:

I(X;Y ) = D(PY |X‖QY |PX)−D(PY ‖QY ). (3)
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This identity—also known as the golden formula—has found
many applications in information theory. For example, it
allows us to prove converse bounds on channel capacity
(by dropping the term −D(PY ‖QY ); see [2]). It is also
used in the derivation of the capacity per unit cost [3], in
the Blahut-Arimoto algorithm [4], [5], in Gallager’s formula
for the minimax redundancy in universal source coding [6],
and in characterizing properties of good channel codes [7],
[8]. Therefore, it is of paramount interest to find a finite-
blocklength analog of (3).

As a first step, Polyanskiy and Verdú recently proved that
every (M, ε) code satisfies the following converse bound [8,
Th. 15]

M ≤ inf
0≤δ<1−ε

inf
QY

β1−δ(PY , QY )

β1−ε−δ(PXY , PXQY )
. (4)

Here, PX and PY denote the empirical input and output
distributions induced by the code (for the case of uniformly
distributed messages). The function βα(P,Q) in (4) measures
the difficulty of distinguishing P from Q in terms of hypo-
thesis testing, and is defined as1

βα(P,Q) , min

∫
PZ |W (1 |w)Q(dw) (5)

where the minimum is over all conditional probability distri-
butions (i.e., tests) PZ |W :W → {0, 1} satisfying∫

PZ |W (1 |w)P (dw) ≥ α (6)

and W denotes the support of P and Q. The analogy
between (3) and (4) follows from Stein’s lemma:

− log βα(Pn, Qn) = nD(P‖Q) + o(n), ∀α ∈ (0, 1). (7)

Contributions: In this paper, we continue the program of
establishing a finite-blocklength analog of the golden formula
by proving the following achievability counterpart of (4).

Theorem 1 (ββ achievability bound): For every 0 < ε < 1
and every input distribution PX , there exists an (M, ε) code
for the channel (A, PY |X ,B) satisfying

M

2
≥ sup

0<τ<ε
sup
QY

βτ (PY , QY )

β1−ε+τ (PXY , PXQY )
(8)

1By the Neyman-Pearson lemma [9], there exists an optimal PZ|W that
attains the minimum in (5). This test, which we shall refer to as the Neyman-
Pearson test, involves thresholding the Radon-Nikodym derivative of P with
respect to Q.
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where PY , PY |X ◦ PX .

The proof of this bound relies on Shannon’s random coding
technique and on a suboptimal decoder that is based on the
Neyman-Pearson test between PXY and PXQY . Hypothesis
testing is used twice in the proof: to relate the decoding error
probability to β1−ε+τ (PXY , PXQY ), and to perform a change
of measure from PY to QY .

The bound (8) is useful in situations where PY is not
a product distribution (although the underlying channel law
PY |X is stationary and memoryless), for example due to cost
constraints, or structural constraints on the channel input,
such as orthogonality or constant composition. In such cases,
traditional achievability bounds such as Feinstein’s bound [10]
and the dependence-testing (DT) bound [11, Th. 18], which are
explicit in dPY |X/dPY , become difficult to evaluate. In con-
trast, the ββ bound (8) requires the evaluation of dPY |X/dQY ,
which factorizes for product QY . This allows for an analytical
computation of (8). Furthermore, the term βτ (PY , QY ), which
captures the cost of the change of measure from PY to QY , can
be evaluated or bounded even when a closed-form expression
for PY is not available. To illustrate these points, we present
the following applications of Theorem 1:

• We derive an achievability bound on the channel dis-
persion [11, Def. 1] of additive non-Gaussian noise
channels, for the case in which the encoder uses a
power-constrained random Gaussian codebook. We show
that the power constraint introduces an additional term
in the expression of the achievable dispersion, which
depends on the minimum mean square error (MMSE) of
estimating the channel input given the channel output.

• We characterize the channel dispersion of the additive
exponential noise channel introduced in [12]. The channel
dispersion of a discrete couterpart of the exponential-
noise channel is studied in [13].

• We prove a second-order expansion for the minimum
energy per bit of an additive white Gaussian noise
(AWGN) channel at finite blocklength, hence establishing
a nonasymptotic counterpart of the “wideband slope”
result of Verdú [14]. Even though this result can be
obtained via other techniques (such as the κβ bound [11,
Th. 25]), the proof based on (8) is conceptually simpler
and generalizes to other channel models.

• We evaluate (8) for a multiple-input multiple-output
(MIMO) Rayleigh-fading channel with perfect channel
state information at the receiver (CSIR). In this case, (8)
yields the tightest known achievability result.

Notation: For an input distribution PX and a channel
PY |X , we let PY |X ◦ PX denote the distribution of Y in-
duced by PX through PY |X . The distribution of a circularly
symmetric complex Gaussian random vector with covariance
matrix A is denoted by CN (0,A). With χ2

k(λ) we denote the
noncentral chi-sqared distribution with k degrees of freedom
and noncentrality parameter λ. Finally, Exp(µ) stands for the
exponential distribution with mean µ.

II. PROOF OF THEOREM 1

Fix ε ∈ (0, 1), τ ∈ (0, ε), and let PX and QY be
two arbitrary probability measures on A and B, respectively.
Furthermore, let

M =

⌈
2βτ (PY , QY )

β1−ε+τ (PXY , PXQY )

⌉
. (9)

Finally, let PZ |X,Y : A×B → {0, 1} be the Neyman-Pearson
test that satisfies

PXY [Z(X,Y ) = 1] ≥ 1− ε+ τ (10)
PXQY [Z(X,Y ) = 1] = β1−ε+τ (PXY , PXQY ). (11)

For a given codebook {c1, . . . , cM} and a received signal y,
the decoder computes the values of Z(cj , y) and returns
the smallest index j for which Z(cj , y) = 1. If no such
index is found, the decoder declares an error. The average
probability of error of the given codebook {c1, . . . , cM}, under
the assumption of uniformly distributed messages, is given by

Pe(c1, . . . , cM ) = P
[{
Z(cW , Y ) = 0

}
⋃{
∃m < W s.t. Z(cm, Y ) = 1

}]
(12)

where W is equiprobable on {1, . . . ,M} and Y ∼ PY |W .
Following Shannon’s random coding idea, we next aver-

age (12) over all codebooks {C1, . . . , CM} whose codewords
are generated as pairwise independent random variables with
distribution PX . This yields

E[Pe(C1, . . . , CM )]

≤ P
[
Z(X,Y ) = 0

]
+ P

[
max
m<W

Z(Cm, Y ) = 1

]
(13)

≤ ε− τ + P
[

max
m<W

Z(Cm, Y ) = 1

]
. (14)

Here, (13) follows from the union bound and (14) follows
from (10).

To conclude the proof of (8), it suffices to show that

P
[

max
m<W

Z(Cm, Y ) = 1

]
≤ τ. (15)

Consider the randomized test PZ̃ |Y : Y → {0, 1}:

Z̃(y) , max
m<W

Z(Cm, y). (16)

It follows that

βPY [Z̃=1](PY , QY ) ≤ QY [Z̃(Y ) = 1] (17)

≤ 1

M

M∑
j=1

(j − 1)PXQY [Z(X,Y ) = 1]

(18)

=
M − 1

2
PXQY [Z(X,Y ) = 1] (19)

=
M − 1

2
β1−ε+τ (PXY , PXQY ) (20)

≤ βτ (PY , QY ). (21)



Here, (17) follows from (5); (18) follows from (16) and from
the union bound; (20) follows from (11); and (21) follows
from (9). Since α 7→ βα(PY , QY ) is nondecreasing, we
conclude that

PY [Z̃ = 1] ≤ τ (22)

which is equivalent to (15).

III. CONNECTION TO EXISTING BOUNDS

We next illustrate the connection between Theorem 1 and
other achievability bounds.

1) The κβ bound: The κβ bound in [11, Th. 25] is based
on Feinstein’s maximal coding approach and on a suboptimal
decoder similar to the one used in Theorem 1. By further
lower-bounding the κ term in the κβ bound using [15,
Lemma 4], we can relax it to the following bound:

M ≥ sup
τ∈(0,ε)

sup
QY

βτ (PY |X ◦ PX , QY )

supx∈F β1−ε+τ (PY |X=x, QY )
(23)

which holds under a maximal error probability constraint.
Here, F ⊂ A denotes the permissible set of codewords,
and PX is an arbitrary distribution on F . The similarity
between (23) and (8) suggests that we can interpret the ββ
bound as the average-error-probability counterpart of the κβ
bound. For the case in which βα(PY |X=x, QY ) does not
depend on x ∈ F , by relaxing M/2 to M in (8) and by
using [11, Lemma 29] we obtain a weaker version of (23) that
holds under the average error probability constraint. However,
for the case in which βα(PY |X=x, QY ) does depend on
x ∈ F , (8) can be both easier to analyze and numerically
tighter than (23) (see Section V-D for an example).

2) The dependence-testing (DT) bound: Setting QY = PY
in (8), using that βτ (PY , PY ) = τ , and rearranging terms, we
obtain

ε ≤ inf
α∈(0,1)

{
1− α+

M

2
βα(PXY , PXPY )

}
. (24)

Setting α = PXY [log dPXY /d(PXPY ) ≥ log(M/2)] and
using the Neyman-Pearson lemma, we conclude that (24) is
equivalent to a slightly weakened version of the DT bound [11,
Th. 18] with (M−1)/2 replaced by M/2. Since this weakened
version of the DT bound implies Shannon’s bound [16] and
the bound in [17, Th. 2], our bound implies these two bounds
as well.

IV. PROPERTIES OF βα(P,Q)

In this section, we collect properties of βα(P,Q), that are
useful for evaluating (8).

Lemma 2: For every α ∈ [0, 1] the following hold:

1) Data-processing inequality [18]: for every stochastic
kernel PY |X : X → Y , every PX , and every QX

βα(PX , QX) ≤ βα(PY |X ◦ PX , PY |X ◦QX). (25)

2) Action on mixtures of distributions [19, Lemma 25]: let
PX =

∑
j λjPXj be a convex combination of PXj .

Then for all QY and j we have

βα(PX,Y , PXQY ) ≥ λjβ1−(1−α)λ−1
j

(PXjY , PXjQY).

(26)
If the supports of PXj are pairwise disjoint then

βα(PX,Y , PXQY) = inf∑
jλjαj=α

λjβαj (PXjY , PXjQY). (27)

3) Action on product distributions: ∀P1, P2, Q1, Q2

βα(P1P2, Q1Q2) ≥ ββα(P1,Q1)(P2, Q2). (28)

4) Bounds: for every δ1 ∈ (0, 1−α) and every δ2 ∈ (0, α)

βα+δ1(PXY , PXQY )

βδ1(PY , QY )
≥ βα(PXY , PXPY ) (29)

≥ βα−δ2(PXY , PXQY )

γ
(30)

where γ satisfies PY
[
dPY /dQY ≥ γ

]
≥ 1− δ2.

5) Bounds via Rényi divergence: for every λ > 1

βα(P,Q)

≥ αλ/(λ−1)
(
e(λ−1)Dλ(P‖Q) − (1− α)λ

)−1/(λ−1)

(31)

where Dλ(·‖·) denotes the Rényi divergence [20].
Proof: See Appendix A.

V. APPLICATIONS

We shall take A and B to be n-fold Cartesian products of
alphabets X and Y . A channel is a sequence of conditional
probabilities PY n |Xn : Xn → Yn. We shall refer to an (M, ε)
code for the channel {Xn, PY n |Xn ,Yn} as an (n,M, ε) code.
Furthermore, the maximum coding rate R∗(n, ε) is defined as2

R∗(n, ε) , sup

{
logM

n
: ∃(n,M, ε) code

}
. (32)

A. Additive non-Gaussian noise channels

We consider the additive-noise channel

Yi = Xi + Zi, i = 1, . . . , n (33)

where {Zi} are independent and identically distributed (i.i.d.)
PZ-distributed (not necessarily Gaussian) and Xi, Yi, Zi ∈ R.
Each codeword xn must satisfy the constraint

‖xn‖2 =

n∑
i=1

x2
i ≤ nP. (34)

Let QXn = N (0, P In), and let PXn denote the conditional
distribution of Xn ∼ QXn conditioned on

Xn ∈ An ,
{
xn ∈ Rn : nP − log n ≤ ‖xn‖2 ≤ nP

}
. (35)

2Unless otherwise indicated, the log and exp functions in this paper are
taken with respect to an arbitrary fixed basis.



In other words, PXn is a truncated Gaussian distribution that
is supported on the spherical shell An. We shall consider
an ensemble of codes in which the codewords are generated
independently from the distribution PXn . This ensemble of
codes is used by Gallager to derive the random coding error
exponent for channels with cost constraint [21, p. 326]. In
the following theorem we present a second-order asymptotic
expansion on the maximum rate achievable with this code over
the channel (33).

Theorem 3: Let QX = N (0, P ), let QY = PY |X ◦ QX ,
and let

i(x; y) ,
dPY |X
dQY

(x; y) (36)

be the information density of the joint distribution QXPY |X .
Furthermore, let

I(P ) , EQXPY |X [i(X;Y )] . (37)

Assume that the noise Z satisfies the following conditions:
1) PZ is absolutely continuous with respect to the Lebesgue

measure on R;
2) EQXPZ

[
|i(X;X + Z)− I(P )|3

]
<∞; and

3) E
[
|Z|6

]
<∞.

Then, for every 0 < ε < 1, we have

R∗(n, ε) ≥ I(P )−
√
V (P )

n
Q−1(ε) +O

(
log n

n

)
. (38)

Here, Q−1(·) denotes the inverse of the Gaussian Q-function,

V (P ) , Var[i(X;Y )|X]+Var
[
D(PY |X=X̄‖QY ) + cX̄2

]
(39)

where the second variance is taken with respect to X̄ ∼ QX ,

c ,
log e

2P 2

(
mmse(X|Y )− P

)
(40)

and
mmse(X|Y ) , E

[
(X − E[X|Y ])2

]
. (41)

In both (39) and (41), the pair (X,Y ) is distributed according
to QXPY |X .

Proof: See Appendix B.
Remark 1: For PZ = N (0, 1), (39) recovers the dispersion

V (P ) = P (2+P )
2(1+P )2 log2 e of the AWGN channel [11, Th. 54].

B. The exponential-noise channel

We next consider the exponential-noise case, i.e., PZ =
Exp(1). As in [12], we assume that each codeword xn ∈ Rn
must satisfy

xi ≥ 0 and
n∑
i=1

xi ≤ nσ. (42)

The practical relevance of such a channel is discussed in [12],
[22]. The capacity of the exponential-noise channel with
constraint (42) is given by [12, Th. 3]

C(σ) = log(1 + σ) (43)

and is achieved by the input distribution P ∗X , according to
which X takes the value zero with probability 1/(1 + σ)

and follows an Exp(1 + σ) distribution conditioned on it
being positive. Furthermore, the capacity-achieving output
distribution is Exp(1 + σ).

Theorem 4: For the additive-exponential noise channel sub-
ject to the constraint (42) and for 0 < ε < 1,

R∗(n, ε) = log(1 + σ)−
√
V (σ)

n
Q−1(ε) +O

(
log n

n

)
(44)

where

V (σ) =
σ2

(1 + σ)2
log2 e. (45)

Proof: See Appendix C.

C. Minimum energy per bit over AWGN channels

For a complex-valued AWGN channel, we set A = Cn,
B = Cn, and PY n |Xn=xn = CN (xn, In). We assume that
every codeword xn satisfies the equal power constraint

‖xn‖2 = nP. (46)

Let R∗e(n, ε, P ) denote the maximum coding rate R∗(n, ε)
under the constraint (46). In Theorem 5 below, we provide
expressions for the β functions in (4) and (8) for the AWGN
case.

Theorem 5: Consider the complex-valued AWGN channel
PY n|Xn . Let Sn ∼ χ2

2n(2nP ) and Ln ∼ χ2
2n(0). Let QY n =

CN (0, In). Furthermore, let Sn , {xn ∈ Cn : ‖xn‖2 = nP}.
Then, for every distribution PXn supported on Sn

βα(PXnY n , PXnQY n) = Q
(√

2nP +Q−1(α)
)

(47)

and
βa(PY n|Xn ◦ PXn , QY n) ≤ P[Ln ≥ γ] (48)

where γ satisfies
P[Sn ≥ γ] = a. (49)

Furthermore, (48) holds with equality if PXn is the uniform
distribution over Sn.

Proof: See Appendix D.
By evaluating (47) and (48) in the asymptotic regime P → 0

and nP 2 →∞ as n→∞,3 and by substituting the resulting
expressions in Theorem 1 and in (4), we obtain the following
result.

Theorem 6: For an AWGN channel with SNR Pn satisfying
Pn → 0 and nP 2

n →∞ as n→∞, the maximum coding rate
R∗e(n, ε, Pn) behaves as

R∗e(n, ε, Pn)

log e
= Pn −

√
2Pn
n
Q−1(ε)− 1

2
P 2
n

+o

(√
Pn
n

)
+ o
(
P 2
n

)
, n→∞. (50)

Proof: See Appendix E.

3As we shall see, this regime is of interest for the characterization of the
minimum energy per bit.
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Figure 1. Minimum energy per bit versus spectral efficiency of the AWGN
channel; here, k = 2000 bits, and ε = 10−3.

We now relate (50) to the minimum energy per bit
E∗b(k, ε, R) to transmit k information bits at rate R and error
probability ε. Specifically, Theorem 6 implies that

10 log10E
∗
b(k, ε, R)

= 10 log10

Pn
R∗e(n, ε, Pn)

(51)

= 10 log10

(
loge 2 +

√
2 loge 2

k
Q−1(ε) +

log2
e 2

2
R

)
+ o(R) + o(1/

√
k) (52)

= 10 log10E
∗
b(k, ε, 0) +

10 log102

2
R+ o(R) + o

(
1√
k

)
. (53)

The last step follows from [23, Th. 3]. Note that (53) is
the finite-blocklength counterpart of Verdú’s wideband-slope
result [14, Eqs. (172)]. In Fig. 1, we present a comparison
between the approximation (53) (with the o(·) term omit-
ted), the converse bound [11, Th. 28], and the achievability
bound (8). In both cases QY is chosen to be the capacity-
achieving output distribution. For the parameters consider in
Fig. 1, the approximation (53) is accurate.

D. MIMO block-fading channel with perfect CSIR

Consider an mt×mr Rayleigh MIMO block-fading channel
that stays constant for nc channel uses. The input-output
relation within the kth coherence interval is given by

Yk = XkHk + Wk. (54)

Here, Xk ∈ Cnc×mt and Yk ∈ Cnc×mr are the transmitted
and received matrices, respectively; the entries of the fading
matrix Hk ∈ Cmt×mr and the noise Wk ∈ Cnc×mr are
i.i.d. CN (0, 1). We assume that {Hk} and {Wk} take on
independent realizations over successive coherence intervals.
The channel matrices {Hk} are assumed to be known to the
receiver but not to the transmitter. We shall also assume that
each codeword spans l ∈ N coherence intervals, i.e., the
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Figure 2. Bounds on rate for a 4×4 MIMO Rayleigh block-fading channel;
here SNR=0 dB, ε = 0.001, and nc = 4.

blocklength of the code is n = lnc. Finally, each codeword Xl

is constrained to satisfy∥∥Xl∥∥
F
≤
√
nP . (55)

To obtain an achievability bound on R∗(n, ε), we apply
Theorem 1 with PXl chosen as the uniform distribution on
S ′n , {Xl :

∥∥Xl∥∥2

F
= nP} and QYlHl chosen as the capacity-

achieving output distribution. With these choices, we have

R∗(n, ε) ≥ 1

n
log

βτ (PHlYl , QHlYl)

β1−ε+τ (PXlHlYl , PXlQHlYl)
. (56)

The denominator β1−ε+τ (PXlHlYl , PXlQHlYl) in (56) can be
computed via standard Monte Carlo techniques. However,
computing βτ (PHlYl , QHlYl) in the numerator is more in-
volved, since there is no closed-form expression for PHlYl .
To circumvent this, we further lower-bound βτ (PHlYl , QHlYl)
using the data-processing inequality for βα as follows.
Let X̃l be a sequence of nc × mt complex matrices with
i.i.d. CN (0, P/mt) entries. Then, PXl can be obtained via
X̃l through Xl =

√
nP X̃l/

∥∥X̃l∥∥
F
. Furthermore, QHlYl =

PYlHl |Xl◦PX̃l . Let P (s)

YlHl |Xl , PHlP
(s)

Yl |Hl,Xl , where P (s)

Yl |Hl,Xl
denotes the channel law defined by

Yk = XkHk
√
nP

‖Xl‖F
+ Wk, k = 1, . . . , l. (57)

We have that PYlHl = PYlHl |Xl ◦PXl = P
(s)

YlHl | fXl ◦PX̃l . Now,
by the data-processing inequality,

βτ (PHlYl , QHlYl) ≥ βτ (PX̃lP
(s)

YlHl |Xl , PX̃lPYlHl |Xl). (58)

Since the Radon-Nikodym derivative
d(PX̃lP

(s)

YlHl | Xl
)

d(PX̃lPYlHl | Xl )
can be

computed in closed form, the right-hand side of (58) can be
computed via Monte Carlo techniques. The resulting bound
is compared with the normal approximation of R∗(n, ε) in
Fig. 2. In contrast, the κβ bound [11, Th. 25] with F = S ′n is
much more difficult to compute due to the maximization over



codewords Xl ∈ S ′n. Furthermore, for blocklength values of
practical interest, we expect that

max
Xl∈S′n

βα(PHlYl |Xl=Xl , QHlYl)� βα(PXlHlYl , PXlQHlYl) (59)

which means that the resulting bound is much looser than (56).

APPENDIX

A. Proof of Lemma 2

To prove (28), we assume without loss of generality that
P1P2 is supported on X × Y and so is Q1Q2. Let Z : X ×
Y → {0, 1} denote the Neyman-Pearson test between P1P2

and Q1Q2, i.e.,

P1P2[Z(X,Y ) = 1] = α (60)
Q1Q2[Z(X,Y ) = 1] = βα(P1P2, Q1Q2). (61)

Interpreting Z(·, Y ) as a randomized test between P1 and Q1

and Z(X, ·) between P2 and Q2, we obtain

Q1Q2[Z(X,Y ) = 1] ≥ βQ1P2[Z(X,Y )=1](P2, Q2) (62)
≥ ββα(P1,Q1)(P2, Q2). (63)

The last step follows by the monotonicity of α 7→ βα(P2, Q2).
Combining (61) and (63), we conclude (28).

We next prove the first inequality in (29). Let Z1 :
X × Y → {0, 1} be the Neyman-Pearson test that achieves
βα−δ1(PXY , PXQY ), and let Z2 : Y → {0, 1} be the
Neyman-Pearson test that achieves βδ1(PY , QY ). Consider the
following test Z : X × Y → {0, 1}:

Z(x, y) , Z1(x, y) · (1− Z2(y)). (64)

We have:

PXY [Z = 1] = PXY [Z1 = 1, Z2 = 0] (65)
≥ PXY [Z2 = 0]− PXY [Z1 = 0] = α. (66)

Let
γ̃ , sup{γ : PY [dPY /dQY ≥ γ] ≥ δ1}. (67)

By the Neyman-Pearson lemma, we have dPY
dQY

(y) ≥ γ̃ for
every y such that Z2(y) = 1. Hence,

βα(PXY , PXPY ) ≤ βPXY [Z=1](PXY , PXPY ) (68)
≤ PXPY [Z = 1] (69)
≤ γ̃PXQY [Z1 = 1] (70)
= γ̃βα+δ1(PXY , PXQY ) (71)

≤ βα+δ1(PXY , PXQY )

βδ1(PY , QY )
. (72)

Here, (68) follows from (66) and because α 7→ βα(·, ·) is
monotonically nondecreasing; (71) follows from the definition
of the test Z1; finally, (72) follows from (67) and [11,
Eq. (103)]. The proof of the second inequality in (30) follows
from similar steps and is omitted.

Finally, to prove (31), we use the data-processing inequality
for Réyni divergence [20] and view the Neyman-Pearson test

between P and Q as a map from the support of P and Q to
{0, 1}. This yields

Dλ(P‖Q) ≥ dλ(α‖βα) (73)

=
1

λ− 1
log
(
αλβ1−λ

α + (1− α)λ(1− βα)1−λ) (74)

where dλ(·‖·) denote the binary Rényi divergence [18,
Eq. (23)], and where βα , βα(P,Q). By further lower-
bounding (1 − βα)1−λ by 1 (recall that λ > 1), and solving
the resulting inequality for βα, we obtain (31).

B. Proof of Theorem 3

Let PY n , PY n |Xn ◦ PXn and let QY n , PY n |Xn ◦
QXn . We will apply Theorem 1 to the channel (33) with τ =
1/
√
n and with PXn and QY n chosen as above. For the term

βτ (PY n , QY n), we have

log βτ (PY n , QY n)

≥ log βτ (PXn , QXn) (75)

= logQXn

[
nP − log n ≤

n∑
i=1

X2
i ≤ nP

]
+ log τ (76)

= log

(
Q

(− log n√
2nP 2

)
−Q(0)−O

(
1√
n

))
+ log τ (77)

= O
(

log n
)
. (78)

Here, (75) follows from the data-processing inequality
(25); (76) follows by using the Neyman-Pearson lemma and by
observing that dPXn/dQXn is a binary random variable; (77)
follows from the Berry-Esseen theorem [24, Sec. XVI.5].

Let pZ and qY be the probability density function (pdf)
corresponding to the distributions PZ and QY , respectively.
Since QX is a Gaussian distribution, it follows that qY (·)
is smooth. To evaluate β1−ε+τ (PXnY n , PXnQY n), we shall
prove that, under PXnY n , the random variable

log
dPY n|Xn

dQY n
(Xn, Y n) ∼

n∑
i=1

(
log pZ(Zi)−log qY (Xi+Zi)

)
(79)

is asymptotically normal as n → ∞. The main difficulty in
establishing this result is that, under PXn , the {Xi} are not
independent, which prevents us from using the Berry-Esseen
theorem. To circumvent this difficulty, we introduce a joint
probability distribution PXn,X̃n with marginals Xn ∼ PXn

and X̃n ∼ QXn , under which E
[
‖Xn − X̃n‖2

]
is small,

and we approximate log qY (Xi + Zi) by log qY (X̃i + Zi).
Specifically, let PXn,X̃n be the joint distribution for which
Xn/‖Xn‖ = X̃n/‖X̃n‖ and for which ‖Xn‖ is independent
of ‖X̃n‖. Writing ∆i , X̃i −Xi and f(y) , log qY (y), we
next relate f(Xi + Zi) to f(X̃i + Zi) as follows:4

f(X̃i + Zi)− f(Xi + Zi)

=

∫ 1

0

∆if
′(Zi +Xi + ∆it)dt (80)

4In this appendix, statements involving“=”, “≥”, and “≤” hold with
probability one, whenever random variables are involved.



= ∆if
′(X̃i + Zi)−∆2

i

∫ 1

0

tf ′′(Xi + Zi + t∆i)dt (81)

where in the last step we used integration by parts. The second-
order derivative f ′′(y) can be computed as follows (see [25,
Eq. (131)])

f ′′(y) =
d2 log qY (y)

dy2
= − log e

P
+

log e

P 2
Var[X|Y = y] (82)

≤ − log e

P
+

2 log e

P 2
(y2 + Var[Z]) (83)

where the conditional variance on the right-hand side (RHS)
of (82) is computed with respect to (X,Y ) ∼ QXPY |X .
Here, (83) follows from steps similar to the ones leading
to [25, Eq. (169)]. Substituting (83) into (81) and upper-
bounding t by 1, we obtain

f(Xi + Zi) ≤ f(X̃i + Zi)−∆if
′(X̃i + Zi)

+
log e

P
∆2
i

(
c0 +

2

P

∫ 1

0

(Xi + Zi + t∆i)
2dt

)
︸ ︷︷ ︸

,T1,i

(84)

where c0 , |2Var[Z]/P − 1|. Furthermore,

∆i = X̃i −Xi (85)

=
X̃i

‖X̃n‖
(
‖X̃n‖ −

√
nP
)

+
X̃i

‖X̃n‖
(√

nP − ‖Xn‖
)

(86)

where in the last step we used that X̃n/‖X̃n‖ = Xn/‖Xn‖,
and that both X̃n/‖X̃n‖ and Xn/‖Xn‖ are independent of
‖X‖n. Letting

A1,i , log pZ(Zi)− f(X̃i + Zi) = i(X̃i, X̃i + Zi) (87)

T2,i , f ′(X̃i + Zi)
X̃i

‖X̃n‖
(√

nP − ‖Xn‖
)

(88)

and substituting (84) and (86) into (79), we obtain
n∑
i=1

(
log pZ(Zi)− log qY (Xi + Zi)

)
≥

n∑
i=1

(
A1,i + f ′(X̃i + Zi)X̃i

(
1−
√
nP

‖X̃n‖

)
− T1,i + T2,i

)
.

(89)

Using (89) together with the inequality

P[A+B ≤ a+ b] ≤ P[A ≤ a] + P[B ≤ b] (90)

we conclude that for every γ, γ1, and γ2,

PXnY n

[
log

dPY n|Xn

dQY n
(Xn, Y n) ≤ γ − γ1 − γ2

]
≤ P

[ n∑
i=1

A1,i + f ′(X̃i + Zi)X̃i

(
1−
√
nP

‖X̃n‖

)
≤ γ

]

+P

[
n∑
i=1

T1,i ≥ γ1

]
+ P

[
−

n∑
i=1

T2,i ≥ γ2

]
. (91)

We next uper-bound the three probability terms on the RHS
of (91) separately. To bound the first term, we shall use the
central-limit theorem for functions [26, Prop. 1] (see also [27,
Prop. 1]) and follow similar steps as in [26, Sec. IV.D]. Let

A2,i , f ′(X̃i + Zi)X̃i (92)

A3,i , X̃2
i − P. (93)

It follows that {[A1,i, A2,i, A3,i]} are i.i.d. random vectors.
Note also that

E[A1,i] = I(P ), E[A3,i] = 0 (94)

and that

E[A2,i] = E
[
f ′(X̃1 + Z1)X̃1

]
(95)

=

∫
xpX(x)pZ(z)

log e

P
E[−X|Y = x+ z] dxdz (96)

= − log e

P

∫
xx̃pX(x)pZ(z)pX|Y (x̃|x+ z)dx̃dxdz (97)

= − log e

P

∫
xx̃pX(x)pY |X(x|y)pX|Y (x̃|y)dx̃dxdy (98)

= − log e

P
EY
[
E2[X|Y ]

]
(99)

=
log e

P

(
mmse(X|Y )− P

)
. (100)

The conditional expectations in (96) and (99) are computed
with respect to (X,Y ) ∼ QXPY |X , the functions pX , pY |X ,
and pX|Y are the (conditional) pdfs corresponding to QX ,
PY |X , and PX|Y , respectively, and mmse(X|Y ) in (100) is
defined in (41). Here, (96) follows from [28, Eq. (15)]; in (98)
we have used the change of variables y = x + z and that
pY |X(y|x) = pZ(y − x); and finally (100) follows because
EQX

[
X2
]

= P . Furthermore, we have

E
[
|A2,i|3

]
≤ E

[
|X̃i|3(c1|X̃1,i + Zi|+ c2)3

]
(101)

≤ c3E
[
|X̃i|6

]
+ c4E

[
|X̃i|3

]
E
[
|Zi|3

]
<∞ (102)

where c1, c2, c3, c4 are finite constants. Here, (101) follows
from (92) and [28, Prop. 2], and (102) follows because
E
[
|Zi|3

]
≤
√
E[|Zi|6] < ∞. Since E

[
|A1,i − I(P )|3

]
< ∞

by assumption and since E
[
|A3,i|3

]
< ∞, we have verified

that the vector [A1,i, A2,i, A3,i] has finite third central moment.
Let now

g(a1, a2, a3) , a1 + a2

(
1−

√
P

P + a3

)
. (103)

We have

g

(
1

n

n∑
i=1

A1,i,
1

n

n∑
i=1

A2,i,
1

n

n∑
i=1

A3,i

)

=
1

n

n∑
i=1

(
A1,i + f ′(X̃i + Zi)X̃i

(
1−
√
nP

‖X̃n‖

))
. (104)

Let j denote the Jacobian of g at (I(P ),E[A2,i] , 0), and let V
denote the covariance matrix of [A1,1, A2,1, A3,1]. It follows



that

j = [1, 0, c] (105)

where c is defined in (40). Furthermore,

jVjT = Var[A1,1] + 2c · Cov[A1,1, X̃
2
1 ] + c2Var[X̃2

1 ] (106)

= Var[A1,1 + cX̃2
1 ] (107)

= Var[i(X̃1; X̃1 + Z1)|X̃1]

+ VarX̃1

[
EZ1

[
i(X̃1; X̃1 + Z1)

]
+ cX̃2

1

]
(108)

= V (P ) (109)

where V (P ) is defined in (39). We now invoke [27, Prop. 1]
and obtain

P
[ n∑
i=1

A1,i + f ′(X̃i + Zi)X̃i

(
1−
√
nP

‖X̃n‖

)
≤ γ

]

≤ Q
(
nI(P )− γ√
nV (P )

)
+O

(
1√
n

)
. (110)

We next upper-bound the second term on the RHS of (91).
Note first that, by (132),

0 ≤
√
nP − ‖Xn‖ (111)

≤
√
nP −

√
nP − log n ≤ c̃1n−1/2 log n (112)

for some c̃1 > 0 and sufficiently large n. Evaluating the
integral on the RHS of (84), using (86) and (112), and using
that (a+ b)2 ≤ 2(a2 + b2), we obtain

P

log e
T1,i = ∆2

i

(
c0 +

2

P

(
X̃i + Zi −∆i/2

)2
+

∆2
i

6P

)
(113)

≤ 2

(
1−
√
nP

‖X̃n‖

)2

︸ ︷︷ ︸
,T3

X̃2
i

(
c0 +

4

P
(X̃i + Zi)

2

)
︸ ︷︷ ︸

,T4,i

+
7

6P
∆4
i +

2c̃21X̃
2
i

‖X̃n‖2
log2 n

n

(
c0 +

4

P

(
X̃i + Zi

)2)
︸ ︷︷ ︸

,T5,i

.

(114)

Set γ1 = (c̃2c̃3 + 1)(log n) · (log e)/P , where c̃2 and c̃3 are
sufficiently large constants. We have

P

[
n∑
i=1

T1,i ≥ γ1

]
≤ P

[
T3 ≥

c̃2 log n

n

]
+ P

[
n∑
i=1

T4,i ≥ c̃3n
]

+P

[
n∑
i=1

T5,i ≥ log n

]
(115)

which follows by a repeated use of (90). The first term on the

RHS of (115) is upper-bounded by

P
[
T3 ≥

c̃2 log n

n

]
≤ P

[
‖X̃n‖ ≥ n

√
P

√
n−

√
(c̃2/2) log n

)

]

+P

[
‖X̃n‖ ≤ n

√
P

√
n+

√
(c̃2/2) log n

)

]
. (116)

The first term on the RHS of (116) can be further upper-
bounded as

P

[
‖X̃n‖ ≥ n

√
P

√
n−

√
(c̃2/2) log n

)

]
≤ P

[
‖X̃n‖2 ≥ nP (1 +

√
c̃2(log n)/(2n))2

]
(117)

≤ Q
(√

c̃2 log n+
c̃2 log n

2
√

2n

)
+O

(
1√
n

)
(118)

= O
(

1√
n

)
. (119)

Here, in (117) we used that 1/(1−x) ≥ (1+x) for every x ∈
(0, 1); (118) follows from the Berry-Esseen theorem; (119)
follows by using Q(x) ≤ e−x2/2 and by taking c̃2 sufficiently
large.

We can upper-bound the second term on the RHS of (116)
using similar methods and obtain

P
[
T3 ≥

c̃2 log n

n

]
≤ O

(
1√
n

)
. (120)

Furthermore, we can upper-bound the second term on the
RHS of (115) using again the Berry-Esseen theorem and the
assumption E

[
|Zi|6

]
< ∞. Doing so we obtain that, for

sufficiently large c̃3,

P

[
n∑
i=1

T4,i ≥ c̃3n
]
≤ O

(
1√
n

)
. (121)

Finally, to bound the last term on the RHS of (115), we observe
that

E

[
n∑
i=1

T5,i

]
= O

(
log2 n

n

)
(122)

which follows from algebraic manipulations. Since T5,i ≥ 0,
by Markov’s inequality, this implies that

P

[
n∑
i=1

T5,i ≥ log n

]
≤ O

(
log n

n

)
. (123)

Substituting (120), (121), and (123) into (115), we conclude
that

P

[
n∑
i=1

T1,i ≥ γ1

]
≤ O

(
1√
n

)
. (124)

To bound the third term on the RHS of (91), we notice that,
by the analysis in (92)–(110), the random variable

‖X̃n‖−1
n∑
i=1

f ′(X̃i + Zi)X̃i −
√
n
E[A2,1]√

P
(125)



converges in distribution to
√
V ′Z ′, where Z ′ ∼ N (0, 1), for

some finite V ′ > 0. Furthermore, the speed of convergence
is O(1/

√
n). Letting Γ ,

√
nP − ‖Xn‖ and using that Γ is

independent of X̃n, we obtain

P
[
−

n∑
i=1

T2,i ≥ γ2

]
= E

[
Q

(
γ2/Γ +

√
n/PE[A2,1]√
V ′

)]

+O
(

1√
n

)
. (126)

Setting γ2 = c̃4 log n and using (112), we get

Q

(
γ2/Γ +

√
nE[A2,1]√
V ′

)
≤ Q

(
√
n
c̃4/c̃1 + E[A2,1] /

√
P√

V ′

)
(127)

= O(e−n) (128)

provided that c̃4 > −c̃1E[A2,1]/
√
P (recall that E[A2,1] ≤ 0,

see (100)).
Finally, substituting (128) into (126), and then (110), (124),

and (126) into (91), we obtain

PXnY n

[
log

dPY n|Xn

dQY n
(Xn, Y n) ≤ γ − γ1 − γ2

]
≤ Q

(
nI(P )− γ√
nV (P )

)
+O

(
1√
n

)
. (129)

Setting γ , nI(P )−
√
nV (P )Q−1(ε− c̃5/

√
n) and recalling

that τ = 1/
√
n, we conclude that the left-hand side of (129)

is upper-bounded by ε − τ for sufficiently large c̃5. By the
standard upper bound [11, Eq. (103)] on βα(P,Q), this implies

− log β1−ε+τ (PXnY n , PXnQY n)

≥ γ − γ1 − γ2 (130)
= nI(P )−

√
nV (P )Q−1(ε) +O(log n). (131)

We conclude the proof of (44) by combining (78) and (131)
with (8).

C. Proof of Theorem 4

Let QXn = (P ∗X)n, and as in Theorem 3 we shall choose
PXn as the conditional distribution of Xn ∼ QXn given that

nσ − log n ≤
n∑
i=1

Xi ≤ nσ. (132)

By construction, Xn ∼ PXn satisfies the constraint (42).
Finally, let PY n , PY n |Xn ◦ PXn and let QY n , PY n |Xn ◦
QXn . We will apply Theorem 1 to the exponential-noise
channel with τ = 1/

√
n and with PXn and QY n chosen

as above. As in (75)–(78), we bound βτ (PY n , QY n) using
the data-processing inequality and the Berry-Esseen Theorem.
This yields:

log βτ (PY n , QY n) ≥ O
(

log n
)
. (133)

For the exponential-noise channel, β1−ε+τ (PXnY n , PXnQY n)
is easy to compute. Indeed, under PXnY n , the random variable
log

dPY n|Xn

dQY n
(Xn, Y n) has the same distribution as

n log(1 + σ) +
log e

1 + σ

n∑
i=1

Xi −
σ log e

1 + σ

n∑
i=1

Zi. (134)

This random variable depends on the codeword Xn only
through

∑n
i=1X

n. Furthermore, given
∑n
i=1X

n, this random
variable is the sum of n i.i.d. random variables. Using the
Berry-Esseen theorem and (132) to evaluate (134), we con-
clude that

log β1−ε+τ (PXnY n , PXnQY n)

= n log(1 + P )−
√
nV (σ)Q−1(ε) +O(log n). (135)

Substituting (135) and (133) into (8), we establish that (44)
is achievable. The converse follows from the meta-converse
theorem [11, Th. 27] and from (135).

D. Proof of Theorem 5

Due to the spherical symmetry of Sn and QY n , we have
that βα(PY n|Xn=xn , QY n) is independent of xn ∈ Sn. Let
x̄n , [

√
nP , 0, . . . , 0]. By [11, Lemma 29], for every PXn

supported on Sn,

βα(PXnY n , PXnQY n) = βα(PY n |Xn=x̄n , QY n) (136)

= βα(CN (
√
nP , 1), CN (0, 1)). (137)

We obtain (47) by applying the Neyman-Pearson lemma to the
RHS of (137).

To prove (48), it suffices to observe that Z(yn) =
1
{

2‖yn‖2 ≥ γ
}

defines a test between PY n and QY n . Fur-
thermore, under PY n , the random variable 2‖Y n‖2 has the
same distribution as Sn regardless of PXn , and under QY n ,
it has the same distribution as Ln.

It remains to show that (48) holds with equality if PXn is
the uniform distribution over Sn. In this case, both PY n and
QY n are isotropic, and, hence, 2‖Y ‖n is a sufficient statistics
for testing between PY n and QY n . Let p0 and p1 denote
the pdfs of χ2

2n(2nP ) and χ2
2n(0), respectively. Following

simple algebraic manipulations, it can be shown that t 7→ p0(t)
p1(t)

is monotonically nondecreasing on (0,∞). Hence, the test
Z(yn) = 1{2‖y‖n ≥ γ} coincides with the Nayman-Pearson
test between χ2

2n(2nP ) and χ2
2n(0). The desired result follows

then from the Neyman-Pearson lemma.

E. Proof of Theorem 6

Choosing PXn to be the uniform distribution over Sn,
substituting (47) and (48) into (8), and setting a = τn ,
max{(1 + 3

√
2)n−1/2, e−nP

2
n/2}, we obtain

R∗e(n, ε, Pn) ≥ 1

n
log

P[Ln ≥ γ]

Q
(√

2nPn +Q−1(1− ε+ τn)
) (138)

where Ln and γ are defined in Theorem 5. Using the expansion
of the Q-function given in [29, Eq. (3.53)], we obtain that as



nPn →∞

− logQ
(√

2nPn +Q−1(1− ε+ τn)
)

= nPn log e−
√

2nPnQ
−1(ε) log e+ o

(√
nPn

)
. (139)

Next, we compute the numerator of (138). Since Sn in (49) has
the same distribution as

∑2n
i=1(Zi+

√
Pn)2 with Zi ∼ N (0, 1),

we can estimate P[Sn ≥ γ] using the Berry-Esseen theorem as∣∣∣∣∣P[Sn ≥ γ]−Q
(
γ − 2n(1 + Pn)√

4n(1 + 2Pn)

)∣∣∣∣∣ ≤ 23/2(1 + 3Pn)

(1 + 2Pn)3/2
√
n

(140)

≤ k1/
√
n (141)

where k1 , 2
√

2. Using (49) and recalling a = τn, we obtain

γ ≤ 2n(1 + Pn) +
√

4n(1 + 2Pn)Q−1(τn − k1/
√
n) , γ̃.

(142)
Furthermore, we have

logP[Ln ≥ γ] ≥ logP[Ln ≥ γ̃] (143)

≥ −1

2

{
(γ̃ − 2n) log e

+(2n− 2) log
γ̃

2n
+ log(2n)

}
− log 2 (144)

= −1

2
nP 2

n log e+ o(nP 2
n), nP 2

n →∞. (145)

Here, (144) follows from [30, Lemma 5] and because Ln ∼
χ2

2n(0), and (145) follows from (142) and from algebraic
manipulations. Substituting (139) and (145) into (138), we
conclude that (50) is achievable.

To prove the converse, we substitute (47) and (48) into (4),
and set a = αn = 1− τn. Doing so we obtain

R∗e(n, ε, Pn) ≤ 1

n
log

P[Ln ≥ γ′]
Q
(√

2nPn +Q−1(αn − ε)
) (146)

where γ′ satisfies P[Sn ≥ γ′] = αn. The denominator in the
RHS of (146) admits the same asymptotic expansion as (139).
To evaluate the numerator in the RHS of (146), we repeat the
steps as in (140)–(142) for γ′ and obtain

γ′ ≥ 2n(1 + Pn) +
√

4n(1 + 2Pn)Q−1(αn + k1/
√
n) , γ̃′.

(147)
Furthermore, we have

logP[Ln ≥ γ′] ≤ logP[Ln ≥ γ̃′] (148)

≤ − log e

2

{
γ̃′ −

√
n(γ̃′ − n)

}
(149)

= −1

2
nP 2

n log e+ o(nP 2
n), nP 2

n →∞. (150)

Here, (149) follows from [31, Eq. (4.3)], and (150) follows
from (147) and from algebraic manipulations. Finally, we con-
clude the proof of Theorem 6 by substituting (139) and (150)
into (146).
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