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Abstract

Fundamental relations between information and estimation have been established in the literature for the continuous-time
Gaussian and Poisson channels, in a long line of work starting from the classical representation theorems by Duncan and Kabanov
respectively. In this work, we demonstrate that such relations hold for a much larger family of continuous-time channels. We
introduce the family of semi-martingale channels where the channel output is a semi-martingale stochastic process, and the channel
input modulates the characteristics of the semi-martingale. For these channels, which includes as a special case the continuous
time Gaussian and Poisson models, we establish new representations relating the mutual information between the channel input
and output to an optimal causal filtering loss, thereby unifying and considerably extending results from the Gaussian and Poisson
settings. Extensions to the setting of mismatched estimation are also presented where the relative entropy between the laws
governing the output of the channel under two different input distributions is equal to the cumulative difference between the
estimation loss incurred by using the mismatched and optimal causal filters respectively. The main tool underlying these results
is the Doob–Meyer decomposition of a class of likelihood ratio sub-martingales. The results in this work can be viewed as
the continuous-time analogues of recent generalizations for relations between information and estimation for discrete-time Lévy
channels.

Index Terms

Mutual information, relative entropy, estimation error, SNR (Signal-to Noise Ratio), Gaussian channel, Poisson channel,
multi-variate point process, semi-martingales, stochastic intensity, filtering error, minimum mean squared error.

I. INTRODUCTION

The mutual information I(X ;Y ) between two random objects X,Y is defined as

I(X ;Y ) = E log
dPXY

d(PX × PY )
(X,Y ), (1)

where the argument of the logarithm is the Radon–Nikodym derivative between the joint measure of X and Y , and the product

measure induced by PXY .

The mutual information I(X ;Y ) plays a pivotal role in information theory, where it arises as the the maximal possible rate

to communicate through a noisy channel defined by regular conditional probability distribution PY |X [1]. This paper deals with

the characterization of mutual information under general observation models involving continuous-time stochastic processes.

This problem has a rich history. Duncan [2] considered the problem of explicitly characterizing the mutual information in the

setting of the canonical white Gaussian channel. Under this channel model, the output process {Yt : 0 ≤ t ≤ T } satisfies the

following stochastic differential equation:

dYt =
√
γXtdt+ dWt, (2)

where the input process XT = {Xt : 0 ≤ t ≤ T } is independent of the standard Brownian motion WT = {Wt : 0 ≤ t ≤ T },

and γ is the Signal-to-Noise-Ratio(SNR) parameter. In cases where we need to explicitly show the SNR level, we denote the

random variable Yt as Yγ,t, and the whole process Y T as Y T
γ . Duncan [2] showed that if the channel input Xt satisfies a finite

power constraint, then the mutual information takes the following form:

I(XT ;Y T ) =
γ

2

∫ T

0

E(Xt − E[Xt|Y t])2dt. (3)

Equation (3) is remarkable since it obtains an explicit formula for the mutual information, for essentially any input process

corrupted by white Gaussian noise. Further, it reveals an intimate connection between the mutual information and the minimum

mean squared error in estimating the channel input Xt based causally on the output process Yt. For instance, this result provides

the insight that the capacity achieving input distribution which maximizes the mutual information, must also be the one that

is hardest to estimate under squared loss. The rich interconnections between information measures and the corresponding loss

incurred in estimation are one of the central themes of this work. Duncan’s result (3) is the first of many important milestones

for relations between information and estimation in continous-time channels.
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Kadota, Ziv and Zakai [3] extended the relation above to the continuous-time white Gaussian channel in the presence of

causal feedback. They proved that

I(α;Y T ) =
γ

2

∫ T

0

E(Xt(α, Y
t)− E[Xt(α, Y

t)|Y t])2dt, (4)

where α is the continuous-time message process to be transmitted, and the channel input Xt(α, Y
t) which encodes the message,

depends causally on the output process Yt and the message α.

This relationship has immediate implications. For example, [3] used (4) to show that feedback does not increase the capacity

of continuous-time white Gaussian channel. It is worth noting that the channel without feedback is subsumed in the case with

feedback if we take α = XT , i.e. the channel input is the message itself. From now on we will consider the more general

case where feedback is allowed.

Paralleling the developments in the white Gaussian channel, in 1978 Kabanov [4] calculated the capacity for continuous-time

Poisson channel with feedback. Suppose the output process Y T = {Yt, 0 ≤ t ≤ T } is a point process whose compensator

(stochastic intensity) is γ
∫ t

0 Xsds, where Xt = Xt(α, Y
t−) is the predictable input process, and α is the message. This is

the so-called continuous-time Poisson channel with feedback. Adopting notations introduced in [5], we know from [6, Thm.

19.11.] [7] that if
∫ T

0
EXt logXtdt < ∞, then

I(α, Y T ) = γ

∫ T

0

EℓP(Xt,E[Xt|Y t−])dt, (5)

where ℓP(x, y) = x ln(x/y)− x+ y, x > 0, y > 0 is the natural loss function for estimation in the Poisson channel.

Our main contribution in this work is to introduce a class of semi-martingale channels and to present a new formula for the

mutual information in the same spirit as the relations above for the Gaussian and Poisson channels. In particular, the family

of semi-martingale channels will include the continuous-time Gaussian and Poisson channels as special cases, and the new

formula for mutual information under this model will generalize and unify the two classical results presented above, as well

as present new relations between information and estimation. We note that generalized representations of mutual information

are a topic of great interest, and recent efforts in that direction include [8], which presents estimation theoretic formulae for

mutual information between a stochastic signal and a pure jump Lévy process which is modulated by the signal, and [9] where

a generalization of the famous de Bruijn’s identity is presented for general families of stable densities. Beyond the Gaussian

and Poisson models, [10] calculated the mutual information for locally infinitely divisible processes in 1974.

As part of the history of results discovered for the continuous-time Gaussian and Poisson channels, we include here some

of the more recent developments and insights which are informed by relations between information and estimation. After

recapping these extensions, we will introduce the framework for results in this paper.

1) Deriving scalar channel results from continuous-time families: Before proceeding to develop generalizations for continuous-

time families, we quickly recap the scalar Gaussian channel and the I-MMSE relationship [11] which presents the derivative

of the mutual information (with respect to SNR) as the minimum mean squared error in estimation of the channel input based

on the noisy observation. We can re-write the scalar I-MMSE as:

∂

∂γ
I(X ;

√
γX +N) =

1

2
E(X − E[X |√γX +N ])2, (6)

where EX2 < ∞, N ∼ N (0, 1), X is independent of N , and γ > 0. Among its many applications include proving the entropy

power inequality in [12], and the monotonic decrease of the non-Gaussianness of the sum of independent random variables in

[13].

It is worth noting that the I-MMSE relationship (6) can be directly obtained as a corollary to Duncan’s theorem (3). Indeed,

if we take Yγ = γX +Wγ , Wγ a standard Brownian motion indexed by γ ≥ 0, then by Duncan’s theorem we know that

I(X ;Yγ) =
1

2

∫ γ

0

E(X − E[X |Yα])
2dα, (7)

where we have used the fact that Yγ is the sufficient statistic for parameter X given {Yα}0≤α≤γ . Taking derivative with

respect to γ on both sides of (7), we arrive at the I-MMSE relationship. Analogously, results paralleling I-MMSE in the

Poisson channel settings appear in [7], [5], where again they can be shown to be corollaries of the (more general) results for

the continuous-time Poisson channel.

2) Extensions to mismatched estimation and relative entropy: Recall that the relative entropy D(P‖Q), is defined between

two probability measures P ≪ Q, as follows

D(P‖Q) = EP log
dP

dQ
. (8)

We emphasize that the I-MMSE relations can be recovered from the results of mismatched estimation. Indeed, we have

I(X ;Y ) = ED(PY |X‖PY ), (9)
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and PY |X can be viewed as the output distribution of a channel with deterministic input X , and PY can be viewed as the

marginal output distribution.

Weissman [14] presented a representation formula for relative entropy in continuous-time white Gaussian channels with

feedback. Let P and Q denote two probability measures on the input process XT , and the channel model is the same as in

(2). Under mild conditions, the main result of [14] shows that

D(PY T
γ
‖QY T

γ
) =

γ

2
(cmseP,Q(γ)− cmseP,P (γ)) , (10)

where cmseP,Q(γ) =
∫ T

0
EP (Xt − EQ[Xt|Y t])2dt denotes the mismatched filtering error under squared error loss. The

paralleling mismatched estimation interpretations of relative entropy in the Poisson channel settings was demonstrated in [5].

3) Pointwise extensions: [15] and [16] showed a pointwise analog of the relations above in the Gaussian and Poisson

settings, respectively. One particular feature of these results is the Doob–Meyer decomposition of a class of sub-martingales,

i.e. the P -sub-martingales

log
dPY t

dQY t

, log
dPY t|α
dPY t

(11)

where Yt is the output process of a continuous-time white Gaussian channel or a Poisson channel. Conceivably, the predictable

non-decreasing part of their Doob–Meyer decomposition corresponds to an estimation error term, and the local martingale part

corresponds to a stochastic integral. The results corresponding to relative entropy can be obtained by taking expectations of

these sub-martingales.

Having revisited the rich historical results in continuous-time channels, a natural question arises: do Gaussian and Poisson

models capture the whole picture relations between information and estimation? Do there exist natural extensions of the results

above beyond Gaussian and Poisson models which preserve the estimation-theoretic interpretations for important information

measures? The authors answered this question affirmatively for scalar transformations by defining the general class of discrete-

time Lévy channels [17], [18]. In this paper, we show that the answer is affirmative for continuous-time channels. Concretely,

our contributions in this spirit span the following aspects:

1) We propose a general definition of semi-martingale channels, which includes as special cases, the white Gaussian channel,

and the Poisson point process channel.

2) For semi-martingale channels, we obtain the input-output mutual information as the minimum causal estimation error

under a natural loss function, thereby extending the findings for Gaussian and Poisson channels in continuous-time.

3) We also extend the above result to the setting of mismatched estimation and obtain a new representation for the relative

entropy as the cost of mismatch in estimation under the same loss function for semi-martingale channels.

4) We also obtain pointwise extensions for these identities via expressions for sub-martingales in (11) when Yt is the output

of a general semi-martingale channel;

We note that this work can be viewed as the continuous-time analog of [18], where the authors introduce discrete-time Lévy

channels. The rest of this paper is organized as follows. Section II will review some preliminaries. We will present the main

results on continuous-time semi-martingale channels in Section III. We then discuss the main proof elements in Section IV,

and present our conclusions in Section V.

II. PRELIMINARIES

A. Semi-martingales

We assume as given a complete probability space (Ω,F , P ). In addition we are given a filtration (Ft)0≤t≤∞. By a filtration

we mean a family of σ-algebras (Ft)0≤t≤∞ that is increasing, i.e., Fs ⊂ Ft if s ≤ t. For convenience, we will usually write

F for the filtration (Ft)0≤t≤∞. We denote FY
t = σ{Ys : s ≤ t} to be the natural filtration generated by stochastic process Y ,

and σ{Xζ , ζ ∈ Z} denotes the smallest σ-algebra with respect to which Xζ is measurable. We have Ft− = σ
(
⋃

s<t Fs

)

.

By D[0, T ] we denote the space of real-valued functions y(t) defined on [0, T ] which are cadlag, i.e., right-continuous with

left limits. We also denote the space of real-valued continuous functions y(t) on [0, T ] by C[0, T ]. Note that here T could be

taken to be ∞, in that case, the interval [0, T ] should be interpreted as [0,∞). We equip the space D[0, T ] with Skorokhod

topology, and the space C[0, T ] with sup-norm topology. We define the Borel σ-algebras Bt(C) = σ{ys, s ≤ t, y ∈ C[0, T ]}
and Bt(D) = σ{ys, s ≤ t, y ∈ D[0, T ]}.

For simplicity, throughout this paper, we only deal with one-dimensional real-valued stochastic processes. However it is

worth noting that our results can be easily generalized to higher dimensions.

There exist various version of definitions for semi-martingales, and we adopt the following version.

Definition 1. [19, Def. 2.17] An adapted process X is called a semi-martingale if X has a decomposition

X = X0 + V +H, (12)

where V is a right-continuous, adapted processes with finite variation, H is locally square integrable, and V0 = H0 = 0.
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The class of semi-martingales is a very broad one. Indeed, it consists of every local martingale, and every integrable sub-

martingale and super-martingales. For continuous semi-martingales the decomposition in Definition 1 is unique [19, Prop.

2.19].

It is well known [20, Chap. 4.1] that any cadlag semi-martingale Yt can be represented as

Yt = Y0 +Bt + Y c
t +

∫ t

0

∫

|z|≤1

zd(µ− ν) +

∫ t

0

∫

|z|>1

zdµ, (13)

where B is a predictable process of locally bounded variation, B0 = 0; Y c is the continuous local martingale component of

the semi-martingale Y ; µ is the jump measure of Y , and ν is its compensator. The jump measure µ = µ(dt, dz) has two

arguments, which satisfies the following relation:

µ((0, t]× Γ) =
∑

0<s≤t

I(∆Ys ∈ Γ),Γ ∈ B(R0),R0 = R\{0}, (14)

where B(R0) is the Borel σ-algebra on R0. Informally, µ(dt, dz) counts the number of jumps of size z at time t, and its

compensator ν(dt, dz) characterizes the intensity of jumps of size z at time t.
For simplicity, we assume ν({t} × R0) = 0, ∀t ≥ 0. That is to say, ν((0, t] × R0) is a continuous function of t. Let

C = [Y c, Y c]t be the quadratic variation process of Y c. The quadratic variation process of the continuous stochastic process

Y c is defined as

[Y c, Y c]t = lim
‖m‖→0

n
∑

k=1

(Y c
tk − Y c

tk−1
)2, (15)

where m ranges over partitions of the interval [0, t] and the norm of the partition m is the mesh max{(ti − ti−1) : i =
1, 2, . . . , n}. The limit, if it exists, is defined using convergence in probability. We call collection (B,C, ν) the triplet of

predictable characteristics of a semi-martingale Y . The triplet is uniquely determined by the process Y .

In general, unfortunately, the triplet does not fully specify the distribution of the semi-martingale Y (cf. Example 1.9

of [21]). Hence, to avoid some unnecessary technical difficulties, throughout this paper, we assume all semi-martingales satisfy

the property of (τn)-uniqueness (also called local uniqueness in the literature [22, Pg. 159]), which is defined as follows:

Definition 2 (τn uniqueness). [23, Sec. 11] The measure P of a semi-martingale Y is said to have the property of (τn)-
uniqueness if the triplets (Bτn , Cτn , ντn) of process Yt∧τn uniquely determine the restrictions Pτn of the measure P to the

σ-algebras Fτn . Here τn is any sequence of Ft-stopping times such that τn ↑ ∞, P -a.s.

The (τn)-uniqueness property was first introduced in [24], and has been established so far for semi-martingales with

independent increments, diffusion type processes, multivariate point processes in [22], and for Markov processes in [25]

and [26].

B. Lévy processes and Infinitely divisible distributions

A general one-dimensional Lévy process is defined as follows.

Definition 3 (Lévy process). A process Y = {Yt : t ≥ 0} defined on a probability space (Ω,F ,P) is said to be a Lévy process

if it possesses the following properties:

1) The paths of Y are P-almost surely right continuous with left limits.

2) P(Y0 = 0) = 1.

3) For 0 ≤ s ≤ t, Yt − Ys is equal in distribution to Yt−s.

4) For 0 ≤ s ≤ t, Yt − Ys is independent of {Yu : u ≤ s}.

Lévy processes belong to the class of semi-martingales, where its predictable characteristics are non-random and the (τn)-
uniqueness property is satisfied. Important examples of Lévy processes include include Brownian motion and Poisson processes.

We refer the reader to Sato [27] for a comprehensive treatment of Lévy processes.

The infinitely divisible distribution is defined as follows:

Definition 4 (Infinitely divisible distributions). We say that a real-valued random variable T has an infinitely divisible

distribution if for each n ∈ N, n ≥ 1, there exists a sequence of i.i.d. random variables T1,n, T2,n, . . . , Tn,n such that

T
d
= T1,n + T2,n + . . .+ Tn,n, (16)

where
d
= is equality in distribution.

The Gaussian, Poisson, negative binomial, gamma and Cauchy distributions are all infinitely divisible distributions on ℜ.
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From the definition of a Lévy process we see that for any t > 0, Yt is a random variable belonging to the class of infinitely

divisible distributions. Indeed, it follows from the fact that for any n = 1, 2, . . .,

Yt = Yt/n + (Y2t/n − Yt/n) + . . .+ (Yt − Y(n−1)t/n) (17)

together with the fact that {Yt} has stationary independent increments.

The following lemma relates the characteristic exponent of Yt with that of Y1.

Lemma 1. [28, Chap. 2.1.] For a Lévy process Yt, if EeiθYt = eΨt(θ), then Ψt(θ) = tΨ1(θ).

Indeed, for two positive integers we have

mΨ1(θ) = Ψm(θ) = nΨm/n(θ), (18)

which proves the statement for all rational t > 0. The irrational cases follows from taking a limit and applying the right

continuity of Xt and the dominated convergence theorem.

The full extent to which we may characterize infinitely divisible distributions is described by the Lévy–Khintchine formula.

Lemma 2 (Lévy–Khintchine formula). [27] A real-valued random variable Y is infinitely divisible with characteristic function

represented as

EeiθY = eΨ(θ), θ ∈ R, (19)

if and only if there exists a triple (a, σ, ν), where a ∈ R, σ ≥ 0, and ν(·) is a measure concentrated on R\{0} satisfying
∫

R
(1 ∧ x2)ν(dx) < ∞, such that

Ψ(θ) = iaθ − 1

2
σ2θ2 +

∫

R

(eiθz − 1− iθz1|z|<1)ν(dz). (20)

We call the tuple (a, σ, ν(dz)) Lévy characteristics of the Lévy process {Yt} if the characteristic function of Y1 follows the

Lévy–Khintchine formula with triplet (a, σ, ν(dz)). Particularly, we call the number σ diffusion coefficient, and the measure

ν(dz) the Lévy measure of the Lévy process {Yt}.

We have seen so far, that every Lévy process can be associated with the law of an infinitely divisible distribution. The

opposite, i.e. that given any random variable X , whose law of infinitely divisible, we can construct a Lévy process {Yt} such

that Y1
d
= X . This is the subject of the Lévy–Itô decomposition.

Lemma 3. [27, Chap. 4][Lévy–Itô decomposition] Consider a triplet (a, σ, ν) where a ∈ R, σ ≥ 0 and ν is a measure

satisfying ν({0}) = 0 and
∫

R
(1 ∧ x2)ν(dx) < ∞. Then, there exists a probability space (Ω,F ,P) on which a Lévy process

{Yt} exists and decomposes as four independent processes as

Yt = at+ σWt +

∫ t

0

∫

|z|<1

z(µ(ds, dz)− ν(dz)ds) +

∫ t

0

∫

|z|≥1

zµ(ds, dz), (21)

where Wt is a standard Brownian motion,
∫ t

0

∫

|z|<1 z(µ(ds, dz)− ν(dz)ds) is a square integrable pure jump martingale with

an almost surely countable number of jumps of magnitude less than one on each finite time interval, and
∫ t

0

∫

|z|≥1 zµ(ds, dz)

is a compound Poisson process. The µ(dt, dz) is a jump measure defined to satisfy the following relations: ∀Γ ∈ B(R\{0}),

µ((0, t]× Γ) =
∑

0<s≤t

I(∆Ys ∈ Γ), (22)

where ∆Ys = Ys − Ys−, Ys− = limu→s− Yu. The measure ν(dz) is defined such that
∫ t

0

∫

|z|<1

z(dµ− ν(dz)ds) (23)

is a martingale indexed by t. The measure ν(dz)ds is called the compensator for the multivariate point process µ(ds, dz).

C. Semi-Martingale Channels

We assume, when there is no input signal, the channel output is a Lévy process. We assume the SNR level is γ. By the

Lévy-Itô decomposition in Lemma 3, given any Lévy process Yt, there exist constants a ∈ R, σ ≥ 0, a non-negative measure

ν(·) on B(R0) s.t.
∫

R0

min(1, z2)ν(dz) < ∞, such that the predictable characteristics of Y satisfy

Bt = at, Ct = σt, ν(dt, dz) = γν(dz)dt. (24)
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In order to be consistent with results for Gaussian and Poisson channels, without loss of generality in this section we take

a = 0, σ = 1. That is to say, in the absence of input signal, the output process (Yt,F, P0) of a semi-martingale channel at

SNR γ is a Lévy process with the following representation:

Yt = Wt +

∫ t

0

∫

|z|<1

z(dµ− γν(dz)ds) +

∫ t

0

∫

|z|≥1

zdµ, (25)

where Wt is a standard Brownian motion, µ(dt, dz) is a Poisson random measure on [0, T ]× R0, independent of WT .

Now we specify the output given message α. We assume the message α takes values in a measurable space (A,A). For any

s ≥ 0, let βs = βs(α, Y
s−) be a A⊗Bs−(D)-measurable function. For any s ≥ 0, z ∈ R0, let λs,z = λs,z(α, Y

s−) ≥ 0 also be

a A⊗Bs−(D)-measurable function. The functions βs(α, Y
s−), λs,z(α, Y

s−) are called encodings of α for transmission over

the semi-martingale channel. At SNR level γ, the output (Y,F, P ) corresponding to a semi-martingale channel with encodings

βs(α, Y
s−), λs,z(α, Y

s−) satisfies the following representation:

Yt =
√
γ

∫ t

0

βsds+Wt + γ

∫ t

0

∫

|z|<1

z(λs,z − 1)ν(dz)ds

+

∫ t

0

∫

|z|<1

z(dµ− γλs,zν(dz)ds) +

∫ t

0

∫

|z|≥1

zdµ, (26)

where Wt is a standard Brownian motion under P . In other words, the predictable characteristics of the output process Y has

changed from (0, t, γν(dz)dt) to

(
√
γ

∫ t

0

βsds+

∫ t

0

∫

|z|<1

γz(λs,z − 1)ν(dz)ds, t, γλt,zν(dz)dt). (27)

The (τn)-uniqueness property guarantees that the distribution of the output process Yt is uniquely determined by the input

signals βs(α, Y
s−) and λs,z(α, Y

s−).
Note that the definition of the semi-martingale channel generalizes those of the white Gaussian and Poisson channels. Indeed,

the semi-martingale channel degenerates to the white Gaussian channel when ν(dz) ≡ 0, and it degenerates to the Poisson

channel when ν(dz) = δz=1, βs ≡ 0 and the Brownian motion part disappear.

Throughout this paper, we assume the following conditions.

Assumption 1. We assume the following throughout this paper:

1) Any filtered complete probability space (Ω,F ,F, P ) satisfies the usual hypotheses, i.e.

a) F0 contains all the P -null sets of F ;

b) Ft =
⋂

u>t Fu, ∀t, 0 ≤ t < ∞; that is, the filtration F is right-continuous.

2) All the processes satisfy the (τn)-uniqueness property as defined in Definition 2.

3) There exists a constant V > 0 such that with probability one,
∫ T

0

β2
sds+

∫ T

0

∫

R0

(1−
√

λs,z)
2ν(dz)ds ≤ V. (28)

4)
∫ T

0
E|βs|ds < ∞,

∫ T

0

∫

R0

E|λs,z |ν(dz)ds < ∞.

5) For any 0 ≤ s ≤ T , E|βs| < ∞, E
∫

R0

λs,zν(dz) < ∞.

We emphasize that the conditions in Assumption 1 allows us to avoid messy and delicate measure theoretic details related

to the definition of predictable projections and predictable σ-algebras.

III. MAIN RESULTS

A. Calculation of the Mutual Information

Now we state a theorem on representation of the mutual information I(α;Y T ) in the semi-martingale channel, which is the

main result of this paper.

Theorem 1. Under Assumption 1, if

∫ T

0

Eβ2
sds+

∫ T

0

Eλs,z

∣

∣

∣

∣

∣

ln
λs,z

λ̂P,C
s,z (γ)

∣

∣

∣

∣

∣

ν(dz)ds < ∞, (29)

then,

I(α;Y T ) = γ

[

∫ T

0

EℓG(βs, β̂
P,C
s (γ))ds+

∫ T

0

∫

R0

EℓP(λs,z , λ̂
P,C
s,z (γ))ν(dz)ds

]

, (30)
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where β̂P,C
s (γ) = EP [βs|FY

s−], λ̂
P,C
s,z (γ) = EP [λs,z |FY

s−]. The loss functions ℓG(x, y) =
1
2 (x−y)2, ℓP(x, y) = x ln(x/y)−x+y.

Here we need to explain the notation a little. The superscripts P and C in notations β̂P,C
s (γ) and λ̂P,C

s,z (γ) mark the fact

that the conditional expectation is taken under probability law P Causally on the history of Y . We emphasize that both the

loss functions ℓG and ℓP are Bregman divergences. We introduce the notion of the Bregman divergence below.

Definition 5. Let f : Ω 7→ R be a convex, continuously differentiable function, the domain Ω ⊂ R
d. Then, the Bregman

divergence associated with f , denoted as df (x, y), is defined as

df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉, (31)

where 〈x, y〉 denotes the inner product of x and y.

It follows from Jensen’s inequality that df (x, y) ≥ 0. It is clear that ℓG(x, y) = df (x, y) when f = 1
2x

2, and ℓP(x, y) =
df (x, y) when f = x lnx. The Bregman divergence satisfies the following property when used as a loss function in Bayesian

decision theory:

Lemma 4. Suppose X is a random variable taking values in Ω. Then, for any non-random element u ∈ Ω,

E[df (X,u)] = E[df (X,E[X ])] + df (E[X ], u), (32)

where the expectations are taken with respect to the distribution of X .

Proof: It follows from straightforward algebra that

df (X,u) = df (X,E[X ]) + df (E[X ], u) + 〈f ′(E[X ])− f ′(u), X − E[X ]〉. (33)

Taking expectations on both sides finishes the proof.

It follows from Lemma 4 that

E[X ] = argmin
u∈Ω

E[df (X,u)]. (34)

Further, if f is strictly convex, then E[X ] uniquely solves minu E[df (X,u)]. It is sometimes called the orthogonality principle.

B. Relative entropy representations

Assume P and Q are two probability measures on the inputs (β,λs,z) to the semi-martingale channel. We denote the

mismatched causal estimation error at SNR γ as

cmleP,Q(γ) =

∫ T

0

EP ℓG(βs, β̂
Q,C
s (γ))ds+

∫ T

0

∫

R0

EP ℓP(λs,z , λ̂
Q,C
s,z )ν(dz)ds, (35)

where β̂Q,C
s (γ) = EQ[βs|FY

s−], λ̂
Q,C
s,z = EQ[λs,z |FY

s−].
According to Theorem 1, we know

I(α;Y T ) = γ · cmleP,P (γ). (36)

A natural interpretation of the quantity

cmleP,Q(γ)− cmleP,P (γ) (37)

is the penalty of mismatch in estimation under probability measure P . In other words, it is the excessive estimation error caused

by the fact that the decoder takes the distribution of the inputs as Q while the true distribution is P . By the orthogonality

principle of ℓG and ℓP , we know it is never negative, and intuitively it could serve as a measure quantifying the distance

between probability measures P and Q. This intuition is rigorized by the following theorem.

Theorem 2. Under Assumption 1, if

∫ T

0

E

(

β̂P,C
s (γ)− β̂Q,C

s (γ)
)2

ds+

∫ T

0

Eλs,z

∣

∣

∣

∣

∣

ln
λ̂P,C
s,z (γ)

λ̂Q,C
s,z (γ)

∣

∣

∣

∣

∣

ν(dz)ds < ∞, (38)

then

D(PY T
γ
‖QY T

γ
) = γ · (cmleP,Q(γ)− cmleP,P (γ)) , (39)

where β̂Q,C
s (γ) = EQ[βs|FY

s−], λ̂
Q,C
s,z = EQ[λs,z |FY

s−].

C. Special Cases: White Gaussian Channels and Multivariate Point Process Channels

We emphasize that for special classes of the semi-martingale channel, such as the AWGN channel and the multivariate point

process channel, we can obtain similar results under much weaker conditions on the input processes.
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1) White Gaussian Channel: First we deal with the white Gaussian channel. As proved in [22], the (τn)-uniqueness property

is satisfied in this case. In fact in this case we can considerably weaken the assumptions to [29, Chap. 16.3]
∫ T

0

Eβ2
sds < ∞, (40)

which has the natural interpretation of restricting the total power of input signals. Under (40), we have the classic result by

[3]:

Corollary 1. Under channel model

dYt =
√
γβtdt+ dWt, (41)

where βs = βt(α, Y
t) is a A⊗ Bs−(C) measurable function such that

∫ T

0 Eβ2
sds < ∞, we have

I(α;Y T ) =

∫ T

0

EℓG(βs, β̂
P,C
s (γ))ds. (42)

2) Multivariate Point Process Channel: The multivariate point process channel model is a generalization of the Poisson

channel model, where the the output process may have various jump sizes. The (τn)-uniqueness property is also satisfied in

this situation [22]. To be precise, under SNR γ, the output process (Yt,F, P ) in the absence of input is a Lévy process with

the following representation:

Yt =

∫ t

0

∫

|z|<1

z(dµ− γν(dz)ds) +

∫ t

0

∫

|z|≥1

zdµ. (43)

For encodings λs,z = λs,z(α, Y
s−) ≥ 0, the new output process (Yt,F, P ) could be represented as

Yt =

∫ t

0

∫

|z|<1

γz(λs,z − 1)ν(dz)ds+

∫ t

0

∫

|z|<1

z(dµ− γλs,zν(dz)ds) +

∫ t

0

∫

|z|≥1

zdµ. (44)

We have the following representation for the mutual information I(α;Y T ) for the multivariate point process channel [6,

Thm. 19.11].

Corollary 2. Under channel model (44), if
∫ T

0

∫

R0

E

[

ℓP(λs,z , λ̂
P,C
s,z (γ)) + 2λs,z

]

ν(dz)ds < ∞, (45)

then,

I(α;Y T ) =

∫ T

0

∫

R0

EℓP(λs,z , λ̂
P,C
s,z (γ))ν(dz)ds, (46)

where λ̂P,C
s,z (γ) = EP [λs,z|FY

s−], ℓP(x, y) = x ln x
y − x+ y.

D. Doob–Meyer decomposition of a class of sub-martingales

Since − log(·) is a convex function, it is clear that that

log
dPY t

dQY t

(47)

is a P -sub-martingale. Since we know under mild conditions, any sub-martingale can be decomposed uniquely into the sum

of a predictable non-decreasing process and a local martingale [19, Chap. 5], i.e., the Doob–Meyer decomposition, it arises

as a natural question to find the Doob–Meyer decomposition of (47). Although in general it is a hard task to obtain explicit

expressions for the Doob–Meyer decomposition of sub-martingales, we show in this case it has an elegant answer, with

implications for relations between information and estimation. In particular, we observe that the expectation of the predictable

non-decreasing process is precisely the filtering error.

Theorem 3. Under Assumption 1, we have

log
dPY t

dQY t

= At +Mt, (48)
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where

At = γ

∫ t

0

ℓG(β̂
P,C
s (γ), β̂Q,C

s (γ))ds+ γ

∫ t

0

∫

R0

ℓP(λ̂
P,C
s,z (γ), λ̂Q,C

s,z (γ))ν(dz)ds, (49)

Mt =
√
γ

∫ t

0

(

β̂P,C
s (γ)− β̂Q,C

s (γ)
)

(dWs −
√
γβ̂P,C

s (γ)ds)

+

∫ t

0

∫

R0

ln
λ̂P,C
s,z (γ)

λ̂Q,C
s,z (γ)

(dµ− γλ̂P,C
s,z (γ)ν(dz)ds), (50)

where β̂P,C
s (γ) = EP [βs|FY

s−], λ̂
P,C
s,z (γ) = EP [λs,z |FY

s−], ℓG(x, y) =
1
2 (x − y)2, ℓP(x, y) = x ln x

y − x+ y. Here the process

At is the predictable non-decreasing process, and Mt is the local martingale process.

Specializing Theorem 3 to the case of P being deterministic and Q = P , we obtain the following Doob–Meyer decomposition

for the information density process

log
dPY t|α
dPY t

. (51)

Theorem 4. Under Assumption 1, we have

log
dPY t|α
dPY t

= At +Mt, (52)

where

At = γ

∫ t

0

ℓG(βs, β̂
P,C
s (γ))ds+ γ

∫ t

0

∫

R0

ℓP(λs,z , λ̂
P,C
s,z (γ))ν(dz)ds, (53)

Mt =
√
γ

∫ t

0

(βs − β̂P,C
s (γ))(dWs −

√
γβsds) +

∫ t

0

∫

R0

ln
λs,z

λ̂P,C
s,z (γ))

(dµ− γλs,zν(dz)ds), (54)

where β̂P,C
s (γ) = EP [βs|FY

s−], λ̂
P,C
s,z (γ) = EP [λs,z |FY

s−], ℓG(x, y) =
1
2 (x − y)2, ℓP(x, y) = x ln x

y − x+ y. Here the process

At is the predictable non-decreasing process, and Mt is the local martingale process.

IV. PROOFS

Our focus would be to establish the Doob–Meyer decomposition for the P -sub-martingale log
dPY t

dQY t
(Theorem 3), from which

the rest of our results will follow. Recall that at SNR level γ, in the absence of input signal, the output process (Yt,F, P0) of

a semi-martingale channel at SNR γ is a Lévy process with the following representation:

Yt = Wt +

∫ t

0

∫

|z|<1

z(dµ− γν(dz)ds) +

∫ t

0

∫

|z|≥1

zdµ, (55)

where Wt is a standard Brownian motion, µ(dt, dz) is a Poisson random measure on [0, T ]× R0, independent of WT .

Introduce the non-negative process (Lt,F, P ), where R0 = R\{0}, as

Lt = e
√
γ
∫

t

0
βsdWs− γ

2

∫
t

0
β2

sds+
∫

t

0

∫
R0

[lnλs,zdµ−γ(λs,z−1)ν(dz)ds]
. (56)

We have the following Itô’s formula for general semimartingales:

Lemma 5. [19, Thm. 6.46] If {Z(t) : t ≥ 0} is a semimartingale and f(x) ∈ C2(R), then

f(Z(t))− f(Z(0)) =

∫ t

0

f ′(Z−)dZ +
1

2

∫ t

0

f ′′(Z−)d[Z]c +
∑

0<s≤t

(f(Z(s))− f(Z(s−))− f ′(Z(s−))∆Z(s)) , (57)

where the process [Z]ct is the quadratic variation process of the continuous part of the semimartingale Z(t), ∆Z(s) =
Z(s)− Z(s−), and Z(s−) = limu→s− Z(u).

Applying Lemma 5 with f(t) = et, defining Dt =
∫ t

0

∫

R0

[lnλs,zdµ− γ(λs,z − 1)ν(dz)ds], we get the following represen-
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tation of the stochastic process Lt:

Lt = 1 +

∫ t

0

Ls−dZ(t) +
1

2

∫ t

0

Ls−γβ
2
sds+

∑

0<s≤t

f(Z(s−))

(

f(Z(s))

f(Z(s−))
− 1−∆Z(s)

)

(58)

= 1 +

∫ t

0

√
γβsLs−dWs +

∫ t

0

Ls−dDs +
∑

0<s≤t

Ls−
(

e∆Z(s) − 1−∆Z(s)
)

(59)

= 1 +

∫ t

0

√
γβsLs−dWs +

∫ t

0

Ls−dDs +
∑

0<s≤t

∫

R0

Ls−
(

elnλs,z − 1− lnλs,z

)

ν(ds, dz) (60)

= 1 +

∫ t

0

Ls−dMs, (61)

where

Mt =

∫ t

0

√
γβsdWs +

∫ t

0

∫

R0

(lnλs,zµ(ds, dz)− γ(λs,z − 1)ν(dz)ds+ (λs,z − 1− lnλs,z)µ(ds, dz)) (62)

=

∫ t

0

√
γβsdWs +

∫ t

0

∫

R0

(λs,z − 1)(µ(ds, dz)− γν(dz)ds). (63)

It follows from [30, Thm. 12] that if there exists a constant V > 0 such that
∫ T

0

β2
sds+

∫ T

0

∫

R0

(1−
√

λs,z)
2ν(dz)ds ≤ V P − a.s. (64)

then, {Lt : 0 ≤ t ≤ T } is a uniformly integrable martingale. It is guaranteed by Assumption 1. Construct another probability

measure P on F defined as

dP|Ft

dP0|Ft

= Lt, (65)

It follows from [30, Corollary, pg. 663] that under measure P , the process Yt is still a semi-martingale with predictable

characteristics

(
√
γ

∫ t

0

βsds+

∫ t

0

∫

|z|≤1

γz(λs,z − 1)ν(dz)ds, t, γλt,zν(dz)dt), (66)

which is exactly what we specified in the definition of the semi-martingale channel in (27). Since we have assumed that the

measure P has (τn)-uniqueness property, if we take τn ≡ T , we know that P is the probability measure governing the output

of the semi-martingale channel with input signals βs and λs,z .

It follows from [20, Chap. 4, Sec. 6, Thm. 5] that the semi-martingale (Yt,F, P ) is still a semi-martingale under the reduced

filtration FY
t = σ{Ys : s ≤ t}. Under the filtration FY

t , combining with Assumption 1 the predictable characteristics of process

Yt would change to

(
√
γ

∫ t

0

β̂P,C
s (γ)ds+

∫ t

0

∫

|z|≤1

γz(λ̂P,C
s,z (γ)− 1)ν(dz)ds, t, γλ̂P,C

s,z (γ)ν(dz)dt), (67)

where β̂P,C
s (γ) = EP [βs|FY

s−], λ̂
P,C
s,z (γ) = EP [λs,z|FY

s−].
It follows from the convexity of x2 and (1 −√

x)2 on R and R+, respectively, that

∫ T

0

[β̂P,C
s (γ)]2ds+

∫ T

0

∫

R0

(

1−
√

λ̂P,C
s,z (γ)

)2

ν(dz)ds ≤ EP

[

∫ T

0

β2
sds+

∫ T

0

∫

R0

(

1−
√

λs,z

)2

ν(dz)ds

∣

∣

∣

∣

∣

FY
s

]

. (68)

It then follows from the fact that for any random variable X and constant V , X ≤ V almost surely implies that E[X |F ] ≤ V
almost surely, that

∫ T

0

[β̂P,C
s (γ)]2ds+

∫ T

0

∫

R0

(

1−
√

λ̂P,C
s,z (γ)

)2

ν(dz)ds ≤ V, P − a.s. (69)

Hence,

L̄P
t = e

√
γ
∫

t

0
β̂P,C
s (γ)dWs−γ

2

∫
t

0
[β̂P,C

s (γ)]2ds+
∫

t

0

∫
R0
[ln λ̂P,C

s,z (γ)dµ−γ(λ̂P,C
s,z (γ)−1)ν(dz)ds] (70)

is a uniformly integrable martingale [30, Thm. 12]. Using similar arguments as above and applying the (τn)-uniqueness property,
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we know that

L̄P
t =

dP|FY
t

dP0|FY
t

. (71)

Analogously, if the input signals follow distribution Q, we can use similar arguments to construct the likelihood ratio process

L̄Q
t . Hence,

log
dP|FY

t

dQ|FY
t

= log
dP|FY

t

dP0|FY
t

− log
dQ|FY

t

dP0|FY
t

(72)

=
√
γ

∫ t

0

β̂P,C
s (γ)dWs −

γ

2

∫ t

0

[β̂P,C
s (γ)]2ds+

∫ t

0

∫

R0

[

ln λ̂P,C
s,z (γ)dµ− γ(λ̂P,C

s,z (γ)− 1)ν(dz)ds
]

−
(√

γ

∫ t

0

β̂Q,C
s (γ)dWs −

γ

2

∫ t

0

[β̂Q,C
s (γ)]2ds+

∫ t

0

∫

R0

[

ln λ̂Q,C
s,z (γ)dµ− γ(λ̂Q,C

s,z (γ)− 1)ν(dz)ds
]

)

(73)

=
√
γ

∫ t

0

(β̂P,C
s (γ)− β̂Q,C

s (γ))(dWs −
√
γβ̂P,C

s (γ)ds) +
γ

2

∫ t

0

(

β̂P,C
s (γ)− β̂Q,C

s (γ)
)2

ds

+

∫ t

0

∫

R0

ln
λ̂P,C
s,z (γ)

λ̂Q,C
s,z (γ)

(dµ− λ̂P,C
s,z (γ)ν(dz)ds) + γ

∫ t

0

∫

R0

ℓP(λ̂
P,C
s,z (γ), λ̂Q,C

s,z (γ))ν(dz)ds. (74)

The proof of Theorem 3 is now complete. To obtain the representations of relative entropy, it suffices to take expectations

of log
dP

|FY
t

dQ
|FY

t

with respect to the measure induced by P . Indeed, it follows from the results of [20, Chap. 4, Sec. 6, Thm. 5]

that Wt − √
γ
∫ t

0 β̂
P,C
s (γ)ds is a standard Brownian motion under filtration FY

t with probability measure P . Since we have

assumed
∫ T

0 E

(

β̂P,C
s (γ)− β̂Q,C

s (γ)
)2

ds < ∞, it follows from [29, Chap. 5.4] that

E

[√
γ

∫ t

0

(β̂P,C
s (γ)− β̂Q,C

s (γ))(dWs −
√
γβ̂P,C

s (γ)ds)

]

= 0. (75)

Since we have assumed
∫ t

0

∫

R0

Eλs,z

∣

∣

∣

∣

∣

ln
λ̂P,C
s,z (γ)

λ̂Q,C
s,z (γ)

∣

∣

∣

∣

∣

ν(dz)ds < ∞, (76)

it follows from [6, Thm. 18.7] that

E

[

∫ t

0

∫

R0

ln
λ̂P,C
s,z (γ)

λ̂Q,C
s,z (γ)

(dµ− λ̂P,C
s,z (γ)ν(dz)ds)

]

= 0. (77)

Theorem 2 is proved. Theorem 1 can be proved in a similar fashion.

We now provide a proof sketch for Corollary 2. It was shown in [23, Sec. 12] that

E

∫ T

0

∫

R0

(1−
√

λs,z)
2ν(dz)ds < ∞ (78)

implies that P ≪ P0, where P0 is the probability measure on the output process without inputs, and P is the measure

corresponding to inputs λs,z . Following similar arguments as in [6, Thm. 19.11] and noting that x| ln x/y| ≤ ℓP(x, y)+x+ y,

and (1−√
x)2 ≤ CℓP(x, 1) for some constant C > 0, Corollary 2 is proved.

V. CONCLUDING REMARKS

At the face of it, the output stochastic process of the semi-martingale channel seems to be a simple combination of a

‘continuous’ process and a ‘pure jump’ process. Indeed, one can separate these two processes at the receiver perfectly. However,

it is important to note that the inputs may causally depend on past outputs of both the continuous part and the pure jump part!

As the careful reader will note, the conditional expectations in Theorem 1 are taken with respect to the entire history (including

the continuous part and discontinuous part) of Y , which is not the same as treating the continuous and discontinuous outputs

separately.

Relations between information and estimation are, at their core intimately related to absolute continuity and singularity

of probability measures in functional spaces, which enables explicit calculations of the most basic likelihood ratios, such as

the information density and the relative information. Shiryaev [31] presented a framework of the general theory of absolute

continuity and singularity of probability measures, which gives us a good understanding of the representation of likelihood

ratios for random sequences, processes with independent increments, semi-martingales with a Gaussian martingale component,
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multivariate point processes, Markov processes and processes with a countable number of states, and the general semi-

martingales [23]. This rich theory essentially implies that if the output of a channel is of the types above, and a natural

SNR parameter can be defined, one may hope to get a general and meaningful relationship between measures of information

and estimation. These two constraints essentially make the semi-martingale channels the largest class of channels that admit

information-estimation relationships fully paralleling what exist for the Gaussian and Poisson channels. However, we note that

the likelihood ratio characterization for semi-martingales is challenging, and much stronger conditions are needed to represent

these likelihood ratios. This is precisely the reason why Theorems 1,2 require strong (bounded a.s.) conditions, and special cases

of semi-martingale channels can be dealt with under much weaker conditions on the channel input, as evident in Section III-C.
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[17] ——, “Relations between information and estimation in scalar Lévy channels,” in Information Theory (ISIT), 2014 IEEE International Symposium on,

June 2014, pp. 2212–2216.
[18] ——, “Relations between information and estimation in discrete-time Lévy channels,” to appear in IEEE Transactions on Information Theory, 2017.
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