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Abstract—Alternative exact expressions are derived for the  The information-spectrum method studies the asymptotics
minimum error probability of a hypothesis test discriminating  of a certain random variable, often referred to as inforomti
among M quantum states. The first expression corresponds 10 jensity or information random variable. Using a quantum

the error probability of a binary hypothesis test with certain - . . h
parameters; the second involves the optimization of a given analogue of this quantity, Hayashi and Nagaoka studied-quan

information-spectrum measure. Particularized in the clasical- tum hypothesis testing [12], and classical-quantum channe
guantum channel coding setting, this characterization imfies coding [13], obtaining general bounds for both problems.
the tightness of two existing converse bounds; one derivedyb |n this paper, we derive two alternative exact expressions f
g"aggeg:h?gigvﬁgnzgﬂz'C%rg’np?r;t‘oeri'g ttii?\t-lggégtr;dngn; Otr];;d the minimum error probability of multiple quantum hypottses

y hay 9 pectrum approan. testing when a (classical) prior distribution is placed rote
hypotheses. The expressions obtained illustrate cormmecti
among hypothesis testing, information-spectrum measands
converse bounds in classical-quantum channel coding. An
Q. Optimal discrimination among multiple quantum stategpplication to classical-quantum channel coding shows tha
= ' —quantum hypothesis testing— is at the core of several-infanatthews-Wehner converse boufid][11, Th. 19] and Hayashi-
mation processing tasks involving quantum-mechanical sy§agaoka lemma [13, Lemma 4] with certain parameters yield
tems. When the number of hypotheses is two, quantum hite exact error probability. This work thus generalizesesalv
pothesis testing allows a simple formulation in terms of tweesults derived in[[14] in the classical setting.
E kinds of pairwise errors. The quantum version of the Neyman-

Pearson lemma establishes the optimum binary test in this
setting. This problem was first studied by Helstrom[in [1}e(séA. Notation
also [2], [3]). When the number of hypotheses is larger than|n the general case, a quantum state is described by a density
two, a (classical) prior distribution is usually placed pt#ee operatory acting on some finite dimensional complex Hilbert
hypotheses. While there exists no closed form for the optimspace?{. Density operators are self-adjoint, positive semidefi-
test in general, optimality contitions can be obtairied [8], nite, and have unit trace. A measurement on a quantum system
For historical notes on the subject sgé [6, Ch. IV]. is a mapping from the state of the systento a classical
In the context of reliable communication, hypothesis testi outcomem < {1,...,M}. A measurement is represented by

has been instrumental in the derivation of converse bounglgollection of positive self-adjoint operato{ﬂh . ,HM}

to the error probability both in the classical and quantuguch thafy"II,, = 1, wherel is the identity operator. These
settings (see, e.gLl[7].][8]). Recently, hypothesistestiained operators form a POVM (positive operator-valued measure).
interest as a very general approach to obtain converse bouAdmeasuremen{Hl, .. ,HM} applied top has outcomen

in the finite block-length regime. In classical channel ogdi with probability Tr(pIL,,, ).

Polyanskiy, Poor and Verdu derived the meta-converse dboun For two self-adjoint operatorsl, B, the notationA > B
based on an instance of binary hypothesis testiig [9]. Means thatd — B is positive semidefinite. Similarlyl < B,
similar approach was used by Wang and Renner to deriMe> B, andA < B means thatl — B is negative semidefinite,

a finite block-length converse bound for classical-quantupositive definite and negative definite, respectively. Feel
channels[10], and by Matthews and Wehner to obtain a famiéyijoint operatord with spectral decompositiod = S NE;,

of converse bounds for general quantum channels [11]. TiMaere {);} are the eigenvalues ar{dZ;} are the orthogonal
results by Matthews and Wehner are general enough to recoygsjections onto the corresponding eigenspaces, we define
the meta-converse bound in the classical setting and Wang-

A
Renner converse bound in the classical-quantum setting. {A>0}= Z L. 1)
:A; >0
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B. Binary Hypothesis Testing which after some algebra yields

Let us con§id(a_r a pinary hypothesis test. (with simple —Tr(poTNp) > —Tr(ponf) 4t Tr(m(PtJf —TNP))- (11)
hypotheses) discriminating between the density operaiors ) ] )
and p1 acting on#. In order to distinguish between theSUmming one to both sides of_{11) and noting that
two hypotheses we perform a measurement. We definga(rollp1) =1 — Tr(poZie) and 3 = Tr(p1Tivp), we obtain
test measuremenftl’, T}, such thatT” andT £ 1 — T are — 50 , ,
positive semidefi;{ite. T}he test decides (resp.p1) when the ag(pollpr) 2 Tr(po(Py + Fp))+ ' Te(p P7) — 5. (12)
measurement outcome correspondingtgresp.T’) occurs.  The result thus follows by lower-boundirigy (p1 2;7) > 0. ®
Let ¢;; denote the probability of deciding; whenp; is the

true hypothesisi, j — 0,1, i # j. More precisely, we define 1. M ULTIPLE QUANTUM HYPOTHESISTESTING

We consider a hypothesis testing problem discriminating

e10(T) 21— "Tr (poT) = Tr (poT) (2) amongM possible states acting oH, where M is assumed
con(T) 2 Tr (piT). (3) to be fir_1ite. TheM alternativ_e_s_n, ..., TM are assumed to
occur with (classical) probabilities, . . ., pas, respectively.
Let az(pollp1) denote the minimum error probability g A M-ary hypothesis test is a POV {11}, II,, . . ., 15},
among all tests withy; at mostj, that is, STI; = 1. The test decides the alternative when the
N ) measurement with respect®has outcome. The probability
ag(pollpr) = T:eo‘llr(lg’)<ﬁ e1jo(T)- 4 that the testP decidesr; when; is the true underlying state

is thusTr(7,11;) and the average error probability is
The functionas(+||-) is the inverse of the functiofi, (-||-) ap-

pearing in[[11], which is itself related to the hypothesisting
relative entropy asf; (pollp1) = — log fa(pol 1) [10].
Whenp, andp; commute, the test in (d) can be restricted
to be diagonal in the (common) eigenbasigpgfand p1, then
(@) reduces to the classical casel[14]. € £ min ¢(P). (14)
The quantum version of the Neyman-Pearson lemma char- P
acterizes the form of the test minimizing] (4). Let> 0 The testP minimizing (I4) has no simple form in general.
and let P*, P, P? denote the projectors spanning the Lemma 3 (Holevo-Yuen-Kennedy-Lax conditions): test
positive, negative and null eigenspaces of the matsix tp,, P* = {II7,..., 1T}, } minimizes [I#) if and only if, for each

M
€(P)£ 1> piTr(nlly). (13)
i=1

We define the minimum average error probability as

respectively, i. e., m=1,...,M,
Pt+ L {pO —tpy > ()}7 (5) (A(P*) _mem)H:n = H:n(A(/P*) _mem) = 0, (15)
P2 {py—tp1 < 0}, (6) A(P*) = pmTm > 0, (16)
P2 1-PF P/ (7) Wwhere
M M
Lemma 1 (Neyman-Pearson lemmahe operatoriype is A(P*) 2 menzf — ZpinTi (17)
an optimal test betweepn, and p; if and only if P |
Tne = P+ pto, (8) s required to be self—adjoﬁht
Proof: The theorem follows froni|4, Th. 4.1, Eq. (4.8)] or
where0 < p} < P}. [5, Th. 1] after simplifying the resulting optimality cortibns.
Proof: A slightly different formulation of this result is m
usually given in the literature. The statement includedeher We next show an alternative characterization of the mini-
can be found in, e.g.. [15, Lem. 3]. B mum error probability as a function of a binary hypothesis

Therefore, for anyt > 0 and 0 < p} < P such test with certain parameters.
that Tr{p:Tnp} = 3, the resulting tesfyp minimizes [#).  Let diag(p,...,pr) denote the block-diagonal matrix

Moreover, the following lower bound holds. with diagonal blocks1, ..., pas. We define
Lemma 2:For any test discriminating betweer and pq, A L
and for anyt’ > 0, it holds that T £ diag(pim, -, pyuTi), (18)
D(/’LO) £ dla’g(ﬁMOv SERE) %,U‘O)a (19)
as(pollpr) > Te(po(Py + BY)) —¥6.  (9) . . . .
where g is an arbitrary density operator acting @h Note

Proof: For any operatord > 0 and0 < 7' < 1, it holds that both7 andD(u) are density operators themselves, since
thatTr(A{A > 0}) > Tr(AT) A2, Eq. 8]. ForA = p,—t'p, they are self-adjoint, positive semidefinite and have uaitg.
andT = Typ, this inequality becomes

Tr((po — t'p1)Py) = Tr((po — t'p1) Iive)

1The operatorA(P) takes a role of the Lagrange multiplier associated to
10 the constrain®_ TT; = 1, which, involving self-adjoint operators requirds
( ) to be self-adjoint.



Theorem 1:The minimum error probability of ar/-ary implies that [2D) holds with equality fquy = . Given the
test discriminating among staté€s,, ..., 7, with prior clas- bound in [25), other choices @f, cannot improve the result,
sical probabilities{p1,...,pa } satisfies and Theorerfi]1 thus follows. [ |

Combining Theorerlll and Lemrh& 2, we obtain a charac-
€T maxay (TP (ko)) (20) terization fore based on information-spectrum measures.

where 7 and D(-) are given in [IB) and{19), respectively, Theorem 2:The minimum error probability of f?lrM—ary
and where the optimization is carried out over (unit-trage-n test discriminating among statgs; , . , Tar} With prior clas-
negative) density operatos. sical probabilities{ps,...,pn} satisfies
Proof: For anyP = {II;,IIs,...,1,} let us define the M
binary testT” = diag (IIy, ..., II5). For this test we obtain € = max {Zpi Tr(ri{pm —tpp < 0}) — t}. (29)
Ho,t>0 =
e1(T") =1~ sz Tr (7;IL;) = e(P), (21) where the optimization is carried out over (unit-trace non-
negative) density operatorg acting on, and over the scalar
thresholdt > 0.
eop (") = i ZTF (1olL;) (22) Proof: Applying Lemmal2 to[[20), and using the defini-
. = o tions of 7 in (I8) andD(-) in (@9), yields, for anyuq, ¢’ > 0,
= M Tr (/LQ (Zi—l Hz)) (23)

M
1 1 €> Zpi Tr(n{pm - ]tTIIMo < 0}) - % (30)
i Tr (p10) = e (24) . =1 . /
The (possibly suboptimal) tedt’ has thuse;o(1") = €(P) It rﬁerams.Eﬂ showl_:halt ther(?[_ exllﬁt) ?r;dt ZhO Sucith?t
andeg; (1") = 5;. Therefore, using({4) and maximizing the (30) holds with equality. In particular, let us chogse= /5

“defined in [ZB), and’ = Mc; wherecy = SN p; Tr(n117)
is the normalizing constant frori (26).
e(P) > maxaﬁ(THD(uo)). (25) For this choice ofuy and t’, the projector spannmg the

negative semidefinite eigenspace of the operator— MNO
It remains to show that, foP = P* defined in Lemmal3, ¢an be rewritten as

the lower bound(25) holds with equality. To this end, we next )
demonstrate that the optimality conditions fup in Lemmal {pm — 7m0 < 0} ={pm —A(P*) <0}  (31)
and forP* = {II}, ..., II},} in Lemmal3 are equivalent for —1 32)
a specific choice ofi. ’
Let P* = {II3,...,1II%,} satisfy [15){(1b) and define where the last identity follows froni (16). The right-handesi
of (30) thus becomes

uh L — men = —A(P*), (26) y

Zpl Tr(r;) =1- v (33)

resulting expressmn overy, we obtain

wherecg is a normalizing constant such thaj is unit trace.
Lemmal[l shows that the te®kp achieving [2b) is associ-
ated to the non-negative eigenspace of the m&trixtD ().
Given the block-diagonal structure of the matfix— tD(uy),
it is enough to consider binary testip with block-diagonal
structure. Then, we writd\p = diag (17, ..., T} ).
For the choiceuy = pf5, andt = Mcj, the m-th block-
diagonal term in7 — tD(p) is given by

The result follows since; =c5 =3, p; Tr(71l}) =1—c. ®

The alternative expressions derived in TheoreEms 1Cand 2 are
not easier to compute than the original optimizatioriid (4f)
of them requiring to solve a semidefinite program. We recall
from the proofs of the theorems that a density operatpr

maximizing [20) and[{29) is

M
DT — b0 = PraTon — A(P?). (27) == >_pinil: (34)
cp 4
Them-th block of the Neyman-Pearson td3}l"” must lie in
the non-negative eigenspace of the mairi¥ (27). Howeweeesi for some P* = {II},...,1I;,} satisfying the conditions in

(I6) implies that[(27) is negative semidefinite, each b6k LemmalB and where}, is a normalizing constant. Hence, the
can only lie in the null eigenspace ¢f (27 =1,..., M. optimal M-ary hypothesis tesP* characterizes the optimal

According to [I5), the operatoll}, belongs to the null uo. Conversely, the optimal,, is precisely the Lagrange
eigenspace of (27)p = 1,..., M. As a result, the choice  multiplier associated to the minimization ii{14), after an

s * N appropriate re-scaling.
Tip = diag (I, ..., Ty 28 he expressions derived in Theorefs 1 Bhd 2 can be used

satisfies the optimality conditions in Lemna 1. Moreovetp determine the tightness of several converse bounds fiem t
sinceeo(Thp) = €(P*) = € andegi (Thp) = 7, Lemmall literature, as we show in the next section.



V. CONCLUDING REMARKS

We consider the channel coding problem of transmitting I Theorem [, the minimum error probability of an

M equiprobable messages over a one-shot classical-quantdiify quantum hypothesis test is expressed as an instance
channelz — W, with z € X and W, € . of a binary quantum hypothesis test with certain parame-

IV. APPLICATION TO CLASSICAL-QUANTUM CHANNELS

Pe(C) £

min
{IL1,...,ITar }

error probability after optimizantion over its free parasrs.

For a source message, the decoder receives the associatdifs the weakness of [10, Th. 1] by Wang and Renner in
bounds in [1I1, Th. 18 and Th. 19] coincide with the exact
M
1
{1 -7 > Tr(WImHm)} . (35) e )
m=1 Theorem[2 shows that the minimum error probability can
direct application of Theorenis 1 ahH 2 yields two alterreatithe Hayashi-Nagaoka lemma13, Lemma 4] yields the exact
respectively. The joint state induced by a codeb6ak
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A channel code is defined as a mapping from the messd§&- This expression implies the tightness of the converse

set{1,..., M} into a set of\/ codeword€ = {z1, ...,z ). bound [11, Th. 19] by Matthews and Wehner, and identi-

density operator?, and must decide on the transmittedlassical-quantum channel coding. For more general chenne

message. The minimum error probability for a catiés and entanglement-assisted codes, it is not clear whetleer th
error probability. To study this, a generalization of Themfl
imposing less structure over the test alternatives is reede

This problem corresponds precisely to thé-ary quantum be written as an optimizatior_l problem involving_informam'o

hypothesis testing problem described in Secfiah Ill. TheApectrum measures. In particular, this expression shoats th

expressions foP¢(C).

Let A and B denote the input and output of the system,
1
= 5 L el o W, (36)

Alfonso Martinez. The author thanks him, Albert Guillen i
Fabregas and William Matthews for stimulating discussion

related to this work.

andpt = L3 ¢ |z)(x|* its input marginal.
According to [20) in Theoreml1 we obtain "
1

(2]

The expression[(37) is precisely the finite block-length
converse bound by Matthews and Wehner] [11, Eq. (45)},3]
particularized for a classical-quantum channel with aruinp
state induced by the codeboak Therefore, Theoreni]1 [4]
implies that the quantum generalization of the meta-cawver
bound proposed by Matthews and Wehner is tight for a fixed
codebookC.

Minimizing the right-hand side of (37) over all distributis [6]
Py defined over the input alphab&t, not necessarily induced [7]
by a codebook, yields a lower bound d?(C) for any
codeboolC. By fixing u to be the state induced at the systemg,
output, this lower bound recovers the converse bound by Wang
and Renner [10, Th. 1]. This bound is not tight in generalesinc(®]
(i) the minimizing Px does not need to coincide with the input
state induced by the best codebook, and (ii) the choiggyaf  [10]
[10, Th. 1] does not maximize the resulting bound in general.

Using the characterization in Theordd 2, the error prob&-l]
bility P¢(C) can be equivalently written as

{% J;CTr(WI{WIt’MO <0}) -

Pe(C) = maxay, (pe” |l ¢ @ 15). (37)

[12]
t/

M } [13]

(38)

max
Ho,t">0

Pe(C

The objective of the maximization if_(B8) coincides Witﬁm]
the information-spectrum boun@ 13, Lemma 4]. Thén, (38)
shows that the Hayashi-Nagaoka lemma yields the exact ey
probability for a fixed code, after optimizantion over thedr
parametersi, t' > 0.
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