arXiv:1509.08254v1 [cs.IT] 28 Sep 2015

Towards a complete DMT classification
of division algebra codes

Laura Luzzi Roope Vehkalahti Alexander Gorodnik
Laboratoire ETIS Department of Mathematics and Statistics School of Mathematics
CNRS - ENSEA - UCP University of Turku University of Bristol
Cergy-Pontoise, France Finland United Kingdom
laura.luzzi@ensea.fr roiive@utu.fi a.gorodnik@bristol.ac.uk

Abstract—This work aims at providing new bounds for the algebra based lattice codes can be divided to two subclasses
diversity multiplexing gain trade-off of a general class ofdivision  with respect to their DMT. The difference between these
algebra based lattice codes. two subclasses is whether the Hasse invariant at the infinite

In the low multiplexing gain regime, some bounds were lace is ramified or not. In particular. division aloebrashwi
previously obtained from the high signal-to-noise ratio esmate P : I ) particular, divisi g '

of the union bound for the pairwise error probabilities. Here —ramification lead to a better DMT. _
these results are extended to cover a larger range of multipking Besides giving a new lower bound (that we believe to be

gains. The improvement is achieved by using ergodic theoryni  tight) for the DMT of a general family of division algebra
Lie groups to estimate the behavior of the sum arising from tle  p55ed |attice codes, this work also sheds some light on the

umon bound. licability and limitations of the union bound h
In particular, the new bounds for lattice codes derived fromQ- ~ 2PPICabIlIty: and limitations ot the union bound approac

central division algebras suggest that these codes can bevidied N Rayleigh fading channels. Ini[9, Section 3D] the authors
into two subclasses based on their Hasse-invariants at thefinite ~ speculate that the union bound cannot be used to measure the

places. Algebras with ramification at the infinite place seemto DMT of a coding scheme accurately. Our work reveals that

provide better diversity-multiplexing gain tradeoff. if we have good enough understanding of the spectrum of

the pairwise error probabilities, and we have enough receiv

antennas, even a naive union bound analysis can be used to
In [8] the authors proved that the union bound can be usaglalyze the DMT of a space-time code.

to analyze the diversity - multiplexing gain trade-off (D)af

a large class of division algebra based lattice codes. Taik w Il. NOTATION AND PRELIMINARIES

was based on upper bounding the pairwise error probabildy Central division algebras

(PEP) in the high signal-to-noise ratio (SNR) regime and | ot p pe a degree: F-central division algebra wherg
then analyzing the behavior of the union bound by combining eitherQ or a quadratic imaginary field. Let be anorder
information on the zeta function and on the distribution qf, p ang Ureg : D — M,(C) the left regular representation
units of the division algebra. o of the algebraD. When the centef is complex quadratic,
The choice to focus on the high SNR approximation of th@m (A) is a 2n2-dimensional lattice and whef = Q it
PEP allowed to analyze the behavior of the union bound USiPﬂ#-dimensional. We are now interested in the diversity
algebraic methods. However, it also implicitly restrict® 1y tiplexing gain trade-off of coding schemes based of the
analysis to be effective only for low multiplexing gain lésee |atticesy), ., (A). WhenF is complex quadratic, we can attack
In this work we will use a more accurate expression for thie question directly. However, in the case where the center
pairwise error and extend the earlier DMT analysis to covgy @ we will instead consider latticesit),, (A)A~, where
a larger range of multiplexing gains. When we have enoughis a certain matrix inM,, (C). While the performance of
receiving antennas, we can cover the whole multiplexing gai:hemes derived frome,eg(A) A~ andip,.,(A) can be very
region. For fewer receive antennas, we have bounds up tQjiflerent, the diversity-multiplexing gain curves are tsame.

|I. INTRODUCTION

certain multiplexing gain threshold. Consider matrices
As previously in |[8] the proofs rely heavily on the fact that A _p
the codes under analysis are coming from division algebras. (B _A* ) € Ms,(C),

This allows us to attack this otherwise quite impenetrable

guestion using analytic methods from the ergodic theory where « refers to complex conjugation and and B are

Lie groups[[3]. complex matrices inV/,,(C). We denote this set of matrices
This work confirms that from the DMT point of view all by M, (H).

the division algebra codes with complex quadratic centeeha We say that the algebr® is ramified at the infinite place

equal (and optimal) diversity multiplexing gain curve. Wheif

the center of the algebra @@, our work suggests that division D ®g R ~ M, j»(H).
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If it is not, then The error probability is the average ovéf of the error

D ®g R ~ M, (R). probability for fixed H:
Lemma 2.1:[8, Lemma 9.10] P — / Pl EDNH
If the infinite prime is ramified in the algebf, then there e(H) My (C) (H)p(H)INH),

exist a matrixA € My (C) such that where is the Lebesgue measure, and the densit§fgé the

Atyeg(N)A™! C M, jo(H). product of Gaussian densities:
If D is not ramified at the infinite place, then there exist a 1 B Jha?
matrix B € M,,(C) such that p(H) = amn 1_[1 1_[1 €
1=1)=

-1
Bipreg(A)B™" C Mn(R). For fixed H, the union bound for the error probability gives

From now on we will simply use notationy for both
embeddings of Lemnia2.1, when the centeé@iand fory,.,,
when the center is complex quadratic.

P(H)=P{X #X|H} < > P{X - X|H}.
XeC,X#X

The pairwise error probability is upper bounded by the Cher-

B. System Model noff bound on theR-function [6]:

We consider a multiple-input multiple output (MIMO) sys- ~ (S —x2
tem with n transmit antennas and receive antennas, and P{X - X|H} < e g [ HE=X)]|

minimal delayT = n. The received signal is given by By linearity of the code

p v P 2
=,/Z — g IHX|
Y \/;HX+W, P,(H) < Z e ¥ .
B XeM—19(A(2M))\{0}
where X € M, (C) is the transmitted codeword?, W <

M. (C) are respectively the channel matrix and additiv¥ote that we can replacg; by p without affecting the DMT,
noise, both with i.i.d. circularly symmetric complex Gaiass € COefficient “2” in the sum also does not affect the DMT

entriesh;;, w;; ~ Nc(0, 1), andp is the signal-to-noise ratio. and so
Iq the DMT ;etting, we consider. code §equen@©@) whose P.(H) < Z e PIHX|? _ Z e,plf”T"”Htz'
size grows with the signal-to-noise ratio. More preciséhg Xee Xew (A )
multiplexing gainr is defined as X#0 X£0
e i L8 [C] By the dotted inequality we meafip) < g(p) if
con logp
SR i 08/ () _ log g(p)
Let P. denote the average error probability of the code. Then o Tlogp ey Togp
the diversity gain is given by .
To simplify notation, we define = p' =+
d(r) | log P,
r)=— 11m .
p—oo log p IIl. A NEW UPPER BOUND ON THE ERROR PROBABILITY

Let now A be an order in a degree F-central division  \We now consider a similar argument to our previous paper
algebraD and+ an embedding as defined in Section 1I-A. [8]. Let Z be a collection of elements ih, each generating a
Given M, we consider the finite subset of elements withifferent right ideal, and lef(M) = Z N A(M). Thus, each
Frobenius norm bounded by/: nonzero element € A(M) can be written ag: = zv, with
- ) v € A*. Moreover, since by hypothesis the centérof the
AM)={z €A : |Y)| <M} algebra isQ or an imaginary quadratic field, we have that the
Let £ < 2n? be the dimension ofA as aZ-module. As in subgroup
[8], we chooseM = p% and consider codes of the form 1 .
Clp) = M—1p(A(M)) = p~#(A(p")). The multiplexing AT ={z e A"« det(y(z)) =1},
gain of this code sequence is indeedand it satisfies the of ynits of reduced norrh in A* has finite indexj = [A* : A]

average power constraint [5, p. 211]. Letay, ag, ... ,a; be coset leaders af! in A*.
11 2 We note thatl" = ¢(A!) is an arithmetic subgroup of a Lie
|c| n2 Z IX1" <1 groupG. In our case is one of the groupSL,,(C), SL,,(R)
Xece or SL,, /o (H).

We suppose that the channel matfixis perfectly known at The previous sum can be rewritten as
the receiver but not at the transmitter, and consider maximu

likelihood decoding Z 27: Z e clHY(zai)ul®

X = argmin||Y — HX|*. TeT(M) i=1 u€T,
Xec ¥ (zai)ull<M



Sinceza; € A, we have|det(y)(za;))| = |det(y(x))] > 1. Let M, = Rg—IM. From [1), the error probability is upper

Fori e {1,...,j}, let's consider bounded by
U(wa;) % |1 Hgigll?
gi = T € G. / / R12_, 9:9 de H)d\
det(y(za;))n Mo n(€) H(F zG;M ; By, (M,) (H)
With a slight abuse of notatioWa € G we denote byB, (M)
the “shifted ball” inG: = / / dpp(H)dA
Z(ar) ! Mmon B(M, )

B,(M)={geG : < M}. ) . . : :
(M) =19 lagll < M} Since the integrand is a measurable and non-negative éumcti

Using the notationd, — |det(z/1(x))|%, we find by Tonelli’s_theorem we can exchange the two integrals. From
the determinant bound in![6], we have thaX € M,,(C),

—edi | Hgiull® (1) / _ 2 1

< ) Z > e , e~ X p(HYN(H) =

zeZ(M) i=1 ueT, M 1 (C) (det( + cXX*))m
w€B,, (M/d,)

Thus the error probability is bounded by
Using a simplified argument inspired by the Strong Wavefront

Lemma in [8], we will now show that the suri](1) can be j ,fg IHgll
bounded by an integral over the corresponding ballzin Fr) B(M.) J M, n(c)
J

p(H)dAdp(g) =

Let Fr be the fundamental domain af in G, which is a 2€Z( M)

compact polyhedron 7 containing the identity element  — Z / 1 —dp

ConsequentlyRr = maxge 7. ||g|| is finite (and greater than u(Fr) veT(pR) B(Ms) det (I—i— ¥l Pt "gg*))

n = |le||). Supposeg € Fr. By submultiplicativity of the

Frobenius norm, we have thsit € M,, ,,(C), Our problem is now reduced to finding an asymptotic upper
bound for the integral

lagll < llallllgll < Br la]-

1
I, = e (g)d 2
In particular, we have thatg € Fr, Va € G, /G (det (I + 02p'~ %" gg*))™ XB(PJj )(g) ug) ()
Z e—cllaull® < Z e’?c%”““g”2. where we have defined, = 4= to simplify notation. Note
uer, uer, that
w€B, (M) w€ By (M) i
P, < I, 3
By integrating both sides oveFr, we find — u(Fr) 612(:%) 3)
z€Z(p
w(Fr) Z e~cllaul® < Z / gl du(g) = In the cases we're interested i@, is a connected noncom-
ueT, uel, /I pact semisimple Lie group with finite center and admits a
ueBa (M) u€ B (M) Cartan decompositioy = K ATK, where K is a maximal
= Z / ~ g lagl® dulg), compact subgroup of/, and A* = exp(a™), with at the
wer, positive Weyl chamber associated to a set of positive it
u€ By (M) roots®*. Given a rootn € &+, we denote its multiplicity by

mg. The highest weight is the sum of positive restricted roots
with their multiplicities: 3 = 3 .5+ mac.
The following identity holds for any functioff € L'(G) [2]:

wherey is the Haar measure ovéf. The last equality follows
from the invariance o, underG-action.
Note that the imagesFr are disjoint. Ifg = ug’ with ¢’ € Fr
andu € B, (M),
/ fdu = / f(kexp(a)k') ] (sinha(a))™dkdadk’,
KxatxK

lzgll = llzug'| < [lzullllg']l < MRy ¢ acdt
We have where da and dk are the Haar measures an and K
respectively.
U wFrc B.(MRp), Note that in [[2), the integrang is invariant by K-action
u€Ba (M) both on the left and on the right since it only depends on
where the union is disjoint. We can conclude that the singular values of. So by definition of the normalized
Haar measure,
—cllau|? < 1 / —§||‘19||2d
¢ < e " du(g). . .
uezl“, WFr) J B, (rem) / fdu = / f(exp(a (smh ala))™ da.

w€EBy (M) o¢€<I>Jr



The dominant term (as a function @) of the integral [(R)
corresponds to the highest term of the sum

H (sinha(a))™ = Zhgef(a)
acd+t 13
The highest term corresponds o= g [2]. Therefore the
dominant term of the expression is

/ f(exp(a))e®@da. @)
G

IV. DMT BOUNDS FOR DIVISIONALGEBRA BASED CODES

In this section we will prove the following DMT boundsF_ L OMTI bounds fon2_di onal lattices from division alaeb
- . ig. 1. ower bounds for“-dimensional lattices from division algebras
for the three classes of codes introduced earlier. over Q whenn = 2 andm = 1 (solid line: unramified at the infinite place;

Proposition 4.1: CaseF' = Q(v/—d), G = SL,(C). Let dashed line: ramified at the infinite place).
d*(r) be the piecewise linear function taking valugs —

r)(m —r)]T whenr is a positive integer, with equation
N _ _ _ We have the Cartan decompositish,, (C) = K x A" x K,
d'(r)y=—-(m+n-=2r| =Dr+mn—[r|(r] +1). (5) where X — SU.,, and A+ — exp(a™).
The diversity-multiplexing gain trade-off for space-timedes The highest weight ig$(a) = Z;:ll 4(n —1)a;.
arising from2n2-dimensional division algebras with imaginary Example 2: Case of centdf = Q, G = SL,(R).
quadratic cente” = Q(v/—d) is d*(r) provided thatm > We have®t = {e; — e, }ick, With multiplicity mq = 1
2[r] - 1. for all @ € ®*. The positive Weyl chamber associated
The DMT d*(r) is optimal for space-time codes [9], ando &+ is againa™ = {aca : a; >as>--->a,}, and

Propositior’ 4.1 is well-knowr, [1], but an alternative proef g(q) = Z?:*ll 2(n —i)a;. We have the Cartan decomposition

N[

included here for the sake of completeness. SL,(R) = Kx A" x K, whereK = SO,, andA™ = exp(a™).
Proposition 4.2: Casé” = Q, G = SL,(R). Letdi(r) be  Example 3: Case of centdf = Q, G = SL,, 5 (H).
the line segment connecting the poifits[(m —r)(n—2r)]") We suppose that = 2p is even. Consider the algebra
where2r € Z, with equation a = {a =diagai,...,ap,a1,...,ap) : >0 a; =0}. The
|27 set of positive restricted roots " = {e; — ex}1<ick<p,

di(r) = (=n=2m+2 2r|+ D)r+mn—=—=(|2r]+1). () with multiplicity m, — 4 for all @ € ®*. The highest

The diversity-multiplexing gain trade-off for space-timedes Weightiss(a) = 3215:11 (p—i)a;. The positive Weyl chamber
arising fromk = n2-dimensional division algebras with cente@Ssociated t@™ isa™ =f{aca : a1 >ay > - > ap}.
Q not ramified at the infinite place ig; () provided that Note that in all three cases,’ is a set of diagonah x n
m > [2r] — L. matrices.

Proposition 4.3: Casef’ = Q, G = SL,, /»(H). Suppose Proof of Proposition§ 411, 4.2, 4.3For the integral[(2),
that n is even. Letds(r) be the piecewise linear functionthe dominant term({4) is given by
connecting the pointér, [(n — 2r)(m — r)]T) for r € Z. The N0
diversity-multiplexing gain trade-off for space-time esdrom — o X, n 2rn _day - day 1
n?-dimensional division algebras with cen@which are ram- o+ [Tizy (1 4+ 02!~ e2e)m 7{ 52 eras <oy}
ified at the infinite place id,(r) provided thatn > 2 [r] —1. eBla)

Remark 4.4:The results in Propositios 4.2 and14.3 are< m P X{a . M}dal...dan,l
new. Although this proof only provides a lower bound, we 7" [ (14 62p, * e2ai)m RS
conjecture thatd;(r) and dy(r) are actually the DMTs for =1
these space-time codes for all values-of Note that the integral is only in — 1 variables and,, is just

Before proceeding with the proofs, we need to give somedummy variable since; + as + - -- + a, = 0.
details on the Lie group structures associated to the these Moy consider the change of variables = b; log gm/k)_

types of codes considered in this paper. See Appendix A j > - . O
[8] for definitions and details. Elven thatd,, > 1/Rr, this integral is bounded by

Example 1: Case of centdr = Q(v—d), G = SL,(C). . B(b) log 27/
i ; T : ™ n— e o
The set of positive restricted roﬁots@s’r = {e;—ep }i<k, With (_ log pRr) / — db
multiplicity m, = 2 for all « € ®*. Consider the algebra B0, (14 XbimDles s Hlogpym
a= {a: diagas, ... an) : Zizlai = 0}- whereB ={becat: b <1}.
For our purposes, we can neglect logarithmic factorp af

The positive Weyl chamber associateddd is
the sequel.

at={a€a:a>a> - >a,}. Let (x)T = max(0,z). From the inequality(1 + ¥)~1 <



e~(®" we find the upper bound (5,2(p — 8)(m — 5)) = (s,(n — 2s)(m — s)) for s € Z,
ok n o + provided thatm > 2([s] — 1).
{5“’) log &5 ——m > <2(bi*1)1°g 5 “Og”) }db _ We can conclude that (neglecting logarithmic factors) the
dominant term irp in @) is of the orderf(d,), where

e

e

rn _logdy S _1)(rn_logdy + - z ot
_ / Joso| (g )30 m 5 (e (et n) | F(t) = pmd) = pmdlr—kieEs).
B
n Consequently, the dominant term in the error probabilityrimb
—logp|—=sn m sn(p. + .
= / e lgp[ KO+ 1-;1(2 # (b)) }dbl"'dbn—l (3) is bounded by
B )
J n—1 —d(r—£ lofg‘sg
where st = o lfogg‘if < . Note thatB is contained in an M(]:F)C(log phr) Z p IR )
(n — 1)-dimensional cube with Lebesgue measureSo our z€L(pF)
integral can be upper bounded by where( is a constant independent pfand z.
,%ig{,%ﬁ(b)mz?:l(2%(bi,1)+1)+} B Regall thatI.is a collection of elements € A generating
= distinct right idealstA. We have
— min —M-l-mZ?: aj+1—25n +
_ sl e Y ofe= X fe< X fe)
where P = {QST” >a1 > ag > > ap, Z?:l a; = 0}, z€Z(p*) 2€T: [|yp(z)||<p * w€T: dy<p'F
ando; = biQST", i=1,...,n. since by ttle arithmetic-geometric mean inequalify, =
Thus, we need to find |det(y(z))|* < |[¢(z)||. Given ! € N, defines, =

HreZ:1<6, <41}, andVt > 0, let S, = >, 5.
Since f is decreasing and, = d./Rr < d,, -

Bla) ” 2sn\ "
g(a)z—T—FmZ atl-—) . (@ Zm f(dz) < Zﬂ sif (D).
i=1 z€Z(p'® ) I<p®&
The proof of the following two Remarks is elementary b“lthing summation by parts
rather tedious and can be found in the Appendix.

d(s) = min g(a), where

[7, Theorem 1], we have

rn

Remark 4.5:(Case G = SL,(C)). On a*, fB(a) = v em pE ,
— 3% | 4icy. In this case Yo sfl)=S(pF)f(pT) —/ S@E)f ()t (8)
n 1<p® !
s\t ! .
g(a) = Z (22'041- +m (ai +1- 5) ) ) It is possible to show! [4, Theorem 29] that given a central

i=1 simple algebraD over Q and an orderA in D, there exist

s n constants;, § > 0 such that
P = —204120622"'20471,2041':0 .
n =1 HzeT: 1< |det(y(z))| < A} =cA™(1+0(A7%)).
If m >2([s] — 1), thenminaep g(a) = d*(s). Similarly, for a central simple algebr® over an imaginary
Remark 4.6:(Case G = SL,(R)). On a¥, B(a) = quadratic fieldF" and an orden\ in D, 3c,§ > 0 such that
— > | 2iey. In this case we have
N HzeZ: 1< |det((x))] < A} =cA? (14 O(A7?%)).
. 2
g(a) = Z (iai +m <ai +1-— f) ) , In both cases, the exponent df is equal tok/n. Thus, in
i=1 both cases we have
2 = nn
P= {—S >a1>ar> > am Y o =o}. S(t)=[reT: 1< |det((e))| < Rpt"}| ~ t*.
n 1= rn T . . .
. =t Since f(pT) = p~*» = p=mn, the first term in[(B) is of
If m > [2s] —1, thenminaep g(o) = di(s). the orderS(p ) f(p*) ~ p~™™="), which is smaller than
The following Remark is more immediate. p~%") in the three cases we are considering.
Remark 4.7:(CaseG = SLy»(H)). Let n = 2p. Recall |et's now focus on the second term il (8), which can be
thata = {(l = d|aqa1, ey Qp, A1, .., (lp) : Z€:1 a; = 0}, written as
and pBla) = 837" ia; on af. We have e
g(Oé) = 2257:1(21(11 + m(ai + 1 — %)Jr), and _/ tkp—(z(r—%llgg’;)(cz)/ (7,_ Elogt> Edt
P = (pZ2mza>->ap, Zleozi:O}. Note 1 . nlogp/ nt
that the polyhedron and the functigrie) are very similar = —logp/ p" =) p= ) (@) (v)dv <
to the ones in Remark_4.5. With the same reasoning, 0
we find that the diversity ordek(s) is lower bounded < Clogp/ pnr () gy,
by the piecewise linear function connecting the points B 0



(Vi) > d*(s).

(d)'(v) < 0. Define Since ¢ may not be concave, it may not a priori take its
" _ minimum on the vertices dP. However,g is piecewise linear
d™(v) = nv +d(v). on the subsets

To conclude the proof, we now deal with the three cases g, _ {a EP: apyl < 5 1, ap > 5 _ 1}.
separately.

a) CaseG = SL,,(C): d**(v) = nv+d*(v) is a piece- Fora € P, Vk € {1,...,n}, we have
wise linear function interpolating the points of the parabo s
v2 — mv + mn for v € Z,v < min(m, n). It is decreasing in 0= (a1 +...+ax)+(ar1+...+an) < k5+(n—/€)ak+1a
[0, v] provided thatd**([v] — 1) > d**([v]), or equivalently
if the midpoint[v] — 3 < 2.
Assume thatn > 2 [r] — 1. Then, we have sk VE > 1 ©)

>
T Het1 = n(n — k) -
rn—d** (v) rn—d**(v) _ —d*(r)
/O p Wdv <rp @ = rp=t ), Note thatS;, has measuré whenk < n — s because of the

condition [9). SoP = U} —,_,,, Sk and

which implies that

and soP.(p) < p~¢ (),
b) CaseG = SL,(R): d**(v) = nv + d,(v) is a piece- ming(a) = =~ min = ming(a).
W|se linear function |nterpolat|ng the pomts of the parabo ) . ) )
v? —2mu-+mn for 2v € Z,v < min( % . Itis decreasing in S'ncefg(h) is linear _?Esk,f'ts mlnlmurg 'nsﬁ 'Skat:?'ﬂed In
oo/ [20] 1 ok fm one of the vertices. Therefore we need to check all the \a=rtic
l[fotglp,;?gld;gttpal _(1 < m 2) 2 d ), or equivalently of S,. The new vertices (that are not already verticesP)f
P are the intersection of the hyperplafg, = {oy = £ — 1}

Assume thatm > DH — = W|th the same reasoning as in
the previous case we f|nB (p) < p~al), with the edges of. Let
c) CaseG = SL,,p(H): d™(v) = nv 4+ da(v) is P = {a €EP > — 1}7 P, =P\P;.
n

a piecewise linear function interpolating the points of the
parabola2v? — 2mv + mn for v € Z,v < min(m 2). It If there aret vertices of P on one side of the hyperplane
is decreasing if0, v] provided tha **([ 1-1)> d**([ 1), andn —t vertices on the other side, the total number of new

or equivalently if the midpoinfv] — % <z vertices is at most(n — t). For fixedk > n — s, we find that:
Assume thatm > 2 [r] — 1. Similarly to the previous cases - V; € P;;
we obtainP,(p) < p~®(), O - for j > k, V; hasa;, = £ and soV; € P}f;
-if j<n—s<k V;ePl;
APPENDIX - for s € Z, V,,_, € Hj, so it's a vertex we've already
A. Proof of Remark™415 checked;

The functiong is a maximum of linear functions, and so it - forn—s<j <k, V; € P.;
is piecewise linear and convex, but not necessarily concaliderefore the new vertice@;; and R;; arise from the edges

Note thatP is an (n — 1)-dimensional simplex boundedconnectingV;, j € {[n—s+1J,...,k — 1} with eitherV;,
by the hyperplanes? = {a; + ---+a, = 0}, Hy = 1€{0,....,[n—s—1]}orV;, le{k,...,n—1}, and these
{Oq = %}7 H; = {0y = a;41}, i = 1,...,n — 1. Each vertices are of the form
vertex of P is of the form A.nHEn ( ﬂ Hi)-
Vi = H H k=0 1 !
B=H0 Dk N = e After some tedious calculations, we find th@}; has coordi-
’ nates%:al:..._al>al+1_...:—+"flJ:
We havel,, = 0, andV}, is such that o >ajp=...=q=...=a,=—1+2and
o= =q = E, Qg1 =" = Qp = —%. 9(Qj) =m(n —s)— (n—j)(n—s)+1ln—s—7j).
n n — n
Recalling thad <! < n—s < j < k, and lettingl = n—s—a,
Note thatg(0) = m(n — s), and j=n—s+bwith a,b> 0, we get
_ o+
9g(Vi) = —ks+mk+m(n—k—s)". g(le) =(m— s)(n — 5) + ab.
If S € Z, g(Vk) Z g(Vn—s) = (m — S)(TL — S) = d*(S) For For s e Z, g(le) > (m _ S)(TL _ S) — d*(s) For s ¢ Z,
-i find that i - i i e T
non-integers, we the choice of and;j which minimizesg(Q;;) isl = |n — s,

kE<n—s = g(Vi)>g(Vin-s) =mn—s)—s(|n—s)), j=[n-s], and
E>n—s = (V) > (Vi) = (m—s)(Tn—s]).  9(Qu) = —s(m+n—2[s]~1)— [s] ([s] +1) +mn = d*(s).



The pointsR;;, wheren —s < j < k <[ < n —1, have
coordinates® = aj > Ut = - ;
—l+i= =q>qpn=...=a, = fl—n(n—il)and

=q; = ... = qp =

9(Rji) = =sl+ (I = j)(n — j) + mj.

Lettingj = n—s+a,l = j+b, witha > 0,0 > 1,a+b < s—1
we find that

g(Rj1) =m(n—s)—s(n—s)+alm—s—»b).
We haveg(Rj;) > d*(s) provided thatm > 2([s] —1). O
B. Proof of Remark 416

The vertices ofP areV, = 0 and Vi, = (aq,...,ay),
k=1,...,n—1, with
2s 2ks
Al =+ = = — o :-~-:an:—7_
! R kol (n—k)n

If 2s € Z, theng(Vi,) > g(Vo—2s) = (m—s)(n—2s) = d1(s).
Suppose now thalls ¢ Z. Fork < n — 2s,

9(Vi) 2 g(Vin—2)) = —(n — [2s])s + m(n — 25) = di(s),
with equality fors € (0,1/2). Fork > n — 2s, we get
9(Vi) 2 9(Vin-2s)) = (n = [2s])(m — s) > du(s).

The functiong is piecewise linear on the subsets
2 2
Sk_{aeP: akHS—S—l, akz—s—l},
n n

that have positive measure fér> n — 2s. The extra vertices
of the regionS;, (that are not vertices dP) are the points)
and R; connectingV;, n — 2s < j < k < n, with V;, where
0<l<n—-2sandn—2s < j < k <l < nrespectively. Note
that sincen, j, k, and! are integers, the point9;; and R
exist if and only if; < s < 2 and3 < s < 2 respectively.
The point@;; has coordinategni = =...=q > Q41 =

. .:%—F%:O&j>0ﬁ+1:...
—1+ 2 andg(Q;) = m(n —2s) — (n— 25)(71—?) +L(n-
j—25) = (m — 5)(n — 2s) + 2eldont2e),

If 2s € Z, note thatg(Q;;) > (m — s)(n — 2s).

Suppose now thals ¢ Z. Then

g(le) > g(anLQSJ,nfpsjfl) =d (S)

Now let's consider the poink;;, which has coordinate% =

= =...=Qp =

alz...:aj>aj+1:...:ak:—1+%:...:al>
— — _1=J 2ls
O‘l+1—---—0‘n—m—n(n4)-we have

9(Rji) = —sl+ (I = j)(n — j) + mj.
Lettingj = n—2s+a,l = j+b, witha > 0,0 > 2,
a+b<2s—1 we find that
g(Rj1)) =m(n—s)—s(n—2s)+a(m—s—>/2).

If 25 € Z, we haveb < 2s — 2 andg(Rj;) < di(s) provided
thatm > 2s — 1.

If 25 ¢ Z, we haveb < |2s| —1 andg(R;;) < d1(s) provided
thatm > |2s] = [2s] — 1. O
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