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Abstract—We consider a fading wiretap channel model where to the case of fading channels and propose a family of non-
the transmitter has only statistical channel state informaion, and  random lattice codes from algebraic number fields satigfyin
the legitimate receiver and eavesdropper have perfect chal s crjterion. We note that ideal lattices from number feld

state information. We propose a sequence of non-random late Iread idered f d tabil
codes which achieve strong secrecy and semantic securityepy WET€ @lready considered for secrecy under an error protyabi

ergodic fading channels. The construction is almost univesal ~Criterion for Gaussian and fading channelsiin [1.12, 8, 16] an
in the sense that it achieves the same constant gap to secrecyelated works.

capacity over Gaussian and ergodic fading models. In this paper, we consider a particular sequence of algebrai
number fields with constant root discriminant. In|[20} 11], i
was shown that these lattice codes are “almost universal” in

The wiretap channel model was introduced by Wyner [21fhe sense that they achieve a constant gap to channel gapacit
who showed that secure and reliable communication can dger any ergodic stationary fading channel. The underlying
achieved simultaneously over noisy channels even withanultiplicative structure and constant root discriminartgerty
the use of secret keys. In the information theory communityuarantee that the received lattice after fading has a good
the most widely accepted secrecy metric is Csiszéireng minimum distance when the channel is not in outage.
secrecy the mutual informatiori(M; Z") between the confi- The sequences of number fields that we consider are also
dential messag®! and the channel outpi™ should vanish used in the crypto literature for worst-case to average-cas
when the code length tends to infinity. reductions of hard lattice problems [18].

While in the information theory community confidential In this work, we show that these lattices also achieve strong
messages are often assumed to be uniformly distributesl, thécrecy and semantic security. The key feature is thadlaé
assumption is not accepted in cryptography. A cryptogm@aplof the faded lattice has good minimum distance, so that the
treatment of the wiretap channel was proposed.in [3] to coraverage flatness factor of the faded lattice vanishes.
bine the requirements of the two communities, establishingln particular, for the Gaussian case this suggests a simple
that achievingsemantic securityin the cryptographic sensedesign criterion where the packing density of the latticd an
is equivalent to achieving strong secrecy for all distiits$ its dual should be maximized simultaneously. We note that th
of the message. This equivalence holds also for continuadisal code also plays a role in the design of LDPC codes for
channels|[10]. binary erasure wiretap channels|[19].

In the case of Gaussian wiretap channels| [10] consideredVMe also improve the rate of almost universal codes by
the problem of designing lattice codes which achieve stromgplacing spherical shaping with a discrete Gaussiani-distr
secrecy and semantic security. Following an approach bytion over the infinite lattice as in [10]. As a consequence,
Csiszar [[5, 4], strong secrecy is guaranteed if the outpatir nested lattice schemes achieve the same constant gap to
distributions of the eavesdropper’s channel correspantin secrecy capacity over all static and ergodic fading models.
two different messages are indistinguishable in the sefise oThe proposed lattice codes can be generalized in a straight-
variational distance. Moreover, thkatness factof a lattice forward manner to the multi-antenna case using the muttiblo
was proposed in [10] as a fundamental criterion which ingplienatrix lattices from division algebras in [11]. This gerlera
that conditional outputs are indistinguishable. Usingd@n tion will be presented in an upcoming journal version.
lattice coding arguments, it was shown that there existlfami
of lattice codes which are “good for secrecy”, meaning that
their flatness factor is vanishing, and achieve semantiriggc A- Flatness factor and discrete Gaussian distribution
for rates up tol /2 nat from the secrecy capacity. In this section, we define some fundamental lattice param-

In this paper, we consider a fading wiretap channel modeters that will be used in the rest of the paper. For more
where the transmitter has only access to statistical chhanbackground about the smoothing parameter and the flatness
state information (CSI), while the legitimate receiver anthctor in information theory and cryptography, we refer the
the eavesdropper both have perfect knowledge of their owaader tol[15, 10, 17].
channels. We extend the criterion based on the flatness fac@onsiderC* as a2k-dimensional real vector space with a real
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inner product(x,y) = R(x"y). This inner product naturally to the continuous Gaussiafi 5. Let ¥ = X; + 33 and
defines a metric oft* by setting||x|| = /(x,x). [l yol=urt 4t
Given a complex lattic\ ¢ C*, we define the dual lattice as

1
<e< =
A ={xeCF|VyecA, (x,y)eZ} GA(\/E)—E—T 3
Let f 5 (=) denote thek-dimensional complex normal dis-then the distributiory of X = X, + X; is close tof /-
tribution with meanc and covariance matriX:
1 V(gv f\/TU) < e,
_ - —(z—o)fuT(z—0) k . .
fusel2) = T det(3) vz e C. whereV(, ) is the L' distance.
We will use the notatiory, .(z) for for.c(z). B. Ideal lattices from number fields with constant root dis-

Definition 1: Given a complex lattice\ c C*, theflatness criminant
factor eA(\/E) is defined as the maximum deviation of the
Gaussian distribution oveA from the uniform distribution
over a fundamental regioR(A) of A, with volumeV (A):

Let F' be a number field of degrdé' : Q] = n, with ring of
integersOr. We denote bylr the discriminant of the number
field. We define thecodifferentof I’ as

eA(VE) = e VNS fusa(z) —1]. Yo={r € K :TrpgaOr) CZ}.
] ) Ach The codifferent is a fractional ideal, that is, there exsime
Compared tol[10], in this paper we use an extended Versifileger o such thata©Y. is a proper ideal of0r, and its
of the fIatnes_s factor for correllated Gaussmn;, relatetheo talgebraic norm is the inverse of the discriminant:
extended notion of the smoothing parameter_.in [17]. We also
extend the definition to the case of complex lattices. N(OY) =1/dp. (4)

Note that correlations can be absorbed by the lattice in the

_ ~— We will focus on the case of totally complex extensidnis)
je?\s/eE_t )h;tﬁg(fgz_areeﬁyg;ti\?; ?je:ihn?:eeﬁgat?égs vSvithof degreen = 2k. The relative ca):\oniczfl embeddingf ¥
vz ! 2 P into C* is given by

Y = 2.
Definition 2: Giyen a latticeA ande > 0, the smoothing (@) = (o1(x), ..., on(x)),
parametéf 7. (A) is the smallests = v/27o > 0 such that _ _
Y arer-\(o) e~ INI? < ¢ whereA* is the dual lattice. Wwhere{o1,... 0} is a set ofQ-embeddingsF” — C such
To extend the definition to matrices we can say that that we have chosen one from each complex conjugate pair.
] ThenA = ¢(OF) is a lattice inC*. The codifferent embeds
V2rX Zne(A) if en(X) <e (1) as the complex conjugate of the dual lattice:
T_he smoothing paramet_er is upper bounded by the minimum A* = 20(09). (5)
distance of the dual lattice [15]:
N Using [2), we obtain
ne(A) < - 2)
A1 (A%) Vk
- : . . Ne(A) € ——==- (6)
Finally, givenc € C* ando > 0, we define thediscrete M(P(OF))
Gaussian distributiorover the (shifted) latticé\ —c C C* as  Erom the AM-GM inequality we have that for any fractional
the following discrete distribution taking values in— c: ideal Z of Op,
o A—c L
Dyea(h =)= 2228 MWD > VEN @) F.
The following result is a consequence bfl[17, Theorem 3.1] particular, from [(#) we get
and extends Lemma 8 in_[10]: VE
Lemma 1:Let X; be sampled according to the discrete MW(OF) = M (¥(0F%)) > - (7)
Gaussian distributio®,, , - andX, be sampled according |dp |

Combining equationg6) anfl(7), we find that the smoothing

e P _ it the
This inner product corresponds to identifyinG® with R™ with a5 meter oft is upper bounded by the root discriminant/[18,

the canonical real inner product, through the isomet¢:,...,2x) = e ok
(R(21),- .-, R(z), S(2), - .., S(2)). Note also that ifs = f, then Lemma 6.5]: givere = 2727,
(z,%7) = R(z'2z) = 21Xz = ¢(=2)"Zpe(z), where Tp = .
¥ 2k
(2%; §R\Eg) . In particular, the properties of real Gaussian distribu- ne(A) < |dF| . (8)
tions carry over to circularly symmetric complex Gaussigtrithutions. The foIIowing theorem by Martinet [ZL3] proves the exis-

2Note that we define the smoothing parameter per complex diimen s . .
which differs by a factory/2 from the definition in[[15]. We have adjusted tence of infinite towers of tOta”y complex number fields with

the bounds om. (A) accordingly. constant root discriminant.



Theorem 2.1:There exists an infinite tower of totally com-
plex number field§ F} of degree2k = 5 - 2¢, such that

G,

1
|dp, [?F = )

for G ~ 92.368.
We now focus on the corresponding lattice sequeXiée c
C*. Their volume is a function of the discriminant:

Vol(A®)Y = 2% /|dp| = 27FG*
Let e = 272k, From Theoreni 2]1 and equatidd (8),
n(A®) < |dp|* =G

(10)

Since the flatness factor is a decreasing function,of

Vo > i 272k

Vor'

FADING WIRETAP CHANNEL

e (0) < (11)

We consider the secrecy schemelin [10], where each con-
fidential messagen € M = {1,...,e"?} is associated to
a coset leadeX,,, € A, N R(A.) for a fundamental region
R(A.). To transmit the message, Alice samplesx® from
the discrete Gaussialy, 1, ». With o2 = P. It follows
from |10, Lemma 6] that a — oo, the variance per complex
dimension ofX* tends toP provided that

Jim e, (VP) = 0. (17)

From [10, Lemma 7], the information raf®’ of the auxiliary
message (corresponding to the choice of a poimtdhis

R’ =~ 1In(reP) — %ln V(Ae) = In(mweP) — %ln(agk27ka).

Therefore, we have
2meP

GeF'

2
Q, ~

(18)

We consider an ergodic fading channel model where tigom (11), ea.(VP) = €a,a(VP) = ea (\/ﬁ/ae) -0

outputsY* andZ¥ at Bob and Eve’s end are given by

{

Yi = HpiXi + Wy 4,
Z; = He i X; +We 4,

i=1,....k (12)

gee ey

provided that\g—? > £, and [17) holds for
R’ >1In(eG/2) = In(G/2) + 1. (19)

We now state the main result of the paper which will be

whereW, ;, W, ; are i.i.d. complex Gaussian vectors with zergroven in the following sections:

mean and variance?, o2 per complex dimension. The input
X* satisfies the average power constraint

k

1

T > X;|* < P.
=1

We suppose thatl ;, H ; are isotropically invariant channels
such that the channel capaciti€s and C. are well-defined
and the weak law of large numbers holds: > 0,

(13)

kli}rI;OP{ Zln (1+ |hb1| )—Cb >6}=0, (24)
klgI;OIP’{ Zln (1+ |Re.il ) —Ce >5}:o. (15)

Proposition 1: The proposed wiretap coding scheme with
o2 = P achieves strong secrecy for any message distribution

pm (and thus semantic security) for any secrecy rate

R<(Cy—C.,—1n (2G2/7T).

A. Secrecy

The received lattice at Eve’s end K.A, where H,
diag(He,1, .., Hex). Since the messagél and the channel
H* are independent, the leakage can be expressed as follows:

I(M; Z%, HE) = I(M; HE) + I(M; ZF[H, ) = I(M; ZFH,) =
=En, [I(pmn.; pzep.)] = En, [L(pm; pzepn,)]

We want to show that thewerageleakage with respect
to the fading is small In order to do so, we will show

We suppose that Alice has no instantaneous CSIT (apart fréhtribution with high probab|I|ty For a fixed reallzaudﬂe =

knowledge of channel statistics), and Bob and Eve have gterf
CSI of their own channels. A confidential messadgeand
an auxiliary messagd!’ with rate R and R’ respectively
are encoded intX*. We denote byM the estimate of the
confidential message at Bob’s end.

Definition 3: A coding scheme achievesrong secrecyf

Jim. P{M # M} = 0,
hm I(M; ZF H*) = 0.

k—o0

(reliability condition)

(secrecy condition)

The secrecy capacity for this wiretap model is givenlhby [9]

Cy =Cy— C.. (16)

Let A®) < C* be the lattice sequence defined in the

previous section. We consider scaled versidps= a,A*),
Ao = a.A® such thatA, C A, and|A,/A.| = eFE.

diag(he,1,. .., he
ing Lemmall WIthEl

) HXE DHeA +He>\m7\/m\/_
H.HIP, %, = 0?1,

V(pzr|m., o) <€ (20)
provided that
1
e, (VE) = eysiga, () Se< 3 (21)
where we define&Sy = H.HIP + 021, ¥ = % + 4.

If (E0) holds, then it follows from[[10, Lemma 2] that

L(pm; pzrm, ) < 8keR — 8elog 8e. (22)
Recalling the upper boundl(2), we have
ne(VETTHA) < 2\/5 : (23)
M (VE(HD)TIAx)



Using [8) and the arithmetic mean - geometric mean ineglalits required for secrecy.

_ AT Remark 1:Although we focused on ergodic fading, the
Ty=1A*) ty—1 VYY) —
/\1(\/§(H€) A”) = 2/\1(\/5(}[6) V(OF)) = same scheme achieves strong secrecy over the Gaussian and

=2 min H\/E(Hg)—lw(x)H > static fading wiretap channels. In fact, for these modeés th
*€OR\0} ) first term in [26) is zero, and the second term still vanishes.
k 2%
P 2 1 . -
>2 min \/EH < og 2) H |0i(x)|; _ B. Reliability
e€Op\0} 7 \ 02 + P he,i =1 We suppose that Bob performs MMSE-GDFE preprocessing
2k Po. as in [6]: letp, = %, and consider the QR decomposition
— b
- k PN
GII, (02 + Plhe’) S H (@
The last equality follows from the fact that o %I T\ Q)
. k ) % _ N ﬁ —_ 2 1 2 T 2
. [[_ loi@)* = sl Niejo(a)] ™ = Observe thafly — Hyx||” + X [1x|* = HQly - RXHXD—F c,
. 1 1 whereC' is some constant which does not dependxon
=N(Op)* = — 75 = reh (24)  Since the distribution ok is not uniform, MAP decoding is
ldr| not equivalent to ML. However, similarly to [10, Theorem 5],
Replacing in[(2B), we find that far = 22%, for fixed H;, which is known at the receiver, the result of MAP
k decoding can be written as
ne(VSTHA) <G][ (02 + P |hes|’)? /v/Poe. )
_ _ i=1 Xmap = argmax p(x|y) = argmax p(x)p(y|x) =
Equivalently, in terms of flatness factor we have x€EAy xX€EA
w2 _ly=mex?
- GHle(Ug + Plhe|*) 2 < o2k = argmaxe_%e @i =
VE-TH.A V27 Po, = x€EA
(1 .
for fixed fading H.. Givené > 0, the Iaw of large numbers = argemln (ﬁ ||X||2 + lly - be||2> = argefilln ’Qm’ RXH
x b X b

Ce+6
(I5) implies thafP’{Hl 1 (1 + 57 |he,il ) > eCet } = 0. Thus, Bob can compute

Now suppose that
PP ¥y =Qly = Rx+v,

0. Ge 5" /‘ P=L (25)  \herev = Qlwy — %(R‘l)Tx [6]. The noisev is the
We can bound the leakage as follows: sum of a discrete Gaussian with distributiér,, , s, where
En, [I(omi pzepn,)] < A = (R, B = Z(RRY)!, and of a continuous
k 2 Gaussian random varlabﬁﬁ, whereEz = aleQT
Plheil"\*® Co+6
< P{ H (1 + = ) > Ce }(kRH For any messagen € M, P.(m) < P{v ¢ V(RA;)} and
=1 Te consequently the same upper bound holds for the the average:
k 2 1
P he.i & =
+ En, | I(pm; pzepm, ) ’ 11 (1 + | 2 | )kS GCC”] (26) Fe= 3 Felmp(m) < B{v ¢ V(RA)} .
i o¢ meM
The first term vanishes whei—s co. Althoughv is not Gaussian, we will show that its tails behave

Now consider the second term. Under the hypothesis tinilarly to a Gaussian random varliable
1 A random vectow taking values inC* is 5 subgausmalwnh
Hi:l (1 + F |he,i| ) < €Ce+5, we have

parameter if Wt € CF, E[e?t™V)] < 5% 161 Note that
. for a complex Gaussian vectar~ N¢(0,%), E[¢®tV)] =
€ o= (1) =¢ = (1) <e 5= — e3t'St,
VE-TH.A. aeVETH A\ = SVE-TH.A on P ) )
™ Let's suppose that a fixed messagehas been transmitted, so

- GTIE, (02 + Plhe|*) 7 - thatX* ~ D, ., . The following result holds (see also
S e/sTHA V2nPo [14, Lemma 2 8])
¢ Lemma 2:Let X¥ ~ Dpyc,» be ak-dimensional discrete

Using [22), the second term is also vanishing and the lattieBmplex Gaussian random variable, and Jete M (C).
coding scheme achieves strong secrecy over Eve’s channe$uppose that, (o) < 1. Thenvt € C¥,

From the conditions[(25) and (118), we find that in order to

have strong secrecy we nee@eC-0 < ¢®' or equivalently E[eR(t'40)] < (M) e llAate],
R' > C.+d+1+1In(G). Since this is true for any > 0, we 1 —ea(o)
find that a rate It follows that X* is §-subgaussian with parametefP for

R >C.+1+1n(G). @7 §= 1n(1+€) provided thate = e, (vVP) < 1, which is



guaranteed by[(19). This is weaker than the condition (2i8) achievable for Bob. From equations](27) ahd (30), the pro-
we have already imposed for secrecy, so it doesn'’t affect thesed coding scheme achieves strong secrecy for any message
achievable rate. Consequently, for the equivalent neise  distribution (and thus semantic security) for any secrextg r

2
[GSR(HQIWb)} E |:8_§R<Plbtf(Rl)er):| < . fisC=Comin (2G/7T) .
This concludes the proof of Propositibh 1.
< (1 + 6) eﬁt* (QlQu+E®rHTR )t _ (1 + 6) e"—fnt\\?_ ACKNOWLEDGEMENTS
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P {||v|\2 kot > 1+ 2/t]k + 2t} < efe.

In particular, takingy = |/, we find thatvn > 0, (1]

(2]

. . . . . I3
Let dg denote the minimum distance in the received Iattlce! ]

i {||v||2 Jko? > 1+ n} < e,

k k
[4]
min R\ - min a? R;x; 2
Aehn\ {0} ; A= B0y ;l | 5]

k
. [6]
> min + |hy 4 T; &
xew(OF)\{O} E( s ) H| |
l
zwl‘[( +|hb1|>
[8]

The previous bound follows from the AM-GM inequality and
the fact that the minimum non-zero norm of the codé.igVe
use the same argument aslin/[11] to bouhd givenn > 0,

[7]
(28)

El

P. <P{v ¢ V(RA,)} <P{v ¢ B(dr/2)} <

v’ %
>
{ 1+n,+P 4k

Since the first term vanishes exponentially fast wken oo,
we can focus on the second term. Frém| (28), the second tgim)
in 29) is upper bounded by

[10]

(29)

< 1+n} [11]

[12]

[14]
2 k ¥
ap 1 2 k
— — + |hbi <1 =
4o i=1 <pb * o > A [15]

[16]

k
_P{k;_lln(l—i—pb|hbﬂ| ) <ln( ~

b

k
o1 Z 2 2Ge™ (1 + 1)
_P{Ei_l ln (1+pb|hb,z| ) <1n (T 5

recalling that a? 2ncr. from (I8) and the fact that (19]

|Ay/Ac| = €. Since the left hand side tends €@, when
k — oo due to the law of large numbeis {14), the last expres-

[17]

(18]

~
~

sion will vanish provided thak, < C, —1In (2¢) —In(1 +17). (20]
Sincen is arbitrary, any rate
[21]
Ry =R+ R < C,—1n(2G/me) (30)

Hamed Mirghasemi for useful discussions.

REFERENCES

J.-C. Belfiore, F. Oggier, “Lattice code design for theyRigh fading
wiretap channel”,|EEE International Conference on Communications
(IcC) 2011

J.-C. Belfiore, F. Oggier, “An error probability apprdadco MIMO
wiretap channels”|JEEE Trans. Communvol. 61 n. 8, 2013

M. Bellare, S. Tessaro, and A. Vardy, “Semantic secuidtythe wiretap
channel”,Advances in CryptologyLecture Notes in Computer Science,
vol. 7417, Springer-Verlag, 2012, pp. 294-311.

M. Bloch and J. Laneman, “Strong secrecy from channeblvebility”,
IEEE Trans. Inf. Theoryvol. 59, no. 12, pp. 8077-8098, Dec. 2013.
I. Csiszar, “Almost independence and secrecy capaciroblems of
Information Transmissigrnvol. 32, pp. 40-47, 1996.

H. El Gamal, G. Caire, M. O. Damen, “Lattice coding and altiog
achieve the optimal diversity-multiplexing tradeoff of MO channels”,
IEEE Trans. Inform. Theoryol. 50, n. 6, pp. 968-985, 2004

D. Hsu, S. M. Kakade, T. Zhang, “A tail inequality for quatic forms
of subgaussian random vector&lectron. Commun. Probali7 (2012),
no. 52, 1-6.

D. Karpuk, A.-M. Ernvall-Hytdnen, C. Hollanti, E. Viteo, “Probability
estimates for fading and wiretap channels from Ideal Claats Func-
tions”, Advances in Mathematics of Communicatieol. 9 n. 4, pp.
391-413, 2015

S.-C. Lin, “On ergodic secrecy capacity of fast fadingNMDME wiretap
channel with statistical CSIT”Signal and Information Processing
Association Annual Summit and Conference (APSIRB)3

C. Ling, L. Luzzi, J.-C. Belfiore, D. Stehlé, “Semaratily Secure Lattice
Codes for the Gaussian Wiretap ChannéEEE Trans. Inf. Theoryvol.
60, no. 10, pp. 6399-6416, Oct. 2014

L. Luzzi, R. Vehkalahti, “Almost universal codes acliigg ergodic
MIMO capacity within a constant gap”, arxiv.org/pdf/1507395

V. Lyubashevsky, C. Peikert, O. Regev, “On ideal l&sicand learning
with errors”, Journal ACM vol. 60, n. 6, Nov. 2013

J. Martinet, “Tours de corps de classes et estimati@ndiscriminants”,
Inventiones Mathematicae. 44, 1978, pp. 65—-73.

D. Micciancio and C. Peikert, “Trapdoors for latticeSimpler, tighter,
faster, smaller” Advances in Cryptology - EUROCRYPT 2012cture
Notes in Computer Science vol 7237, pp. 700-718

D. Micciancio and O. Regev, “Worst-case to averagesceeductions
based on Gaussian measures”,Aroc. Ann. Symp. Found. Computer
Science Rome, ltaly, Oct. 2004, pp. 372-381.

S. S. Ong, F. Oggier, “Wiretap lattice codes from numiields with no
small norm elements”Pesigns, Codes and Cryptographyol 73 n.2,
pp. 425-440, 2014

C. Peikert, “An efficient and parallel Gaussian samglar lattices”,
Proc. CRYPTQvol. 6223, Springer-Verlag, 2010, pp. 80-97.

C. Peikert and A. Rosen, “Lattices that admit logaritbiworst-case to
average-case connection factorBtpc. STOC pp. 478-487, 2007.

A. Subramanian, A. Thangaraj, M. Bloch, S. W. McLaughltStrong
Secrecy on the Binary Erasure Wiretap Channel Using LarigéG
LDPC Codes”,IEEE Trans. Inf. Forensic Secuwol.6, no.3, pp. 585—
594, 2011

R. Vehkalahti and L. Luzzi, “Number field lattices acheeGaussian and
Rayleigh channel capacity within a constant gap”|EHEE Int. Symp.
Inform. Theory(ISIT), June 2015

A. D. Wyner, “The wire-tap channel'Bell Syst. Tech. Jvol. 54, no. 8,
pp. 1355-1387, Oct. 1975.



	I Introduction
	II Preliminaries
	II-A Flatness factor and discrete Gaussian distribution
	II-B Ideal lattices from number fields with constant root discriminant

	III Fading wiretap channel 
	III-A Secrecy
	III-B Reliability


