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Abstract—We consider a fading wiretap channel model where
the transmitter has only statistical channel state information, and
the legitimate receiver and eavesdropper have perfect channel
state information. We propose a sequence of non-random lattice
codes which achieve strong secrecy and semantic security over
ergodic fading channels. The construction is almost universal
in the sense that it achieves the same constant gap to secrecy
capacity over Gaussian and ergodic fading models.

I. I NTRODUCTION

The wiretap channel model was introduced by Wyner [21],
who showed that secure and reliable communication can be
achieved simultaneously over noisy channels even without
the use of secret keys. In the information theory community,
the most widely accepted secrecy metric is Csiszár’sstrong
secrecy: the mutual informationI(M;Zn) between the confi-
dential messageM and the channel outputZn should vanish
when the code lengthn tends to infinity.

While in the information theory community confidential
messages are often assumed to be uniformly distributed, this
assumption is not accepted in cryptography. A cryptographic
treatment of the wiretap channel was proposed in [3] to com-
bine the requirements of the two communities, establishing
that achievingsemantic securityin the cryptographic sense
is equivalent to achieving strong secrecy for all distributions
of the message. This equivalence holds also for continuous
channels [10].

In the case of Gaussian wiretap channels, [10] considered
the problem of designing lattice codes which achieve strong
secrecy and semantic security. Following an approach by
Csiszár [5, 4], strong secrecy is guaranteed if the output
distributions of the eavesdropper’s channel corresponding to
two different messages are indistinguishable in the sense of
variational distance. Moreover, theflatness factorof a lattice
was proposed in [10] as a fundamental criterion which implies
that conditional outputs are indistinguishable. Using random
lattice coding arguments, it was shown that there exist families
of lattice codes which are “good for secrecy”, meaning that
their flatness factor is vanishing, and achieve semantic security
for rates up to1/2 nat from the secrecy capacity.

In this paper, we consider a fading wiretap channel model
where the transmitter has only access to statistical channel
state information (CSI), while the legitimate receiver and
the eavesdropper both have perfect knowledge of their own
channels. We extend the criterion based on the flatness factor

to the case of fading channels and propose a family of non-
random lattice codes from algebraic number fields satisfying
this criterion. We note that ideal lattices from number fields
were already considered for secrecy under an error probability
criterion for Gaussian and fading channels in [1, 2, 8, 16] and
related works.

In this paper, we consider a particular sequence of algebraic
number fields with constant root discriminant. In [20, 11], it
was shown that these lattice codes are “almost universal” in
the sense that they achieve a constant gap to channel capacity
over any ergodic stationary fading channel. The underlying
multiplicative structure and constant root discriminant property
guarantee that the received lattice after fading has a good
minimum distance when the channel is not in outage.

The sequences of number fields that we consider are also
used in the crypto literature for worst-case to average-case
reductions of hard lattice problems [18].

In this work, we show that these lattices also achieve strong
secrecy and semantic security. The key feature is that thedual
of the faded lattice has good minimum distance, so that the
average flatness factor of the faded lattice vanishes.

In particular, for the Gaussian case this suggests a simple
design criterion where the packing density of the lattice and
its dual should be maximized simultaneously. We note that the
dual code also plays a role in the design of LDPC codes for
binary erasure wiretap channels [19].

We also improve the rate of almost universal codes by
replacing spherical shaping with a discrete Gaussian distri-
bution over the infinite lattice as in [10]. As a consequence,
our nested lattice schemes achieve the same constant gap to
secrecy capacity over all static and ergodic fading models.

The proposed lattice codes can be generalized in a straight-
forward manner to the multi-antenna case using the multiblock
matrix lattices from division algebras in [11]. This generaliza-
tion will be presented in an upcoming journal version.

II. PRELIMINARIES

A. Flatness factor and discrete Gaussian distribution

In this section, we define some fundamental lattice param-
eters that will be used in the rest of the paper. For more
background about the smoothing parameter and the flatness
factor in information theory and cryptography, we refer the
reader to [15, 10, 17].
ConsiderCk as a2k-dimensional real vector space with a real
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inner product〈x,y〉 = ℜ(x†y). This inner product naturally
defines a metric onCk by setting‖x‖ =

√
〈x,x〉. 1

Given a complex latticeΛ ⊂ Ck, we define the dual lattice as

Λ∗ = {x ∈ Ck | ∀y ∈ Λ, 〈x,y〉 ∈ Z}.
Let f√Σ,c(z) denote thek-dimensional complex normal dis-
tribution with meanc and covariance matrixΣ:

f√Σ,c(z) =
1

πk det(Σ)
e−(z−c)†Σ−1(z−c) ∀z ∈ Ck.

We will use the notationfσ,c(z) for fσI,c(z).
Definition 1: Given a complex latticeΛ ⊂ Ck, the flatness

factor ǫΛ(
√
Σ) is defined as the maximum deviation of the

Gaussian distribution overΛ from the uniform distribution
over a fundamental regionR(Λ) of Λ, with volumeV (Λ):

ǫΛ(
√
Σ) = max

z∈R(Λ)

∣∣∣∣∣V (Λ)
∑

λ∈Λ

f√Σ,λ(z) − 1

∣∣∣∣∣ .

Compared to [10], in this paper we use an extended version
of the flatness factor for correlated Gaussians, related to the
extended notion of the smoothing parameter in [17]. We also
extend the definition to the case of complex lattices.
Note that correlations can be absorbed by the lattice in the
sense thatǫΛ(

√
Σ) = ǫ√

Σ
−1

Λ
(I), and that ǫΛ(

√
Σ1) ≤

ǫΛ(
√
Σ2) if Σ1 andΣ2 are two positive definite matrices with

Σ1 � Σ2.
Definition 2: Given a latticeΛ and ǫ > 0, the smoothing

parameter2 ηǫ(Λ) is the smallests =
√
2πσ > 0 such that∑

λ∗∈Λ∗\{0} e
−π2σ2‖λ∗‖2 ≤ ǫ, whereΛ∗ is the dual lattice.

To extend the definition to matrices we can say that
√
2πΣ � ηǫ(Λ) if ǫΛ(Σ) ≤ ǫ. (1)

The smoothing parameter is upper bounded by the minimum
distance of the dual lattice [15]:

ηǫ(Λ) ≤
2
√
k

λ1(Λ∗)
. (2)

Finally, given c ∈ Ck and σ > 0, we define thediscrete
Gaussian distributionover the (shifted) latticeΛ− c ⊂ Ck as
the following discrete distribution taking values inΛ− c:

DΛ−c,σ(λ − c) =
fσ(λ− c)

fσ,c(Λ)
.

The following result is a consequence of [17, Theorem 3.1]
and extends Lemma 8 in [10]:

Lemma 1:Let X1 be sampled according to the discrete
Gaussian distributionDΛ+c,

√
Σ1

andX2 be sampled according

1This inner product corresponds to identifyingCk with R2k with
the canonical real inner product, through the isometryφ(z1, . . . , zk) =
(ℜ(z1), . . . ,ℜ(zk),ℑ(zk), . . . ,ℑ(zk)). Note also that ifΣ = Σ†, then
〈z,Σz〉 = ℜ(z†Σz) = z

†Σz = φ(z)TΣRφ(z), where ΣR =
(

ℜ(Σ) −ℑ(Σ)
ℑ(Σ) ℜ(Σ)

)

. In particular, the properties of real Gaussian distribu-

tions carry over to circularly symmetric complex Gaussian distributions.
2Note that we define the smoothing parameter per complex dimension,

which differs by a factor
√
2 from the definition in [15]. We have adjusted

the bounds onηǫ(Λ) accordingly.

to the continuous Gaussianf√Σ2
. Let Σ0 = Σ1 + Σ2 and

Σ−1 = Σ−1
1 +Σ−1

2 . If

ǫΛ(
√
Σ) ≤ ǫ ≤ 1

2
, (3)

then the distributiong of X = X1 + X2 is close tof√Σ0
:

V(g, f√Σ0
) ≤ 4ǫ,

whereV( , ) is theL1 distance.

B. Ideal lattices from number fields with constant root dis-
criminant

Let F be a number field of degree[F : Q] = n, with ring of
integersOF . We denote bydF the discriminant of the number
field. We define thecodifferentof F as

O∨
F = {x ∈ K : TrF/Q(xOF ) ⊆ Z}.

The codifferent is a fractional ideal, that is, there existssome
integer a such thataO∨

F is a proper ideal ofOF , and its
algebraic norm is the inverse of the discriminant:

N(O∨
F ) = 1/dF . (4)

We will focus on the case of totally complex extensionsF/Q
of degreen = 2k. The relative canonical embeddingof F
into Ck is given by

ψ(x) = (σ1(x), . . . , σk(x)),

where{σ1, . . . , σk} is a set ofQ-embeddingsF → C such
that we have chosen one from each complex conjugate pair.
ThenΛ = ψ(OF ) is a lattice inCk. The codifferent embeds
as the complex conjugate of the dual lattice:

Λ∗ = 2ψ(O∨
F ). (5)

Using (2), we obtain

ηǫ(Λ) ≤
√
k

λ1(ψ(O∨
F ))

. (6)

From the AM-GM inequality we have that for any fractional
ideal I of OF ,

λ1(ψ(I)) ≥
√
k(N(I)) 1

2k .

In particular, from (4) we get

λ1(ψ(O∨
F )) = λ1(ψ(O∨

F )) ≥
√
k

|dF |
1
2k

. (7)

Combining equations (6) and (7), we find that the smoothing
parameter ofΛ is upper bounded by the root discriminant [18,
Lemma 6.5]: givenǫ = 2−2k,

ηǫ(Λ) ≤ |dF |
1
2k . (8)

The following theorem by Martinet [13] proves the exis-
tence of infinite towers of totally complex number fields with
constant root discriminant.



Theorem 2.1:There exists an infinite tower of totally com-
plex number fields{Fk} of degree2k = 5 · 2t, such that

|dFk
| 1
2k = G, (9)

for G ≈ 92.368.
We now focus on the corresponding lattice sequenceΛ(k) ⊂

Ck. Their volume is a function of the discriminant:

Vol(Λ(k)) = 2−k
√
|dF | = 2−kGk (10)

Let ǫ = 2−2k. From Theorem 2.1 and equation (8),

ηǫ(Λ
(k)) ≤ |dF |

1
2k = G.

Since the flatness factor is a decreasing function ofσ,

∀σ > G√
2π
, εΛ(k)(σ) ≤ 2−2k. (11)

III. FADING WIRETAP CHANNEL

We consider an ergodic fading channel model where the
outputsYk andZk at Bob and Eve’s end are given by

{
Yi = Hb,iXi +Wb,i,

Zi = He,iXi +We,i,
i = 1, . . . , k (12)

whereWb,i, We,i are i.i.d. complex Gaussian vectors with zero
mean and varianceσ2

b , σ2
e per complex dimension. The input

X
k satisfies the average power constraint

1

k

k∑

i=1

|Xi|2 ≤ P. (13)

We suppose thatHb,i, He,i are isotropically invariant channels
such that the channel capacitiesCb andCe are well-defined
and the weak law of large numbers holds:∀δ > 0,

lim
k→∞

P

{∣∣∣∣∣
1

k

k∑

i=1

ln

(
1 +

P

σ2
b

|hb,i|2
)
− Cb

∣∣∣∣∣ > δ

}
= 0, (14)

lim
k→∞

P

{∣∣∣∣∣
1

k

k∑

i=1

ln

(
1 +

P

σ2
e

|he,i|2
)
− Ce

∣∣∣∣∣ > δ

}
= 0. (15)

All rates are expressed in nats per complex channel use.
We suppose that Alice has no instantaneous CSIT (apart from
knowledge of channel statistics), and Bob and Eve have perfect
CSI of their own channels. A confidential messageM and
an auxiliary messageM′ with rate R and R′ respectively
are encoded intoXk. We denote byM̂ the estimate of the
confidential message at Bob’s end.

Definition 3: A coding scheme achievesstrong secrecyif

lim
k→∞

P{M̂ 6= M} = 0, (reliability condition)

lim
k→∞

I(M;Zk,Hke) = 0. (secrecy condition)

The secrecy capacity for this wiretap model is given by [9]

Cs = Cb − Ce. (16)

Let Λ(k) ⊂ Ck be the lattice sequence defined in the
previous section. We consider scaled versionsΛb = αbΛ

(k),
Λe = αeΛ

(k) such thatΛe ⊂ Λb and |Λb/Λe| = ekR.

We consider the secrecy scheme in [10], where each con-
fidential messagem ∈ M = {1, . . . , ekR} is associated to
a coset leaderλm ∈ Λb ∩ R(Λe) for a fundamental region
R(Λe). To transmit the messagem, Alice samplesXk from
the discrete GaussianDΛe+λm,σs

with σ2
s = P . It follows

from [10, Lemma 6] that ask → ∞, the variance per complex
dimension ofXk tends toP provided that

lim
k→∞

ǫΛe
(
√
P ) = 0. (17)

From [10, Lemma 7], the information rateR′ of the auxiliary
message (corresponding to the choice of a point inΛe) is

R′ ≈ ln(πeP )− 1

k
lnV (Λe) = ln(πeP )− 1

k
ln(α2k

e 2−kGk).

Therefore, we have

α2
e ≈

2πeP

GeR′ . (18)

From (11), ǫΛe
(
√
P ) = ǫαeΛ(

√
P ) = ǫΛ

(√
P/αe

)
→ 0

provided that
√
P
αe

> G
2π , and (17) holds for

R′ > ln(eG/2) = ln(G/2) + 1. (19)

We now state the main result of the paper which will be
proven in the following sections:

Proposition 1: The proposed wiretap coding scheme with
σ2
s = P achieves strong secrecy for any message distribution
pM (and thus semantic security) for any secrecy rate

R < Cb − Ce − ln
(
2G2/π

)
.

A. Secrecy

The received lattice at Eve’s end isHeΛ, where He =
diag(He,1, . . . ,He,k). Since the messageM and the channel
H
k
e are independent, the leakage can be expressed as follows:

I(M;Zk,Hke) = I(M;Hke) + I(M;Zk|He) = I(M;Zk|He) =
= EHe

[
I(pM|He

; pZk|He
)
]
= EHe

[
I(pM; pZk|He

)
]

We want to show that theaverage leakage with respect
to the fading is small. In order to do so, we will show
that the output distributionspZk|He

are close to a Gaussian
distribution with high probability. For a fixed realizationHe =
diag(he,1, . . . , he,k), HeX

k ∼ D
HeΛe+Heλm,

√
HeH

†
e

√
P

. Us-

ing Lemma 1 withΣ1 = HeH
†
eP , Σ2 = σ2

b I,

V(pZk|He
, fΣ0) ≤ ǫ (20)

provided that

εHeΛe
(
√
Σ) = ε√

Σ
−1
HeΛe

(1) ≤ ǫ ≤ 1

2
, (21)

where we defineΣ0 = HeH
†
eP + σ2

b I, Σ =
(HeH

†
e )

−1

P + I
σ2
b

.
If (20) holds, then it follows from [10, Lemma 2] that

I(pM; pZk|He
) ≤ 8kǫR− 8ǫ log 8ǫ. (22)

Recalling the upper bound (2), we have

ηǫ(
√
Σ−1HeΛ) ≤

2
√
k

λ1(
√
Σ(H†

e )−1Λ∗)
. (23)



Using (5) and the arithmetic mean - geometric mean inequality,

λ1(
√
Σ(H†

e )
−1Λ∗) = 2λ1(

√
Σ(H†

e)
−1ψ(O∨

F )) =

= 2 min
x∈O∨

F\{0}

∥∥∥
√
Σ(H†

e )
−1ψ(x)

∥∥∥ ≥

≥ 2 min
x∈O∨

F\{0}

√
k

k∏

i=1

(
Pσ2

e

σ2
e + P |he,i|2

) 1
2k k∏

i=1

|σi(x)|
1
k =

=
2
√
k
√
Pσe

G
∏k
i=1(σ

2
e + P |he,i|2) 1

2k

.

The last equality follows from the fact that

min
x∈O∨

F
\{0}

∏k

i=1
|σi(x)|

1
k = min

a∈O∨
F
\{0}

∣∣NK/Q(a)
∣∣ 1
2k =

= N(O∨
F )

1
2k =

1

|dF |1/2k
=

1

G
. (24)

Replacing in (23), we find that forǫ = 2−2k,

ηǫ(
√
Σ−1HeΛ) ≤ G

∏k

i=1
(σ2
e + P |he,i|2)

1
2k /

√
Pσe.

Equivalently, in terms of flatness factor we have

ε√Σ−1HeΛ

(
G
∏k
i=1(σ

2
e + P |he,i|2)

1
2k√

2πPσe

)
≤ 2−2k

for fixed fadingHe. Given δ > 0, the law of large numbers

(15) implies thatP

{∏k
i=1

(
1 + P

σ2
e
|he,i|2

) 1
k

> eCe+δ

}
→ 0.

Now suppose that

αeGe
Ce+δ

2 /
√
2πP ≤ 1. (25)

We can bound the leakage as follows:

EHe

[
I(pM; pZk|He

)
]
≤

≤ P

{ k∏

i=1

(
1 +

P |he,i|2
σ2
e

) 1
k

> eCe+δ
}
(kR)+

+ EHe

[
I(pM; pZk|He

)
∣∣∣

k∏

i=1

(
1 +

P |he,i|2
σ2
e

) 1
k≤ eCe+δ

]
(26)

The first term vanishes whenk → ∞.
Now consider the second term. Under the hypothesis that
∏k
i=1

(
1 + P

σ2
e
|he,i|2

) 1
k ≤ eCe+δ, we have

ε√Σ−1HeΛe
(1) = εαe

√
Σ−1HeΛ

(1) ≤ ε√Σ−1HeΛ

(
Ge

Ce+δ
2√

2πP

)
≤

≤ ε√Σ−1HeΛ

(
G
∏k
i=1(σ

2
e + P |he,i|2) 1

2k

√
2πPσe

)
≤ 2−2k.

Using (22), the second term is also vanishing and the lattice
coding scheme achieves strong secrecy over Eve’s channel.
From the conditions (25) and (18), we find that in order to
have strong secrecy we needeGeCe+δ ≤ eR

′

, or equivalently
R′ ≥ Ce+ δ+1+ ln(G). Since this is true for anyδ > 0, we
find that a rate

R′ ≥ Ce + 1 + ln(G). (27)

is required for secrecy.
Remark 1:Although we focused on ergodic fading, the

same scheme achieves strong secrecy over the Gaussian and
static fading wiretap channels. In fact, for these models the
first term in (26) is zero, and the second term still vanishes.

B. Reliability

We suppose that Bob performs MMSE-GDFE preprocessing
as in [6]: letρb = P

σ2
b

, and consider the QR decomposition

H̃ =

(
H
1
ρb
I

)
=

(
Q1

Q2

)
.

Observe that‖y −Hbx‖2 + 1
ρb

‖x‖2 =
∥∥∥Q†

1y −Rx
∥∥∥
2

+ C,

whereC is some constant which does not depend onx.
Since the distribution ofx is not uniform, MAP decoding is
not equivalent to ML. However, similarly to [10, Theorem 5],
for fixedHb which is known at the receiver, the result of MAP
decoding can be written as

x̂MAP = argmax
x∈Λb

p(x|y) = argmax
x∈Λb

p(x)p(y|x) =

= argmax
x∈Λb

e−
‖x‖2

2P e
−‖y−Hbx‖2

2σ2
b =

= argmin
x∈Λb

(
1

ρb
‖x‖2 + ‖y −Hbx‖2

)
= argmin

x∈Λb

∥∥∥Q†
1y −Rx

∥∥∥
2

Thus, Bob can compute

y′ = Q†
1y = Rx+ v,

where v = Q†
1wb − 1

ρb
(R−1)†x [6]. The noisev is the

sum of a discrete Gaussian with distributionDΛ′,
√
Σ1

, where

Λ′ = 1
ρb
(R−1)†Λb, Σ1 =

σ2
b

ρb
(RR†)−1, and of a continuous

Gaussian random variablef√Σ2
, whereΣ2 = σ2

bQ1Q
†
1.

For any messagem ∈ M, Pe(m) ≤ P {v /∈ V(RΛb)} and
consequently the same upper bound holds for the the average:

Pe =
∑

m∈M
Pe(m)p(m) ≤ P {v /∈ V(RΛb)} .

Althoughv is not Gaussian, we will show that its tails behave
similarly to a Gaussian random variable.
A random vectorv taking values inCk is δ-subgaussianwith
parameterσ if ∀t ∈ Ck, E[eℜ(t†v)] ≤ eδe

σ2

2 ‖t‖2

. Note that
for a complex Gaussian vectorz ∼ NC(0,Σ), E[eℜ(t†v)] =

e
1
2 t

†Σt.
Let’s suppose that a fixed messagem has been transmitted, so
that Xk ∼ DΛe+λm,

√
P . The following result holds (see also

[14, Lemma 2.8]).
Lemma 2:Let Xk ∼ DΛ+c,σ be ak-dimensional discrete

complex Gaussian random variable, and letA ∈ Mk(C).
Suppose thatǫΛ(σ) < 1. Then∀t ∈ Ck,

E[eℜ(t†Ax)] ≤
(
1 + ǫΛ(σ)

1− ǫΛ(σ)

)
e

σ2

2 ‖A†
t‖2

.

It follows that Xk is δ-subgaussian with parameter
√
P for

δ = ln
(

1+ǫ
1−ǫ

)
provided thatǫ = ǫΛe

(
√
P ) < 1, which is



guaranteed by (19). This is weaker than the condition (27)
we have already imposed for secrecy, so it doesn’t affect the
achievable rate. Consequently, for the equivalent noisev,

E[eℜ(t†v)] = E

[
eℜ(t†Q†

1wb)
]
E

[
e
−ℜ

(

1
ρb

t
†(R−1)†x

)
]
≤

≤
(
1 + ǫ

1− ǫ

)
e

σ2
b
2 t

†
(

Q†
1Q1+

1
ρb

(R−1)†R−1
)

t
=

(
1 + ǫ

1− ǫ

)
e

σ2
b
2 ‖t‖2

.

This implies that the tails ofv vanish exponentially fast: from
[7, Theorem 2.1], it follows that∀t > 0,

P

{
‖v‖2 /kσ2

b > 1 + 2
√
t/k + 2t

}
≤ eδe−t.

In particular, takingη =
√

t
k , we find that∀η > 0,

P

{
‖v‖2 /kσ2

b > 1 + η
}
≤ eδe−kη

2

.

Let dR denote the minimum distance in the received lattice:

d2R = min
λ∈Λb\{0}

k∑

i=1

|Riλi|2 = min
x∈ψ(OF )\{0}

α2
b

k∑

i=1

|Rixi|2 ≥

≥ min
x∈ψ(OF )\{0}

α2
bk

k∏

i=1

(
1

ρb
+ |hb,i|2

) 1
k

k∏

i=1

|xi|
1
k ≥

≥ α2
bk

k∏

i=1

(
1

ρb
+ |hb,i|2

) 1
k

. (28)

The previous bound follows from the AM-GM inequality and
the fact that the minimum non-zero norm of the code is1. We
use the same argument as in [11] to boundPe: given η > 0,

Pe ≤ P {v /∈ V(RΛb)} ≤ P {v /∈ B(dR/2)} ≤

≤ P

{
‖v‖2
kσ2

b

≥ 1 + η

}
+ P

{
d2R
4kσ2

b

< 1 + η

}
. (29)

Since the first term vanishes exponentially fast whenk → ∞,
we can focus on the second term. From (28), the second term
in (29) is upper bounded by

P

{
α2
b

4σ2
b

k∏

i=1

(
1

ρb
+ |hb,i|2

) 1
k

< 1 + η

}
=

= P

{
1

k

k∑

i=1

ln
(
1 + ρb |hb,i|2

)
< ln

(
4P (1 + η)

α2
b

)}
=

= P

{
1

k

k∑

i=1

ln
(
1 + ρb |hb,i|2

)
< ln

(
2GeRb(1 + η)

πe

)}
,

recalling that α2
b ≈ 2πeP

GeRb
from (18) and the fact that

|Λb/Λe| = ekR. Since the left hand side tends toCb when
k → ∞ due to the law of large numbers (14), the last expres-
sion will vanish provided thatRb < Cb− ln

(
2G
πe

)
− ln(1+η).

Sinceη is arbitrary, any rate

Rb = R+R′ < Cb − ln (2G/πe) (30)

is achievable for Bob. From equations (27) and (30), the pro-
posed coding scheme achieves strong secrecy for any message
distribution (and thus semantic security) for any secrecy rate

R < Cb − Ce − ln
(
2G2/π

)
.

This concludes the proof of Proposition 1.
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