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Abstract—This paper considers the problem of designing
maximum distance separable (MDS) codes over small fields with
constraints on the support of their generator matrices. For any
given m × n binary matrix M , the GM-MDS conjecture, due to
Dau et al., states that if M satisfies the so-called MDS condition,
then for any field F of size q ≥ n+m−1, there exists an [n,m]q
MDS code whose generator matrix G, with entries in F, fits M
(i.e., M is the support matrix of G). Despite all the attempts by
the coding theory community, this conjecture remains still open in
general. It was shown, independently by Yan et al. and Dau et al.,
that the GM-MDS conjecture holds if the following conjecture,
referred to as the TM-MDS conjecture, holds: if M satisfies the
MDS condition, then the determinant of a transformation matrix
T , such that TV fits M , is not identically zero, where V is a
Vandermonde matrix with distinct parameters. In this work, we
generalize the TM-MDS conjecture, and present an algebraic-
combinatorial approach based on polynomial-degree reduction
for proving this conjecture. Our proof technique’s strength is
based primarily on reducing inherent combinatorics in the proof.
We demonstrate the strength of our technique by proving the
TM-MDS conjecture for the cases where the number of rows
(m) of M is upper bounded by 5. For this class of special cases
of M where the only additional constraint is on m, only cases with
m ≤ 4 were previously proven theoretically, and the previously
used proof techniques are not applicable to cases with m > 4.

I. INTRODUCTION

In recent years, there has been a growing interest in

designing maximum distance separable (MDS) codes with

constraints on the support of the codes’ generator matrix

[1]–[11]. Such constraints arise in wireless network coding

and distributed storage scenarios where each user/server has

access to only a subset of the information symbols. Two

examples of such scenarios are cooperative data exchange in

the presence of an eavesdropper [1], [5], and simple multiple

access networks with link/relay errors [6], [8].

Given an m × n binary (support) matrix M = (Mi,j) and

a field F of size q, the problem is to design an [n,m]q MDS

code with a generator matrix G = (Gi,j), Gi,j ∈ F (i.e.,

all m × m sub-matrices of G are full-rank) fitting M (i.e.,

if Mi,j = 0, then Gi,j = 0). Note that for some M , there

exists no MDS code whose generator matrix fits M (i.e., M

is not completable to MDS). Nevertheless, there is a simple

condition, known as the MDS condition, which characterizes

all matrices that are completable to MDS for sufficiently large

fields [4], [5]. A matrix M satisfies the MDS condition if:

|∪i∈I supp(Mi)|≥ n−m+ |I|, ∀I ⊆ {1, . . . ,m}, I 6= ∅,

where Mi is the ith row of M , and supp(Mi) is the support

of Mi. The existence of MDS codes (over sufficiently large

fields) whose generator matrix’s support satisfies the MDS

condition was shown, e.g., in [8], via Edmonds matrix and

Hall’s marriage theorem. The following conjecture, due to

Dau et al. [4], aims for generalizing this result for small fields.

Conjecture 1 (GM-MDS Conjecture): If the matrix M sat-

isfies the MDS condition, then for any field F of size q ≥
n+m−1, there exists an [n,m]q MDS code whose generator

matrix G with entries in F fits the matrix M .

Notwithstanding all the efforts by the coding theory com-

munity, the GM-MDS conjecture remains still open in general.

The GM-MDS conjecture and a simplified version of this

conjecture where the supports of rows of M have the same

size were shown in [8] to be equivalent (using a generalized

version of Hall’s theorem). Despite this simplification, there

are only three classes of special cases for which this conjecture

is theoretically proven: (i) the rows of M are divided into three

groups, and the rows in each group have the same support [6];

(ii) the size of intersection of the supports of every two rows

of M is upper bounded by 1 [8]; and (iii) the number of

rows of M is upper bounded by 4 [11]. More importantly, the

previously used proof techniques are not applicable to more

general cases due to the combinatorial explosion.

One possible approach to find a completion G of M to

MDS is to leverage the structure of Generalized Reed-Solomon

(GRS) codes [4], [5] which are known to be MDS. Let N be

the set of n independent indeterminates α1, . . . , αn. Let M be

an m× n binary matrix whose rows’ supports have the same

size, and let V = V (N) be a generic m × n Vandermonde

matrix with parameters α1, . . . , αn. Let T = T (M,N) be a

generic m × m transformation matrix such that TV fits M ,

and let G = TV . If the evaluations α∗
1, . . . , α

∗
n of α1, . . . , αn

are distinct, then every m×m sub-matrix of G is non-singular

(i.e., G is a generator matrix of a GRS code with evaluation

points α∗
1, . . . , α

∗
n) so long as T is non-singular. That is,

if T is not generically singular (i.e., the determinant of T

as a multivariate polynomial in variables α1, . . . , αn is not

identically zero), then for any field F of size q ≥ n+m− 1,

there exists α∗
1, . . . , α

∗
n ∈ F such that TV is a generator matrix

of an [n,m]q MDS code, and TV fits M . Thus, the GM-

MDS conjecture holds if the following conjecture, proposed

independently by Dau et al. [4] and Yan et al. [5], holds:

Conjecture 2 (TM-MDS Conjecture): If M satisfies the

MDS condition, then T (M,N) is not generically singular.

The contributions of this work are as follows. First, we

present a generalization of the TM-MDS conjecture for the

cases where the supports of rows of M have arbitrary sizes.
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Then, we present an algebraic-combinatorial approach based

on polynomial-degree reduction for proving this conjecture.

Our technique’s strength is primarily due to reducing the in-

herent combinatorics in the proof. Specifically, we demonstrate

this strength by proving the TM-MDS conjecture for the cases

where the number of rows of M is upper bounded by 5.

II. BASIC NOTATIONS AND DEFINITIONS

Let F be a field. For n ∈ N, let α1, . . . , αn be n independent

indeterminates. Let F[α1, . . . , αn] be a ring of multivariate

polynomials in variables α1, . . . , αn with coefficients in F, and

let (F[α1, . . . , αn])[α] be a module of univariate polynomials

in variable α with coefficients in F[α1, . . . , αn]. Fix m ∈ N

and n ∈ N such that 1 < m ≤ n ≤ m(m − 1). For k ∈ N,

denote {1, . . . , k} by [k]. Define m polynomials P1, . . . , Pm

of degrees 0 ≤ d1, . . . , dm ≤ m− 1 in (F[α1, . . . , αn])[α]:

Pi(α) ,
∏

γ∈Ni

(α− γ), ∀i ∈ [m], (1)

where Ni, the set of roots of Pi, is a (proper) subset of

N , {α1, . . . , αn} of size di. (Note that the roots of Pi are

indeterminates.) For Ni = ∅ and di = 0, Pi(α) , 1.

Note that Pi(α) =
∑

j∈[m] Ci,jα
j−1, where {Ci,j}j∈[m]

are polynomials in F[α1, . . . , αn]. Define W (P1, . . . , Pm) ,
det((Cj,i)i,j∈[m]). Note that W (P1, . . . , Pm) is a polynomial

in F[α1, . . . , αn].
Definition 1: A polynomial W in F[α1, . . . , αn] is iden-

tically zero, denoted by W ≡ 0, if the coefficients of all

monomials in the polynomial expansion of W are zero.

Definition 2: A set {P1, . . . , Pm} of m polynomials of de-

gree m−1 has rectangular property (RP) if, for some 1 < k ≤
m, there exist at least k polynomials in {P1, . . . , Pm} with at

least m− k+1 common roots. Otherwise, {P1, . . . , Pm} has

non-rectangular property (NRP).

Definition 3: A set {P1, . . . , Pm} of m polynomials of

degrees 0 ≤ d1, . . . , dm ≤ m−1 has generalized RP (GRP) if,

for some 1 < k ≤ m and 0 ≤ l ≤ m−k, there exist at least k

polynomials of degrees at most m−l−1 in {P1, . . . , Pm} with

at least m−k− l+1 common roots. Otherwise, {P1, . . . , Pm}
has generalized NRP (GNRP).

III. MAIN CONJECTURES AND THEOREMS

The following conjecture is equivalent to the TM-MDS

conjecture (Conjecture 2).

Conjecture 3: Let P1, . . . , Pm be m polynomials of degree

m − 1 in (F[α1, . . . , αn])[α]. If W (P1, . . . , Pm) ≡ 0, then

{P1, . . . , Pm} has RP.

The sketch of proof of the equivalency between the TM-

MDS conjecture and Conjecture 3 follows. Let M = (Mi,j)
be an m × n binary matrix. Let Mi be the ith row of M

and let supp(Mi) be the support of Mi. Let Ni = {αj :
j ∈ [n] \ supp(Mi)}, where α1, . . . , αn are n independent

indeterminates. Suppose that all Ni have the same size.

Defining Pi (= Pi(α)) as in (1), it follows that the matrix

M satisfies the MDS condition iff {P1, . . . , Pm} has NRP

(refer to this as Fact 1). Let G = (Gi,j) be a generic m× n

generator matrix of a Generalized Reed-Solomon (GRS) code

with evaluation points α1, . . . , αn such that G fits M (i.e.,

if Mi,j = 0, then Gi,j = 0). Let V = (Vi,j) be a generic

m× n Vandermonde matrix with parameters α1, . . . , αn, and

let T = (Ti,j) be a generic m × m transformation matrix

such that G = TV . Taking Vi,j = α
j−1
i and Ti,j = Cj,i,

where Pi(α) =
∑

j∈[m] Ci,jα
j−1, it follows that G = TV

(for more details, see [5]). Since det(T ) = W (P1, . . . , Pm),
then det(T ) 6≡ 0 (i.e., T is not generically singular) iff

W (P1, . . . , Pm) 6≡ 0 (refer to this as Fact 2). By Facts 1 and

2, the TM-MDS conjecture and Conjecture 3 are equivalent.

In the following, we propose a new conjecture which gener-

alizes Conjecture 3 for the cases where the degrees d1, . . . , dm
of polynomials P1, . . . , Pm are arbitrary. (Conjecture 4 is

equivalent to a generalized version of the TM-MDS conjecture

where the supports of rows of M have arbitrary sizes.)

Conjecture 4: Let P1, . . . , Pm be m polynomials of arbi-

trary degrees 0 ≤ d1, . . . , dm ≤ m− 1 in (F[α1, . . . , αn])[α].
If W (P1, . . . , Pm) ≡ 0, then {P1, . . . , Pm} has GRP.

If di < m − 1 for all i ∈ [m], then Conjecture 4 holds

trivially: (i) W (P1, . . . , Pm) ≡ 0 since Ci,m = 0 for all i ∈
[m], and (ii) {P1, . . . , Pm} has GRP since for k = m and

l = 1, there exist k polynomials of degrees at most m− l− 1
in {P1, . . . , Pm} with at least m − k − l + 1 common roots.

Hereafter, w.l.o.g., we assume di = m− 1 for some i ∈ [m].
The following theorems, which are our main results, prove

the GM-MDS conjecture for m ≤ 5. More specifically,

Theorems 1, 2, and 3 settle Conjecture 4 (and so Conjecture 3)

for m ≤ 4, and Theorem 4 settles Conjecture 3 for m = 5.

Theorem 1: For any P1, P2 such that 0 ≤ d1 ≤ d2 = 1, if

W (P1, P2) ≡ 0, then {P1, P2} has GRP.

Theorem 2: For any P1, P2, P3 such that 0 ≤ d1 ≤ d2 ≤
d3 = 2, if W (P1, P2, P3) ≡ 0, then {P1, P2, P3} has GRP.

Theorem 3: For any P1, . . . , P4 such that 0 ≤ d1 ≤ . . . ≤
d4 = 3, if W (P1, . . . , P4) ≡ 0, then {P1, . . . , P4} has GRP.

Theorem 4: For any P1, . . . , P5 such that d1 = · · · = d5 =
4, if W (P1, . . . , P5) ≡ 0, then {P1, . . . , P5} has GRP.

IV. MAIN IDEAS AND LEMMAS

In this section, we explain the main ideas and state the

useful lemmas for the proofs of our main results.

Consider an arbitrary set {Pi} (= {Pi}1≤i≤m) of m poly-

nomials Pi (with the sets of roots Ni) such that 0 ≤ di ≤ m−1
for all i ∈ [m], and di = m−1 for some i ∈ [m]. Define a class

of reduction processes over {Pi}, where any process in this

class is associated with a unique reduction set R ⊆ N , and it

reduces Pi(α) =
∏

γ∈Ni
(α−γ) to P̃i(α) ,

∏
γ∈Ni\R

(α−γ).

Let d̃i , deg(P̃i). Note that d̃i = di− |Ni ∩R|. Restrict your

attention to those reduction sets R such that d̃j = m− 1 for

some j ∈ [m], and d̃i < m − 1 for all i ∈ [m] \ {j}. Such

R are referred to as acceptable. For any acceptable reduction

set, w.l.o.g., assume that d̃i < m− 1 for all i ∈ [m− 1] and

d̃m = m− 1 (and so, dm = m− 1 since d̃m ≤ dm ≤ m− 1).

For any (acceptable) reduction set, the following result holds.

Lemma 1: If W (P1, . . . , Pm) ≡ 0, then

W (P̃1, . . . , P̃m−1) ≡ 0.



Proof: Consider the resulting {P̃i} from {Pi} for an

arbitrary (acceptable) reduction set R = {αr1 , . . . , αr|R|
}.

Let rR , {r1, . . . , r|R|}. For any r ∈ rR, let nr be the

number of polynomials Pi in {Pi} such that αr ∈ Ni, and

let nR , {nr1 , . . . , nr|R|
}. Let W (nR)(P1, . . . , Pm) be the

resulting polynomial from W (P1, . . . , Pm) by taking deriva-

tive nr times with respect to each variable αr ∈ R. (Since

W (P1, . . . , Pm) = det((Cj,i)i,j∈[m]), and Cj,i is the sum of

monomials (−1)e1+···+enαe1
1 · · ·αen

n for some {e1, . . . , en} ∈
{0, 1}n (depending on i, j), then the derivatives of Cj,i with

respect to any variable αr are independent of F.) Note

that W (nR)(P1, . . . , Pm) = (−1)
nr1

+···+nr|R|W (P̃1, . . . , P̃m)
(by using the Leibniz formula for determinant), and

W (P̃1, . . . , P̃m) = W (P̃1, . . . , P̃m−1) (since d̃i < m− 1 and

C̃i,m = 0 for all i ∈ [m−1], and d̃m = m−1 and C̃m,m = 1,

where P̃i(α) =
∑

j∈[m] C̃i,jα
j−1). Since W (P1, . . . , Pm) ≡

0 (by assumption), then W (nR)(P1, . . . , Pm) ≡ 0. Thus,

W (P̃1, . . . , P̃m−1) ≡ 0.

Lemma 1 enables us to use an inductive argument towards

the proof of Conjecture 4 as follows. Suppose that Conjec-

ture 4 holds for any 1 < l ≤ m− 1, i.e., for any {P1, . . . , Pl}
such that 0 ≤ di ≤ l−1 for all i ∈ [l] and di = l−1 for some

i ∈ [l], if W (P1, . . . , Pl) ≡ 0, then {P1, . . . , Pl} has GRP. We

need to prove that for any {P1, . . . , Pm} such that 0 ≤ di ≤
m − 1 for all i ∈ [m] and di = m − 1 for some i ∈ [m], if

W (P1, . . . , Pm) ≡ 0, then {P1, . . . , Pm} has GRP. The proof

follows by contradiction. Assume that W (P1, . . . , Pm) ≡ 0
and {P1, . . . , Pm} does not have GRP. Consider the resulting

{P̃1, . . . , P̃m} from {P1, . . . , Pm} for an (acceptable) reduc-

tion set such that {P̃1, . . . , P̃m−1} has GNRP. By definition,

d̃i < m−1 for all i ∈ [m−1]. Since W (P1, . . . , Pm) ≡ 0 (by

assumption), then W (P̃1, . . . , P̃m−1) ≡ 0 (by Lemma 1), and

so, {P̃1, . . . , P̃m−1} has GRP (by the induction hypothesis),

yielding a contradiction. Our goal is thus to devise an (accept-

able) reduction process such that if {P1, . . . , Pm} has GNRP,

then so does {P̃1, . . . , P̃m−1}. The problem of designing such

a process is still open in general. In the following, we propose

a simple yet powerful reduction process which solves this

problem for m ≤ 4 and 0 ≤ di ≤ m − 1 for all i ∈ [m],
and for m = 5 and di = m− 1 for all i ∈ [m].

From now on, we assume that {Pi} (= {Pi}1≤i≤m) is a

set of m polynomials Pi (with the sets of roots Ni) such that

0 ≤ di ≤ m− 1 for all i ∈ [m− 1], and dm = m− 1.

Definition 4: A subset S ⊂ N is an (r, s)-subset in a subset

Q of {Pi} if S belongs to r polynomials in Q (i.e., there

exist r polynomials Pi in Q such that S ⊂ Ni), and |S|= s.

Moreover, an (r, s)-subset has higher order than an (r⋆, s⋆)-
subset if r + s > r⋆ + s⋆, or r + s = r⋆ + s⋆ and r > r⋆.

The following lemma gives the intuition behind the defini-

tion of (r, s)-subsets.

Lemma 2: If {Pi} has GNRP, then there exists no (r, s)-
subset in {Pi} such that r + s > m.

Proof: The proof is straightforward and follows from the

definitions (and hence omitted).

Intuitively, for any (acceptable) reduction set R, any highest-

order (r, s)-subset S, if not broken (i.e., S ∩ R = ∅), is the

most likely to cause rectangularity in {P̃i} for any {Pi} with

non-rectangular property. This is the main idea of the proposed

reduction process.

Definition 5: An element β of a subset S ⊂ N is removable

if β is a root of some but not all polynomials of degree m−1.

Definition 6: A subset S ⊂ N is weakly reducible if S

belongs to a polynomial of degree m − 1, and S has a

removable element.

Definition 7: A weakly reducible (r, s)-subset S is strongly

reducible if no other weakly reducible (r⋆, s⋆)-subset has

higher order than S.

Proposed Reduction Process: Given {Pi}, choose an ar-

bitrary strongly reducible subset S in {Pi}, and choose an

arbitrary removable element of S, say β, such that no other

removable element of S, when compared to β, belongs to more

polynomials of degree m− 1 in {Pi}. Break S via removing

β from the sets Ni of roots of all polynomials Pi, and update

all polynomials Pi via replacing Ni by Ni \ {β}. Repeat this

process (in rounds) over the resulting {Pi} if there exist more

than one polynomial of degree m − 1. Otherwise, terminate

the process, and return the resulting {Pi} denoted by {P̃i}.

Note that if {Pi} has GNRP initially, then (i) in each round

of the process, such β exists, and (ii) the process terminates

eventually. Otherwise, there must exist two (or more) identical

polynomials of degree m − 1 in {Pi} (and hence {Pi} has

GRP), which is a contradiction.

Consider an arbitrary run of the reduction process over {Pi}
and its corresponding {P̃i}. Let R be the set of the roots that

the reduction process removes over the rounds. (Note that,

due to the arbitrary choices in the reduction process, R may

or may not be unique.) Hereafter, for any such R, assume,

w.l.o.g., that the (initial) indexing of polynomials in {Pi} is

such that d̃1 ≤ . . . ≤ d̃m−1 < d̃m (= dm) and P̃m = Pm, and

denote {Pi}1≤i≤m−1 by {Pi}⋆.

The proofs of our main theorems rely on the following

properties of the proposed reduction process.

Lemma 3: If {Pi} has GNRP, then any (r, s)-subset in

{Pi}⋆ such that r + s = m belongs to a polynomial Pi in

{Pi}⋆ such that di = m− 1.

Proof: Let S be an arbitrary (r, s)-subset in {Pi}⋆ such

that r + s = m. Let Q be the set of all polynomials Pi in

{Pi}⋆ such that di < m− 1. Note that Q is a set of at most

m − 1 polynomials of degrees at most m − 2. Since {Pi}
has GNRP (by assumption), then {Pi}⋆ (and hence Q) has

GNRP. Thus, there exists no (r⋆, s⋆)-subset in Q such that

r⋆+s⋆ > m−1 (by Lemma 2). Suppose that S belongs to no

polynomial Pi in {Pi}⋆ \ Q. Then, S is an (r, s)-subset in Q
such that r + s = m. This is, however, a contradiction. Thus,

S belongs to a polynomial Pi in {Pi}⋆ \ Q.

Lemma 4: If {Pi} has GNRP, then any (r, s)-subset in

{Pi}⋆ such that r + s = m is weakly reducible.

Proof: Let S be an arbitrary (r, s)-subset in {Pi}⋆ such

that r+s = m. Note that S belongs to a polynomial in {Pi}⋆
(and so {Pi}) of degree m−1 (by Lemma 3). Note, also, that

Pm has degree m − 1. Thus, if there exists β ∈ S such that

β 6∈ Nm, then S is weakly reducible since β is removable (by



definition). Otherwise, if S ⊆ Nm, then S is an (r + 1, s)-
subset in {Pi}. Since r+1+ s = m+ 1 > m, then {Pi} has

GRP (by Lemma 2), yielding a contradiction.

Lemma 5: If {Pi} has GNRP, then the strongly reducible

(r, s)-subsets in {Pi}⋆ such that r+ s = m belong to disjoint

subsets of {Pi}⋆.

Proof: Let S1 and S2 be two arbitrary strongly reducible

(r, s)-subsets in {Pi}⋆ such that r+ s = m. Let Q1 or Q2 be

the set of r polynomials Pi in {Pi}⋆ such that S1 or S2 belongs

to Pi, respectively. Note that 0 ≤ |Q1∩Q2|≤ r. First, suppose

that |Q1 ∩ Q2|= r. Then, S = S1 ∪ S2 is an (r, |S1 ∪ S2|)-
subset in {Pi}⋆. Since r+|S1∪S2|> r+s = m, then {Pi} has

GRP (by Lemma 2), and hence a contradiction. Next, suppose

that 0 < |Q1∩Q2|< r. We consider two cases. First, suppose

that |S1 ∩ S2|< m− 2r+ |Q1 ∩Q2|. Then, S = S1 ∪ S2 is a

(|Q1∩Q2|, 2s−|S1∩S2|)-subset in {Pi}⋆. Let r⋆ = |Q1∩Q2|
and s⋆ = 2s−|S1∩S2|. Since r⋆+s⋆ = |Q1∩Q2|+m−2r−
|S1 ∩S2|> m, then {Pi} has GRP (by Lemma 2), which is a

contradiction. Next, suppose that |S1∩S2|≥ m−2r+|Q1∩Q2|.
Then, S = S1 ∩ S2 is a (2r − |Q1 ∩Q2|, |S1 ∩ S2|)-subset in

{Pi}⋆. Let r⋆ = 2r−|Q1∩Q2| and s⋆ = |S1∩S2|. Note that

r⋆ + s⋆ = 2r − |Q1 ∩ Q2|+|S1 ∩ S2|≥ m. If r⋆ + s⋆ > m,

then {Pi} has GRP (by Lemma 2), and hence a contradiction.

If r⋆ + s⋆ = m, then S is weakly reducible (by Lemma 4),

and S has higher order than S1 and S2 since r⋆ + s⋆ = r+ s

and r⋆ > r. This is also a contradiction since S1 and S2 are

strongly reducible (by assumption). Thus, |Q1 ∩ Q2|= 0.

Lemma 6: For m = 2, 3, 4 and 0 ≤ di ≤ m − 1 for all

i ∈ [m], and for m = 5 and di = m − 1 for all i ∈ [m],
if {Pi} has GNRP, then the reduction process breaks any

strongly reducible (r, s)-subset in {Pi}⋆ such that r+ s = m.

Proof: Let S be an arbitrary strongly reducible (r, s)-
subset in {Pi}⋆ such that r + s = m. Since {Pi} has GNRP,

S belongs to a polynomial Pi in {Pi}⋆ of degree m − 1
(by Lemma 3) and no other strongly reducible (r, s)-subset

in {Pi}⋆ belongs to Pi (by Lemma 5). Moreover, for any

m = 2, 3, 4 and any 0 ≤ d1 ≤ . . . ≤ dm = m− 1, there exists

no other (r, s)-subset in {Pi}⋆ such that r+s = m (otherwise,

{Pi} has GRP). Thus S must be broken to reduce Pi.

For m = 5 and d1 = · · · = d5 = 4, S is either a (4, 1)-
or (3, 2)- or (2, 3)-subset in {Pi}⋆. First, suppose that S is a

(4, 1)- or (3, 2)-subset in {Pi}⋆. Since there exists no other

(4, 1)- or (3, 2)-subset in {Pi}⋆ (otherwise, {Pi} has GRP),

then S must be broken to reduce Pi. Next, suppose that S is

a (2, 3)-subset in {Pi}⋆. Let Q be the set of two polynomials

in {Pi}⋆, say P1 and P2, such that S belongs to both P1 and

P2. Let T be an arbitrary (if any) strongly reducible (2, 3)-
subset in {Pi}⋆ \ Q. If T does not exist, then S must be

broken to reduce both P1 and P2. If T exists, no element

of T is a common root of both P1 and P2 (otherwise, there

exists a strongly reducible (4, 1)-subset in {Pi}⋆, which is a

contradiction since S is a strongly reducible (2, 3)-subset).

Since {Pi} has GNRP, then there exists no other strongly

reducible (2, 3)-subset in {Pi}⋆ (by Lemma 5), and breaking

T cannot reduce both P1 and P2 simultaneously. Thus, S must

be broken to reduce P1 or P2 (or both).

V. PROOFS OF MAIN THEOREMS

In this section, we prove our main theorems. For simplicity,

we denote the degree-set of polynomials P1, . . . , Pm and

P̃1, . . . , P̃m by (d1, . . . , dm) and (d̃1, . . . , d̃m), respectively.

Proof of Theorem 1: Assume that W (P1, P2) ≡ 0. If

(d1, d2) = (0, 1), then W (P1, P2) = 1 6≡ 0, which is a

contradiction. If (d1, d2) = (1, 1), then W (P1, P2) = P1−P2.

Thus, P1 = P2, i.e., {P1, P2} has RP (and hence GRP).

Proof of Theorem 2: The proof follows by contradic-

tion. Assume that W (P1, P2, P3) ≡ 0, and {P1, P2, P3} has

GNRP. If (d1, d2, d3) = (2, 2, 2), then (d̃1, d̃2, d̃3) = (1, 1, 2)
(since the reduction process either reduces both P1 and P2

simultaneously, or it first reduces one, and then reduces the

other one). Since W (P1, P2, P3) ≡ 0 (by assumption), then

W (P̃1, P̃2) ≡ 0 (by Lemma 1). Thus, {P̃1, P̃2} has GRP (by

Theorem 1), i.e., there exists a (2, 1)-subset S in {P̃1, P̃2}.

Thus, S is a strongly reducible (r, s)-subset in {P1, P2} such

that r + s = m = 3 (by Lemmas 4 and 2), and it must have

been broken (by Lemma 6), yielding a contradiction.

If (d1, d2, d3) = (1, 2, 2), then (d̃1, d̃2, d̃3) ∈
{(1, 1, 2), (0, 1, 2)} (since the reduction process must

reduce P2, and reducing P2 may or may not reduce P1).

If (d̃1, d̃2, d̃3) = (1, 1, 2), then {P̃1, P̃2} has GRP, yielding

a contradiction as before. If (d̃1, d̃2, d̃3) = (0, 1, 2), then

W (P̃1, P̃2) = 1 6≡ 0. Thus, W (P1, P2, P3) 6≡ 0 (by

Lemma 1), which is again a contradiction.

If (d1, d2, d3) = (0, 2, 2), then (d̃1, d̃2, d̃3) = (0, 1, 2)
(since the reduction process must reduce P2, and reducing

P2 does not reduce P1). Since W (P̃1, P̃2) = 1 6≡ 0, then

W (P1, P2, P3) 6≡ 0 (by Lemma 1), yielding a contradiction.

If (d1, d2, d3) = (1, 1, 2), then (d̃1, d̃2, d̃3) = (1, 1, 2) (since

the reduction process does not reduce P1 and P2). Thus,

{P̃1, P̃2} (= {P1, P2}) has GRP (by the same argument as

before), which is a contradiction. If (d1, d2, d3) = (0, 1, 2),
then W (P1, P2, P3) = 1 6≡ 0, yielding a contradiction. If

(d1, d2, d3) = (0, 0, 2), then P1 = P2 = 1. Thus, {P1, P2}
has GRP, again a contradiction.

Proof of Theorem 3: Due to the lack of space, we only

give the proofs for the cases of (d1, . . . , d4) ∈ {(3, 3, 3, 3),
(2, 3, 3, 3), (1, 3, 3, 3), (2, 2, 3, 3)}. (The proofs of the rest

of the cases follow the exact same lines.) The proof is

by way of contradiction. Assume that W (P1, . . . , P4) ≡ 0,

and {P1, . . . , P4} has GNRP. Since W (P̃1, P̃2, P̃3) ≡ 0 (by

Lemma 1), then {P̃1, P̃2, P̃3} has GRP (by Theorem 2).

First, consider (d1, . . . , d4) = (3, 3, 3, 3). By the

procedure of the reduction process, (d̃1, . . . , d̃4) ∈
{(2, 2, 2, 3), (1, 2, 2, 3)}. Since {P̃1, P̃2, P̃3} has GRP,

either there exists a (3, 1)-subset S1, or if S1 does not exist,

there exists a (2, 2)-subset S2, in {P̃1, P̃2, P̃3}. Since S1 (or

S2) is a strongly reducible (r, s)-subset in {P1, P2, P3} such

that r + s = m = 4 (by Lemmas 4 and 2), S1 (or S2) must

have been broken (by Lemma 6), which is a contradiction.

Second, consider (d1, . . . , d4) = (2, 3, 3, 3). Then,

(d̃1, . . . , d̃4) ∈ {(2, 2, 2, 3), (1, 2, 2, 3), (0, 2, 2, 3)}. For any of

these cases, by the same arguments as for the previous case,

we arrive at a contradiction.



Next, consider (d1, . . . , d4) = (1, 3, 3, 3). Then,

(d̃1, . . . , d̃4) ∈ {(1, 2, 2, 3), (0, 2, 2, 3), (0, 1, 2, 3)}. For

the cases of (d̃1, . . . , d̃4) ∈ {(1, 2, 2, 3), (0, 2, 2, 3)},

similar to the previous cases, we reach a contradiction.

For the case of (d̃1, . . . , d̃4) = (0, 1, 2, 3), it follows that

W (P̃1, P̃2, P̃3) = 1 6≡ 0, which is again a contradiction.

Lastly, consider (d1, . . . , d4) = (2, 2, 3, 3). Then,

(d̃1, . . . , d̃4) ∈ {(2, 2, 2, 3), (1, 2, 2, 3), (1, 1, 2, 3)}. For the

cases of (d̃1, . . . , d̃4) ∈ {(2, 2, 2, 3), (1, 2, 2, 3)}, following the

exact same lines as above yields a contradiction. Now, consider

the case of (d̃1, . . . , d̃4) = (1, 1, 2, 3). Since d̃1 = d1 − 1,

d̃2 = d2 − 1, and d̃3 = d3 − 1, then reducing P3 must

have reduced P1 and P2 simultaneously. Thus, there exists

a (3, 1)-subset {β1} in {P1, P2, P3}. Since {P̃1, P̃2, P̃3} has

GRP, there also exists a (2, 1)-subset {β2} in {P̃1, P̃2}.

Thus, {P1, P2} has GRP since {β1, β2} is a (2, 2)-subset in

{P1, P2}, yielding a contradiction.

Proof of Theorem 4: The proof follows by contradic-

tion. Assume that W (P1, . . . , P5) ≡ 0, and {P1, . . . , P5}
has GNRP. Since W (P̃1, . . . , P̃4) ≡ 0 (by Lemma 1),

then {P̃1, . . . , P̃4} has GRP (by Theorem 3). By the proce-

dure of the reduction process, (d̃1, . . . , d̃5) ∈ {(3, 3, 3, 3, 4),
(2, 3, 3, 3, 4), (1, 3, 3, 3, 4), (2, 2, 3, 3, 4)}. Consider any of

the cases of (d̃1, . . . , d̃5) ∈ {(3, 3, 3, 3, 4), (2, 3, 3, 3, 4),
(1, 3, 3, 3, 4)}. Since {P̃1, . . . , P̃4} has GRP, there exists either

a (4, 1)-subset S1, or a (3, 2)-subset S2 (if S1 does not

exist), or a (2, 3)-subset S3 (if neither S1 nor S2 exists), in

{P̃1, . . . , P̃4}. Since S1 (or S2 or S3) is a strongly reducible

(r, s)-subset in {P1, . . . , P4} such that r + s = m = 5 (by

Lemmas 4 and 2), it must have been broken by the reduction

process (by Lemma 6), which is a contradiction.

Now, consider the case of (d̃1, . . . , d̃5) = (2, 2, 3, 3, 4).
Since {P̃1, . . . , P̃4} has GRP, there exists either a (4, 1)-
subset S1, or a (3, 2)-subset S2, or a (2, 3)-subset S3, in

{P̃1, . . . , P̃4}, or if neither of S1, S2, and S3 exists, there exists

a (2, 2)-subset S4 in {P̃1, P̃2}. If S1 (or S2 or S3) exists, then

it is a strongly reducible (r, s)-subset in {P1, . . . , P4} such

that r + s = m = 5 (by Lemmas 4 and 2), and it must

have been broken (by Lemma 6), yielding a contradiction. If

neither of S1, S2, and S3 exists, but S4 exists, then there

exists a (2, 2)-subset {β1, β2} in {P̃1, P̃2}. Since d̃1 = d1−2,

d̃2 = d2 − 2, d̃3 = d3 − 1, and d̃4 = d4 − 1, either (i) P3

and P4 are reduced separately, and reducing P3 and reducing

P4 both have reduced P1 and P2 simultaneously, or (ii) P1

and P2 are reduced simultaneously (without reducing P3 or

P4), and reducing P3 has reduced P1 (or P2) but not P4, and

reducing P4 has reduced P2 (or P1) but not P3.

First, consider the case (i). Since reducing P3 has re-

duced both P1 and P2, there exists a (3, 1)-subset {β3} in

{P1, P2, P3} such that β3 6= β1, β2. Similarly, there exists a

(3, 1)-subset {β4} in {P1, P2, P4} such that β4 6= β1, β2. Note

that β3 6= β4 since otherwise, {β3} or {β4} is a (4, 1)-subset

in {P1, . . . , P4}, which is a contradiction. Thus, there exists

a (2, 4)-subset {β1, β2, β3, β4} in {P1, P2}, i.e., {P1, P2} has

GRP, yielding a contradiction again.

Next, consider the case (ii). Since P1 and P2 are reduced

simultaneously, there exists a (2, 1)-subset {β3} in {P1, P2}
such that β3 6= β1, β2. Thus, {β1, β2, β3} is a (2, 3)-subset in

{P1, P2}. Note, also, that none of the elements β1, β2, and β3

is a root of P3 or P4. This comes from two facts: (a) if β3 is

a root of P3 or P4, then reducing P1 and P2 via removing β3

must have reduced P3 or P4, which is a contradiction; and (b)

if there exists β ∈ {β1, β2} such that β is a root of P3 or P4,

then no other element of {β1, β2, β3} belongs, when compared

to β, to more polynomials of degree 4 in {P1, . . . , P5} (since

{β} is a (3, 1)-subset and there exists no (4, 1)-subset). Thus,

P1 and P2 must have been reduced via removing β, which

yields reducing P3 or P4, and hence a contradiction.

Since reducing P3 has reduced P1 (or P2) and reducing P4

has reduced P2 (or P1), then there exist a (2, 1)-subset {β4}
in {P1, P3} and a (2, 1)-subset {β5} in {P2, P4} such that

β4 6= β5. Note that β4 or β5 is not a root of P4 or P3, respec-

tively (otherwise, reducing P3 (or P4) via removing β4 (or

β5) must have reduced P4 (or P3), yielding a contradiction).

Thus, N1 = {β1, β2, β3, β4} and N2 = {β1, β2, β3, β5}. Since

there is no (3, 3)-subset in {P3, P4, P5}, then P3 has a root

β6 ( 6= β1, β2, β3, β4) and P4 has a root β7 ( 6= β1, β2, β3, β5)

such that neither β6 nor β7 is a root of P5. (Note that β6 and

β7 may or may not be the same.)

Let P̂i be the resulting polynomial from Pi by removing

β3, β6, β7 from Ni, and let N̂i , Ni \ {β3, β6, β7}. Let d̂i ,

deg(P̂i). Note that (d̂1, . . . , d̂5) = (3, 3, 3, 3, 4). Since the

reduction set {β3, β6, β7} is acceptable, W (P̂1, . . . , P̂4) ≡ 0
(by Lemma 1). Thus, {P̂1, . . . , P̂4} has GRP (by Theorem 3).

This is a contradiction since there exists no (4, 1)- or (3, 2)-
subset in {P̂1, . . . , P̂4} as |N̂1 ∩ N̂3|= |N̂2 ∩ N̂4|= 0, and

there exists no (2, 3)-subset in {P̂1, . . . , P̂4} as |N̂1∩N̂2|= 2,

|N̂1 ∩ N̂3|= |N̂2 ∩ N̂4|= 0, and |N̂3 ∩ N̂4|≤ 2.
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