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Abstract—In this work, we adapt the notion of generalized
Hamming weight of block codes to introduce the novel concept
of generalized column distances for convolutional codes. This can
be considered as an extension of the work done in [18] on the
generalized Hamming weights for free distance of convolutional
codes. We also introduce the concept of Almost-MDP and Near-
MDP convolutional code. The problem of constructing convolu-
tional codes with design generalized column distances remains
an interesting open problem that requires further research.

I. INTRODUCTION

In [1], Wei introduced the concept of generalized Hamming
weights (GHW) and the Hamming weight hierarchy for linear
block codes (HWH). Let C be an [n, k] linear code over a
Galois field F. We define the support of C as

supp (C) = {i | xi 6= 0 for some [x1, x2, . . . , xn] ∈ C}

The r-th generalized Hamming weight of C is then defined
as

dr(C) = min{|supp(D)| |
D is an r − dimensional subcode of C},

and the HWH is the set of integers {dr(C) | 1 ≤ r ≤ k}.
Although the GHW were originally introduced motivated by

applications in cryptography in [1], [9], it was Forney that ex-
plicitly showed in [8] the close and deep connections between
the Hamming weight hierarchy (also called length/dimension
profile) and the trellis complexity. The GHW have, since then,
generated notable interest among coding theorists.

It was observed in [8] that the results obtained for block
codes could be extended to convolutional codes. This mo-
tivated the work in [18] where the convolutional case was
addressed. In this case a convolutional code C was seen as an
infinite-dimensional linear F-vector space and therefore dr(C)
was well-defined for all r ∈ N0. In this contribution we aim
at continuing this line of research by further investigating the
GHW in the context of convolutional codes. In particular, we
focus on column distances instead of on the free distance and
propose a definition of generalized column distance (GCD) for
convolutional codes. As we will see, most of the properties of
the GHW for block codes apply also for this notion of column
distances of convolutional codes.

Column distances of convolutional codes over finite fields
have been already studied for decades [20]. However, the
notion of Maximum Distance Profile (MDP) convolutional
codes over (non-binary) finite fields have been defined and
fully studied by Rosenthal et al. in [11], [17]. These codes,
that are closely related to convolutional codes with optimum
distance profile (ODP) [20, p. 112], are characterized by the
property that their column distances increase as rapidly as
possible for as long as possible. Obviously, fast growth of
the column distances is an important property for codes to be
used with sequential decoding and therefore very appealing for
applications (see [10]). Indeed, the maximal possible growth in
the column distances means that these codes have the potential
to correct the maximal number of errors per time interval.
However, the problem of building MDP convolutional codes
over small finite fields is still open and seems highly nontrivial
(if possible at all). The two existing general constructions of
MDP convolutional codes (see [15], [16], [17]) require far
too large finite fields. Hence, one approach to this problem
is to relax the MDP condition and try to find convolutional
codes that are not MDP but posses good design column
distance profile over small fields. To this end, we extend the
notions of Almost-Maximal Distance Separable (MDS) and
Near-MDS to the notions of α-Almost-Maximum Distance
Profile (MDP) and s-Near- MDP. Moreover, considering the
generalized weights, we introduce a refined figure of merit of
a code to be MDP: the matrix of defects and its norm. We
will present an example of a 3-Near-MDP convolutional code
of length 4, dimension 2 and degree 2 over F3. The minimum
field size for constructing an MDP convolutional code with
these parameters is 17.

Finally, we indicate the possibility of considering yet an-
other notion of GCD (see Remark 2). It is not clear whether
these two are equivalent indicators of the performance of
convolutional codes within a time interval. This issue lies at
the core of the problem of extending the notion of the GHW
from block codes to GCD and requires further investigation.

The rest of the paper is organized as follows: In Section II,
we recall basic notions of convolutional codes. In Section III
we introduce the notion of generalized column distance of con-
volutional codes. The remaining sections are devoted to derive
the main properties of these distances and to introduce the new



concepts of α-Almost-MDP and s-Near-MDP. We conclude
the paper by presenting an example of a convolutional code
that has good column distance profile over F3 together with
some conclusions.

II. CONVOLUTIONAL CODES

Let F be a finite field and F[D], the ring of polynomials
with coefficients in F. A convolutional code C of rate k/n is
an F[D]-module of F[D]n of rank k of the form

C = imF[D]G(D) = {u(D)G(D) | u(D) ∈ Fk[D]}

where G(D) ∈ F[D]k×n is a right invertible matrix or basic,
i.e., there exits a matrix H(D) ∈ F[D](n−k)×n such that

imF[D]G(D) = kerF[D]H(D) = {v ∈ F[D]n | vHT = 0}.

The degree δ of C is defined as the maximum degree of the
full size minors of G(D).

As we know, the most important property of a code is its
distance. In this case, we define the weight of a polynomial
vector v(D) =

∑
i vvviD

i ∈ F[D]n, with vvvi ∈ Fn, as

ω(v(D)) =
∑
i

ω(vvvi),

where ω(vvvi) is the Hamming weight of vvvi. The free distance
is, thus, defined as

d(C) = min{ω(v(D)) | v(D) ∈ C, v(D) 6= 0}.

We can express the generator matrix as

G(D) =

µ∑
j=0

GjD
j , Gj ∈ Fk×n, Gµ 6= 0

and the parity-check matrix as

H(D) =

ν∑
j=0

HjD
j , Hj ∈ F(n−k)×n, Hν 6= 0.

Let

Gcj =


G0 G1 · · · Gj
0 G0 · · · Gj−1
...

... · · ·
...

0 0 · · · G0


and

Hc
j =


H0 0 · · · 0
H1 H0 · · · 0

...
... · · ·

...
Hj Hj−1 · · · H0

 ,
be the truncated sliding generator and parity-check ma-
trices for j ∈ N0, respectively.

Notice that each codeword of C has the form v(D) =∑
i vvviD

i, with vvvi ∈ Fnq , and it can be seen as a vector
vvv = [vvv0, vvv1, vvv2, . . .].

Now, we can define the j-th column distance [20] as

dj (C) = min
{
ω
(
[u0,u1, . . . ,uj ]G

c
j

)
| ui ∈ Fk,u0 6= 0

}
.

For simplicity we will use dj instead of dj(C). We remark
that since the generator matrix is basic, the column distance
is a property of the code C and does not depend on the choice
of the generator matrix [17], [20].

Convolutional codes with large column distance are very
appealing for sequential decoding. The larger the column
distance is, the more number of errors can be corrected per
time interval. Maximum Distance Profile (MDP) convolutional
codes were introduced in [17] and are basically convolutional
codes characterized by the property that their initial column
distances increase as rapidly as possible for as long as possible,
i.e., they are convolutional codes that are optimal with respect
to the column distance. Formally speaking, a convolutional
code C of rate k/n and degree δ, is MDP if

dj = (n− k)(j + 1) + 1 for j = 1, 2, . . . , L,

where L = bδ/kc+ bδ/(n− k)c. Given a convolutional code
C, the set of integers {dj | 1 ≤ j ≤ L} is called the column
distance profile of C.

III. GENERALIZED COLUMN DISTANCES OF
CONVOLUTIONAL CODES

In order to generalized the column distances, we define

Cj =
{

[u0,u1, . . . ,uj ]G
c
j | ui ∈ Fk,u0 6= 0

}
.

Note that Cj does not depend on the choice of the generator
matrix G, since the elements of Cj are truncated codewords
of C.

Notation: If vvvi ∈ Cj ⊂ Fn(j+1), we write vvvi = [vvvi0, . . . , vvv
i
j ]

with vvvik = [vi1,k, . . . , v
i
n,k] ∈ Fn for k = 0, . . . , j. Denote

by < vvv1, . . . , vvvr >F the F-vector subspace spanned by
{vvv1, . . . , vvvr} over F.

Obviously vvvi ∈ Cj implies that vvvi0 6= 0 as G(0) is full row
rank (G(D) is right invertible). Note that {vvv1, . . . , vvvr} ⊂ Cj
does not implies that < vvv1, . . . , vvvr >F⊂ Cj . In fact, we have
that 0 ∈< vvv1, . . . , vvvr >F and 0 6∈ Cj .

Let D be a subset of Cj . We define the support of D as

supp(D) =
{

(r, s) | vir,s 6= 0, for some vivivi ∈ D
}
,

and, then, the weight of D can be defined as ω(D) =
|supp(D)|, that is, the cardinality of supp(D).

We are ready now to define the jjj-th Generalized Column
Distance (GCD) of C:

drj(C) = min{ω (V ) | V =< vvv1, . . . , vvvr >F \{0} ⊆ Cj ,
where {vvv10, · · · , vvvr0} is a L.I. set},

(1)

where L.I. stands for linearly independent. For simplicity we
will use drj instead of drj(C). Note that C can be viewed as
an infinite-dimensional vector space over F. Since we demand
{vvv10, · · · , vvvr0} to be a L.I. set, we have that drj is well defined
only for r = 1, 2, . . . , k and not for all r ∈ N0 as happens in
[18]. In this sense, the situation addressed here is closer to the
block code case . We call {d1j , . . . , dkj } the j-th GCD profile



of C. We remark, however, that the number of different sets
of the type < vvv1, . . . , vvvr >F \{0} considered in (1) is upper
bounded by (

k(j + 1)

r

)
−
(
kj

r

)
whereas for a [n, k]-block code the equivalent number is upper
bounded by

(
k
r

)
.

IV. PROPERTIES AND RESULTS

In the next result we show the monotonicity of the GCD of
a convolutional code.

Theorem 1. Let C be a convolutional code and {d1j , . . . , dkj }
its j-th GCD profile. Then,

dj(C) = d1j < · · · < dkj .

Sketch of the proof. Let V =< vvv1, vvv2, . . . , vvvr+1 >F \{0} ⊂
Cj be a subset of Cj such that ω(V ) = dr+1

j . Obviously, there
exists ν ∈ {1, . . . , n}, such that v1ν,0 6= 0. One can show
that performing linear combinations over F we can obtain
that V =< vvv1, v̂̂v̂v2, . . . , v̂̂v̂vr+1 >F⊂ Cj with v̂iν,0 = 0, for
i = 2, . . . , r + 1. Denote V̂trunc =< v̂̂v̂v2, . . . , v̂̂v̂vr+1 >F. We
know that (ν, 0) ∈ supp(V ), but (ν, 0) /∈ supp(V̂trunc ) and this
means that supp(V̂trunc ) ⊂ supp(V ) and the inclusion is strict.
Therefore, ω(V̂trunc ) < ω(V ) and drj < dr+1

j .

The following straightforward result follows.

Corollary 1. Let V =< vvv1, . . . , vvvr >F \{0} ⊂ Cj such that
{vvv10, . . . , vvvr0} is a L.I. set and drj = ω(V ). If

ω(< vvv1, . . . , vvvr >F) = ω(< vvv1, . . . , vvvr, vvvr+1 >F) (2)

then
vvvr+1
0 ∈< vvv10, . . . , vvv

r
0 >F

Proof. If (2) holds and {vvv10, . . . , vvvr+1
0 } are L.I., then we would

have that drj = dr+1
j which contradicts Theorem 1. Therefore,

we necessarily have that vvvr+1
0 ∈< vvv10, . . . , vvv

r
0 >F.

Now, we are ready to introduce a bound for our weights.

Proposition 1. Given a convolutional code of rate k/n and
degree δ, it holds that

drj ≤ (n− k)(j + 1) + r (3)

for j = 0, 1, . . . , L and r = 1, 2, . . . , k.

Proof. Let G(D) be a generator matrix of C. It is easy to
check that as G(0) is full row rank we can obtain, after a
appropriate permutation of columns (which is an isometry) and
elementary row operations, a truncated sliding matrix which
has the following form:

Ĝcj =


I 0 0 · · · 0 P0 P1 P2 · · · Pj
0 I 0 · · · 0 0 P0 P1 · · · Pj−1
0 0 I · · · 0 0 0 P0 · · · Pj−2
...

...
...

...
...

...
...

...
0 0 0 · · · I 0 0 0 · · · P0

 ,

from where the result readily follows.

Remark 1. Taking into account the monotonicity of the GCD
of a convolutional code (Theorem 1) and Proposition 1, it is
easy to see that if one of the j-th column distance drj attains
the bound (3) for some r, all following generalized column
distances dsj will also attain the bound for s ≥ r.

Remark 2. When defining the j-th GCD, we consider sub-
spaces generated by a set {vvv1, · · · , vvvr} with the property
that {vvv10, · · · , vvvr0} is a L.I. set. A relaxation of this condition,
requiring {vvv1, · · · , vvvr} to be a L.I. set, would allow us to
define the r-th generalized weight for every r ≤ (j + 1)k.
Although exploring such a possibility is interesting, it is a
harder problem, since it can be shown that in this case
the generalized column distances need not to be strictly
increasing. This would imply that it is possible to have drj
attaining the bound while dr+1

j is not maximal.

The following characterization of drj in terms of Hc
j follows

from Wei’s original work [1, Theorem 2] and the fact that for
vvvi ∈ Cj we require that vvvi0 6= 0.

Theorem 2. Let C be a convolutional code with a truncated
parity-check matrix Hc

j . Then, C has j-th GCD drj if and only
if drj is the smallest number with the property that there is a
set of drj columns of Hc

j , containing at least one of the first n
columns of Hc

j , whose rank is equal to or less than drj − r.

V. ALMOST AND NEAR MDP CODES

As pointed out in [12], [13], [14] the generalized weights
refine the minimal distance as a figure of merit for codes.
In this section we follow this idea and establish how far a
code is from attaining the bounds for the generalized column
distances. To be explicit, let us consider the bound given in
Proposition 1 for drj and denote it by: Ωrj = (n−k)(j+1)+r.
We can define the defect of drj as Λrj = drj−Ωrj and the matrix
of defects of a code as the matrix given by:

ΛΛΛ =


Λ1
0 Λ2

0 Λk0
Λ1
1 Λ2

1 · · · Λk1
...

... · · ·
...

Λ1
L Λ2

L · · · ΛkL

 .
In terms of the defect, to say that a code C is MDP means

that Λ1
j = 0, for all j = 0, 1, . . . , L, i.e., the first column,

and therefore the whole matrix, is zero. In this sense, we can
generalize the concepts of Near-MDS and Almost-MDS to
convolutional codes, see for instance [19].

Definition 1. We say that a convolutional C code is α-Almost-
MDP if Λ1

j ≤ α for all j ≤ L and α is minimal with this
property.

Definition 2. We say a convolutional code is an s-Near MDP
code if Λsj = 0 for every j = 0, 1, . . . , L and s is minimal
with this property.

The construction of MDP convolutional codes is closely
related to the construction of the so-called lower triangular



Toeplitz superregular matrices [15]. This class of matrices are
characterized by having all of its “nontrivial” minors different
from zero. Unfortunately, constructions of these matrices,
and consequently of MDP convolutional codes, over small
fields are unknown (although it was conjectured that such
constructions exist, see [10], [15], [16], [17], [21]). Hence,
it is reasonable to consider the norm∑

i ≤ k
j ≤ L

Λij

which we call the overall defect of the code.
To look for codes for which ΛΛΛ is “small” is a more feasible

approach, as we can see in the following example.

Example 1. Consider the convolutional code with parameters
n = 4, k = 2 and δ = 2 over F3 whose generator matrix is

G(D) =

[
1 0 1 + 2D 2 +D
0 1 2 +D 2 +D

]
,

and

G0 =

[
1 0 1 2
0 1 2 2

]
, G1 =

[
0 0 2 1
0 0 1 1

]
.

For j = 0, we have that d10 = 3 and d20 = 4 (both attain
the bound). Consider now the truncated generator matrix for
j = 1:

GC1 =


1 0 1 2

O
2 1

0 1 2 2 1 1

O
1 0 1 2
0 1 2 2


The matrix 

1 2 2 1
2 2 1 1

O
1 2
2 2


is not superregular, so the code will not be MDP [16], [17].

In this case, the truncated codeword obtained taking the
sum of the first two rows is given by

[1 1 0 1 0 0 0 2]

and has weight 4. Therefore, d11 = 4, which does not attain the
bound Ω1

1 = 5. It is also possible to check that d21 = Ω2
1 = 6.

As L = bδ/kc+ bδ/(n− k)c = 2, we calculate the matrix

GC2 =


1 0 1 2

O
2 1

O
0 1 2 2 1 1

O
1 0 1 2

O
2 1

0 1 2 2 1 1

O O
1 0 1 2
0 1 2 2


In this case, the corresponding generalized column distances
are given by: d12 = Ω1

2 − 3 = 4, d22 = Ω2
2 − 2 = 6. The

corresponding defect matrix of this code is given by:

Λ =

 0 0
1 0
3 2


The overall defect of this code is ‖ΛΛΛ‖ = 6.

We emphasize that if one wants to construct and MDP
convolutional code with these parameters, one needs to con-
struct a superregular matrix of size 7 × 7 (see [15], [17],
[10]). In this work, we consider that superregular matrices
are lower triangular matrices, and the minimum required field
size necessarily to construct an MDS convolutional code (or
equivalently the superregular matrix) can be found in [21].
Computer search shows that these bounds are not optimal and
there exist several conjectures on the actual minimum field
size required to construct MDP for a given set of parameter
(n, k, δ). For the example at hand, it can be computed that the
minimum field size to construct a 7 × 7 superregular matrix
is 17 which is significantly larger that the one used in our
example (F3).

VI. CONCLUSIONS

In this work we introduce a generalization of the Ham-
ming weight hierarchy tailor-made to generalize the notion of
column distance of convolutional codes. The results naturally
extend the existing results on the GHW for block codes and
convolutional codes. This new notion leads to the generaliza-
tion of the concepts of Almost-MDS and Near-MDS. More
characterizations of these notions and concrete constructions
of convolutional codes with a design column distance profile
are left for future research.
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