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Abstract

The problem of reliable communication over the multipleess channel (MAC) with states is investigated. We
propose a new coding scheme for this problem which wgessi-groupcodes (QGC). We derive a new computable
single-letter characterization of the achievable ratéoregAs an example, we investigate the problemdotibly-dirty
MAC with modulo4 addition. It is shown that the sum raf& + R» = 1 bits per channel use is achievable using the new
scheme. Whereas, the natural extension of the Gel'fanskBirscheme, sum-rates greater tia&82 are not achievable.

I. INTRODUCTION

ONSIDER reliable communication over a point-to-point chelnwith channel state available at the transmitter.
C Gel'fand and Pinsker introduced a coding strategy for thadbfem [1] which usesandom binning It was shown
that the capacity is given by

C = pgl?\(s)l([];y) - I(U;9).

The additive Gaussian channel with state problem was sdiye@osta [2]. While the point-to-point problem was
solved by Gel'fand and Pinsker, characterizing the capaegion of the multiple-access channel (MAC) with non-
causal side-information available at the transmittersaiesnan open problem. One possible coding scheme is the
natural extension of the Gel'fand-Pinsker scheme which meduced in[[3]. A well-studied example of the problem
of MAC with states is called theloubly dirty MAC problem. In this setup, the channel is binary-additimad the
relation between the inputs and the output is as follows:

Y=X15®Xo® 95, 1)

where X is the first encoder’s output, anll, is the second encoder’s output. The staigsand.S, are available at
the first and second transmitter, respectivSlyand S, are two independent states which are distributed unifoougr
{0,1}. Each input sequence must satisfy the cost-constrelitfc;(X!")} < 7; for some cost-functions;(-),i = 1,2,
asn — oo. Philosof and Zamir[[4] investigated a special case of thi@bfem in which the cost functions are the
Hamming weightThey presented a coding scheme which uses linear codegotla¢ interference. They showed that
the natural extension of the Gel'fand-Pinsker scheme igtitnal. They showed that the capacity region consists of
all rate-pairs(R1, R2) such that

R + Re < min{hy(11), hp(72)},

wherehy,(+) is thebinary entropyfunction. The Philosof-Zamir scheme is optimal in this eyéen However, it highly
relies on the additive and symmetric structure of the chiafiiee scheme is not generalizable to non-additive channels
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Later, a coding scheme based cwmset codesvas introduced for the general MAC with states problém [B]bbth

of these works, schemes using structured codes are usedtovienupon the previous known coding schemes which
were based on unstructured codes. Similar observations begn made in other multi-terminal problems, such as
the Korner-Marton source coding problen [6], the joint m@ichannel coding over MAC [7], multiple-descriptions
problem [8], and the problem of computation over MAC [9].

In this work, we first consider thguaternaryadditive MAC with states, where all inputs and states ardegnary,
and the addition iZ, addition. In [5], group codes are used to derive an achievedgion for this exampleGroup
codesare structured codes which are closed under a group oper&exently, we introduced a new class of structured
codes calledquasi-groupcodes (QGC)[[10]. A QGC is a subset of a group code. Linears@ae group codes are
special cases of QGC. QGCs are not necessarily closed uraigy gddition. QGCs span the spectrum from completely
structured codes (such as group codes and linear codes)ripletely unstructured codes. These codes were used in
the Kdrner-Marton problem for modulo prime-power sums|]{Fdr this problem, a coding scheme based on QGCs
is presented which strictly improves upon the previouslgwn schemes.

Next, we propose a new coding strategy using QGCs for thergepmblem of two-user MAC with independent
states. We introduceested QGCsand propose a binning technique for such codes. A singlerleharacterization of
the achievable rates is derived. As an example, we invéstihe quaternary doubly dirty MAC. We show that QGCs
achieve the sum-rat&; + R, = 1 bits per channel use. Whereas using the natural extensi@ebfand-Pinsker,
sum-rates greater than32 are not achievable.

The rest of this paper is as follows: Section Il presents ttedirpinaries and definitions. Section Il provides and
overview for QGC. Section IV contains the main results of thaper. Section V presents the application of QGC for
the doubly-dirty MAC. Finally, Section VI concludes the pap

Il. PRELIMINARIES AND PROBLEM FORMULATION
A. Notations

We denote (i) vectors using lowercase bold letters sudh as (ii) matrices using uppercase bold letters suclias
(iii) random variables using capital letters suchXasY, (iv) numbers, realizations of random variables and elémen
of sets using lower case letters suchaas. Calligraphic letters such a andi/ are used to represent sets.

We denote the seftl, 2,...,m} by [1 : m], wherem is an integer. Given a prime powef, the ring of integers
modulo p” is denoted byZ,-. The underlying set is for such group {9,1,---,p” — 1}, and the addition and
multiplication is modulop”. For any0 < ¢ < r, denoteH; = {t-a : a € Z,-}. Given H;, any element € Z,-
can be uniquely written a8 = h + g, whereh € H;,g € [0 : p* — 1]. We denote sucly by [a];. Given two subsets
U,y < Zk,, we define a new subset defined{@as® v : u e U, v € V}. We denote such set a6@ ).

B. Model

Consider a two-user discrete memoryless MAC with input aljgts’;, X5, and output alphabé¥. The transition
probabilities between the input and the output of the chidgends on a pair of random variablgs, S2) which are
called states. Each statg take values from the se;, where: = 1, 2. The sequences of the states are independently
and identically distributed (i.i.d) according to the prbby distribution p(s1, s2). Prior to any transmission, the entire
sequence of the statg is known at theth transmitter; = 1, 2. The conditional distribution o¥" given the inputs and
the states is denoted hy(y|z1z2s152). Let y™ be the output of the channel afteruses. Ifz! is the input sequence,
ands} is the state sequence, then the following condition is faadis

n—1

p(yaly™ Hx" 18" = plynlz,,, 8,)-



Each inputX; is associated with a cost functien: X; x S; — [0, +00). The input sequencX?” is then constrained
to the average cost defined by

X’n. S’n. &

3I>—‘

Z nga Sz]

Definition 1. An (n, ©1, ©2)-code for reliable communication over a given MAC with stagedefined by two encoding
functionsf; : {1,2,...,0;} xS — V", = 1,2, and a decoding functiop: " — {1,2,...,0:}x{1,2,...,02}.

Definition 2. For a given MAC with states, the rate-cds®,, Rs, 71, 72) is said to be achievable, if for any > 0,
there exist a(n, ©1, ©3)-code such that

Plo(Y™) % (My, Ma)) <, —log; > Ri—e, B(a(f;(My),S])} <7+

for i = 1,2, where a)\/;, M, are independent random variables with distributipfVl; = m;) = @L for all m; e [1:
©,], b) M, is independent of the statés, Sa. Givenry, 72, the capacity regioi€,, ., is defined as the set of all rates
(R1, R2) such that the rate-costR;, Ro, 71, 72) iS achievable.

C. The Extension of Gel'fand-Pinsker Scheme

Jafar [3] introduced a natural extension of the Gel'fandeRer scheme for the problem of MAC with states, and
derived a new achievable rate region using such scheme.

Proposition 1 ( [3]). For a MAC (X1, A2, Y, Py |x, x,) With independent statgs,, S2) and cost functions , c,, the
closure and convex hull of all rate-paiff?;, R») satisfying the following conditions are achievable.

Ry < I(Uy; Y[U2Q) — I(Ur; 51Q)
Ry < I(U2; Y[ULQ) — I(Us; 52|Q)
R+ Ry < I(U1U2Y|Q) — I(Us; 51]Q) — 1(Us; $2|Q), (2)
whereE{c;(X;, S;)} < 7,4 = 1,2, and the joint PMF of all the random variables in the abovetfas as
p(@)p(s1)p(s2) | | plwizilsiq)p(ylarws).
i=1,2
To the best of our knowledge, the above rate region is theentitargest achievable rate region using unstructured

codes for the problem of MAC with states.

I11. AN OVERVIEW OF QUASI GROUP CODES

We use a class of structured codes called quasi group cadigss Isection, we state the definition and key properties
of QGCs given in[[10].

A QGC is defined as a subset of a group code. Such codes are mlglemms of linear codes androup codes
Consider ak x n matrix G and an-length vectorb with elements inZ,-. Let!/ be a subset of.t.. A QGC onZ,
is defined as

={uG+b:uel}. 3

For a general subsef, it is difficult to derive achievable rates of QGCs using &nlgtter characterizations. Therefore,
we present an special constructionléffor which single-letter characterizations is possible.

Given a positive integem, considerm mutually independent random variablgs, Us, - - - , U,,,. Suppose eacly;
takes values fronZ,- with distributionp; (u;). Consider positive integers, i € [1 : m]. Fore > 0, let A* (U;) be the



collection of alle-typical sequences df; with lengthk;, wherei € [1 : m]. Definel/ as the Cartesian product of the
typical sets ofU;, i € [1 : m], more precisely
U = QAF (). (4)
=1

For more convenience, we use a notation for this constnuctiet k = > | k;. Denoteg; = % Note thatg; > 0
and)’. ¢; = 1. Therefore, we can define a random variaQlevith P(Q = i) = ¢;. Define a random variablg’ with
the conditional distributiorP(U = a|Q = i) = P(U; = a) for all a € Zy-,i € [1 : m]. With this notation, the s&¥
in (@) is characterized by, k and the paifU, Q). Note that for large enough, we have,

1 E & k
Elogz U| ~ - ;lqu(Ui) = EH(U|Q)-

Definition 3. A (n, k)-QGC overZ,- is defined as in[{3), and is characterized by a matex Z’;TX”, a translation
b € Z., and a pair of random variablegU, Q) distributed over a finite sef,- x Q.

Let C be a(n, k)-QGC with random variable&Q, U). Suppose the generator matrices and the translation vector
of C are chosen randomly and uniformly fraf)-. Then for large enough andn with probability one, the rate of
satisfies

1 k
R = —log, |C| ~ ~H(U|Q).
n n

In what follows, we present a packing and a covering boundherabove cod€.

Lemma 1 (Packing bound[[10])Let (X, Y") distributed according tp(x)p(y|x), for x € Z,-, andy € ). Byw; denote
the first codeword of. Let Y” be a random sequence distributed according {§_, p(7:|w1). Suppose, conditioned on
w1, the sequenc& ™ is independent of other codewordsinThen, asy — o, P{3xeC: (x,Y") € AE”)(X, Y),x #
w1} is arbitrary close to zero, if

: HU|Q) —t
R < o W(logzl) — H(X|Y[X]y))- )

Lemma 2 (Covering bound,[[10]) Suppose the pair of random variableX, X) are distributed according te(z, ),
where X takes values fronZ,-, and X takes values fronk’. Let X™ be a random sequence distributed according to
[T, p(z;). Then, asn — oo, P{3x e C: (X", %) € A (X, X)} is arbitrary close to one, if

H(U|Q) ¢ A
R> lfg%m(logzp — H([X]:|X)). (6)

IV. MAIN RESULTS

We first propose a structured coding scheme that builds ugd@<) Next, we present a method fainning using
QGCs. Then, we derive the single-letter characterizatioth® achievable rate region using such scheme.
Consider a QGC defined by

Co={uG +vG +b:uecld,veV}, (7

wherel/ andV are subsets OZ’;T, andZﬁ),\, respectively. AlsoG and G arek x n and! x n matrices, respectively.
In this caselo is a(n, k + 1)-QGC. We can associate an inner code@gr. Define the inner code as

Cr2{uG+b:uelf}.

ThereforeC; is a (n, k)-QGC, andC; < Co. The pair(Cr,Co) is called a nested QGC.

4



Definition 4. A nestedn, k,1)-QGC is defined as
Co={x1®%:x7€Cr,xeC}, (8)
whereC; is a (n, k)-QGC, andC is a (n,1)-QGC.
For any fixed element € I/, we define its corresponding bin as the set
B(u) = {uG +vG + b:veV}.

In this situation,Co is binned usingC; as the inner code anBi(u) as the bins. Using this binning method, a rate
region is given in the following Theorem.

Theorem 1. For a given MAC(&1, &>, ), Py |x, x,) with independent statesS, S2) and cost functions, cz, the
following rates are achievable using nested-QGCs

H(W: @ W2|Q)
H([W;]:Q)

where the joint distribution of the above random variablaestérs as

Ri+ Ry <rlogyp—HV1®V2YQ) - max {
I<t<r

(1og2 pt — H([Vi]t|QSi)> }7

p(@)p(s1,52) || plwil@)p(vilg, si)p(wila, vi, s:)p(yler, w2).
i=1,2

Proof: Fix positive integers:, k1, k2, andl. LetC; ; be a(n, k;)-QGC with matrixG, translationb,, and random
variables(Q;, U;), whereU; is uniform over{0, 1}, andj = 1,2. Let C; andCs be two (n,!) QGC with identical
matricesG and identical translationls. Suppos€Q, W;) are the random variables associated wWithwherelV; takes
values fromZ,-, andj = 1,2. By W; andW, denote the sets correspondingdpandC,, respectively. Sinc€; and
C, have identical matrices and translations, tilg®Cs is a(n,1)-QGC. The corresponding set of such sum-codebook
is Wi @ Ws. Note that the elements of all the matrices and the transistare selected randomly and uniformly from
Loy

Codebook Construction: For each encoder we use a nested QGC. For the first encodesenbe(n, k1, [)-nested
QGC generated bg; ; andC;. For the second encoder, we use thek,, [)-nested QGC characterized By 2 andCs.
For the decoder, as a codebook, we uge.&; + k2 +[)-nested QGC. This codebook is denotedIbyThe inner code
is a(n, k1 + k2)-QGC defined by’; 1 ®Cr 2. The outer code is &, k1 + k2 +1)-QGC defined by; ®Co®Cr 1 ®Cr 2.
Fori = 1,2 and for each sequeneg andv; € Z;., generate a sequengg according to]_[;?:1 p(xij]sij, vij). Denote
such sequence hy;(s;, v;).

Encoding: Without loss of generality, we assume that each message@stesg randomly and uniformly from
{0,1}*. Fori = 1,2, the ith encoder is given a message € {0,1}*, and a state sequense with lengthn. The
encoder first calculates the bin associated withNext, it finds a codeword; in the bin such thatv;,s;) are jointly
e-typical with respect taPy,s,. If no such sequence was found, the error evBnwvill be declared. If there was no
error, theith encoder sends; (s;, v;) i = 1, 2. The effective transmission rate for thth encoder isk; = %, 1=1,2.

Decoding: We useD as a codebook in the receiver. For eath iz € {0,1}* andWw € W; ® W, the decoder
calculates the corresponding codeword defined as

Vv =1,G; +1:Gy+ WG +b; +by +b.

Upon receivingY™ from the channel, it finds al that are jointlye-typical with Y™ with respect toPy,gv, v. If
the correspondingu,, iz) sequences are unique, they will be declared as the decodeshges. Otherwise, an error
eventE,; will be announced.



Error Analysis: Let p; andp, denote the rate af; andC., respectively. We use Lemrha 2 to analyze the probability
of E1 and E». In this lemma, set = C},X =V;, and X = S;. Note that in this casel; is the same as the event
described in the Lemma. As a result, we use the covering bou@, whereR = p;, U = W;,Q = Q, X =V, and
X = 8;, i = 1,2. Therefore, according to Lemriia (E;) approaches zero as— o, if the following bound holds:

pi > max % (logyp" — H([Vi]e]S0))- )
Next, we use Lemmil 1 to bound the probability of the ev@nt In this lemma se€ = D, and X = V; @ V4. In this
case,E, is the event defined in the Lemma. dfis the rate ofC; @ C,, then the rate o equalsR; + Ry + p. As a
result of Lemmdl,P(Ey|ES n ES) approaches zero, if the packing bound[ih (5) holdsRoe Ry + Ry + p,U =
(U1,02),Q = (Q1,Q2) Sincel; is uniform over{0, 1}, thenH (U;|Q;, [U;]:) = 0 for all ¢ > 0. Therefore, the packing

bound is simplified to

Ri+ Ry + p <logyp” — HVi @ Vo|Y). (10)

It can be shown that = %E@pi. Finally the bound in the theorem follows by using this egyabounds in [9)

and [10), and denotin@ = (Q1, @2, Q). [ ]

Corollary 1. SetV; ~ unif(Zy-),i = 1,2. Then the rate-region in the Theorem is simplified to the exciiile rate
region of group codes, that is

R+ Ry < min (H([Vi1IQS)) — HV: ©|Y Q).

f;tér
We proposed a coding strategy using nested QGCs to achieveath region presented in Theoreéim 1. We build
upon this coding scheme and the extension of the Gel'fandker scheme, and propose a new coding strategy. Using
this scheme, a new achievable rate region is characteniztteinext Theorem.

Theorem 2. For a given MAC(&1, &»,), Py |x, x,) With independent statesS;, S») and cost functions:, c,, the
following rate region is achievable

Ry < I(U; Y[U2Q) — 1(U1;511Q) + Tgae
Ry < I(U;Y|ULQ) — I(U2; 52|Q) + Tgee
Ry + Ry < I(UlUg;Y|Q) — I(U1U2;5152|Q) +T'oace,

where

Loce = rlogyp — H(Vi @ Vo|YU1U2Q) — max {%

i=1,2
1<t<r

(log2 pt — H([Vi]tlUiQSi)> },

and 1) the cost constrainf8{c;(X;, S;)} < 7; are satisfied, 2) the Markov chain
(S1,U1, V1, W1, X1) & Q < (S2,Uz, Vo, Wy, X3)

holds, 3)giveny, X, X, the random variabl@” is independent of all other random variables, and 3) coodi¢id on
Q, the random variable$V;, W, are independent of other random variables.

Proof: The proof is provided in Appendix]B. [ ]

Remarkl. The rate region presented in Theorgim 2 contains the raterrgesented in Propositidh 1.



V. AN EXAMPLE

We present a MAC with state setup for which the Gel'fand-Rénsegion given in Propositidd 1 is strictly contained
the region given in Theoref 2.

Example 1. Consider a noiseless MAC described by
Y = X1 @4 51 @4 Xo @y S,

where X1, X, are the inputsy is the output, andS,, Sy are the states. All the random variables take values from
Z4. The statesS; and S, are mutually independent, and are distributed uniformlgrd&,. The addition®, is the
modulo4 addition. The cost function at the first encoder is defined as

1 ifze{l1,3}
c(z) = ]
0 otherwise,
whereas, for the second encoder the cost function is
1 if ze{2,3}
co(x) = )
0 otherwise.
We are interested in satisfying the cost constraiiie; (X1)} = E{c2(X2)} = 0. This implies that, with probability
one, X; € {0,2}, and X, € {0,1}.

We proceed using two lemmas. First, we derive an outer-baumthe Gel'fand-Pincker region. Then, we show
that the outer-bound is strictly contained in the achiesahte region using QGC.

Lemma 3. For the setup in Examplg 1, an outer-bound on the Gel'famusker region given in Propositidd 1 is the
set of all rate pairs(R;, R2) such thatR; + Ry < 0.32.

Proof: The proof is given in the Appendix]A. [ ]
Lemma 4. For the setup in Example 1, the rate paitR;, R:) satisfyingR; + Rs = 1 is achievable using QGCs.

Proof: We use the proposed scheme presented in the proof of Thébr®mnilar to the proof of the Theorem, two
(n,k,l) nested QGCs are used, one for each encodefi3eind W5, the random variables associated with the QGC,
to be distributed uniformly ove{0, 1}. Supposevy, vs are the output of the nested-QGC at encoder 1 and encoder 2,
respectively. Encoder 1 sends = v; © s1, wheres; is the realization of the statg,. Similarly, the second encoder
sendsx, = vy © s9, Wheres; is the realization of the statg,. The conditional distribution of; given s; is

1/2 if V] = —81,0vy = —s1 P2
0 otherwise

p(vis1) = {

The distribution ofV; conditioned ofS; is

1/2 if v] = —81,0rvy = —s1P1
p(vals2) = :
0 otherwise

As aresult,X; € {0,2}, X5 € {0, 1}. Hence, the cost constraints are satisfied. In this sitwatid[V;]1) = H(V;) = 1,
fori=1,2,andH(V;®WV,) = % Therefore, assumin@ is trivial, the sum-rate given in the Theorem is simplified to

3 . 1
R+ Ry < imln{H(VﬂSl),H(VﬂSg)} —HWeW|Y) - 3= 1,

where the last equality holds, becau$éV;|S;) = 1, andH (V1 ®@W:|Y) = H(X1 ®S1® X2 @ S52]Y) = 0. As a result
the sum -rateR; + Ry = 1 is achievable. [ |



VI. CONCLUSION

The problem of non-binary MAC with states was investigai#@. built upon QGC, and the extension of Gel'fand-
Pinsker scheme, and propose a new coding scheme. Thenntile-itter characterization of the achievable region
using this scheme was derived. We used the coding schembadataubly-dirty MAC. We proved that the proposed
coding scheme strictly outperforms the Gel'fand-Pinskdresne.

APPENDIXA
PrROOF OFLEMMA [3]

Proof: In what follows, we give an upper-bound df (2). The time-sitarandom variabl&) in Propositior 1L is
trivial, because of the cost constraifi$c;(X;)} = 0,7 = 1,2. For the bound[{2), we obtain

Ri+ Ro < I(UlUQ;Y) — I(Ul; Sl) — I(UQ; SQ)
< H(Sl|U1) + H(S2|U2) — H(Y|U1U2) —2
= 3 plur,un) (H(S1|ur) + H(Saluz) = H(Y |uruz) - 2)

< max (H(Sl|u1)+H(Sg|uQ)fH(Y|u1u2)f2),

w1 €U, uzels
where the second inequality holds, BY) < 2, and H(S;) = 2 for i = 1,2. Let & be the collection of all valid
PMFs used in Propositidd 1. For any distributibre 42 define

R(Ul,UQ,P) = H(S1|U1) + H(SQ|U2) — H(Y|U1U2) —2

In the next step, we relax the conditions #. Fori = 1,2, and anyu; € U;, define &2,, as the collection
of all conditional pmfsp(s;, z;|u;) on Z2 such thatE(c;(X;)|u;) = 0. This condition is obtained from the cost
constraintE(c;(X;)) = 0 (because, without loss of generality we assuyre) > 0, Vu; € U;). For any PMFP € &,
the statesS;, S. are independent, and the Markov chdinX; — S; — S2 — U3 X» holds. ThereforeP factors as
H?le(ui)p(si,xi|ui), wherep(s;, z;|u;) satisfies the conditions in the definition 6,,. Hence, & is a subset of
the set of all PMFY [, p(u:)p(si, z:|us), wherep(si, z;|u;) € P.,. As a result, we get

Ry + Ry

< max max u1, ug)R(uy, us, P
p(u1),p(uz) p(si,zilu;)€Pu, Z p( 1, uz) R, uz, P)

. Ul ,u
i=1,2 1,U2

<

Ul,u2

max max p(ul,UQ)R(’U,l,’U,Q,P)
p(u1),p(uz) p(si,zi|ui)€Pu,
i=1,2
< max Up, U max R(ui,uo, P
2 oy Pl 2)p<si,;i\ui>e% (w2, uz, P)

Ul,U2
’ i=1,2

<  max max R(uq,uz, P)
w1 €U ,u2€U2 p(si,zi|ui)€77ui
i=1,2
Fix us € Us andp(sa, x2|us) € Py,. We maximize over alk, € Uy andp(sy, z1|u1) € Pu,. BY Qu, € P., denote the
PMF p(s2, 22|us). This optimization problem is equivalent to the followingpplem

R(ug, Qu,) = H(S2luz) + max max H(S1|u1) — H(Y|u1) — 2.
u1€U1 QEPy,

Let N = X, @ S5, where X, and S, are distributed according to(s2, x2|uz). Consider the problem of ptp channel

with state, where the channel¥s= X; ® S; @ N. It can be shown that the above quantity is an upper-bounden t
capacity of this problem. The following lemma completes tineof.



Lemma 5. R(usz, Qu,) < 0.32 for all uz € U and Qu, € Pu,.

The proof of this lemma is given in AppendiX C. [ ]

APPENDIXB
PROOF OFTHEOREMI[Z

Proof: We propose a coding scheme which is a combination of two gpsiithemes: 1) Gel'fand-Pinsker scheme,
and 2) the proposed scheme in Theofgm 1 which is uses nest€s.(Bapposé//; is the message for thgh user.
M; is drawn randomly and uniformly frorfil : 2%]. The jth encoder splits its messagé; into two parts)M; ; and
M;j o, wherej = 1,2. SupposeM;; € [1: 2"%i1] and M; 5 € [1 : 2"Ri2], whereR; = R;j1 + R; 2. The first part
M; 1 is encoded using the natural extension of Gel'fand-PinSKee second pa/; » is encoded using a nested QGC
as described in the proof of Theoréin 1.

Codebook Construction:

« For eachj = 1,2 and anym; generate2?* sequences1; randomly and independently according to the
distribution [ ["_, p(u;,;). Such sequences are denotedgym 1,a;), wherea; € [1: 2"71]. The collection of
all such codewords is denote By ;.

« We use a(n, k;,l)-nested QGC as described in the proof of Theorém 1. Denote sested QGC by; ». Let
Cr,; be the inner codebook associated’te. Let 27772 be the size of; ;. As described in the proof of Theorem
[, the codebook; » is divided into2"%2 bins, where each bin is a shifted version of the inner codiebBach
bin corresponds to a messagg » € [1 : 2"%i:2]. Denote such bin by, (m;2).

» Given the sequences; € S',u; € U, and v; € Zj generate a sequence; according to
[ 15—, p(2jilsjiu,v5,). Denote such sequence by(s;, u;, v;).

« For the decoder, we ugg 1,C2; andD as the codebooks, whefe = C; » @ Cs 2. Note D is a (n, k1 + k2, 1)
nested QGC. The inner code associated vitlis C; 1 @ Cr 2. Let 2™ denote the size of the inner code. There
are2n(R1.2+R22) pins inD. Each bin corresponds to a message paiy 2, m22).

Encoding: The jth encoder is given a message p@it;1,m;2) and a state sequense. The jth encoder finds
v; € Bj(m;2) anda; € [1: 2"Pit] such that(u,(m;1,a;),v;,s;) € AE”)(UJ-, V;,S;). If such sequences were found,
the jth encoder sends;(s;, u;,v;), whereu; = u;(m; 1, a;). Otherwise an error is declared.

Decoding The decoder receives™ from the channel. The decoding is performed in two stagethérfirst stage,
the decoder lists all codewords, € C; 1,102 € C21 such that(d;, Gz, Y™) are e- typical with respect toPy,y,y -
If @1, are unique, the decoder proceeds to the next stage. Otleeiwikeclares an error. At the next stage, the
decoder finds alv € D such that(d;, @2, v,Y™) € AE”)(U1U2V1 @ VLY. Then the decoder checks if al belong
to a unique bin associated witlin, 2, M2 2). Finally the decoder declares th@k, 1, m1 2, M2 1, M22) IS sent, if it is
unique. Otherwise it declares an error.

Error Analysis: We can show that the probability of error at the encoders alsenough, if the following covering
bounds hold

pia > I1(Uj;S;)

H(W;|Q)
£j,2 > 112?2(7‘ Wm(logQPt - H([‘/J]t|SJUJ))7

wherej = 1,2. Also the error at the decoder is small, if the following pagkbounds hold
Rl,l + p11 < I(Ul;Y|U2)
Rz,l + po1 < I(UQ;Y|U1)



Ri1+ pi1+ Rojy + pa1 < I(U1U2;Y) + I(Uy; Us)
Rl,g + R272 +p < 1Og2pr — H(Vl (—BV2|YU1U2),

wherep = %%@pm,j = 1,2. Next, we substitutd?; — R; > for R;1,j = 1,2 in the above bounds. Finally, we
use the Fourier-Motzkin technique [11] to elimina®g 2, p; 1, pj,2, 7 = 1,2. This completes the proof. ]

APPENDIXC
PROOF OFLEMMA [§

Proof: Note that for any fixed:is € Us, the distribution of N depends on the conditional pmfs; |u1), and the
functionz, = f(s1,u1). For anyu € Us define

Lo, = {f2(u,s)Ds:s€ELy}.

For any giveni € {1, 2, 3,4}, define
B ={uecl:|Ly| =1}

Note thatB;’s are disjoint and/{, = | J, B;. Depending on:,, we consider four cases. In what follows, for each case,
we derive an upper bound aR(uz, Q.,). Consider the pmp(w) on Z4. For brevity, we represent this pmf by the

vectorp := (p(0), p(1), p(2),p(3)).
Case l:us € By

Since|L,,| = 1, then for all s; € Z, the equalityss @ f2(s2,u2) = a holds, wherex € Z, is a constant that only
depends onus. This implies that conditioned on,, X> @ S> equals to a constant, with probability one. Therefore,

H(X1® 51 ® X2 ® Sa|uguy) = H(X1 @ S1 @ alurug) = H(X1 @ S1|u1)

Moreover,
H(Sgl’u,g) = H(a@X2|u2) = H(XQ|U2) < H(Xg) <1,

where the last inequality holds, because of the cost canstigw, (X2)) = 0. As a result,
R(u2, Qu,) < H(S1]u1) — H(X1 ® Sifur) — 1
We show in Lemma@l8 that the right-hand side equals

Case 2:us € By

For any fixedus € Ba, fa(s2,us) @ s2 takes two values for alf; € Z,. Assume these values atgeb € Z4, where
a # b. Givenuy the random variableXs @ S; is distributed ovefa, b}. Therefore, X, @ S © « is distributed over
{0,b6©a}, and

H(X:1® 51 ® X2 ® Salugur) = H(X1 @ S1® Xo D Sz © aluguq).

As a result, the casf, b} gives the same bound 48,09 a}, and we need to consider only the case in which 0.

For the case in which = 0, andb = 3, considerX, @ S, @ 1. Using a similar argument as above, we can show that
whenb = 3, we get the same bound whén= 1. Therefore, we only need to consider the cases in whieh0, and

be {1,2}. We address these cases in the next Lemma.

Lemma 6. Let P(X2 @ S2 = 0|u1) = po. The following holds:
1) If b = 2, then

R(uz, Qu,) < B(H(S1|ur) — H(X1 @ 51 @ N(2/3,0,1/3,0)[11))
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+ (1= B)(H(S1|u1) — H(X1 @ S1® N1/3,0,2/3,0)[u1)) + H(S2|uz) — 2
2) If b=1, then
R(u2, Qu,) < B(H (S1|u1) — H(X1 @ S1® N2/3,1/3,0,0)|u1))
+ (1= B)(H(S1|u1) — H(X1 @ S1® N1/3,2/3,0,0)[u1)) + H(S2|uz) — 2

Proof: The proof is given in AppendikIE. ]
Using Lemmd B, we show that

H(S1|u1) — H(X1® S1® N(2/3,0,1/3,0)|u1) < 0.1,
and H (S |u1) — H(X1 ® S1 ® N1/3,0,2/3,0)lu1) < 0.1. Therefore, ifa = 0,b = 2, we have
R(UQ, ng) < 0.1+ H(SQ|U2) —2<0.1,

where the last inequality holds, becaug€Ss|us) < H(S2) = 2.
For the case in whicl = 0,5 = 1, from numerical calculations in Lemni& 8, we can show that

H(S1lu1) — H(X1 @ 51 @N(2/371/370,0)|u1) < 0.5,

and
H(S1|uy) — H(X1 @ S1 ® Ni/3,2/3,0,0)|u1) < 0.5.

Therefore,
R(UQ, ng) < H(SQ|U2) - 1.5

By an extensive search over all functions in this case thigfgahe cons constrains, we can show that giwvgnthe
random variableS, can take at most 3 values with positive probabilities. Thoghis situationH (Sz|uz) < log, 3,
and

R(uz2, Qu,) < logy 3 — 1.5 ~ 0.09.
Case 3:uq € Bs
We need only to consider the case whee= (po, p1, p2,0). We have
Lemma 7. If uy € Bs, the following bound holds
R(uz, Qu,) < Bo(H(S1|u1) — H(X1® S1® N2/a,1/4,1/4,0)|u1))

+ B1(H(S1[u1) — H(X1 @ S1® N(1/4,2/4,1/4,0)[u1))
+ Ba(H(S1|u1) — H(X1 @ S1® N(1/4,1/4,2/4,0)lu1)) + H(S2|uz) — 2,

whereg; =4p; — 1, i =0,1,2.
Proof: Similar to Case 2, we can writp as a linear combination of three distributions of the form
p= ﬁ0(2/41 1/47 1/41 O) + ﬁl(1/4a 2/47 1/41 O) + ﬁ2(1/41 1/47 2/41 0)7

wheres; = 4p; — 1, i = 0,1, 2. The proof then follows from the concavity of the entropy. [ ]
Using Lemmd B, we obtain

R(ug, Qu,) < 0.32 + H(S2|ug) — 2 < 0.32
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Case 4:us € By
In this case, there is a 1-1 correspondence betwgésn, us) @ so andsq. ThereforeH (Sa|uz) = H (S @ Xal|us),

and we obtain

H(S2|u2) — H(X1 @510 Xo ® Sa|ur) = H(S2 @ Xalus) — H(X:1 @ S1 @ X2 @ Sa|ur)

<0

ThereforeH(Sl|u1) + H(Sgl’u,g) - H(Y|U1UQ) —2< H(Sl|u1) —2<0.
Finally, considering all four caseB(usz, Q.,) < 0.32 for all u; € U; andus € Us. This completes the proof. m

APPENDIXD
LEMMA B

Lemma 8. Suppose(w) is a PMF onZ,. By N, denote a random variable with distributignthat is independent
of S. Then for any function:(s), and any PMFp(s) satisfyingE{w;(X)} = 0, the following bounds hold:

H(S)—HX®S) <

H(S) - H(X®S®Nquy3,02/30u) <0.1

H(S) — H(X ®S® N/3,0,1/3,0)u1) <0.1

H(S) — H(X ®S® Nqys3,2/30,0)|u1) < 0.5

H(S) — H(X ®S® Nzy3,1/3.00)u1) <05
H(S) — H(X ®S® N/a,1/41/a,0)|u1) < 0.32
H(S)— H(X @®S® Na,2/4,1/4,0)|u1) < 0.32
H(S) -~ H(X ®S® Nqya,1/4,2/4,0)|u1) < 0.32

Proof: The proof follows by numerically calculating the left-hasile of any bound at any PMp and any
function z(s) . [ |

APPENDIXE
PROOF OFLEMMA [g]

Proof:
1): Leta=0,b=2, andP(Xo ® Sy = 0lu1) = po, and P(Xo @ S2 = 2|u1) = 1 — po. We represent this pmf
by the vectorp = (po, 0,1 — po, 0). This probability distribution is a linear combination dfet form

= £(2/3,0,1/3,0) + (1 — 8)(1/3,0,2/3,0), (11)

where3 = 3py — 1.

Remark2. Let Z = X @Y, where the pmf ofX is p = (po, p1, P2, p3), and the pmf ofY” is q = (qo, g1, ¢2,43). If t
is the pmf of Z, thent = p ®4 q, where®, is the circular convolution ifZ,. In addition, the magp, q) — p®4q
is a bi-linear map.

Lett;, = p(Xl@Sl@XQ@SQ = i|U1UQ) andql- = p(X1®Sl = Z|U1) forall: e Zy. Also den()tm = (qo, q1, 492, Q3),
andt = (to, t1,t2,t3). Using Remark2 and equation{11) we obtain

= 3((2/3,0,1/3,0)®4 q) + (1 — 8)((1/3,0,2/3,0) ®4 q).
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This implies thatt is also a linear combination of two pmfs. From the concavityentropy, we get the following
lower-bound:

H(X:®S5®Xo® So|ujug) = H(t)
= H(B((2/3,0,1/3,0)®1q) + (1 - £)((1/3,0,2/3,0) ®41 q))
> BH((2/3,0,1/3,0)®4q) + (1 — B)H((1/3,0,2/3,0)®1 q)
= BH(X1® S1® N2/3,0,1/3,0)lw1) + (1 = B)H (X1 @ S1 @ N1/3,0,2/3,0)|u1),

where in the last equalityyV(, x,,x,,5,) denotes a random variable with prt¥o, A1, A2, A3) that is also independent
of u; and X; @ S;. As a result of the above argumei(us, Q.,) is bounded by

R(ug, Qu,) < H(St|u1) + H(S2|uz) — BH (X1 @ S1 @ N2/3,0,1/3,0)|11)
— (1 = B)H (X1 @ 51 @ N(1/3,0,2/3,0)|u1) — 2
= B(H(S1]u1) — H(X1 @ S1 ® N(2/3,0,1/3,0)|u1))
+ (1 = B)(H(S1|wr) — H(X1 @ S1 @ Niyz0,2/3,0)[w1)) + H(S2|uz) — 2

a) 2): Leta = 0,b = 2, and P(X2 ® S5 = Ou1) = po, and P(Xy @ Sz = 2Ju1) = 1 — po. In this case
p = (po, 1 — po,0,0). Also,
p = 5(2/3,1/3,0,0) + (1 — 5)(1/3,2/3,0,0),

where3 = 3py — 1. Similar to case 1), we use Remduk 2 and the concavity of th@@nto get,

R(ug, Qu,) < B(H(S1|u1) — H(X1 ® S1 @ Na/3,1/3,0,0)[u1))
+ (1= B)(H(S1|u1) — H(X1 @ S1 @ N1y3,2/3,0,0) 1)) + H(S2|uz) — 2
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