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Abstract

The problem of reliable communication over the multiple-access channel (MAC) with states is investigated. We

propose a new coding scheme for this problem which usesquasi-groupcodes (QGC). We derive a new computable

single-letter characterization of the achievable rate region. As an example, we investigate the problem ofdoubly-dirty

MAC with modulo-4 addition. It is shown that the sum rateR1 `R2 “ 1 bits per channel use is achievable using the new

scheme. Whereas, the natural extension of the Gel’fand-Pinsker scheme, sum-rates greater than0.32 are not achievable.

I. I NTRODUCTION

CONSIDER reliable communication over a point-to-point channel with channel state available at the transmitter.

Gel’fand and Pinsker introduced a coding strategy for this problem [1] which usesrandom binning. It was shown

that the capacity is given by

C “ max
ppx,u|sq

IpU ;Y q ´ IpU ;Sq.

The additive Gaussian channel with state problem was solvedby Costa [2]. While the point-to-point problem was

solved by Gel’fand and Pinsker, characterizing the capacity region of the multiple-access channel (MAC) with non-

causal side-information available at the transmitters remains an open problem. One possible coding scheme is the

natural extension of the Gel’fand-Pinsker scheme which wasintroduced in [3]. A well-studied example of the problem

of MAC with states is called thedoubly dirty MAC problem. In this setup, the channel is binary-additive,and the

relation between the inputs and the output is as follows:

Y “ X1 ‘ S1 ‘ X2 ‘ S2, (1)

whereX1 is the first encoder’s output, andX2 is the second encoder’s output. The statesS1, andS2 are available at

the first and second transmitter, respectively.S1 andS2 are two independent states which are distributed uniformlyover

t0, 1u. Each input sequence must satisfy the cost-constraint1

n
EtcipX

n
i qu ď τi for some cost-functionscip¨q, i “ 1, 2,

as n Ñ 8. Philosof and Zamir [4] investigated a special case of this problem in which the cost functions are the

Hamming weight. They presented a coding scheme which uses linear codes to align the interference. They showed that

the natural extension of the Gel’fand-Pinsker scheme is suboptimal. They showed that the capacity region consists of

all rate-pairspR1, R2q such that

R1 ` R2 ď minthbpτ1q, hbpτ2qu,

wherehbp¨q is thebinary entropyfunction. The Philosof-Zamir scheme is optimal in this example. However, it highly

relies on the additive and symmetric structure of the channel. The scheme is not generalizable to non-additive channels.
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Later, a coding scheme based oncoset codeswas introduced for the general MAC with states problem [5]. In both

of these works, schemes using structured codes are used to improve upon the previous known coding schemes which

were based on unstructured codes. Similar observations have been made in other multi-terminal problems, such as

the Körner-Marton source coding problem [6], the joint source-channel coding over MAC [7], multiple-descriptions

problem [8], and the problem of computation over MAC [9].

In this work, we first consider thequaternaryadditive MAC with states, where all inputs and states are quaternary,

and the addition isZ4 addition. In [5], group codes are used to derive an achievable region for this example.Group

codesare structured codes which are closed under a group operation. Recently, we introduced a new class of structured

codes calledquasi-groupcodes (QGC) [10]. A QGC is a subset of a group code. Linear codes and group codes are

special cases of QGC. QGCs are not necessarily closed under group addition. QGCs span the spectrum from completely

structured codes (such as group codes and linear codes) to completely unstructured codes. These codes were used in

the Körner-Marton problem for modulo prime-power sums [10]. For this problem, a coding scheme based on QGCs

is presented which strictly improves upon the previously known schemes.

Next, we propose a new coding strategy using QGCs for the general problem of two-user MAC with independent

states. We introducenested QGCs, and propose a binning technique for such codes. A single-letter characterization of

the achievable rates is derived. As an example, we investigate the quaternary doubly dirty MAC. We show that QGCs

achieve the sum-rateR1 ` R2 “ 1 bits per channel use. Whereas using the natural extension ofGel’fand-Pinsker,

sum-rates greater than0.32 are not achievable.

The rest of this paper is as follows: Section II presents the preliminaries and definitions. Section III provides and

overview for QGC. Section IV contains the main results of this paper. Section V presents the application of QGC for

the doubly-dirty MAC. Finally, Section VI concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

We denote (i) vectors using lowercase bold letters such asb,u, (ii) matrices using uppercase bold letters such asG,

(iii) random variables using capital letters such asX,Y , (iv) numbers, realizations of random variables and elements

of sets using lower case letters such asa, x. Calligraphic letters such asC andU are used to represent sets.

We denote the sett1, 2, . . . ,mu by r1 : ms, wherem is an integer. Given a prime powerpr, the ring of integers

modulo pr is denoted byZpr . The underlying set is for such group ist0, 1, ¨ ¨ ¨ , pr ´ 1u, and the addition and

multiplication is modulo-pr. For any0 ď t ď r, denoteHt fi tt ¨ a : a P Zpru. Given Ht, any elementa P Zpr

can be uniquely written asa “ h ` g, whereh P Ht, g P r0 : pt ´ 1s. We denote suchg by rast. Given two subsets

U ,V Ď Z
k
pr , we define a new subset defined astu ‘ v : u P U ,v P Vu. We denote such set asU ‘ V .

B. Model

Consider a two-user discrete memoryless MAC with input alphabetsX1,X2, and output alphabetY. The transition

probabilities between the input and the output of the channel depends on a pair of random variablespS1, S2q which are

called states. Each stateSi take values from the setSi, wherei “ 1, 2. The sequences of the states are independently

and identically distributed (i.i.d) according to the probability distribution pps1, s2q. Prior to any transmission, the entire

sequence of the stateSi is known at theith transmitter,i “ 1, 2. The conditional distribution ofY given the inputs and

the states is denoted byppy|x1x2s1s2q. Let yn be the output of the channel aftern uses. Ifxn
i is the input sequence,

andsni is the state sequence, then the following condition is satisfied:

ppyn|yn´1,xn´1, sn´1q “ ppyn|xn, snq.
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Each inputXi is associated with a cost functionci : Xi ˆ Si Ñ r0,`8q. The input sequenceXn
i is then constrained

to the average cost defined by

c̄ipX
n
i ,S

n
i q fi

1

n

n
ÿ

j“1

cipXij , Sijq.

Definition 1. An pn,Θ1,Θ2q-code for reliable communication over a given MAC with states is defined by two encoding

functionsfi : t1, 2, . . . ,ΘiuˆSn
i Ñ Yn, i “ 1, 2, and a decoding functiong : Yn Ñ t1, 2, . . . ,Θ1uˆt1, 2, . . . ,Θ2u.

Definition 2. For a given MAC with states, the rate-costpR1, R2, τ1, τ2q is said to be achievable, if for anyǫ ą 0,

there exist apn,Θ1,Θ2q-code such that

P tgpY nq ‰ pM1,M2qu ď ǫ,
1

n
logΘi ě Ri ´ ǫ, Etc̄ipfipMiq,S

n
i qu ď τi ` ǫ

for i “ 1, 2, where a)M1,M2 are independent random variables with distributionppMi “ miq “ 1

Θi
for all mi P r1 :

Θis, b) Mi is independent of the statesS1, S2. Givenτ1, τ2, the capacity regionCτ1,τ2 is defined as the set of all rates

pR1, R2q such that the rate-costpR1, R2, τ1, τ2q is achievable.

C. The Extension of Gel’fand-Pinsker Scheme

Jafar [3] introduced a natural extension of the Gel’fand-Pincker scheme for the problem of MAC with states, and

derived a new achievable rate region using such scheme.

Proposition 1 ( [3]). For a MAC pX1,X2,Y, PY |X1X2
q with independent statespS1, S2q and cost functionsc1, c2, the

closure and convex hull of all rate-pairspR1, R2q satisfying the following conditions are achievable.

R1 ď IpU1;Y |U2Qq ´ IpU1;S1Qq

R2 ď IpU2;Y |U1Qq ´ IpU2;S2|Qq

R1 ` R2 ď IpU1U2;Y |Qq ´ IpU1;S1|Qq ´ IpU2;S2|Qq, (2)

whereEtcipXi, Siqu ď τi, i “ 1, 2, and the joint PMF of all the random variables in the above factors as

ppqqpps1qpps2q
ź

i“1,2

ppuixi|siqqppy|x1x2q.

To the best of our knowledge, the above rate region is the current largest achievable rate region using unstructured

codes for the problem of MAC with states.

III. A N OVERVIEW OF QUASI GROUPCODES

We use a class of structured codes called quasi group codes. In this section, we state the definition and key properties

of QGCs given in [10].

A QGC is defined as a subset of a group code. Such codes are a general form of linear codes andgroup codes.

Consider ak ˆ n matrix G and an-length vectorb with elements inZpr . Let U be a subset ofZk
pr . A QGC onZpr

is defined as

C “ tuG ` b : u P Uu. (3)

For a general subsetU , it is difficult to derive achievable rates of QGCs using single-letter characterizations. Therefore,

we present an special construction ofU for which single-letter characterizations is possible.

Given a positive integerm, considerm mutually independent random variablesU1, U2, ¨ ¨ ¨ , Um. Suppose eachUi

takes values fromZpr with distributionpipuiq. Consider positive integerski, i P r1 : ms. For ǫ ą 0, let Aki
ǫ pUiq be the
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collection of allǫ-typical sequences ofUi with lengthki, wherei P r1 : ms. DefineU as the Cartesian product of the

typical sets ofUi, i P r1 : ms, more precisely

U fi

m
â

i“1

Apkiq
ǫ pUiq. (4)

For more convenience, we use a notation for this construction. Let k fi
řm

i“1
ki. Denoteqi fi

ki

k
. Note thatqi ě 0

and
ř

i qi “ 1. Therefore, we can define a random variableQ with P pQ “ iq “ qi. Define a random variableU with

the conditional distributionP pU “ a|Q “ iq “ P pUi “ aq for all a P Zpr , i P r1 : ms. With this notation, the setU

in (4) is characterized byǫ, k and the pairpU,Qq. Note that for large enoughk, we have,

1

n
log2 |U | «

k

n

m
ÿ

i“1

qiHpUiq “
k

n
HpU |Qq.

Definition 3. A pn, kq-QGC overZpr is defined as in (3), and is characterized by a matrixG P Z
kˆn
pr , a translation

b P Z
n
pr , and a pair of random variablespU,Qq distributed over a finite setZpr ˆ Q.

Let C be apn, kq-QGC with random variablespQ,Uq. Suppose the generator matrices and the translation vector

of C are chosen randomly and uniformly fromZpr . Then for large enoughk andn with probability one, the rate ofC

satisfies

R fi
1

n
log2 |C| «

k

n
HpU |Qq.

In what follows, we present a packing and a covering bound forthe above codeC.

Lemma 1 (Packing bound, [10]). Let pX,Y q distributed according toppxqppy|xq, for x P Zpr , andy P Y. Byω1 denote

the first codeword ofC. Let Ỹn be a random sequence distributed according to
śn

i“1
ppỹi|ω1q. Suppose, conditioned on

ω1, the sequencẽYn is independent of other codewords inC. Then, asn Ñ 8, P tDx P C : px, Ỹnq P A
pnq
ǫ pX,Y q,x ‰

ω1u is arbitrary close to zero, if

R ă min
0ďtďr´1

HpU |Qq

HpU |Q, rU stq

`

log2 p
r´t ´ HpX |Y rXstq

˘

. (5)

Lemma 2 (Covering bound, [10]). Suppose the pair of random variablespX, X̂q are distributed according toppx, x̂q,

whereX̂ takes values fromZpr , andX takes values fromX . Let Xn be a random sequence distributed according to
śn

i“1
ppxiq. Then, asn Ñ 8, P tDx̂ P C : pXn, x̂q P A

pnq
ǫ pX, X̂qu is arbitrary close to one, if

R ą max
1ďtďr

HpU |Qq

HprU st|Qq
plog2 p

t ´ HprX̂st|Xqq. (6)

IV. M AIN RESULTS

We first propose a structured coding scheme that builds upon QGCs. Next, we present a method forbinning using

QGCs. Then, we derive the single-letter characterization of the achievable rate region using such scheme.

Consider a QGC defined by

CO fi tuG ` vG̃ ` b : u P U ,v P Vu, (7)

whereU andV are subsets ofZk
pr , andZl

pr , respectively. AlsoG andG̃ arek ˆ n and l ˆ n matrices, respectively.

In this case,CO is a pn, k ` lq-QGC. We can associate an inner code forCO. Define the inner code as

CI fi tuG ` b : u P Uu.

Therefore,CI is a pn, kq-QGC, andCI Ă CO. The pairpCI , COq is called a nested QGC.
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Definition 4. A nestedpn, k, lq-QGC is defined as

CO “ txI ‘ x̄ : xI P CI , x̄ P C̄u, (8)

whereCI is a pn, kq-QGC, andC̄ is a pn, lq-QGC.

For any fixed elementu P U , we define its corresponding bin as the set

Bpuq fi tuG ` vG̃ ` b : v P Vu.

In this situation,CO is binned usingCI as the inner code andBpuq as the bins. Using this binning method, a rate

region is given in the following Theorem.

Theorem 1. For a given MACpX1,X2,Y, PY |X1X2
q with independent statespS1, S2q and cost functionsc1, c2, the

following rates are achievable using nested-QGCs

R1 ` R2 ď r log2 p ´ HpV1 ‘ V2|Y Qq ´ max
i“1,2
1ďtďr

!HpW1 ‘ W2|Qq

HprWist|Qq

´

log2 p
t ´ HprVist|QSiq

¯)

,

where the joint distribution of the above random variables factors as

ppqqpps1, s2q
ź

i“1,2

ppwi|qqppvi|q, siqppxi|q, vi, siqppy|x1, x2q.

Proof: Fix positive integersn, k1, k2, andl. Let CI,j be apn, kjq-QGC with matrixGj , translationbj , and random

variablespQj, Ujq, whereUj is uniform overt0, 1u, and j “ 1, 2. Let C̄1 and C̄2 be two pn, lq QGC with identical

matricesḠ and identical translations̄b. SupposepQ̄,Wjq are the random variables associated withC̄j , whereWj takes

values fromZpr , andj “ 1, 2. By W1 andW2 denote the sets corresponding toC̄1 and C̄2, respectively. SincēC1 and

C̄2 have identical matrices and translations, thenC̄1 ‘ C̄2 is a pn, lq-QGC. The corresponding set of such sum-codebook

is W1 ‘W2. Note that the elements of all the matrices and the translations are selected randomly and uniformly from

Zpr .

Codebook Construction:For each encoder we use a nested QGC. For the first encoder, we use thepn, k1, lq-nested

QGC generated byCI,1 andC̄1. For the second encoder, we use thepn, k2, lq-nested QGC characterized byCI,2 andC̄2.

For the decoder, as a codebook, we use apn, k1 `k2 ` lq-nested QGC. This codebook is denoted byD. The inner code

is a pn, k1 `k2q-QGC defined byCI,1 ‘CI,2. The outer code is apn, k1 `k2 ` lq-QGC defined bȳC1 ‘ C̄2‘CI,1‘CI,2.

For i “ 1, 2 and for each sequencesi andvi P Z
n
pr , generate a sequencexi according to

śn

j“1
ppxij |sij , vijq. Denote

such sequence byxipsi,viq.

Encoding: Without loss of generality, we assume that each message is selected randomly and uniformly from

t0, 1uk. For i “ 1, 2, the ith encoder is given a messageui P t0, 1uk, and a state sequencesi with length n. The

encoder first calculates the bin associated withui. Next, it finds a codewordvi in the bin such thatpvi, siq are jointly

ǫ-typical with respect toPViSi
. If no such sequence was found, the error eventEi will be declared. If there was no

error, theith encoder sendsxipsi,viq i “ 1, 2. The effective transmission rate for theith encoder isRi “ ki

n
, i “ 1, 2.

Decoding: We useD as a codebook in the receiver. For eachũ1, ũ2 P t0, 1uk and w̃ P W1 ‘ W2 the decoder

calculates the corresponding codeword defined as

ṽ “ ũ1G1 ` ũ2G2 ` w̃Ḡ ` b1 ` b2 ` b̄.

Upon receivingYn from the channel, it finds all̃v that are jointlyǫ-typical with Yn with respect toPV1‘V2,Y . If

the correspondingpũ1, ũ2q sequences are unique, they will be declared as the decoded messages. Otherwise, an error

eventEd will be announced.
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Error Analysis: Let ρ1 andρ2 denote the rate of̄C1 andC̄2, respectively. We use Lemma 2 to analyze the probability

of E1 andE2. In this lemma, setC “ C̄1, X̂ “ Vi, andX “ Si. Note that in this case,Ei is the same as the event

described in the Lemma. As a result, we use the covering boundin (6), whereR “ ρi, U “ Wi, Q “ Q̄, X̂ “ Vi, and

X “ Si, i “ 1, 2. Therefore, according to Lemma 2,P pEiq approaches zero asn Ñ 8, if the following bound holds:

ρi ą max
1ďtďr

HpWi|Q̄q

HprWist|Q̄q

`

log2 p
t ´ HprVist|Siq

˘

. (9)

Next, we use Lemma 1 to bound the probability of the eventEd. In this lemma setC “ D, andX “ V1 ‘ V2. In this

case,Ed is the event defined in the Lemma. Ifρ is the rate ofC̄1 ‘ C̄2, then the rate ofD equalsR1 ` R2 ` ρ. As a

result of Lemma 1,P pEd|Ec
1 X Ec

2q approaches zero, if the packing bound in (5) holds forR “ R1 ` R2 ` ρ, U “

pU1, U2q, Q “ pQ1, Q2q SinceUi is uniform overt0, 1u, thenHpUi|Qi, rUistq “ 0 for all t ą 0. Therefore, the packing

bound is simplified to

R1 ` R2 ` ρ ď log2 p
r ´ HpV1 ‘ V2|Y q. (10)

It can be shown thatρ “ HpV1‘V2|Q̄q
HpVi|Q̄q

ρi. Finally the bound in the theorem follows by using this equality, bounds in (9)

and (10), and denotingQ “ pQ1, Q2, Q̄q.

Corollary 1. SetVi „ unifpZprq, i “ 1, 2. Then the rate-region in the Theorem is simplified to the achievable rate

region of group codes, that is

R1 ` R2 ď min
i“1,2
1ďtďr

tHprVist|QSiqu ´ HpV1 ‘ V2|Y Qq.

We proposed a coding strategy using nested QGCs to achieve the rate region presented in Theorem 1. We build

upon this coding scheme and the extension of the Gel’fand-Pinsker scheme, and propose a new coding strategy. Using

this scheme, a new achievable rate region is characterized in the next Theorem.

Theorem 2. For a given MACpX1,X2,Y, PY |X1X2
q with independent statespS1, S2q and cost functionsc1, c2, the

following rate region is achievable

R1 ď IpU1;Y |U2Qq ´ IpU1;S1|Qq ` ΓQGC

R1 ď IpU2;Y |U1Qq ´ IpU2;S2|Qq ` ΓQGC

R1 ` R2 ď IpU1U2;Y |Qq ´ IpU1U2;S1S2|Qq ` ΓQGC ,

where

ΓQGC fi r log2 p ´ HpV1 ‘ V2|Y U1U2Qq ´ max
i“1,2
1ďtďr

!HpW1 ‘ W2|Qq

HprWist|Qq

´

log2 p
t ´ HprVist|UiQSiq

¯)

,

and 1) the cost constraintsEtcipXi, Siqu ď τi are satisfied, 2) the Markov chain

pS1, U1, V1,W1, X1q Ø Q Ø pS2, U2, V2,W2, X2q

holds, 3)givenQ,X1, X2 the random variableY is independent of all other random variables, and 3) conditioned on

Q, the random variablesW1,W2 are independent of other random variables.

Proof: The proof is provided in Appendix B.

Remark1. The rate region presented in Theorem 2 contains the rate region presented in Proposition 1.
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V. A N EXAMPLE

We present a MAC with state setup for which the Gel’fand-Pinsker region given in Proposition 1 is strictly contained

the region given in Theorem 2.

Example 1. Consider a noiseless MAC described by

Y “ X1 ‘4 S1 ‘4 X2 ‘4 S2,

whereX1, X2 are the inputs,Y is the output, andS1, S2 are the states. All the random variables take values from

Z4. The statesS1 andS2 are mutually independent, and are distributed uniformly over Z4. The addition‘4 is the

modulo-4 addition. The cost function at the first encoder is defined as

c1pxq fi

#

1 if x P t1, 3u

0 otherwise,

whereas, for the second encoder the cost function is

c2pxq fi

#

1 if x P t2, 3u

0 otherwise.

We are interested in satisfying the cost constraintsEtc1pX1qu “ Etc2pX2qu “ 0. This implies that, with probability

one,X1 P t0, 2u, andX2 P t0, 1u.

We proceed using two lemmas. First, we derive an outer-boundon the Gel’fand-Pincker region. Then, we show

that the outer-bound is strictly contained in the achievable rate region using QGC.

Lemma 3. For the setup in Example 1, an outer-bound on the Gel’fand-Pinsker region given in Proposition 1 is the

set of all rate pairspR1, R2q such thatR1 ` R2 ď 0.32.

Proof: The proof is given in the Appendix A.

Lemma 4. For the setup in Example 1, the rate pairspR1, R2q satisfyingR1 ` R2 “ 1 is achievable using QGCs.

Proof: We use the proposed scheme presented in the proof of Theorem 1. Similar to the proof of the Theorem, two

pn, k, lq nested QGCs are used, one for each encoder. SetW1 andW2, the random variables associated with the QGC,

to be distributed uniformly overt0, 1u. Supposev1,v2 are the output of the nested-QGC at encoder 1 and encoder 2,

respectively. Encoder 1 sendsx1 “ v1 a s1, wheres1 is the realization of the stateS1. Similarly, the second encoder

sendsx2 “ v2 a s2, wheres2 is the realization of the stateS2. The conditional distribution ofv1 given s1 is

ppv1|s1q fi

#

1{2 if v1 “ ´s1, or v1 “ ´s1 ‘ 2

0 otherwise,

The distribution ofV2 conditioned ofS2 is

ppv2|s2q fi

#

1{2 if v1 “ ´s1, or v1 “ ´s1 ‘ 1

0 otherwise,

As a result,X1 P t0, 2u, X2 P t0, 1u. Hence, the cost constraints are satisfied. In this situation, HprVis1q “ HpViq “ 1,

for i “ 1, 2, andHpV1 ‘V2q “ 3

2
. Therefore, assumingQ is trivial, the sum-rate given in the Theorem is simplified to

R1 ` R2 ď
3

2
mintHpV1|S1q, HpV2|S2qu ´ HpV1 ‘ V2|Y q ´

1

2
“ 1,

where the last equality holds, becauseHpVi|Siq “ 1, andHpV1 ‘V2|Y q “ HpX1 ‘S1 ‘X2 ‘S2|Y q “ 0. As a result

the sum -rateR1 ` R2 “ 1 is achievable.
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VI. CONCLUSION

The problem of non-binary MAC with states was investigated.We built upon QGC, and the extension of Gel’fand-

Pinsker scheme, and propose a new coding scheme. Then, the single-letter characterization of the achievable region

using this scheme was derived. We used the coding scheme for the doubly-dirty MAC. We proved that the proposed

coding scheme strictly outperforms the Gel’fand-Pinsker scheme.

APPENDIX A

PROOF OFLEMMA 3

Proof: In what follows, we give an upper-bound on (2). The time-sharing random variableQ in Proposition 1 is

trivial, because of the cost constraintsEtcipXiqu “ 0, i “ 1, 2. For the bound (2), we obtain

R1 ` R2 ď IpU1U2;Y q ´ IpU1;S1q ´ IpU2;S2q

ď HpS1|U1q ` HpS2|U2q ´ HpY |U1U2q ´ 2

“
ÿ

u1,u2

ppu1, u2q
´

HpS1|u1q ` HpS2|u2q ´ HpY |u1u2q ´ 2
¯

ď max
u1PU1,u2PU2

´

HpS1|u1q ` HpS2|u2q ´ HpY |u1u2q ´ 2
¯

,

where the second inequality holds, asHpY q ď 2, andHpSiq “ 2 for i “ 1, 2. Let P be the collection of all valid

PMFs used in Proposition 1. For any distributionP P P define

Rpu1, u2, P q fi HpS1|u1q ` HpS2|u2q ´ HpY |u1u2q ´ 2

In the next step, we relax the conditions inP. For i “ 1, 2, and anyui P Ui, definePui
as the collection

of all conditional pmfsppsi, xi|uiq on Z
2
4 such thatEpcipXiq|uiq “ 0. This condition is obtained from the cost

constraintEpcipXiqq “ 0 (because, without loss of generality we assumeppuiq ą 0,@ui P Ui). For any PMFP P P,

the statesS1, S2 are independent, and the Markov chainU1X1 ´ S1 ´ S2 ´ U2X2 holds. Therefore,P factors as
ś2

i“1
ppuiqppsi, xi|uiq, whereppsi, xi|uiq satisfies the conditions in the definition ofPui

. Hence,P is a subset of

the set of all PMFs
ś2

i“1
ppuiqppsi, xi|uiq, whereppsi, xi|uiq P Pui

. As a result, we get

R1 ` R2

ď max
ppu1q,ppu2q

max
ppsi,xi|uiqPPui

i“1,2

ÿ

u1,u2

ppu1, u2qRpu1, u2, P q

ď
ÿ

u1,u2

max
ppu1q,ppu2q

max
ppsi,xi|uiqPPui

i“1,2

ppu1, u2qRpu1, u2, P q

ď
ÿ

u1,u2

max
ppu1q,ppu2q

ppu1, u2q max
ppsi,xi|uiqPPui

i“1,2

Rpu1, u2, P q

ď max
u1PU1,u2PU2

max
ppsi,xi|uiqPPui

i“1,2

Rpu1, u2, P q

Fix u2 P U2 andpps2, x2|u2q P Pu2
. We maximize over allu1 P U1 andpps1, x1|u1q P Pu1

. By Qu2
P Pu2

denote the

PMF pps2, x2|u2q. This optimization problem is equivalent to the following problem

Rpu2, Qu2
q “ HpS2|u2q ` max

u1PU1

max
QPPu1

HpS1|u1q ´ HpY |u1q ´ 2.

Let N “ X2 ‘ S2, whereX2 andS2 are distributed according topps2, x2|u2q. Consider the problem of ptp channel

with state, where the channel isY “ X1 ‘ S1 ‘N . It can be shown that the above quantity is an upper-bound on the

capacity of this problem. The following lemma completes theproof.
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Lemma 5. Rpu2, Qu2
q ď 0.32 for all u2 P U2 andQu2

P Pu2
.

The proof of this lemma is given in Appendix C.

APPENDIX B

PROOF OFTHEOREM 2

Proof: We propose a coding scheme which is a combination of two coding schemes: 1) Gel’fand-Pinsker scheme,

and 2) the proposed scheme in Theorem 1 which is uses nested QGCs. SupposeMj is the message for thejth user.

Mj is drawn randomly and uniformly fromr1 : 2Rj s. The jth encoder splits its messageMj into two partsMj,1 and

Mj,2, wherej “ 1, 2. SupposeMj,1 P r1 : 2nRj,1s andMj,2 P r1 : 2nRj,2s, whereRj “ Rj,1 ` Rj,2. The first part

Mj,1 is encoded using the natural extension of Gel’fand-Pinsker. The second partMj,2 is encoded using a nested QGC

as described in the proof of Theorem 1.

Codebook Construction:

‚ For eachj “ 1, 2 and anymj,1 generate2ρj,1 sequencesun
j randomly and independently according to the

distribution
śn

i“1
ppuj,iq. Such sequences are denoted byujpmj,1, ajq, whereaj P r1 : 2nρj1 s. The collection of

all such codewords is denote byCj,1.

‚ We use apn, kj , lq-nested QGC as described in the proof of Theorem 1. Denote such nested QGC byCj,2. Let

CI,j be the inner codebook associated toCj,2. Let 2nρj,2 be the size ofCI,j. As described in the proof of Theorem

1, the codebookCj,2 is divided into2nRj,2 bins, where each bin is a shifted version of the inner codebook. Each

bin corresponds to a messagemj,2 P r1 : 2nRj,2s. Denote such bin byBjpmj,2q.

‚ Given the sequencessj P Sn
j ,uj P Un

j , and vj P Z
n
pr generate a sequencexj according to

śn

j“1
ppxj,i|sj,iuj,i, vj,iq. Denote such sequence byxjpsj ,uj ,vjq.

‚ For the decoder, we useC1,1, C2,1 andD as the codebooks, whereD “ C1,2 ‘ C2,2. NoteD is a pn, k1 ` k2, lq

nested QGC. The inner code associated withD is CI,1 ‘ CI,2. Let 2nρ denote the size of the inner code. There

are2npR1,2`R2,2q bins inD. Each bin corresponds to a message pairpm1,2,m2,2q.

Encoding: The jth encoder is given a message pairpmj,1,mj,2q and a state sequencesj . The jth encoder finds

vj P Bjpmj,2q andaj P r1 : 2nρj1 s such thatpujpmj,1, ajq,vj , sjq P A
pnq
ǫ pUj , Vj , Sjq. If such sequences were found,

the jth encoder sendsxjpsj ,uj ,vjq, whereuj “ ujpmj,1, ajq. Otherwise an error is declared.

Decoding: The decoder receivesYn from the channel. The decoding is performed in two stages. Inthe first stage,

the decoder lists all codewords̃u1 P C1,1, ũ2 P C2,1 such thatpũ1, ũ2, Y
nq are ǫ- typical with respect toPU1U2Y .

If ũ1, ũ2 are unique, the decoder proceeds to the next stage. Otherwise it declares an error. At the next stage, the

decoder finds all̃v P D such thatpũ1, ũ2, ṽ, Y
nq P A

pnq
ǫ pU1U2V1 ‘ V2Y q. Then the decoder checks if all̃v belong

to a unique bin associated withpm̃1,2, m̃2,2q. Finally the decoder declares thatpm̃1,1, m̃1,2, m̃2,1, m̃2,2q is sent, if it is

unique. Otherwise it declares an error.

Error Analysis: We can show that the probability of error at the encoders is small enough, if the following covering

bounds hold

ρj,1 ą IpUj ;Sjq

ρj,2 ą max
1ďtďr

HpWj |Q̄q

HprWjst|Q̄q

`

log2 p
t ´ HprVjst|SjUjq

˘

,

wherej “ 1, 2. Also the error at the decoder is small, if the following packing bounds hold

R1,1 ` ρ11 ă IpU1;Y |U2q

R2,1 ` ρ21 ă IpU2;Y |U1q
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R1,1 ` ρ11 ` R2,1 ` ρ21 ă IpU1U2;Y q ` IpU1;U2q

R1,2 ` R2,2 ` ρ ă log2 p
r ´ HpV1 ‘ V2|Y U1U2q,

whereρ “ HpV1‘V2|Q̄q
HpVj |Q̄q

ρj,2, j “ 1, 2. Next, we substituteRj ´Rj,2 for Rj,1, j “ 1, 2 in the above bounds. Finally, we

use the Fourier-Motzkin technique [11] to eliminateRj,2, ρj,1, ρj,2, j “ 1, 2. This completes the proof.

APPENDIX C

PROOF OFLEMMA 5

Proof: Note that for any fixedu2 P U2, the distribution ofN depends on the conditional pmfpps1|u1q, and the

functionx1 “ fps1, u1q. For anyu P U2 define

Lu :“ tf2pu, sq ‘ s : s P Z4u.

For any giveni P t1, 2, 3, 4u, define

Bi fi tu P U2 : |Lu| “ iu.

Note thatBi’s are disjoint andU2 “
Ť

i Bi. Depending onu2, we consider four cases. In what follows, for each case,

we derive an upper bound onRpu2, Qu2
q. Consider the pmfppωq on Z4. For brevity, we represent this pmf by the

vectorp :“ ppp0q, pp1q, pp2q, pp3qq.

Case 1:u2 P B1

Since|Lu2
| “ 1, then for alls2 P Z4 the equalitys2 ‘ f2ps2, u2q “ a holds, wherea P Z4 is a constant that only

depends onu2. This implies that conditioned onu2, X2 ‘ S2 equals to a constanta, with probability one. Therefore,

HpX1 ‘ S1 ‘ X2 ‘ S2|u2u1q “ HpX1 ‘ S1 ‘ a|u1u2q “ HpX1 ‘ S1|u1q

Moreover,

HpS2|u2q “ Hpa a X2|u2q “ HpX2|u2q ď HpX2q ď 1,

where the last inequality holds, because of the cost constraint Epw2pX2qq “ 0. As a result,

Rpu2, Qu2
q ď HpS1|u1q ´ HpX1 ‘ S1|u1q ´ 1

We show in Lemma 8 that the right-hand side equals0.

Case 2:u2 P B2

For any fixedu2 P B2, f2ps2, u2q ‘ s2 takes two values for alls2 P Z4. Assume these values area, b P Z4, where

a ‰ b. Given u2 the random variableX2 ‘ S2 is distributed overta, bu. Therefore,X2 ‘ S2 a a is distributed over

t0, b a au, and

HpX1 ‘ S1 ‘ X2 ‘ S2|u2u1q “ HpX1 ‘ S1 ‘ X2 ‘ S2 a a|u2u1q.

As a result, the caseta, bu gives the same bound ast0, ba au, and we need to consider only the case in whicha “ 0.

For the case in whicha “ 0, andb “ 3, considerX2 ‘ S2 ‘ 1. Using a similar argument as above, we can show that

whenb “ 3, we get the same bound whenb “ 1. Therefore, we only need to consider the cases in whicha “ 0, and

b P t1, 2u. We address these cases in the next Lemma.

Lemma 6. Let P pX2 ‘ S2 “ 0|u1q “ p0. The following holds:

1) If b “ 2, then

Rpu2, Qu2
q ď βpHpS1|u1q ´ HpX1 ‘ S1 ‘ Np2{3,0,1{3,0q|u1qq
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` p1 ´ βqpHpS1|u1q ´ HpX1 ‘ S1 ‘ Np1{3,0,2{3,0q|u1qq ` HpS2|u2q ´ 2

2) If b “ 1, then

Rpu2, Qu2
q ď βpHpS1|u1q ´ HpX1 ‘ S1 ‘ Np2{3,1{3,0,0q|u1qq

` p1 ´ βqpHpS1|u1q ´ HpX1 ‘ S1 ‘ Np1{3,2{3,0,0q|u1qq ` HpS2|u2q ´ 2

Proof: The proof is given in Appendix E.

Using Lemma 8, we show that

HpS1|u1q ´ HpX1 ‘ S1 ‘ Np2{3,0,1{3,0q|u1q ď 0.1,

andHpS1|u1q ´ HpX1 ‘ S1 ‘ Np1{3,0,2{3,0q|u1q ď 0.1. Therefore, ifa “ 0, b “ 2, we have

Rpu2, Qu2
q ď 0.1 ` HpS2|u2q ´ 2 ď 0.1,

where the last inequality holds, becauseHpS2|u2q ď HpS2q “ 2.

For the case in whicha “ 0, b “ 1, from numerical calculations in Lemma 8, we can show that

HpS1|u1q ´ HpX1 ‘ S1 ‘ Np2{3,1{3,0,0q|u1q ď 0.5,

and

HpS1|u1q ´ HpX1 ‘ S1 ‘ Np1{3,2{3,0,0q|u1q ď 0.5.

Therefore,

Rpu2, Qu2
q ď HpS2|u2q ´ 1.5

By an extensive search over all functions in this case that satisfy the cons constrains, we can show that givenu2 the

random variableS2 can take at most 3 values with positive probabilities. Thus,in this situationHpS2|u2q ď log2 3,

and

Rpu2, Qu2
q ď log2 3 ´ 1.5 « 0.09.

Case 3:u2 P B3

We need only to consider the case whenp “ pp0, p1, p2, 0q. We have

Lemma 7. If u2 P B3, the following bound holds

Rpu2, Qu2
q ď β0pHpS1|u1q ´ HpX1 ‘ S1 ‘ Np2{4,1{4,1{4,0q|u1qq

` β1pHpS1|u1q ´ HpX1 ‘ S1 ‘ Np1{4,2{4,1{4,0q|u1qq

` β2pHpS1|u1q ´ HpX1 ‘ S1 ‘ Np1{4,1{4,2{4,0q|u1qq ` HpS2|u2q ´ 2,

whereβi “ 4pi ´ 1, i “ 0, 1, 2.

Proof: Similar to Case 2, we can writep as a linear combination of three distributions of the form

p “ β0p2{4, 1{4, 1{4, 0q ` β1p1{4, 2{4, 1{4, 0q ` β2p1{4, 1{4, 2{4, 0q,

whereβi “ 4pi ´ 1, i “ 0, 1, 2. The proof then follows from the concavity of the entropy.

Using Lemma 8, we obtain

Rpu2, Qu2
q ď 0.32 ` HpS2|u2q ´ 2 ď 0.32
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Case 4:u2 P B4

In this case, there is a 1-1 correspondence betweenx2ps2, u2q ‘ s2 ands2. ThereforeHpS2|u2q “ HpS2 ‘X2|u2q,

and we obtain

HpS2|u2q ´ HpX1 ‘ S1 ‘ X2 ‘ S2|u1q “ HpS2 ‘ X2|u2q ´ HpX1 ‘ S1 ‘ X2 ‘ S2|u1q

ď 0

ThereforeHpS1|u1q ` HpS2|u2q ´ HpY |u1u2q ´ 2 ď HpS1|u1q ´ 2 ď 0.

Finally, considering all four casesRpu2, Qu2
q ď 0.32 for all u1 P U1 andu2 P U2. This completes the proof.

APPENDIX D

LEMMA 8

Lemma 8. Supposeppωq is a PMF onZ4. By Np denote a random variable with distributionp that is independent

of S. Then for any functionxpsq, and any PMFppsq satisfyingEtw1pXqu “ 0, the following bounds hold:

HpSq ´ HpX ‘ Sq ď 1

HpSq ´ HpX ‘ S ‘ Np1{3,0,2{3,0q|u1q ď 0.1

HpSq ´ HpX ‘ S ‘ Np2{3,0,1{3,0q|u1q ď 0.1

HpSq ´ HpX ‘ S ‘ Np1{3,2{3,0,0q|u1q ď 0.5

HpSq ´ HpX ‘ S ‘ Np2{3,1{3,0,0q|u1q ď 0.5

HpSq ´ HpX ‘ S ‘ Np2{4,1{4,1{4,0q|u1q ď 0.32

HpSq ´ HpX ‘ S ‘ Np1{4,2{4,1{4,0q|u1q ď 0.32

HpSq ´ HpX ‘ S ‘ Np1{4,1{4,2{4,0q|u1q ď 0.32

Proof: The proof follows by numerically calculating the left-handside of any bound at any PMFp and any

functionxpsq .

APPENDIX E

PROOF OFLEMMA 6

Proof:

1): Let a “ 0, b “ 2, andP pX2 ‘ S2 “ 0|u1q “ p0, andP pX2 ‘ S2 “ 2|u1q “ 1 ´ p0. We represent this pmf

by the vectorp “ pp0, 0, 1 ´ p0, 0q. This probability distribution is a linear combination of the form

p “ βp2{3, 0, 1{3, 0q ` p1 ´ βqp1{3, 0, 2{3, 0q, (11)

whereβ “ 3p0 ´ 1.

Remark2. Let Z “ X ‘ Y , where the pmf ofX is p “ pp0, p1, p2, p3q, and the pmf ofY is q “ pq0, q1, q2, q3q. If t

is the pmf ofZ, thent “ pg4 q, whereg4 is the circular convolution inZ4. In addition, the mappp,qq ÞÝÑ p g4 q

is a bi-linear map.

Let ti “ ppX1‘S1‘X2‘S2 “ i|u1u2q andqi “ ppX1‘S1 “ i|u1q for all i P Z4. Also denoteq “ pq0, q1, q2, q3q,

andt “ pt0, t1, t2, t3q. Using Remark 2 and equation (11) we obtain

t “ β
`

p2{3, 0, 1{3, 0q g4 q
˘

` p1 ´ βq
`

p1{3, 0, 2{3, 0q g4 q
˘

.
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This implies that,t is also a linear combination of two pmfs. From the concavity of entropy, we get the following

lower-bound:

HpX1 ‘ S1 ‘ X2 ‘ S2|u1u2q “ Hptq

“ Hpβ
`

p2{3, 0, 1{3, 0q g4 q
˘

` p1 ´ βq
`

p1{3, 0, 2{3, 0q g4 q
˘

q

ě βHpp2{3, 0, 1{3, 0q g4 qq ` p1 ´ βqHpp1{3, 0, 2{3, 0q g4 qq

“ βHpX1 ‘ S1 ‘ Np2{3,0,1{3,0q|u1q ` p1 ´ βqHpX1 ‘ S1 ‘ Np1{3,0,2{3,0q|u1q,

where in the last equality,Npλ0,λ1,λ2,λ3q denotes a random variable with pmfpλ0, λ1, λ2, λ3q that is also independent

of u1 andX1 ‘ S1. As a result of the above argument,Rpu2, Qu2
q is bounded by

Rpu2, Qu2
q ď HpS1|u1q ` HpS2|u2q ´ βHpX1 ‘ S1 ‘ Np2{3,0,1{3,0q|u1q

´ p1 ´ βqHpX1 ‘ S1 ‘ Np1{3,0,2{3,0q|u1q ´ 2

“ βpHpS1|u1q ´ HpX1 ‘ S1 ‘ Np2{3,0,1{3,0q|u1qq

` p1 ´ βqpHpS1|u1q ´ HpX1 ‘ S1 ‘ Np1{3,0,2{3,0q|u1qq ` HpS2|u2q ´ 2

a) 2): Let a “ 0, b “ 2, andP pX2 ‘ S2 “ 0|u1q “ p0, andP pX2 ‘ S2 “ 2|u1q “ 1 ´ p0. In this case

p “ pp0, 1 ´ p0, 0, 0q. Also,

p “ βp2{3, 1{3, 0, 0q ` p1 ´ βqp1{3, 2{3, 0, 0q,

whereβ “ 3p0 ´ 1. Similar to case 1), we use Remark 2 and the concavity of the entropy to get,

Rpu2, Qu2
q ď βpHpS1|u1q ´ HpX1 ‘ S1 ‘ Np2{3,1{3,0,0q|u1qq

` p1 ´ βqpHpS1|u1q ´ HpX1 ‘ S1 ‘ Np1{3,2{3,0,0q|u1qq ` HpS2|u2q ´ 2
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