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Abstract—Multi-soliton pulses are potential candidates for
fiber optical transmission where the information is modulated
and recovered in the so-called nonlinear Fourier domain. While
this is an elegant technique to account for the channel nonlin-
earity, the obtained spectral efficiency, so far, is not competitive
with the classic Nyquist-based schemes. In this paper, we study
the evolution of the time-bandwidth product of multi-solitons
as they propagate along the optical fiber. For second and third
order soliton pulses, we numerically optimize the pulse shapes
to achieve the smallest time-bandwidth product when the phase
of the spectral amplitudes is used for modulation. Moreover, we
analytically estimate the pulse-duration and bandwidth of multi-
solitons in some practically important cases. Those estimations
enable us to approximate the time-bandwidth product for higher
order solitons.

I. INTRODUCTION

Advances made over the past decade in coherent optical

technology have significantly improved transmission capacities

to a point where Kerr nonlinearity once again becomes the

limiting factor. The equalization of nonlinear effects is usually

very complex and has a limited gain due to the mixing of

signal and noise on the channel. The optical channel is usu-

ally modeled by the Nonlinear Schrödinger Equation (NLSE)

which describes the interplay between Kerr nonlinearity and

chromatic dispersion along the fiber.

The Nonlinear Fourier Transform (NFT) is a potential way

of generating pulses matched to a channel governed by the

NLSE. It maps a pulse to the nonlinear Fourier spectrum with

some beneficial properties. This elegant technique, known also

as inverse scattering method [1], has found applications in

fiber optics when the on-off keying of first order solitons was

developed in the 1970s [2]. Following [3], [4], it has regained

attention as coherent technology allows to exploit all degrees

of freedom offered by the nonlinear spectrum.

Multi-soliton pulses are specific solutions of the NLSE.

Using the NFT, an N−th order soliton, denoted here by

N−soliton, is mapped to a set of N distinct nonlinear fre-

quencies, called eigenvalues, and the corresponding spectral

amplitudes. The key advantage of this representation is that

the complex pulse evolution along the fiber can be expressed

in terms of spectral amplitudes which evolve linearly in the

nonlinear spectrum. Moreover, the transformation is indepen-

dent of the other spectral amplitudes and eigenvalues. These

properties motivate to modulate data using spectral amplitudes.

On-off keying of 1-soliton pulses, also called fundamental

solitons, has been intensively studied two decades ago for

different optical applications (see [2] and reference therein). To

increase spectral efficiency, it has been proposed to modulate

multi-solitons [3]. One possibility is the independent on-off

keying of N predefined eigenvalues. The concept has been

experimentally shown up to using 10 eigenvalues in [5], [6].

The other possibility is to modulate the spectral amplitudes of

N eigenvalues. The QPSK modulation of spectral amplitudes

has been verified experimentally up to 7 eigenvalues in [7],

[8], [9]. All of these works have a small spectral efficiency.

Characterizing the spectral efficiency of multi-soliton pulses

is still an open problem. First, the statistics of noisy received

pulses in the nonlinear spectrum have not yet been fully

understood, even though there are insightful studies for some

special cases and under some assumptions [10], [11], [12].

Second, the bandwidth and the pulse-duration change as a

multi-soliton propagates along a fiber or as spectral amplitudes

are modulated. The nonlinear evolution makes it hard to

estimate the time-bandwidth product of a multi-soliton.

In this paper, we study the evolution of pulse-duration

and bandwidth of multi-soliton pulses along an optical fiber

link. We numerically optimize the time-bandwidth product

of N−soliton pulses for N = 2 and 3. The results provide

some guidelines for N > 3. We focus on scenarios where the

phases of N spectral amplitudes are modulated independently.

However, our results can also be applied to on-off keying

modulation schemes. We assume that the link is long enough

so that the pulse-duration and bandwidth can reach their re-

spective maximum. We also neglect inter-symbol interference.

Our results show that the optimization of [13] is suboptimal

when the evolution along the fiber is taken into account.

We further introduce a class of N−solitons which are

provably symmetric. A subset of these pulses are already

used in [7], [8], [13]. We derive an analytic approximation

of their pulse-duration. Numerical observations exhibit that

the approximation is tight and can serve as a lower-bound for

other N−solitons. To the best of our knowledge, this is the

first result on the pulse-duration of multi-solitons. We also

approximate the time-bandwidth product by lower-bounding

the maximal bandwidth.

II. PRELIMINARIES ON MULTI-SOLITON PULSES

In this section, we briefly explain the nonlinear Fourier

transform (NFT), the characterization of multi-soliton pulses

in the corresponding nonlinear spectrum and how they can be

generated via the inverse NFT.

A. Nonlinear Fourier Transform

The pulse propagation along an ideally lossless and noise-

less fiber is characterized using the standard Nonlinear

Schrödinger Equation (NLSE)

∂

∂z
q(t, z) + j

∂2

∂t2
q(t, z) + 2j|q(t, z)|2q(t, z) = 0. (1)
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The physical pulse Q(τ, ℓ) at location ℓ along the fiber is then

described by

Q (τ, ℓ) =
√

P0 q

(

τ

T0
, ℓ
|β2|

2T 2
0

)

with P0 · T
2
0 =

|β2|

γ
,

where β2 < 0 is the chromatic dispersion and γ is the Kerr

nonlinearity of the fiber, and T0 determines the symbol rate.

The closed-form solutions of the NLSE (1) can be described

in a nonlinear spectrum defined by the following so-called

Zakharov-Shabat system [1]

∂

∂t

(

ϑ1(t; z)
ϑ2(t; z)

)

=

(

−jλ q (t, z)
−q∗ (t, z) jλ

)(

ϑ1(t; z)
ϑ2(t; z)

)

, (2)

with the boundary condition
(

ϑ1(t; z)
ϑ2(t; z)

)

→

(

1
0

)

exp (−jλt) for t→ −∞

under the assumption that q(t; z) → 0 decays sufficiently

fast as |t| → ∞ (faster than any polynomial). The nonlinear

Fourier coefficients (Jost coefficients) are defined as

a (λ; z) = lim
t→∞

ϑ1(t; z) exp (jλt)

b (λ; z) = lim
t→∞

ϑ2(t; z) exp (−jλt) .

The set Ω denotes the set of simple roots of a(λ; z) with

positive imaginary part, which are called eigenvalues as they

do not change in terms of z, i.e. λk(z) = λk . The nonlinear

spectrum is usually described by the following two parts:

(i) Continuous Part: the spectral amplitude Qc(λ; z) =
b(λ; z)/a(λ; z) for real frequencies λ ∈ R.

(ii) Discrete Part: {λk, Qd(λk; z)} where λk ∈ Ω, i.e.

a(λk; z) = 0, and Qd(λk; z) = b(λk; z)/
∂a(λ;z)

∂λ
|λ=λk

.

An N−soliton pulse is described by the discrete part only and

the continuous part is equal to zero (for any z). The discrete

part contains N pairs of eigenvalue and the corresponding

spectral amplitude, i.e. {λk, Qd(λk; z)}, 1 ≤ k ≤ N .

An important property of the nonlinear spectrum is its

simple linear evolution given by [3]

Qd(λk; z) = Qd(λk) exp(−4jλ
2
kz), (3)

where we define Qd(λk) = Qd(λk; z = 0). The transforma-

tion is linear and depends only on its own eigenvalue λk . This

property motivates for modulation of data over independently

evolving spectral amplitudes.

Note that there are several methods to compute the nonlinear

spectrum by numerically solving the Zakharov-Shabat system.

Some of these methods are summarized in [3],[14].

B. Inverse NFT

The Inverse NFT (INFT) maps the given nonlinear spectrum

to the corresponding pulse in time-domain. For the special

case of the spectrum without the continuous part, the Darboux

Transformation can be applied to generate the corresponding

multi-soliton pulse [15]. Algorithm 1 shows the pseudo-code

of the inverse transform, as described in [16]. It generates an

N−soliton q (t) recursively by adding a pair {λk, Qd(λk)} in

each recursion. The main advantage of this algorithm is that

it is exact with a low computational complexity and it can be

used to derive some properties of multi-soliton pulses.

Algorithm 1: INFT from Darboux Transform [16]

Input : Discrete Spectrum {λk, Qd(λk)}; k = 1, . . . , N
Output: N−soliton waveform q(t)

begin

for k ← 1 to N do

ρ
(0)
k (t)←−

(

Qd(λk)
λk−λ∗

k

∏N
m=1,m 6=k

λk−λm

λk−λ∗
m

)

e2jλkt;

q(0) ←− 0;

for k ← 1 to N do

ρ(t)←− ρ
(k−1)
k (t);

q(k)(t)←− q(k−1)(t) + 2j(λk − λ∗
k)

ρ∗(t)
1+|ρ(t)|2 ;

(4)

for m← k + 1 to N do

ρ
(k)
m (t)←−

(λm−λk)ρ
(k−1)
m (t)+

λk−λ∗
k

1+|ρ(t)|2
(ρ(k−1)

m (t)−ρ(t))

λm−λ∗
k
−

λk−λ∗
k

1+|ρ(t)|2

(

1+ρ∗(t)ρ
(k−1)
m (t)

) ;

(5)

(λ∗ denotes the complex conjugate of λ)

C. Definition of Pulse Duration and Bandwidth

In this paper, we consider an N−soliton with the eigenval-

ues on the imaginary axis, i.e. {λk = jσk}
N
k=1 and σk ∈ R

+.

Without loss of generality, we assume that σk < σk+1. As

such an N−soliton propagates along the fiber, the pulse does

not disperse and the pulse shape can be repeated periodically.

An N−soliton pulse has unbounded support and exponen-

tially decreasing tails in time and (linear) frequency domain.

As this pulse is transformed according to the NLSE, e.g. prop-

agation along the ideal optical fiber, its shape can drastically

change as all Qd(λk; z) are evolved in z. Despite of nontrivial

pulse variation and various peak powers, the energy of the

pulse remains fixed and equal to Etotal = 4
∑N

k=1 Im{λk}.
As a result, the pulse-duration and the bandwidth of a

multi-soliton pulse are well-defined if they are characterized

in terms of energy: the pulse duration Tw (and bandwidth

Bw, respectively) is defined as the smallest interval (frequency

band) containing Etrunc = (1−ε)Etotal of the soliton energy.

Note that truncation causes small perturbations of eigenvalues.

In practical applications, the perturbations become even larger

due to inter-symbol-interference (ISI) when a train of truncated

soliton pulses is used for fiber optical communication. Thus,

there is a trade-off: ε must be kept small such that the

truncation causes only small perturbations, but large enough

to have a relatively small time-bandwidth product.

Note that truncating a signal in time-domain may slightly

change its linear Fourier spectrum in practice. For simplicity,

we however computed Tw and Bw with respect to the original

pulse as the difference is negligible for ε≪ 1.



III. SYMMETRIC MULTI-SOLITON PULSES

In this section, we address the special family of multi-soliton

pulses which are symmetric in time domain. An application

of such solitons for optical fiber transmission is studied in [7]

where the symmetric 2-solitons are used for data modulation.

Theorem 1. Let Ω = {jσ1, jσ2, . . . , jσN} be the set of

eigenvalues on the imaginary axis where σk ∈ R
+, for

1 ≤ k ≤ N . The corresponding N−soliton q(t) is a symmetric

pulse, i.e. q(t) = q(−t), and keeps this property during the

propagation in z, if and only if the spectral amplitudes are

chosen as

|Qd,sym (jσk)| = 2σk

N
∏

m=1;m 6=k

∣

∣

∣

∣

σk + σm

σk − σm

∣

∣

∣

∣

. (6)

Sketch of Proof. The proof is based on Algorithm 1 with

the following steps: (i) g(t) = ρ∗(t)
1+|ρ(t)|2 is symmetric, if

ρ∗(−t)ρ(t) = 1. (7)

(ii) The update rule (5) preserves the property (7): if ρ(t) and

ρ
(k−1)
m (t) satisfy (7), then ρ

(k)
m (t) will satisfy (7) as well.

(iii) Because of (6), ρ
(0)
k (t) satisfies (7) for all k.

(iv) Using induction, ρ
(k)
m satisfies (7) for all m and k.

(v) According to (4) and step (i), q(t) is symmetric.

It is already mentioned in [17] that (6) leads to a symmetric

multi-soliton in amplitude. Theorem 1 implies that (6) is not

only sufficient but also necessary to have q(t) = q(−t).
As it is shown in the next section, we numerically observe

that these symmetric pulses have the smallest pulse duration1

among all solitons with the same set of eigenvalues Ω (but

different |Qd(λk)|). Assuming σ1 = mink {σk}, this minimum

pulse-duration can be well approximated by

Tsym(ε) ≈
1

2σ1

(

2
N
∑

m=2

ln

(

σm + σ1

σm − σ1

)

+ ln

(

2

ε

)

− ln

(

∑N
m=1 σm

σ1

))

, (8)

where ε is defined earlier as the energy threshold. The ap-

proximation becomes tight as ε → 0 and is only valid if

ε ≪ σ1/
∑N

m=1 σm. Verification of (8) follows readily by

describing an N−soliton by the sum of N terms according to

(4), and showing that in the limit |t| → ∞, the dominant term

behaves as sech(2σ1(|t|− t0)) for some t0 and all other terms

decay exponentially faster.

IV. TIME-BANDWIDTH PRODUCT

Consider the transmission of an N−soliton with eigenvalues

{jσk}
N
k=1 over an ideal fiber of length zL. Each spectral ampli-

tude Qd(jσk; z) = |Qd(jσk; z)| exp(jφk(z)) is transformed

along the fiber according to (3). Equivalently,

|Qd(jσk; z)| = |Qd(jσk; z = 0)|

φk(z) = φk(0) + 4σ2
kz

1It is correct when ε is small enough.

for z ≤ zL. It means that φk(z) changes with a distinct speed

proportional to σ2
k. Different phase combinations correspond

to different soliton pulse shapes with generally different pulse-

duration and bandwidth. It implies that Tw and Bw of a pulse

are changing along the transmission. Furthermore, if the φk(0)
are independently modulated for each eigenvalue with a con-

stellation of size M , e.g. M−PSK, this results in MN initial

phase combinations (N log2(M) bits per soliton) associated

with different initial pulse shapes. Such transmission scenarios

are demonstrated experimentally for M = 4, N = 2 [7] and

N = 7 [8]. To avoid a considerable ISI between neighboring

pulses in a train of N -solitons for transmission in time or

frequency, we should consider Tw and Bw larger than their

respective maximum along the link.

For a given set of eigenvalues and fixed |Qd(jσk; z = 0)|,
the maxima depend on MN initial phase combinations and

the fiber length zL. To avoid these constraints, we maximize

Tw and Bw over all possible phase combinations:

Tmax = max
φk,1≤k≤N

Tw and Bmax = max
φk,1≤k≤N

Bw.

These quantities occur in the worst case but can be reached

in their vicinity when N is small, e.g. 2 or 3, or when M is

very large, or the transmission length zL is large enough.

In the rest of this section, we address the following funda-

mental questions:

(i) How do Tmax and Bmax change in terms of {jσk}
N
k=1

and {|Qd(jσk)|}
N
k=1?

(ii) What is the smallest time-bandwidth product for a given

N , i.e.

(TmaxBmax)
⋆ = min

σk,1≤k≤N
min

|Qd(jσk)|,1≤k≤N
TmaxBmax

and which is the optimal choice for {jσ⋆
k}

N
k=1 and

{|Q⋆
d(jσ

⋆
k)|}

N
k=1.

The following properties preserving the time-bandwidth

product decrease the number of parameters to optimize:

(i) If q(t) has eigenvalues {jσk}
N
k=1, then 1/σ1 · q(t/σ1) will

have eigenvalues {j σk

σ1
}Nk=1 with the same time-bandwidth

product. It implies that TmaxBmax only depends on the N −1
eigenvalue ratios σk/σ1.

(ii) If {φk}
N
k=1 corresponds to q(t), then {φk − φ1}

N
k=1

corresponds to q(t) exp(jφ1). Thus, we assume φ1 = 0.

(iii) Instead of directly optimizing {|Qd(jσk)|}
N
k=1, it is

equivalent to optimize ηk > 0 defined by

|Qd(jσk)| = ηk|Qd,sym(jσk)|.

Using {ηk}
N
k=1 has two advantages. The first one is the

generalization of Theorem 1. If {ηk}
N
k=1 corresponds to q(t),

then {1/ηk}
N
k=1 corresponds to q(−t). The proof is similar to

the one of Theorem 1. Moreover, {e−2σkt0ηk}
N
k=1 corresponds

to q(t+t0). Thus, it suffices to assume η1 = 1 and η2 ∈ (0, 1].

A. Optimization of Spectral Amplitudes

Consider a given set of eigenvalues Ω = {jσk}
N
k=1. We

want to optimize {ηk}
N
k=2 to minimize TmaxBmax. Recall that

{|Qd(jσk)|}
N
k=1, and thus {ηk}

N
k=1 do not change along z.



We present the optimization method for N = 2. In this

case, there are two parameters to optimize: φ2 and η2 ∈ (0, 1].
Consider a given energy threshold ε. For each chosen η2, we

find Tmax(ε) and Bmax(ε) by exhaustive search. The phase

φ2 ∈ [0, 2π) is first quantized uniformly by 64 phases. At

each phase, a 2-soliton is generated using Algorithm 1 and

then Tw(ε) and Bw(ε) are computed. To estimate Tmax(ε),
another round of search is performed with a finer resolution

around the quantized phase with the largest Tw(ε). Similarly,

Bmax(ε) is estimated.

Fig. 1 illustrates Tmax(ε) and Bmax(ε) in terms of log(η2)
for different energy thresholds ε when Ω = { 12j, 1j}. We also

depict Bmin(ε), the minimum bandwidth of 2-soliton pulses

with a given η2 and various φ2. Fig. 1 indicates the following

features that we observed for any pairs of {jσ1, jσ2}.
We can see that for any ε, the smallest Tmax is attained at

η2 = 1 (log(η2) = 0) which corresponds to the symmetric 2-

soliton defined in Sec. III. We also observe that Bmax reaches

the largest value at η2 = 1 while Bmin reaches its minimum.

As log(η2) decreases, Tmax increases gradually up to some

point and then it linearly increases in | log(η2)|. The behaviour

of Bmax is the opposite. It decreases very fast in | log(η2)| up

to some η2 and then converges slowly to the bandwidth defined

by the 1-soliton spectrum with λ = jσ2. In fact, we have two

separate 1-solitons without any interaction when η2 = 0. As

η2 increases to 1, the distance between these two 1-solitons

decreases, resulting in more nonlinear interaction but smaller

Tmax. The largest Bmax−Bmin at η2 = 1 indicates the largest

amount of interaction.

The above features seem general for N−solitons. In partic-

ular, Tmax becomes minimum if the N−soliton is symmetric.

Moreover, Bmax can be lower-bounded by

Bsep (ε) =
2σN

π2

(

ln

(

2

ε

)

− ln

(

∑N
k=1 σk

σN

))

with σN = maxk {σk}. The bound becomes tight when an

N−soliton is the linear superposition of N separate 1-solitons.

We performed such a numerical optimization for N = 2
and N = 3 and for different {σk

σ1
}Nk=2. For each ε, we found

the optimal {η⋆k}
N
k=2 with the smallest Tmax(ε)Bmax(ε).

B. Optimization of Eigenvalues

In general, an N−soliton has a larger TmaxBmax than

a 1−soliton but it has also N times, e.g. Qd(jσk), more

dimensions for encoding data. To have a fair comparison,

we use a notion of “time-bandwidth product per eigenvalue”

defined as

T ·BN ({
σk

σ1
}Nk=2) =

1

N
TmaxBmax({

σk

σ1
}Nk=2, {η

⋆
k}

N
k=2)

where TmaxBmax is already optimized in terms of {ηk}, seper-

ately for each eigenvalue combination. This is an important

parameter as the spectral efficiency will be O(1/T ·BN ). For

a 1-soliton with “sech” shape in time and frequency domain,

we have

T ·B1 = Tw(ε)Bw(ε) = π−2 ln2(2/ε),
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Fig. 1. (a) Pulse duration Tmax and (b) bandwidth Bmax/min for 2-soliton
pulse (λ1 = 0.5j, λ2 = 1j) when maximized (minimized) over all phase
combinations of spectral amplitudes

where ε is the energy threshold defined in Section II-C.

For N = 2 and N = 3, we numerically opti-

mized Tmax(ε)Bmax(ε) for different values of {σk

σ1
}Nk=2 and

{ηk}
N
k=2. Fig. 2-(a) shows the numerical optimization of

T ·B2 in terms of σ2/σ1 for different choices of ε where

the best {η⋆k}
N
k=2 were chosen for each eigenvalue ratio. We

normalized T ·B2 by T ·B1 to see how much the “time-

bandwidth product per eigenvalue” can be decreased. Fig. 2-

(b) shows a similar numerical optimization for N = 3 and

ε = 10−4. We have the following observations:

(i) T ·BN is sensitive to the choice of eigenvalues. For

instance, equidistant eigenvalues, i.e. σk = kσ1, are a bad

choice in terms of spectral efficiency.

(ii) The ratio T ·BN/T ·B1 gets smaller as ε vanishes. The

intuitive reason is that as ε → 0, we get Tmax ≈
1

2σ1
ln(2

ε
)

(see (8)) which is the pulse-duration of the 1-soliton.

(iii) For a practical value of ε ∼ 10−4−10−3, T ·BN decreases

very slowly in N . Moreover, the optimal σ⋆
k are close. This

can make the detection challenging in presence of noise. For

ε = 10−4,

T ·B2/T ·B1 = 0.87 for σ⋆
2/σ

⋆
1 = 1.11

T ·B3/T ·B1 = 0.83 for σ⋆
2/σ

⋆
1 = 1.28, σ⋆

3/σ
⋆
1 = 1.35

(iv) Choosing the above optimal {σ⋆
k/σ

⋆
1}, and the optimal

{|Q⋆
d(σ

⋆
k)}, the resulting solitons for N = 2, 3 are shown

in Fig. 3 for different phase combinations and two energy

thresholds ε. This figure gives some guidelines for a larger N :

the optimal N−soliton has eigenvalues close to each other and

significantly seperated pulse centers, why the optimum pulse

looks similar to a train of 1-solitons with eigenvalues close

to each other. The pulse centers should be close to minimize
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Fig. 2. Gain of time-bandwidth product per eigenvalue of (a) second and (b)
third order solitons with eigenvalues jσk in relation to first order pulses

Tmax but not too close to avoid a large interaction which comes

along with a growth of Bmax.
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Fig. 3. Time domain signal of optimum second and third order soliton pulse
for different phase combinations of the spectral amplitudes (same color)

For ε ≪ 1, an estimate on T ·BN at optimal {η∗k} can be

given by (9), where Tmax and Bmax are estimated by Tsym(ε)
and Bsep(ε), respectively (see Fig. 1).

T ·BN ≈
Tsym(ε)Bsep (ε)

N
, (9)

For the second order case, these approximations for various

ε are plotted in Fig. 2-(a) by dashed lines. We see that the

approximation becomes better for small ε. This approximation

can be used to predict T ·BN for a large N .

V. CONCLUSION

We studied the evolution of the pulse-duration and the

bandwidth of N−soliton pulses along the optical fiber. We

focused on solitons with eigenvalues located on the imaginary

axis. The class of symmetric soliton pulses was introduced

and an analytical approximation of their pulse-duration was

derived.

The phase of the spectral amplitudes was assumed to be

used for modulation while their magnitudes were kept fixed.

We numerically optimized the location of eigenvalues and

the magnitudes of spectral amplitudes for 2− and 3−solitons

in order to minimize the time-bandwidth product. It can

be observed that the time-bandwidth product per eigenvalue

improves in the soliton order N , but very slowly. Another

observation is, that the optimal N−soliton pulse looks similar

to a train of first-order pulses.

There are some remarks about our optimization. As an

N−soliton propagates, the phases of the spectral amplitudes

change with different speeds. We assumed that all possible

combinations of phases occur during transmission. This is the

worst case scenario which is likely to happen for N = 2 and

N = 3 but becomes less probable for large N . Moreover, the

same magnitudes of spectral amplitudes are used for any phase

combination while they can be tuned according to the phases.

Without these assumptions, the time-bandwidth product will

decrease. However, it becomes harder to estimate as there are

many more parameters to optimize.
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