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A locally repairable code with availability has the property that every code symbol can be recovered

from multiple, disjoint subsets of other symbols of small size. In particular, a code symbol is said to

have (r, t)-availability if it can be recovered from t disjoint subsets, each of size at most r. A code

with availability is said to be rate-optimal, if its rate is maximum among the class of codes with given

locality, availability, and alphabet size.

This paper focuses on rate-optimal binary, linear codes with small availability, and makes four

contributions. First, it establishes tight upper bounds on the rate of binary linear codes with (r,2) and

(2,3) availability. Second, it establishes a uniqueness result for binary rate-optimal codes, showing

that for certain classes of binary linear codes with (r,2) and (2,3)-availability, any rate optimal code

must be a direct sum of shorter rate optimal codes. Third, it presents novel upper bounds on the

rates of binary linear codes with (2, t) and (r,3)-availability. In particular, the main contribution here

is a new method for bounding the number of cosets of the dual of a code with availability, using

its covering properties. Finally, it presents a class of locally repairable linear codes associated with

convex polyhedra, focusing on the codes associated with the Platonic solids. It demonstrates that

these codes are locally repairable with t = 2, and that the codes associated with (geometric) dual

polyhedra are (coding theoretic) duals of each other.

1 Introduction

The enormous growth of data being stored or computed online has encouraged practical distributed

storage systems to migrate from triple replication [1, 2] to erasure coding for handling failures, see,

e.g., [3, 4]. Even though classical erasure codes such as Reed-Solomon codes achieve high storage

efficiency, they are inefficient in handling disk (or node) failures as they usually require to download

large amount of data while repairing a failed node. The conflicting requirements of reliability, storage

efficiency, and repair efficiency in data centers have created a new set of problems for coding theorists.

Two measures of repair efficiency have received particular research attention: (a) repair bandwidth –

the metric is the total number of symbols (or bits) communicated while repairing a failed node, and the

corresponding family of codes is called regenerating codes (see, e.g., [5, 6, 7]); and (b) repair locality

– the metric is the number of nodes participating in the repair process, and the corresponding family of

codes is called locally repairable codes (see, e.g., [8, 9, 10, 11, 12]). We restrict our attention to codes

with locality in this work.

A locally repairable code (LRC) is a code of length n over a finite field F such that every symbol

of a codeword can be recovered by accessing at most r other symbols. The set of symbols participating

in the recovery of a symbol is referred to as a recovering set (or repair group) of the symbol. Codes

with small locality were introduced in [8, 13] (see also [10]). The study of the locality property was

inspired by the pioneering work of Gopalan et al. [9]. One of their key contributions was to establish a

trade-off between the minimum Hamming distance of a code and its locality, analogous to the classical

http://arxiv.org/abs/1701.02456v2


2 Binary LRCs with Availability

Singleton bound. In particular, the authors showed that for a (scalar) linear (n,k) code having locality r

for systematic symbols, its minimum distance d is upper bounded as

d ≤ n− k−
⌈

k

r

⌉

+2. (1)

They also demonstrated that the Pyramid code construction described in [8] achieves this bound. Since

then, a series of papers have extended the distance bound for various types of codes, and have provided

optimal code constructions that achieve the minimum distance bound (see, e.g., [14, 15, 16, 17, 12, 18,

19, 20], and references therein).

In this work, we focus our attention on a class of LRCs with multiple disjoint recovering sets [21, 22,

23, 24]. Providing multiple disjoint recovering groups for symbols enables parallel reads and provides

high availability of data. For this reason, codes with multiple disjoint recovering sets are referred to

as codes with availability. Such codes are particularly attractive for data centers storing hot data, i.e.,

frequently accessed data. Moreover, they are useful in designing coded private information retrieval [25]

and locally rewriteable codes [26].

A code is said to possess (r, t)-availability, if every symbol of a codeword has t disjoint recovering

sets each of size (i.e., locality) at most r. Most of the literature on codes with availability has been

devoted to computing Singleton-like upper bounds on the minimum distance, and constructing codes

with availability and large minimum distance. By comparison, relatively little has been said about bounds

on the code rate, and constructions of high rate codes with availability. However, the authors of [23] (see

also [27]) give an upper bound on the rate of codes with (r, t)-availability, and the authors of [28] give a

field size dependent bound on the size of codes with availability, along the lines of [18]. Very recently,

the authors of [29] presented an improved rate bound for (r, t)-availability, and in particular, for (r,3)-
availability.

We are interested in computing tight upper bounds on the rate of LRCs with availability. Note that

as we enhance the availability of the code by increasing the number of disjoint recovering sets, we are

introducing more dependencies amongst the code symbols. Thus, the rate of a code with high availability

cannot be too high, representing tension between high rate and high availability. We first focus our

attention to binary LRCs (i.e., LRCs over F2) with availability t = 2,3. We note that, in practice, small

values of the availability parameter t that are comparable to triple replication are the most interesting. Our

motivation behind considering binary codes is that codes constructed over small finite fields, especially

Galois fields of the form F2m , are preferred in practice for their fast arithmetic [30].

Our main result is a uniqueness result for rate optimal codes for t = 2,3. In essence, we show that for

certain classes of binary linear codes with (r,2) and (2,3)-availability, any rate optimal code must be a

direct sum of shorter rate optimal codes. We note that designing a rate optimal code with availability can

be viewed as a covering problem. In particular, when the i-th symbol of a code has (r, t)-availability, its

dual code must contain t codewords, each of weight at most r+1, such that their supports intersect only

on {i}. We refer to such codewords as covering codewords. Designing a rate optimal code with (r, t)-
availability is equivalent to finding a subspace of smallest dimension that contains covering codewords

for all the symbols. It is worth noting that for covering problems, direct sum constructions are known to

give good codes [31].

Next, we obtain upper bounds on the rate of codes with (2, t) and (r,3)-availability by using covering

properties of their duals. In particular, we develop a novel method to bound the maximum weight of a

coset leader of the dual code, which is known as the covering radius for linear codes (see [31]), by using

the its covering properties. This enables us to bound the number of cosets of the dual and get a rate upper
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bound. The method of bounding the number of cosets using covering properties may be of independent

interest.

Furthermore, we present a class of codes with t = 2 that are associated with convex polyhedra, in

particular, the Platonic solids. We note that these codes associated with the Platonic solids may be of

independent interest. We outline our contributions in the following section.

1.1 Our Contributions

We highlight our broad contributions in the following.

1. We first consider binary codes associated with convex polyhedra. More specifically, given a convex

polyhedron Γ with e edges, fix an arbitrary labeling of its edges from 1 to e. We define the

code associated with a convex polyhedron1 Γ as a subset C ⊂ F
e
2 such that for every vector c ∈

C , the entries corresponding to edges that meet at a vertex of Γ sum to zero over F2. In other

words, vertices of Γ define parity checks on the codewords of C . We demonstrate that such codes

have t = 2, and that the codes associates with dual polyhedra are duals of each other. Further,

we demonstrate that codes associated with the Platonic solids, namely, tetrahedron, octahedron,

dodecahedron and icosahedron, are near-optimal in terms of their rates.

2. We focus on a class of binary (n,k) codes Ĉ defined as the nullspace of an N × n parity-check

matrix H , where each row has weight r+1 and each column has weight t, such that nt = N(r+1).
In addition, supports of any two rows of H intersect in at most one point. We refer to codes in this

class as codes with exact covering.2

(a) First, we consider codes in Ĉ with (r,2)-availability. We show that, when n ≥ r + 1 and

r+1 | 2n, the rate of C is upper bounded as k
n
≤ r

r+2
, with equality if and only if C is a direct

sum of
[

(r+1)(r+2)
2

,(r+1)
]

codes, each generated by the complete graph on r + 2 points

(Theorem 1).3

(b) Next, we consider codes in Ĉ with (2,3)-availability. When the block length n is a multiple

of 7, say n = 7m, we show that for any C ∈ Ĉ , we have Rate(C ) ≤ 3
7
, with equality if and

only if C is a direct sum of m copies of the [7,3] Simplex code (Theorem 2).

3. We present novel rate upper bounds for codes in Ĉ with (2, t) and (r,3)-availability (Theorem 3

and Corollary 4). Our bounds for codes with (2, t) and (r,3)-availability become sharper that the

known bounds as the values of t and r increase, respectively.

1.2 Relationship to Previous Work

Codes with availability: The notion of multiple disjoint recovering sets has been studied in several

works, see e.g. [21, 22, 23, 24, 28, 33, 29].

Rate Bounds: The authors of [23] (see also [27]) show that for an (n,k) code with (r, t)-availability,

the rate is upper bounded as
k

n
≤ 1

∏
t
j=1

(

1+ 1
jr

) . (2)

1More generally, we can define a code associated with a planar graph in the same way.
2Codes in this class were also studied very recently in [29], where such codes are referred to as codes with strict availability.
3The upper bound of r/(r+2) has been shown in [32]; see Remark 4 for details.
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The authors of [21] and [23] also find upper bounds on and the minimum distance for codes with avail-

ability. Under suitable divisibility assumptions, these distance bounds can be translated to the rate

bounds. For (r,2) availability the corresponding rate bounds from [23] and [21], respectively, are

k

n
≤ r3 − r3

r3 −1
+

1

n
, and

k

n
≤ 2r−1

2r+1
+

1

n(2r+1)
. (3)

For (2,3)-availability these derived rate bounds from [23] and [21] become
(

8
15
+ 1

n

)

, and
(

4
7
+ 2

7n

)

,

respectively. We note that our rate bounds for (r,2) and (2,3) availability strictly improve on these

bounds. In a very recent work, the authors of [29] improve the bounds of [23]. We compare our bounds

with the existing bounds in Section 7.3.

Constructions: It was noted in [21, 23] that direct product codes possess availability property. The

authors of [34] studied the availability property of simplex codes. The authors of [35] present a tensor-

product based construction and a cyclic code construction for r = 2 and t = 3. The authors of [28] analyze

the availability properties of a large number of well-known classical codes. Several code constructions

using combinatorial structures are presented in [22, 24, 33].

LRCs that locally correct multiple erasures: We note that LRCs with (r, t)-availability form a

class of codes that can correct any t erasures locally. There are several classes of LRCs that can locally

correct up to t erasures as outlined below. Rate bounds on LRCs from any of these classes yield upper

bounds on the rate of an LRCs with (r, t)-availability. A discussion on the hierarchy of these classes can

be found in [36].

a) LRCs with strong local codes, wherein every symbol is protected by an (r+ t,r, t +1) local code,

were considered in [20, 17, 15, 37]. For such codes, the rate is upper bounded as

k

n
≤ r

r+ t
. (4)

b) LRCs with cooperative local recovery, wherein t erasures can be simultaneously corrected by

reading at most r symbols, are considered in [38]. The rate bound of (4) also applies to this family of

codes.

c) LRCs with multiple repair alternatives are considered in [24], wherein for any subset E ⊂ [n] of

size t, every symbol i ∈ E can be recovered from at most r symbols outside E . The authors present a

family of such codes based on partial geometries, and give lower and upper bounds on the rate of codes

in this family.

d) LRCs that allow sequential (or, successive) repair of t erasures are considered in [32, 36, 39, 40].

The authors of [32] present an upper bound on the rate of an (n,k) code that allows sequential recovery

of t = 2 symbols with locality r as
k

n
≤ r

r+2
. (5)

The authors also present optimal code construction based on Turán graphs for a specific parameter range.

They also demonstrate a code construction based on complete graphs, which has (r,2)-availability. Our

result shows the uniqueness of such a construction for rate optimal codes with exact covering. For the

sequential recovery of t = 3 erasures with locality r under functional repair model, [36] presents a lower

bound on the length of a code. Under suitable divisibility assumptions, this bound for r = 2 translates to

the rate bound of 4/9. The authors of [39] show a uniqueness result for rate optimal constructions for

the sequential recovery from t = 2 erasures.

Binary locally repairable codes: A number of studies have recently considered LRCs over the

binary field, see e.g., [34, 35, 41, 33, 42, 43, 28]. In [41] (see also [35]), in addition to presenting
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several code constructions, the authors also establish upper bounds on the rate of binary LRCs for various

parameter regimes when r = 2. In addition, the authors present a direct sum of [7,3] Simplex codes as an

example of a larger code with (2,3)-availability. Our result shows rate optimality of such a construction

and its uniqueness for the class of codes with exact covering.

Field size dependent bounds on the code dimension: Field size dependent bounds on the minimum

distance and rate for LRCs are considered in [18, 44]. Simplex codes are shown to be rate optimal

for r = 2 amongst binary codes in [18]. The authors of [28] develop field size dependent bounds to

incorporate the availability.

2 Preliminaries

Notation: We use the following notation. For an integer l, let [l] = {1,2, . . . , l}. We use x(i) to denote the

i-th coordinate of a vector x, and H(i, j) to denote the element in row i and column j in a matrix H . For

a vector x, Supp(x) denotes its support, i.e., Supp(x) = {i : x(i) 6= 0}. Let wt(x) denote the Hamming

weight of vector x, i.e., wt(x) = |Supp(x) |. For a set of vectors x1, . . . ,xm, 〈x1, . . . ,xm〉 denotes their

span; whereas for a matrix H , 〈H〉 denotes its row space. For a vector space A , dim(A ) denotes its

dimension. For an [n,k] code C , its rate is denoted as Rate(C ) = k
n
.

Let C denote a linear (n,k,d) code over F2 with block-length n, dimension k, and minimum distance

d. Let c denote a codeword in C .

We say that a code bit has availability t with locality r if it can be recovered from t disjoint subsets

of size at most r. The formal definition is as follows.

Definition 1. [(r, t)-Availability] We say that the i-th bit of an (n,k,d) code C has (r, t)-availability if

for any codeword c ∈ C , there exist t disjoint subsets R j (i) ⊂ [n] \{i}, |R j (i) | ≤ r, for 1 ≤ j ≤ t such

that c(i) = ∑l∈R j(i) c(l) for every j ∈ [t]. Each one of such subsets is referred to as a repair group for bit

i. If every bit of C has (r, t) availability, we say that C has (r, t)-availability. We denote such a code as

an (n,k,d,r, t) LRC.

It is worth mentioning that repair groups of a bit can have different sizes, and we denote locality of

the bit as the size of its largest repair group. Next, we focus our attention to codes associated with convex

polyhedra.

3 Codes associated with Convex Polyhedra

In this section, we present codes associated with convex polyhedra, and we focus on Platonic solids.

Given a convex polyhedron, each edge corresponds to an entry of the codeword, and every vertex corre-

sponds to a parity check.

Definition 2. Consider a convex polyhedron Γ with v vertices, e edges, and f faces. Fix an arbitrary

labeling of its edges from 1 through e. Let C be a subset of Fe
2 such that for a vector c ∈ C , the entries

corresponding to edges that meet at a vertex sum to zero over F2. We say that the code C is generated

by Γ, and denote it as C (Γ).

Definition 3. We say that a length-N binary vector v corresponds to a face of Γ if the locations of ones

in v correspond to the edges forming that face.

First, we show that C (Γ) is a linear code generated by the faces of Γ.

Lemma 1. For a convex polyhedron Γ with v vertices, e edges, and f faces, the C (Γ) generated by Γ is

an [e, f −1] linear code. Further, the vectors corresponding to the faces of Γ span C (Γ).
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Proof. First, we prove that C is an [e, f − 1] linear code. Let us denote the graph formed by the edges

and vertices of Γ as Γ′. Note that C is the kernel of the v×e incidence matrix H of Γ′, i.e., C = {c ∈ F
e
2 |

Hc = 0}. Every column of H has two ones, and thus the rows of H sum to zero giving Rank(H)≤ v−1.

We show that there is no smaller linear dependency.

Let hi denote the row of H corresponding to vertex i of Γ′. Suppose, for contradiction, there is a

smaller linear dependency ∑i∈S hi = 0, where S ⊂ [v]. Now, every column of H has exactly two ones

corresponding to an edge of Γ′. Thus, for any vertex i ∈ S, all of its neighbors should be in S. However,

as Γ′ is connected, S must include all the v vertices. Thus, Rank(H) = v− 1, and dim(C ) = e− v+ 1.

For a convex polyhedron, Euler’s formula states that v− e+ f = 2. Therefore, C is an [e, f − 1] linear

code.

Next, we show that C is generated by the vectors associated with faces. Let G denote the matrix

containing the vectors associated with the faces of Γ. Observe that each row of G satisfies all the parity

checks. Now, note that every column of G corresponds to an edge of Γ′, and thus, has exactly two ones

corresponding to the two faces that meet at that edge. Then, by applying the same arguments as in the

case of H , we get that Rank(G) = f −1, and the result follows.

Recall that the two polyhedra are said to be (geometric) duals of each other if the vertices of one

polyhedron correspond to the faces of the other, and vice-versa. Then, the following result follows from

Lemma 1.

Corollary 1. Let Γ and Γ⊥ be the dual convex polyhedra. Then, the dual code C⊥(Γ) of the code

generated by a convex polyhedron Γ is isomorphic to the code generated by its dual polyhedron Γ⊥, i.e.,

C⊥(Γ)∼= C (Γ⊥).

Lemma 2. The code generated by a convex polyhedron has t = 2 availability.

Proof. The value of the bit indexed by edge {u,v} can be recovered by summing over F2 the entries of

all the other edges incident either on vertex u, or vertex v. The edges incident on u are disjoint from those

incident on v.

Next, we consider the codes associated with Platonic solids. Table 1 summarizes the codes associated

with the Platonic solids. While specifying the parity check and generator matrices for these codes in the

subsequent sections, we omit the zero entries for simplicity.

Remark 1. As we show in the next section, the rate of a binary LRC with (r,2)-availability is upper

bounded by r/(r + 2). Observe from Table I that the code associated with tetrahedron is rate-optimal,

whereas the rates of codes associated with cube, octahedron, dodecahedron, and icosahedron are near-

optimal.

3.1 Tetrahedron Code

Fig. 1(a) shows the graph of the cube. Following the labeling of edges in Fig. 1(a), the set of parity

checks can be written as

H =









1 1 1

1 1 1

1 1 1

1 1 1









. (6)
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Observe from (6) that the tetrahedron code has (2,2)-availability (see Remark 2). A generator matrix

with rows corresponding to faces is given as

G =









1 1 1

1 1 1

1 1 1

1 1 1









. (7)

It is easy to verify that Rank(H) = 3, Rank(G) = 3, and GHT = 0. Therefore, the tetrahedron code is a

(6,3) code with (2,2)-availability.

One can see that G can be obtained from H by first reordering the rows of H , row 1 → row 2 → row

3 → row 1, and then applying the permutation (16)(24)(35) on the columns. Hence, the tetrahedral code

is equivalent to its dual.

3.2 Cube Code and Octahedron Code

Fig. 1(b) shows the graph of the cube. Following the labeling of edges in Fig. 1(b), the set of parity

checks for the cube code can be written as

H =

























1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

























. (8)

From (8), observe that the cube code has (2,2)-availability (see Remark 2).

A generator matrix composed of vectors associated with the faces of the cube is as follows.

G =

















1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

















. (9)

It is easy to verify that Rank(H) = 7, Rank(G) = 5, and GHT = 0. Therefore, the code associated with

the cube is a (12,5) code with (2,2)-availability.

Recall that the cube and the octahedron are geometric duals of each other. A parity check matrix H

of the octahedron code is given below. We follow the labeling of edges in as shown in Fig. 1(c).

H =

















1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

















. (10)
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Figure 1: Graphs associated with the Platonic solids.

From (10), observe that the octahedron code has (3,2)-availability (see Remark 2).
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Polyhedron and its Dual Associated Code Weight Enumerator

Tetrahedron
[6,3] code,

(2,2)-availability
1+4z3 +3z4

Tetrahedron
[6,3] code,

(2,2)-availability
1+4z3 +3z4

Cube
[12,5] code,

(2,2)-availability
1+6z4 +16z6 +9z8

Octahedron
[12,7] code,

(3,2)-availability
1+8z3 +15z4 +24z5 +32z6 +24z7 +15z8 +8z9 +Z12

Dodecahedron
[30,11] code,

(2,2)-availability

1+20z3 +30z4 +72z5 +400z6 +11407 +2715z8

+6560z9 +14112z10 +26280z11 +42740z12 +59760z13

+72000z14 +75912z15 +70215z16 +57120z17 +41440z18

+26820z19 +15246z20 +7560z21 +3120z22 +900z23 +125z24

Icosahedron
[30,19] code,

(4,2)-availability

1+12z5 +30z8 +20z9 +72z10 +120z11 +100z12 +180z13

+240z14 +272z15 +345z16 +300z17 +200z18 +120z19 +36z20

Table 1: Codes associated with the Platonic solids

From (9) and (10), we see that the cube code and the octahedron code are duals of each other.

A generator matrix of the octahedron code can be given by (8). Note that each row of H in (8)

corresponds to a face of the octahedron.

3.3 Icosahedron Code and Dodecahedron Code

One can easily find a parity check matrix of the icosahedron code following the edge labeling in Fig. 1(d).

Observe that the icosahedron code has (4,2)-availability. A generator matrix with its rows as the faces

of the icosahedron can be easily computed from Fig. 1(e). One can check that Rank(G) = 11, and the

icosahedron code is a (30,11) code. Recall that the icosahedron and the dodecahedron are geometric

duals of each other. The dodecahedron code is a (30,19) code with (2,2)-availability.

4 Rate-Optimal Codes with Small Availability

We are interested in rate-optimal codes with (r, t)-availability, which are defined as follows.

Definition 4. [Rate Optimality] A code C with (r, t)-availability is said to be rate optimal if its rate is

maximum among all (binary, linear) codes possessing (r, t)-availability.

It is straightforward to see that the (r, t)-availability of a code C imposes certain constraints on its

dual code C⊥ in the following way.

Remark 2. The i-th bit of a code C has (r, t) availability if and only if its dual code C⊥ contains t

codewords c̃i,1, c̃i,2, . . . , c̃i,t such that for all l ∈ [t], i ∈ Supp(c̃i,l(i)), |Supp(c̃i,l) | ≤ r + 1, and for all

p,q ∈ [t], p 6= q, Supp(c̃i,p)∩ Supp(c̃i,q) = {i}. We call such t codewords as repair codewords for the

i-th bit.

In other words, the availability requirement of a code places constraints on the supports of certain

codewords in the dual code. Our central idea is to carefully analyze the structure of the dual code to

obtain upper bounds on the rate of the code with availability.
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For simplicity of notation, we refer to the coordinates as points, and represent every codeword by

its support. In particular, we refer to a weight w codeword as a w-subset of [n] (or just as a subset if its

Hamming weight is clear from the context or if it is not important). For analyzing the structure of the

dual code, we use notions of covering and covering with (r, t)-availability, defined as follows.

Definition 5. [Covering] We say that a w-subset S covers point i, if i ∈ S. Further, we say that a code C

covers point i l times, if C contains l subsets that cover point i.

Definition 6. [Covering with (r, t)-Availability] We say that a code C covers point i with (r, t)-availability,

if C covers point i (at least) t times such that the subsets covering i are of size at most r+ 1 and they

intersect only on i. We call such subsets as t-covering subsets (or, simply, as covering subsets).

We can restate Remark 2 in terms of covering as follows.

Remark 3. A code C has (r, t)-availability if and only if its dual code C⊥ covers each of the n points

with (r, t)-availability.

Finally, we introduce the notion of the code generated by a graph Γ (similar to the code generated by

a convex polyhedron).

Definition 7. Consider a planar graph Γ with v vertices and e edges. Fix an arbitrary labeling of its

edges from 1 through e. Let C be a subset of Fe
2 such that for every vector c ∈ C , the entries of c

corresponding to edges that meet at a vertex sum to zero over F2. We say that the code C is generated

by Γ, and denote it as C (Γ).

Notice that C is a linear code with the incidence matrix of Γ as its parity check matrix.

In the remaining of the paper, we denote the code containing the covering subsets as the primal code

C . Note that its dual code C⊥ possesses the (r, t)-availability property.

5 Codes with (r,2)-Availability

Our focus, in this section, is on the codes in which each bit can be recovered from two disjoint recovering

sets each of size at most r+1. From Remark 3, notice that the primal code C should cover every point

with (r,2)-availability. From simple counting arguments, it follows that to cover n points with (r,2)-
availability, C should contain at least 2n

r+1
subsets of size up to r+1. First, we consider the case when C

contains exactly 2n
r+1

2-covering subsets, each of size r+1.

5.1 Exact Number of Covering Subsets of Size r+1

Theorem 1. Let n and r be non-negative integers such that n ≥ r+1 and r+1 | 2n. Let C be the length-n

primal code spanned by 2n
r+1

(r+1)-subsets that cover every point with (r,2)-availability. Then, the rate

of its dual code C⊥ is upper bounded as Rate
(

C⊥)≤ r
r+2

, with equality if and only if C⊥ is (equivalent

to) a direct sum of
[

(r+1)(r+2)
2

,(r+1)
]

codes, each of which is the code generated by the complete graph

on r+2 points.

Proof. Let S be the set of N = 2n
r+1

covering (r + 1)-subsets. Label them (in arbitrary order) as

S1, · · · ,SN . Form a graph Γ with N vertices, where every vertex corresponds to a covering (r + 1)-
subset. Join vertices i and j if the corresponding (r+1)-subsets Si and S j intersect. Observe that a pair

of covering subsets can intersect in at most one point as there are exactly 2n
r+1

of them. Moreover, since

S covers every point exactly twice, each vertex in Γ has degree r+1.
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If for some T ⊆ S , ∑ j∈T S j = 0, then the vertices of Γ corresponding to subsets in T determine a

connected component of Γ. Note that the size of a connected component in Γ is at least r+2 as Γ is an

(r+1)-regular graph.

Now, partition Γ into connected components, and eliminate a vertex from every connected compo-

nent. This yields at least r+1
r+2

N = 2n
r+2

vertices such that (r+ 1)-subsets corresponding to these vertices

are linearly independent. Therefore, dim(C ) ≥ 2n
r+2

, and the upper bound on Rate
(

C⊥) follows. In

addition, we have dim(C ) = 2n
r+2

if and only if the connected components of Γ are complete graphs of

of size r+2. This essentially specifies that the incidence matrix of Γ has a block diagonal structure with

each block being the incidence matrix of the complete graph on r+2 points. Hence, a rate optimal C⊥

must be a direct sum of the codes generated by complete graphs on r+2 points.

Remark 4. The upper bound of r/(r + 2) on the rate of any linear code with (r,2)-availability has

been established in [32] by considering a broader class of codes that allow sequential recovery of 2

symbols with locality r. Further, the authors note that the code associated with the complete graph on

r + 2 vertices is a rate-optimal code with (r,2)-availability. Clearly, a direct sum of codes associated

with complete graph on r+ 2 vertices is also rate-optimal. Theorem 1 shows the uniqueness of such a

construction for achieving rate-optimality in binary codes with (r,2)-availability.

5.2 Exact Number of Covering Subsets of Multiple Sizes

Corollary 2. Let n and r be non-negative integers such that n ≥ (r+ 1). Let C be the length-n primal

code spanned by N subsets of multiple sizes wth maximum size r + 1, which cover every point exactly

twice with availability. Then, the rate of its dual code C⊥ is upper bounded as Rate
(

C⊥)< r
r+2

.

Proof. Let N j be the number of 2-covering j-subsets for 1 ≤ j ≤ r + 1. Since each of the n points is

covered exactly twice, we have

n =
∑

r+1
j=1 jN j

2
. (11)

The proof essentially follows the same argument as the proof of Theorem 1. Form a graph Γ with N

subsets as vertices, wherein a pair of vertices are adjacent if the corresponding subsets intersect.

Now, a minimal linear dependency amongst the covering subsets determines a connected component

of Γ, as every point is covered exactly twice. Partitioning Γ into connected components, and eliminating

a vertex from every connected component, we get a lower bound on the dimension of C as dim(C ) ≥
∑

r+1
j=1

j
j+1

N j. This follows since the size of a connected component of Γ containing a vertex corresponding

to a j-subset is at least j+ 1. Clearly, ∑
r+1
j=1

j
j+1

N j ≥ 1
r+2 ∑

r+1
j=1 jN j with strict inequality when there is a

covering subset of size less than r+ 1. Then, from (11), we have dim(C ) > 2n
r+2

from which the result

follows.

6 Codes with (2,3)-Availability

In this section, we focus on the codes with r = 2 and t = 3. Simple counting arguments show that to cover

n points with (2,3)-availability, the primal code C must contain at least n 3-covering subsets of size up

to 3. We consider the case of of exact covering, wherein C contains exactly n 3-covering 3-subsets. For

the case when the block-length is a multiple of 7, we show that the code rate is upper bounded by 3/7,

and prove that any rate optimal code needs to be a direct sum (or tensor-product) style construction. The

statement of the result is as follows.
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Theorem 2. For a positive integer m, let n = 7m. Let C be the length-n primal code spanned by 7m

3-subsets that cover every point with (2,3)-availability. Then, we have Rate
(

C⊥) ≤ 3
7
, with equality if

and only if C⊥ is (equivalent to) a direct sum of m copies of the [7,3] Simplex code.

Remark 5. Simplex codes have been shown to be rate optimal for r = 2 amongst binary codes in [18].

Several constructions based on Simplex codes have been proposed, e.g., [34, 35, 41, 43]. The authors

of [35] present a direct sum of [7, 3] Simplex codes as an example of a code with (2,3)-availability.

Theorem 2 shows the uniqueness of such a construction for achieving rate optimality in binary codes

with (2,3)-availability.

6.1 Proof of Theorem 2

The steps involved in the proof are outlined below.

1. First, we show that C must contain at least m pairwise disjoint covering 3-subsets.

2. Next, we prove that dim
(

C⊥)≤ 3m, and the equality occurs if and only if the size of a maximum

set of pairwise disjoint covering 3-subsets in C is exactly m. To prove this, we first assume that

there exists a maximum set of pairwise disjoint covering 3-subsets in C of size m+ i′ for some

non-negative integer i′. Then, we show that dim
(

C⊥) is strictly less than 3m if i′ > 0.

3. Finally, we prove that, if dim(C ) = 4m, then the size of a maximum collection of pairwise disjoint

covering 3-subsets in C is exactly m, and C must be (equivalent to) a direct sum of m copies of a

[7,4] Hamming code.

6.1.1 Step 1

Lemma 3. For a positive integer m, let n = 7m. Let C be the length-n primal code spanned by 7m 3-

subsets that cover every point exactly thrice with availability. Then, C must contain at least m pairwise

disjoint 3-subsets.

Proof. Label the n covering 3-subsets as S1, · · · ,Sn. Form a graph Γ with n vertices, where every vertex

corresponds to a covering 3-subset. Put an edge between vertices i and j if the corresponding 3-subsets

Si and S j intersect. Since every point is covered exactly thrice, Γ must be a 6-regular graph.

Now, a set of pairwise disjoint covering 3-subsets determine an independent set in Γ. For a j-regular

graph of order n, the size of an independent set is at least
⌈

n
j+1

⌉

(see [45, Theorem 1]), from which the

result follows.

6.1.2 Step 2

We begin with establishing the key ingredients that aid in this step.

1. A maximum set of pairwise disjoint 3-subsets in C : Suppose the size of a maximum set of

pairwise disjoint covering 3-subsets in C is m+ i′. We label these subsets as S1, . . . ,Sm+i′ . Let A

be the set of points covered by these subsets, i.e., A = ∪m+i′
j=1 S j. Let A′ = [n]\A. See Fig. 2 for the

ease of understanding. Note that |A|= 3m+3i′ and |A′|= 4m−3i′.

2. Three types of 3-subsets depending on their intersection with A: Let xi be the number of 3-

subsets that intersect A in i points for 1 ≤ i ≤ 3. (By maximality of S1, . . . ,Sm+i′ , x0 = 0.) Let
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. Let A = A
′

· · ·

(T1) · · ·(Tx1
)

· · ·

(F1) · · ·(Fx2
)

(E1) · · ·(Ex3
)

(S1) · · ·(Sm+i′)

≤

. Let A
′
1

· · ·

B
′

1

C
′

1
A
′′

Figure 2: Schematic depicting the notation for the step 2 in the proof of Theorem 2.

{E j : 1 ≤ j ≤ x3}, {Fj : 1 ≤ j ≤ x2}, and {Tj : 1 ≤ j ≤ x1} be the collections of 3-subsets that meet

A in 3, 2, and 1 points, respectively.

Let A′′ be the set of points in A′ that are covered by the type T subsets, i.e., A′′ = A′∩
(

∪x1

j=1Tj

)

.

Let A′
1 be the points in A′ that are covered by the type F subsets, i.e., A′

1 = A′ ∩
(

∪x2

j=1Fj

)

. Let

C′
1 ⊆ A′

1 be the set of points that are covered only by the type F subsets. These sets are depicted

schematically in Fig. 2.

3. Singletons and pairs of points: Consider the multiset of points in A′
1 that are covered by the type

F subsets. We refer to the elements of this multiset as singletons. Note that the size of this multiset

is x2. Similarly, consider the multiset of points in A′′ that are covered by the type T subset. Every

type T covers two points from A′′, which are referred to as a pair (of points). There are x1 such

pairs in the multiset.

4. Graph Γ formed on pairs: Form a graph Γ by assigning a vertex corresponding to every point in

A′′, and adding an edge between two vertices if they correspond to a pair. Note that the number of

vertices of Γ is |A′′|, and the number of edges in Γ is x1.

Partition Γ into connected components. Let B′
1 be the vertices of the connected components of Γ

that (directly or indirectly) touch A′
1. In other words, B′

1 ⊆ A′ \A′
1 be the set of points such that

any vertex corresponding to a point in B′
1 is connected to a vertex corresponding to a point in A′

1.

Again, refer to Fig. 2 for a schematic representation of B′
1.

5. Analysis of the singletons and pairs: Suppose that a fraction f x2 of singletons touch connected

components of Γ. Note that these f x2 are the singletons in A′
1 \C′

1, and we have

|C′
1|=

(1− f )x2

3
. (12)

Next, suppose that a fraction g|A′
1 \C′

1| of points in A′
1 \C′

1 have degree one in Γ and the remaining

(1−g)|A′
1 \C′

1| points have degree two in Γ. Consider the multiset of points with indices in A′
1 \C′

1
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that are covered by the type F and type T subsets. There are 3|A′
1 \C′

1| such points, of which,

f x2 are covered by the type F subsets, g|A′
1 \C′

1| are covered once by the type T subsets, and

(1−g)|A′
1 \C′

1| are covered twice by the type T subsets. Therefore,

3|A′
1 \C′

1|= f x2 +g|A′
1 \C′

1|+2(1−g)|A′
1 \C′

1|,

which yields

|A′
1 \C′

1|=
f

1+g
x2 (13)

For the simplicity of notation, denote the dual code C⊥ as D . To obtain an upper bound on the

dimension of D , consider the projection of D on A∪A′
1 ∪B′

1, denoted as D |A∪A′
1∪B′

1
, and its kernel,

denoted as D ′, which is the subcode of D that vanishes on A∪A′
1∪B′

1. Now, by the rank-nullity theorem,

we have

dim(D) = dim
(

D
′)+dim

(

D |A∪A′
1∪B′

1

)

. (14)

In the following, we obtain an upper bound on the dimensions of D ′ and D |A∪A′
1∪B′

1
.

Lemma 4. Let D ′ be the subcode of D that vanishes on A∪A′
1∪B′

1. Then, we have

dim
(

D
′)≤ m− 3i′

4
− 1

4

(

1− f

3
+

f

1+g

)

x2. (15)

Proof. Note that the pairs in A′′ act as parity checks for the codewords of D ′. Thus, the support of any

codeword d ∈D ′ must be a union of connected components of Γ, otherwise it fails a parity check. Hence,

dim(D ′) is at most the number of connected components of the subgraph of Γ formed by the vertices in

A′′ \ (A′
1 ∪B′

1). We denote such a restriction of Γ to A′′ \ (A′
1 ∪B′

1) as Γ |A′′\(A′
1∪B′

1)
.

Now, note that every vertex of Γ in A′′ \ (A′
1 ∪ B′

1) has degree 3, and thus, the smallest possible

connected component must be a complete graph on four vertices. Hence, the number of connected

components in Γ |A′′\(A′
1∪B′

1)
is at most

|A′′\(A′
1∪B′

1)|
4

.

Thus, we have

dim
(

D
′)≤ |A′′ \ (A′

1 ∪B′
1)|

4

≤ 4m−3i′−|A′
1 ∪B′

1|
4

≤ m− 3i′

4
− 1

4

(

|C′
1|+ |A′

1 \C′
1|
)

(16)

≤ m− 3i′

4
− 1

4

(

(1− f )x2

3
+

f x2

1+g

)

, (17)

where (17) follows from (12) and (13), and the result follows from (17).

Lemma 5. Denote by D |A∪A′
1∪B′

1
the projection of D on A∪A′

1∪B′
1. Then, we have

dim
(

D |A∪A′
1∪B′

1

)

≤ 2m+2i′− 1

3

(

1− f

3
+

g f

1+g

)

x2 −
4

9
x3. (18)
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(a) Component of size 2

(b) Component of size 3

Figure 3: Smallest possible connected components in Γ′ corresponding to a minimal linear dependency.

Proof. First, note that dim
(

D |A∪A′
1∪B′

1

)

= dim
(

D |A∪C′
1

)

. Because, if the dimensions were different,

then there would be a codeword in D |A∪A′
1∪B′

1
that vanishes on A∪C′

1, i.e., it is supported on the connected

components that touch A′
1. This codeword must then be the zero codeword.

Now, for every point in C′
1, arbitrarily choose two of the three type F subsets that cover the point,

and add the subsets to obtain a parity check supported only on A. Label such 4-subsets as F ′
1, . . . ,F

′
|C′

1|
.

Further, note that any vertex in A′
1 \C′

1 with degree 1 is covered by two singletons. For each degree

1 vertex in A′
1 \C′

1, add the two type F subsets containing the two singletons to produce a parity check

supported only on A. Label such 4-subsets as F ′
|C′

1|+1
, . . . ,F ′

|C′
1|+g|A′

1\C′
1|

.

Define a graph Γ′ with x3 type E 3-subsets as blue vertices and |C′
1|+g|A′

1 \C′
1| type F ′ 4-subsets as

red vertices. Add l edges between a pair of vertices if the corresponding subsets meet in l points, where

1 ≤ l ≤ 4.

Note that we can view a red vertex as a super-vertex containing two disjoint green vertices, each

corresponding to the pair of points in the type F subset used to obtain a type F ′ subset representing the

red vertex. Further, note that the degree of a green vertex is at most 2, and thus, the degree of a red vertex

is at most 4. On the other hand, the degree of a blue vertex is at most 3.

For any (minimal) linear dependency ∑i Ei +∑ j F ′
j = 0, the blue vertices corresponding to Ei’s and

the red vertices corresponding to F ′
j ’s form a connected component in Γ′ such that every blue vertex has

degree 3 and every red vertex has degree 4. Note that the smallest possible size of such a connected com-

ponent containing all red vertices is 2, while the smallest possible size of such a connected component

containing a blue vertex is 3. Fig. 3 depicts the smallest connected components.

Now, partition Γ′ into connected components, and eliminate one vertex from each connected com-

ponent in which every blue vertex has degree 3 and every red vertex has degree 4. This yields at least
2
3
x3 +

1
2

(

g f
1+g

x2 +
1− f

3
x2

)

vertices such that the corresponding vectors are linearly independent.

Next, form a matrix M with any 2
3
x3 +

1
2

(

g f
1+g

x2 +
1− f

3
x2

)

linearly independent type E and type F ′

vectors, and reduce the matrix to row echelon form. Whenever there are three diagonal non-zero entries

in M that are are indexed by the same 3-subset S j, delete one of the three rows. Append the resulting

matrix with the vectors S1, . . . ,Sm+i′ . There cannot be any linear dependency in this matrix. Thus, we
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have

dim
(

〈E1, . . . ,Ex3
,F ′

1, . . . ,F
′
|C′

1|+g|A′
1\C′

1|,S1, . . . ,Sm+i′〉
)

≥ m+ i′+
2

3

(

2

3
x3 +

1

2

(

g f

1+g
x2 +

1− f

3
x2

))

.

(19)

Arbitrarily choose one of the three type F subsets for every point in C′
1. Label them as F1, . . . ,F|C′

1|.
None of them can be in the span of type S, type E and type F ′ subsets. Thus, we have

dim
(

〈E1, . . . ,Ex3
,F ′

1, . . . ,F
′
|C′

1|+|A′
1\C′

1|,S1, . . . ,Sm+i′ ,F1, . . . ,F|C′
1|〉
)

≥ |C′
1|+m+ i′+

2

3

(

2

3
x3 +

1

2

(

g f

1+g
x2 +

1− f

3
x2

))

. (20)

This allows us to write

dim
(

D |A∪C′
1

)

≤ |A∪C′
1|−

(

|C′
1|+m+ i′+

2

3

(

2

3
x3 +

1

2

(

g f

1+g
x2 +

1− f

3
x2

)))

, (21)

from which the result follows noting that |A|= 3m+3i′.

Using Lemmas 4 and 5, we get the following corollary.

Corollary 3. We have dim(D)≤ 3m, with equality if and only if i′ = 0.

Proof. From (14), (15) and (18), we get

dim(D) ≤ 3m+
5

4
i′− 1

4

(

1− f

3
+

f

1+g

)

x2 −
1

3

(

1− f

3
+

g f

1+g

)

x2 −
4

9
x3. (22)

We want to show that

5

4
i′ ≤ 1

4

(

1− f

3
+

f

1+g

)

x2 +

(

1

3

g f

1+g
+

1− f

9

)

x2 +
4

9
x3. (23)

It is easy to check that the right hand side (RHS) above is an increasing function of f . We minimize the

RHS by setting f = 0, and, for contradiction, assume that

5

4
i′ >

(

1

12
+

1

9

)

x2 +
4

9
x3. (24)

Now, since the number of points in type E , type F and type T subsets is 6m+6i′, we have

x1 +2x2 +3x3 = 6m+6i′. (25)

Further, as the total number of covering 3-subsets is 7m, we have

x1 + x2 + x3 = 6m− i′. (26)

By subtracting (26) from (25), we get

x2 +2x3 = 7i′,

which gives

i′ =
x2 +2x3

7
. (27)

From (24) and (27), we get
5

4

(

x2 +2x3

7

)

>
21

108
x2 +

4

9
x3,

which is a contradiction.

Hence, (23) holds, and thus from (22), we have dim(D) ≤ 3m. Further, the equality can happen if

and only if i = x2 = x3 = 0.
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6.1.3 Step 3

Lemma 6. If dim(C ) = 4m, then C must be (equivalent to) a direct sum of the m copies of the [7,4]
Hamming code.

Proof. First note that from Corollary 3, it follows that if dim(C ) = 4m, then the size of a maximum col-

lection of pairwise disjoint covering 3-subsets in C is exactly m. Next, we prove the result by induction

on m.

Basis Step: m = 1. Since no two 3-subsets can be disjoint, every pair of 3-subsets must intersect.

Thus, the 7 3-subsets correspond to the Fano plane. The result follows since the row space of any

incidence matrix of the Fano plane is isomorphic to the [7,4] Hamming code [46].

Induction Step: m ≥ 2. Consider a maximum collection of pairwise disjoint 3-subsets of size m as

{S1, · · · ,Sm}. Let L be the subset of all 3-subsets that are disjoint from {S1, · · · ,Sm−1}. Due to exact

covering, each 3-subset intersects six other 3-subsets, and thus, we have |L| ≥ 7. Since Sm ∈ T , and there

are 6 other 3-subsets that intersect Sm, we have |L|= 7. As there are no m+1 pairwise disjoint 3-subsets,

the 3-subsets in L must intersect pairwise.

Now, pick any subset T ∈ L. The six 3-subsets that intersect T must be the six other 3-subsets in L.

Thus, any 3-subset in L must be disjoint from any 3-subset outside L. Further, the 3-subsets in L must

cover 7 points due to the availability of the points.

Let C1 denote the restriction of C on the points covered by the 3-subsets in L, and C2 denote the

restriction of C on the points covered by the 3-subsets outside L. Then, we have C = C1 ⊕C2. Also,

since the 3-subsets in L pairwise intersect, they correspond to the Fano plane and C1 must be equivalent to

the [7,4] Hamming code. In addition, as dim(C ) = 4m, it must be that dim(C2) is a [7(m−1),4(m−1)]
code. Thus, the result follows by induction.

7 Rate Upper Bounds Using Coset Leaders

7.1 Rate Bound for Codes with (2, t)-Availability

First, we present a bound on the rate of a binary code having (2, t)-availability with exact covering. Our

main idea is to bound the maximum weight of a coset leader of its dual code by using the covering

properties imposed by availability constraints. We note that the maximum weight of a coset leader of a

linear code represents its covering radius [31].

Theorem 3. Let C be a length-n code spanned by nt
3

3-subsets that cover every point with (2, t)-
availability. Then, we have

Rate
(

C
⊥
)

≤ H2

(

1

t +1

)

, (28)

where H2(·) is the binary entropy function.

Proof. We refer to the nt/3 covering 3-subsets as triples. Let v be a coset leader of a coset of C such

that wt(v) = w. By the minimality of w, every triple should meet v in at most one point.

Let Γ be a graph formed on the complement of v by the wt triples that meet v in one point, defined as

follows. Vertices of Γ are the n−w points in the complement of v, and a pair of vertices are connected by

an edge if the corresponding points belong to a triple. Note that the number of edges in Γ is wt, whereas

the number of vertices in Γ is n−w.
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Our main goal is to show that w ≤ n/(t + 1). Towards this end, we note the following properties of

Γ. First, Γ does not contain any cycle of odd length. This is because if Γ contains a cycle of odd length,

then the sum of corresponding triples is a codeword of odd weight supported within v. This contradicts

the assumption that v is a coset leader.

Second, the number of edges in Γ is at most the number of vertices in it. If the maximum degree in

Γ is two, then the result follows. Otherwise, let v0 be a vertex in Γ of degree greater than two. Then, in

the following, we show that any neighbor of v0 cannot have degree greater than one.

Let P, Q, and R be any three triples intersecting in the point corresponding to v0. Denote the points

in P (respectively, Q and R) as Pi (respectively, Qi and Ri) for i = {1,2,3}. Let P1, Q1, and R1 be the

points that meet v. Let P2, Q2, and R2 correspond to the vertex v0. Note that P3, Q3, and R3 correspond

to the neighbors of v0.

Suppose, for contradiction, that P3 corresponds to a vertex of degree two or more. Let S be a triple

meeting v that intersects P in P3. Note that S cannot contain P3 or Q3, as this would result in a triangle

(which is an odd cycle) in Γ. Let v′ = P+Z + S, where Z is chosen to be either Q or R such that it is

disjoint from S. Then, we have wt(v+v′)< wt(v), which contradicts that v is a coset leader. Thus, the

vertex corresponding to P3 cannot have degree greater than one. This proves that every neighbor of a

vertex of Γ of degree greater than two must have degree one. In other words, Γ consists of (even length)

cycles, paths, and stars. Hence, the number of edges in Γ is at most the number of vertices. This yields

that w ≤ n/(t +1).
Now, we use the bound on w to limit the number of cosets of C , which allows us to lower bound the

dimension of C as follows. Let wmax denote the maximum weight of a coset leader of C . Then, we can

write

dimC = log2

(

2n

Number of cosets of C

)

,

≥ log2

(

2n

∑
wmax

i=0

(

n
i

)

)

,

≥ log2

(

2n

2nH2(wmax
n )

)

,

= n
(

1−H2

(wmax

n

))

,

≥ n

(

1−H2

(

1

t +1

))

, (29)

where the second inequality follows from the well-known result that ∑
wmax

i=0

(

n
i

)

≤ 2nH2( wmax
n ); and the last

inequality holds because wmax ≤ n/(t +1) and H2(x) is increasing in x for 0 ≤ x ≤ 1/2.

The bound in (28) follows from (29).

Tight Rate Bound for Length-n Codes with
(

2, n−1
2

)

-Availability and Optimality of Simplex

Codes: Using the idea of bounding the weight of a coset leader, we can easily obtain a tight upper bound

on the rate of codes with
(

2, n−1
2

)

-availability. As we will see, when n = 2m −1 for a positive integer m,

this bound is achieved by the (2m −1,m,2m−1) Simplex code.

Theorem 4. Let C be a length-n code spanned by
n(n−1)

6
3-subsets that cover every point with

(

2, n−1
2

)

-

availability. Then, we have

Rate
(

C
⊥
)

≤ log2(n+1)

n
. (30)
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Proof. The proof follows from the observation that the weight of a coset leader of C should be at most

one. This is because every triple must intersect a coset leader in at most one point due to the minimality

of its weight.

Remark 6. It has been observed that the (2m −1,m,2m−1) Simplex code has (2,2m−1)-availability, see,

e.g. [35, 33]. The (2m − 1,m,2m−1) Simplex code achieves the bound in (30). We note that the rate

optimality of Simplex codes amongst binary codes with locality r = 2 has been shown in [18] using their

field size dependent bound. The idea of bounding the weight of a coset leader gives a very simple proof

for this result.

7.2 Bound for Codes with (r,3)-Availability

The bound in Theorem 3 enables us to obtain, as a corollary, a rate upper bound for binary codes having

(r,3)-availability with exact covering. The main idea is a simple yet powerful observation from [29],

stated in the following remark.

Remark 7. Let H be a parity-check matrix of an (n,k) code having (r, t)-availability with exact covering.

Then, its transpose HT is a parity-check matrix for an
(

nt
r+1

,k
)

code having (t−1,r+1)-availability with

exact covering.

Corollary 4. Let C be a length-n code spanned by 3n
r+1

(r+1)-subsets that cover every point with (r,3)-
availability. Then, we have

Rate
(

C
⊥
)

≤ r−2

r+1
+

3

r+1
H2

(

1

r+2

)

, (31)

where H2(·) is the binary entropy function.

Proof. Using Remark 7 and (29), we get

dim(C )≥ 3n

r+1

[

1−H2

(

1

r+2

)]

, (32)

from which the result follows.

Tight Rate Bound for Codes with (r,3)-Availability and Length
(r+1)(2r+3)

3
: We get the following

rate bound using Theorem 4 and Remark 7.

Corollary 5. Let r be a positive integer such that 3 is a divisor of (r+1)(2r+3). Let C be a code with

length
(r+1)(2r+3)

3
and (r,3)-availability with exact covering. Then, we have

Rate
(

C
⊥
)

≤ 1− 3

r+1
+

3log2(2r+4)

(r+1)(2r+3)
. (33)

Remark 8. Consider a
(

2m −1,m,2m−1
)

Simplex code. Due to its (2,2m−1)-availability with exact

covering (see [35, 33]), it has a
(2m−1)(2m−1−1)

3
× (2m − 1) parity-check matrix H with column weight 3

and row weight 2m−1 −1 such that any pair of rows intersecting in at most one point. The code with HT

as its parity-check matrix has (2m−1 −2,3)-availability, and it achieves the bound in (33).



20 Binary LRCs with Availability

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

ra
te

 

 

TBF bound 1
TBF bound 2
BK bound 1
Our bound

Figure 4: Rate upper bounds versus t for r = 2.

7.3 Comparison with the Existing Bounds

We compare our bounds with (2) from [23, 27], referred to as TBF bound 1. The authors of [23, 27] also

show that the expression on the right hand side of (2) can be upper bounded by 1
r
√

t+1
, referred to as TBF

bound 2.

We also compare our bound in (28) with the following bound on the rate of a code C with (r, t)-
availability given in [29].

Rate(C )≤ 1− t

r+1
+

t

r+1

1

∏
r+1
j=1

(

1+ 1
j(t−1)

) . (34)

We refer to (34) as BK bound 1.

Our bound in (28) is plotted as a function of t in Fig. 4, along with TBF bound 1, TBF bound 2,

and BK bound 1 for r = 2. Observe that our bound gets sharper as t increases crossing TBF bound 1 at

t = 74. This advantage is clarified in Fig. 4, which zooms into the range t = 35 to 100 in Fig. 5.

Next, we compare our bound in (31) with TBF bound 1, TBF bound 2, BK bound 1, and the following

bound from [29] on the rate of a code C with (r,3)-availability.

Rate(C )≤ 1− 3(1+L1 +L2)

(r+1)(3+L1 +2L2)
, (35)

where m = 3n
r+1

, L′
1 =

⌈

(2r−1)m
3(r+2) − 1

r+1
−1
⌉

, L2 =
⌊

m−3−L′
1

2

⌋

, and L1 = m− 3− 2L2. We refer to (35) as

BK bound 2.
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Figure 5: Magnified version of the rate upper bounds for a range of t when r = 2.

We plot our bound in (31) as a function of r in Fig. 6, along with TBF bound 1, TBF bound 2, BK

bound 1 for t = 3, and BK bound 2 for n =
(

r+3
3

)

. Our bound is loose for small values of r, but it gets

sharper as r increases, crossing BK bound 1 at r = 72. The gap with BK bound 1 is very small, on the

order of 10−4, which we clarify in Fig. 6 by zooming into the range r = 40 to 90 in Fig. 7. Note that the

block-length n appears explicitly in the expression of BK bound 2 in (35). We observed the same trend

as shown in Fig. 6 for different values of n, which we do not include for the want of space.

8 Concluding Remarks

We studied availability properties of codes associated with convex polyhedra, focusing on the codes

associated with the Platonic solids. Further, we computed tight upper bounds on the rate of binary linear

codes with (r,2) and (2,3)-availability, and showed the uniqueness of direct sum type constructions

for rate optimality. Our main idea is to view the problem of designing a rate-optimal code with (r, t)-
availability as a covering problem. Since direct sum constructions are known to give good codes for

conventional covering problems [31], we speculate that such a direct sum construction will be present in

rate-optimal codes for other values of r and t. Finally, we presented novel upper bounds on the rates of

binary linear codes with (2, t) and (r,3)-availability.
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Figure 6: Rate upper bounds versus r for t = 3.
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Figure 7: Magnified version of the rate upper bounds for a range of r when t = 3.
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