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Abstract—A technique of lossless compression via substring with a line of 2D source as a symbol of an extended alphabet.
enumeration (CSE) attains compression ratios as well as poar At the initial step of the CSE encoding process, the CSE needs
lossless compressors for one-dimensional (1D) sources.eTBSE to output frequencies of all symbols of the extended alphabe
utilizes a probabilistic model built from the circular stri ng of an . .
input source for encoding the source. The CSE is applicableot To reduce the Cor.nputa_tllonal time, we propose a.neW CSE
two-dimensional (ZD) sources such as images by dea”ng with fOI‘ a 2D source Wh|Ch Ut|||ZeS the ﬂat torus Of an Input 2D
line of pixels of 2D source as a symbol of an extended alphabet source as a probabilistic model instead of the circulangtri
At the initial step of the CSE encoding process, we need to of the source. In the initial step, the total number of output
output the number of occurrences of all symbols of the extereld  1y,5-ks is constant since the new CSE works in block-by-hlock

alphabet, so that the time complexity increase exponentigi when M luate the limit of th d d
the size of source becomes large. To reduce the time complgxi oreover, we evaluate the fimit o € average codewor

we propose a new CSE which can encode a 2D source in block-length of the proposed algorithm for general sources.
by-block instead of line-by-line. The proposed CSE utilize the

flat torus of an input 2D source as a probabilistic model for Il. BASIC NOTATIONS AND DEFINITIONS
encoding the source instead of the circular string of the sage. A Alphabet and Block

Moreover, we analyze the limit of the average codeword lengt o
of the proposed CSE for general sources. Let X be a finite source alphab¢o,1,...,J—1} and let

|X| be a cardinality ofX, that is|X| = J. Let X" pe
. INTRODUCTION the set of allm x n finite blocksp = (p(i.j))1<i<m.1<j<n

In 2010, Dubé and Beaudoin proposed an efficient offver x, wherep; j, € X is the element ofp at (i, 5)-
line data compression algorithm for a binary source knowgbordinate. Furthermore, let[**] be Um7n>0)([m,n]7 where

asCompression via Substring Enumerati¢®SE) [1]. In [2], xlmn] includes theempty blockAl™" when at least one
Yokoo proposed a universal CSE algorithm for a binary soureg 1, and n is 0. For convenienceX[™% and x[0n are

and various versions of the CSE for a binary source hadefined ag Al™ %} and {0}, respectively. Fop € X[**,
been proposed so far [3]-[5]. It is reported that perforneanget |p|,. and |p|. be the length of row (théeigh) and the

of the CSE [4] is as well as that of an efficient off-lingength of column (thavidth), respectively. For example, when
data compression algorithm using the Burrows-Wheelestrany — {0,1}, Fig. 1 illustrategp € X33 where|p|, =|p|.=3.

formation (BWT) [6]. In [7], it is proved that an encoder,

which is a deterministic finite automaton, of the CSE anc[| [,

an encoder without sinks of the antidictionary coding [8 ar [ [ [, OO O AT To | [1T1 o
isomorphic for a binary source. Moreover, an antidictignar [, 7T L O o o [o [ 1|
coding proposed in [9] provided the first CSE fpary (¢ > 2) Ojoflo]!

alphabet sources as a byproduct. lwata and Arimura proposgi. A3 x 3 Fig. 2. 70
the modified algorithm and evaluated the maximum redublock p. e
dancy rate of the CSE for thiegh order Markov sources [10].

. For encodi_ng an input sodrce, the_ CSE _utiliz_es a p_robabiliéj Subblock, Concatenation, and Dictionary

tic model built from the circular string which is obtained by ] (b1 A k] .
concatenating the first symbol to the last symbol of the saurc FOrpe X ™, asubblockp ;" ex!™1 is defined as
A probabilistic model of the circular string is also usefal f 0l

the BWT and antidictionary coding [7], [9], and in [11], it :\\[,Mj] EZEB 223?38%’

is shown that an antidictionary built from the circular styi = -7

is useful for genome comparison such as deoxyribonucleig,(éth-1.71-1)._ Pag) 0 Pl

acid (DNA). However, for a 2D source such as an image, '~ : . :
computational time of the CSE is exponential with respect to Plitho1,j) “°°  Plitht,jH1)
line length since the CSE works in line-by-line. The CSE deal (k>0 andl>0)

(p), o¢(p), 7(p), ando,(p) of p in Fig. 1.



http://arxiv.org/abs/1701.06733v1

wherel1<i<m, 1<j<n, k<m-—i+1, andl<n—j+1. D. Classifications of Flat Tori and Core
ngeinafter, without nc_)tice, we assume that the height a”dForp andk (0 <k <m), andl (0 <1 < n),
width of p are respectively given by (> 2) andn (> 2).

In particular,(m — 1) x n Subb|0CkSpE71n;)1’n) andpE;"i’)‘) are T(p,k,1) == {q € XI"™" st. N(w|q) = N(w|p),
denoted byr,.(p) ando,.(p), respectively. Moreover x (n— Yw e XFU g is primitive .} (6)

m,n—1

1) subblocksp;';) ) andpgf;;) are denoted byr.(p) and
o.(p), respectively. For example, ferin Fig. 1, Fig. 2 shows
7.(p), o.(p), m(p), ando,.(p) from the left-hand side.

For p, the dictionary ofp is defined as the set of all the
subblocks ofp, that is,

For example,[p] = T (p,m,n). For 0 < k < n and fixed
0<1<mn, T(p,k,1) is monotone decreasing with, that is
T(p,k+1,1) CT(p,k,1). Similarly, for fixed0 <k’ <n and
0<l<n, T(p, k', I'+1)CT(p,k',1"). Next, we defind3(p),

B(p):={be X" st o, (. (b)) €D(D), oc(rc(b)) €D(H),

D(p):= {p(M_l’H_l) st.1<i<m,1<j<n,
1§k§m,1§l§n}u{/\[0a0]}. (7)

(4,9)
0<k<m—i+1,0<I<n—j+1}.
We assume that elements B{p) are ordered in ascending
der with its height (if heights of the elements are equmednt
defi ' Ylislelslotltlc] b block obtained b the elements ordered with its width; if Widths_of thg elen$en.t
efines : t € to be a Dblock obtained by 5.0 aqual, then the elements are ordered in lexicographical

con_catenating& at thg end ofs in columns. _Similarly, we order column-wisely) wherd; is theith element of3(p) (1<
define a concatenation of blocks by row-wisely as follow2.§|8(p)|)' Fori (1<i<|B(p)|),

for two blocks u,v € X** such that|u|. = |v|., define
ufv € xlul-+l-luld to be a block obtained by concatenating 7 (B(p),p,i) := {g € XI"™" s.t. N(b;|q)=N(b; |p),

u at the end ofv in rows. 1 <Vj <i,q is primitive.} (8)

Now we define a concatenation of blocks by column-wisegfr
as follows: For two blockss, t € X[** such that|s|, = |¢|,,

C. Flat Torus, Primitive, and Frequencies of Subblocks ~ For example,[p] = T(B(p),p,|B(p)|). For 1 < i <

For p, aflat torus of p, denoted byp”, is constructed by 1B(p)|, T(S(P%P,i is mono'tone decreasing with that is
concatenating the most left-hand side column (resp. the tbpBP), P, i+1) CT(B(p), p,i). i
row) to the most right-hand side column (resp. the bottom A © € B(p) such thata : ’ﬁd’ G G d € D(p)
row) of p. The flat torus can be treated as an infinite pattetderea, b(#a), ¢, d(# c) e X1~ is calliadc—core Ave
such thatp(; - = p” . for non-negative integek,l.  B(p) such thate/v, f/v,v/g,v/h € D(p) wheree, f(#

) (ki) . L. e),g,h(#g)exbI?ld s calledr-core
Forg € XI™" andp := (p:p)/(p: p), if there exist ~/ '
DOSiti\airgtielgirfﬁ(S <i< 77}) andj (1 <j < n) such that [1l. REVIEW OF CONVENTIONAL CSE
a=p,; is satisfied, then the equivalence relation The conventional CSE is a lossless compression algorithm
is denoted agy ~ p. Note thatp is a2m x 2n subblock of fgr a 1D source. Fop, we can regargp as a 1D source
p". Let [p] be the set of all the blockg such thatg ~p, & ¢ X[l over an extended alphabat(= X[™:1), so that
— xmnl st D). 1 the CSE can encodp as a 1D sourcer. For x, the CSE
pl=ta¢e 9 Dp)} @ outputs a following triplet

If |[p]| = mn, p is called primitive. Hereinafter, without
notice, we assume thatis primitive. For examplep shown (E(n), e(ba, bs, .., bs(a)) ), e(rank())). ©)
in Fig. 1 is primitive. In (9), E(n) represents an encodedy means of Elias integer
Forp andu € XU (0<k<m and0<I<n), code [12]. And rankg) represents an index for identifying
o (kD) @ in [x] such as the rank ok in [x] with lexicographical
N(u|p):=[{rstu= HCRIL [pI} | 2) order. Then,e(rank{x)) represents an encoded ramk(by
where N (A" |p) = mn (k = 0 or [ = 0). For convenience, 10827 bits, ande(bs, bs, ..., bis() ) represents a sequence
we often adopt the notatioiV(w) instead ofN (u|p). Forp, ©Of N(bi) (2 <i <|[B(z)|) which are encoded by an entropy
0<k<m, and0<I<n, coding whereN (b;) representsV(b;|x) in this subsection.
o o In encoding, forb;, € B(z), i is selected from 2 tdB(x)|
> N(u)=mn. (3) sinceN(b;) = N(A) = n andn is encoded ag(n). For
weXT] 2<i<|B(z)],
Moreover, forv € Xl (0<i<m,0<j<n)andv €  (C-i) incase oflb;|.=1: EncodeN (b;) if b; # b 5,
XED (0<k<m,0<1 <n), (C-ii) incase A0f|b1-|622: EncodeN (b;) if (10) holds and
a,c € X\{b 3} whereb; = a:w:c such that
N(v):Z N(c:'v):z N(v:e), 4) w — Uc(ﬂ-c(l')i)‘)
cex cext whereb, ;. is the element oft’ having the largest index in

N(v')=>_ N(r/v')=)_ N@'/r). (5) B(x) and note that (10) was first shown in [10]. Note that in
reXxtl rex(hl (C-i), N(b;) is encoded even iV (b;) = 0.



In (C-i), (b\xm) can be calculated by using (3) andor compression ratio, only a relation on column is utilizesl

already encoded;(j < |X|+1). Similarly, in (C-ii), N(b;) shown in (10) and a relation on row is not utilized.
such thata = b, 3., or ¢ = b 3, can be calculated by using

C IV. PROPOSEDALGORITHM
(4) andby, (k < 7). Therefore, they are not encoded.

For p, we assume thatn < n. Let K and L be
min(N(a:w), N(w:c), N(w)—N(a:w), |/log x| log|xm] and |, /log | log | 1], respectively.
N(w)-—N(w:c)) > 1. (10) We divide B(p) into four disjoint parts with respect to size

: . L ) of its elements.
As for b;(= a:w:¢) in (C-ii), satisfying (10) is the same that
={beB

w is a c-core. Moreover, since, w,c<D(z) and (3) holds,  Bo(p)

number of candidates &f for encoding in (C-ii) is polynomial 1(p) ={beB
order withn. The details are described in the bottom of this Ba(p):={beB
section. In (C-i),N(b;) satisfies the following inequality

p) s.t.b= A0y,

p) s.t.be X},

p) st.1<|b, < K,1 <|b|l.<L,b¢ X},
)

~ I~ ~

Bs(p):={beB(p) s.t. K < |b|, or L < |b|.}.
0< N(b) <n-—1. (11 , _ ,
Elements ofB;(p) (i = 0,1,2,3) are ordered in ascending
In (C-ii), N(b;) satisfies the following inequality [9] order with its height (if heights of the elements are equint
the elements ordered with its width; if widths of the elensent
max{0, N(a:w) ZN w:d), ZN (b:w) are equal, then the elements are ordered in lexicographical
deX\{c} bed\{a} column-wisely.) Then, elements @(p) are reordered with
< N(a:w:c)<min{N(a:w), N(w:c)}. (12)  (Bo(p), Bi(p), B2(p), Bs(p)). For2 <i < [B(p)|,

The left-hand side term in (10) is given by the difference (P-) in case ofb; €B:(p): EncodeN (b;) if b; # J—1,
between the 3rd term and the 1st term in (12). Therefore,(P-il) incase ofb; € Ba(p)UBs(p):
if (10) does not hold, then the 1st and the 3rd terms are equal. 1) if |bifc = 1: Encode N(b) if (10) holds and

In other words,N (b;) = min{N(a:w), N(w:c)} holds, so a,c e X\{J—1} whereb; = a:w:c such that

that N (b;) can be calculated. Henc#/(b;) is not encoded if ?U:Uc(ﬂc(bi)), _

(10) does not hold. 2) if |b|, = 1: EncodeN (b;) if (16) holds ande, g €
X\{J—-1} whereb; = such thaw =o,. (7, (b;)),

Let I{a:w: ¢) be min(N(a:w), N(w:e), N(w)~N(a: 3) if |\1i|c >}2 and|by|, >e/12}{gEncodeN(bi) it égtrg (1)c)))
w), N(w)—N(w:e))+1 wheremin(-) is the left-hand term of and (15) hold Wherzu, c € X1 L (|b;,, 1)}
(10). For encodmg\l( ;) by an entropy coding, a probability ande, ge XL1¥N\ {2(1, |bi.)},

's assigned taV(b;) as follows [2]. wherex(k, 1) andx(1,1) are the element ot*1 and x[/
1 (1Bl = 1), (13) having the largest index i8(p), respectively.
1 min(N (e/v), N(v/g), N(v)—N(e/v),
m (2 < |bz|c < Uog2 10g2 nJ)a (14) N('U)—N(’U/g)) > 1. (16)
[T(B(), "B” 1)l (|bs]. > [log, logy ] +1). (15) Asforb;(= efv/g) in 2) and 3), satisfying (16) is the same that
I T(B(z),2,i-1)] v is a r-core. As shown in the discussions in Sec. Ill, number
The assigned probabilities are encoded by an entropy codpfgcandidates ob, for encoding in (P-ii) is polynomial order
such as an arithmetic coding [13]. with m andn. The details are described in the bottom of this

. . ._section.
For encoding 2D sourcg by the conventional CSE, there is . . i .
"9 uree by vem ! The conventional CSE utilizes only condition (10) with

a problem with respect to computational time. In (C-i), n@mb . . S
of encodedN (b)) (2 < i < |)€|) is exponential with respect respect to column, while the proposed algorithm utilizes
S g conditions (10) and (16) with respect to column and row,

to m since|X| is |X|™. In practical,m is greater than 1000

for an imagep € X™", so that the number is greater thalJ]'espectlvely, for encoding. In 1) and 2),b; is one row and
21000 even if | X| = 2. Note that in (C-ii), number of encoded one column, so that (10) and (16) is only utilized, respetyiv
N (b;) is not exponential with respect ta andn. The reason In (P-i), N(b;) satisfies) < N(b;) <mn—1. In (P-ii), N(b;)

is as follows. Sincaw is a c-core, from (3) and (4), the total® such thad_b e 2 2 sat[llsf||els] a modified (12) which is obtained
number of c-cores is polynomial order with respecttcand byt_r(;_plailt?g?(”by X T a?SN(bi) such thatjb;|, > 2

n. Moreover, sinceN(aw) > 1 and N(wc) > 1 in (10), satisties the foflowing inequaity
a,c € D(z)NX also hold. From (3) and (4)D(2)NX'| never max{0, N (efv) — Z N(v/h), N(vjg) — Z N(f)}
exceedsnn. Hence, the total number of candidatg$= a: hexlllele\ {g} Felleld {e}
w:¢) for encoding in (C-ii) is polynomial order with respect _ <

to m andn. In other words, the set of all the candidates can b€ N (efvfg) <min{N(efv), N (v/g)}. (47
utilized instead of3(x) in (C-ii) in practice. Note tha3(x) As described on (10), similarly, the left-hand side term in
is utilized for simplifying the explanation in this papersA (16) is given by the difference between the 3rd term and the



1st term in (17). Therefore, if (16) does not hold, then the For p, let ¢(p) be a codeword length of the proposed

1st and the 3rd terms are equal. In other wordgp;) algorithm. Let/y(p) be the total codeword length df(m),

min{ N (e/v), N(v/g)} holds, so thaiV(b;) can be calculated. E(n), and e(rankp)) in (21). The codeword length of

Hence,N (b;) is not encoded if (16) does not hold. Therefore;(bs, bs, ..., bjz(p)|) consists of three part§ (p), £2(p), and

in 3), N(b;) is encoded if both (10) and (16) hold. l3(p) wheret,(p), ¢2(p), and ¢5(p) are the total codeword
Let I'(efv/g) be min(N(ew), N(v/g), N(v) — N(e), length of N(b;) for b; € B1(p), b; € Ba2(p), andb; € B;(p),

N(v)—N(v/g)) + 1 wheremin(-) is the left-hand term of respectively. Herel(p) = ¢o(p) + ¢1(p) + £2(p) + ¢5(p).

(16). For encodingV (b;) by an entropy coding, a probability Theorem 1 is one of our main results. To prove Theo-

is assigned tav(b;) as follows. rem 1, we show three lemmas. Lemma 2 is a 2D version of

1 Lemma 3 [2], and the proofs of Lemmas 2 and 3 are omitted

— (bi € Bi(p)), (18) in this paper.
max (ﬁ, ﬁ) (bi € Ba(p)), (19) Theorem 1 For a general sourcg,
T (B(p), p )| _ : {E(X[m’"])} _
T pion PEB@): (20 limsup B | = | = H&X):

The assigned probabilities are encoded by an entropy COdi_rlgnma 2 Forp
such as an arithmetic coding. Fpr the proposed algorithm '
outputs a following quartet

(E(m), E(n),e(bz, bs, ..

1<k<m,andl<l[<n

Z N(;:JLP) log

we X[k

mn

kl

N(w|p)

1 k1) < —
0gs |T(p7 ) )| — mn

. b|3(p)‘), E(I'ank(p))). (21)

In (21), E(m) and E(n) represent encodech and n by

Lo . Lemma 3 If b1 € B(p) such thatlb;11|. > 2 does not
means of Elias integer code, respectively. And rahkep- . +l .
resents an index for identifying in [p] such as the rank satisfy (10) or such thabi.. |, > 2 does not satisfy (16), then

of p in [p] with lexicographical order column-wisely. Then,! (B(P),p,i+1) = T(B(p),p,1)-

e(rank()) represents an encoded rapkby [log, mn] bits, Lemma 4

ande(bz, bs, . .., bp(p|) represents a sequencedtd;) (2 < ] ]
i < |B(p)|) which are encoded by an entropy coding a 1 N(w | X™™) N (w | X tmnl)
described in Sec Il i%iuog KLZE — | loge E | —— ———

In the proposed algorithm, in (P-i), number of encoded wexte s

N(b;) is |X|—1, that is a constant, while that in (C-i) is —
exponential with respect to, that is|X|™—1. As for (P-ii), Proof: For w € X5:L), Py (.. . (w) can be written by
number of candidated'(b;) for encoding is polynomial order ’
with respect ton andn. The reason is as follows. As for 1), [H(i,j) s.t. }
it is the same as (C-ii). As for 2) and 3), sinedis a r-core, £
from the discussions on a c-core described in Sec. Il tted to
number of candidated'(b;) for encoding is polynomial order where m’ and n’ arem — K +1 and n— L + 1, respec-
with m andn. In other words, the set of all the candidateﬁveb,’ and (i, §) is a coordinate. Fop, let N'(w|p) be
can be utilized instead d(p) in (P-ii) in practice. Similarly, (i, ) st (FEAGHA) 0 i ot ] < < "

) - ’ Y . ' :J) SLPg w,l <1< m,1 <)< nyl.
note that3(p) is utilized for simplifying the explanation in this N | ) . N’ (| p) 16 .
paper. Hence, for a 2D sourge the total number of output Moreover, =22 can be written by Tf) (%
blocks of the proposed algorithm is polynomial with respegthere 0 < 6 < (K —1)(n—L+1)+ (L—1)m from (2).
to n andn while that of the conventional CSE is exponentiagince K and L are respectively|, /log||log x| m| and

H(X).

x (L)

(i9) =w,1<i<m/,1<5<n'}

!/

m'n’

with respect tom.

V. EVALUATION OF THE PROPOSEDALGORITHM
A general sourc& is defined as
X o= {xmnl=( X ¢

<m,n>
(m,n)

00,00

<m,n> <m,n>
X m=1,n=1

(1,1) (1,2) )}
where a random variabl& "] takes a value in the: x n

Cartesian product’!™™ of X [14]. The probability distribu-
tion of a random variableX ™" is denoted byPx (... For

X, the sup-entropy rate a&K is defined as

1
H(X): Em su_;)) %H(X[m’"]). (22)

|/1og| x| log x| 7], NE:’A”) converges to% asm and
n go to infinity. SinceE [W} = Pxm.n(w),

1 N(w| XW"])} N(w | Xmnl)
limsup——=>» E [7 logo | ——MM=
m,n—o0 IgﬂLe;m mn mn

. 1
= lim sup _ﬁz Px[m,n] (w) 1Og2 Px[m,n] ('LU)
m,n— 00 we XK L]

H(XKL] .

= tmsup £ = A x)



(Proof of Theorem 1):As for ¢, (p), from the assumption,

sincem < n, £y(p) < 2(log, n+2log, log, n+7)+[log, mn]
where (log, n+21log, log, n+7) and [log, mn] are costs of
Elias integer code fon and e(rank(p)), respectively. As for
¢1(p), the cost ofN(b;) in (P-i) is [log, mn] bits from (18),
so thatt, (p) < (|X|-1)[logy mn]. As for £5(p), sincel(b;) <
mn andI'(b;) < mn, costs ofI(b;) and I'(b;) are at most
log, mn bits. Moreover, sincen <n and K < L,

K L
D) SZZ |X "M logy mn < L2|X|~ log, mn
h=1lw=1
< 2(log) x| log| x| 1) (log| x| n) (logy n).

Therefore,

m}}gloo(fo(m + £1(p) + £2(p))/mn = 0. (23)
As for {3(p), from (20), cost of N(b;) is
—logy (|7 (B(p), p,0)|/[T(B(p),p,i—1)|) bits.

Cost of the next encodedV(b;) such that N(b;)
has been encoded immediately beforév(b;) is
—log, (T (B(p), ,)|/|T(B(p),p,j—1)|). From Lemma 3,
IT(B(p). p.i—1)|=|T(B(p).p.i)|. Therefore,N (b;) can be
written by — log, (IT(B(p). p. )|/ |T(B(p), p,i)]), Hence,
the denominatof7 (B(p
numerator|7 (B(p),
Moreover, sincd7 (B(p B(p))|=[p]|=mn,

l3(p) = logy | T(B(p),p, S—1)| —logymn.  (24)
where S is the index of the first blockbs € Bs(p)

which is encoded by arithmetic coding. From Lemma 3

|T(B(p),p, S—1)|=|T (p, K, L)|. Therefore,

l3(p) = log, [T (p, K, L)| — logy mn. (25)
From (25) and Lemma 2,
mn N(w) N(w)
< —— - .
t(p) < — 5 ——— logy — = — logy mn. (26)
weX K, L]
Therefore,
[m,n]
> [@(X )} <
mn
w|X[m ) N(w|X™) ] log, mn
- — Z log, — .
mn mn
weX[K L]
From Jensen’sinequalitﬁ[%] Ellog, w] <

E[N(“’Lﬁm’n]) 10, N(’”Lﬁ ). Therefore, from Lemma 4,
[m.n] .
limsup £ [M} < H(X). (27)
m,n—oo mn
From (23) and (27),
[m,n] R
limsup E [u} <H(X). (28)
m,n— oo mn

The proposed code is a prefix code, so that Kraft's inequality

), p, 1) forpj is equal to the previous [l
p,i)| for b;, so that they are canceled.
), P;

is satisfied. Therefordimsup,), ,,_,. E V(X "])] > H(X).
[ |
From Remark 1.7.3 [14], iX is a stationary sourcé] (X)

can be expressed byl (X)(:= limy,.n oo M), that

mn

is the entropy rate ofX. Therefore, if X is a stationary
source, the average codeword length of the proposed digorit
converges taH (X) asm andn go to infinity.

VI. CONCLUSION

For reducing computational time, we proposed a new CSE
for a 2D source which utilizes the flat torus of the source ahil
the conventional CSE utilizes the circular string of therseu
as a probabilistic model. The total number of output blodks o
the new CSE is polynomial while that of the conventional CSE
is exponential with respect to the source size. The new CSE
encodes the source in block-by-block while the conventiona
CSE does in line-by-line. Moreover, we prove that an upper
bound on the average codeword length of the proposed CSE
converges to the sup-entropy rate for a general source @s siz
of the input source goes to infinity. Furthermore, if a gehera
source is a stationary source, then the length convergé®to t
entropy rate of the source as the size goes to infinity.
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