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Abstract—A technique of lossless compression via substring
enumeration (CSE) attains compression ratios as well as popular
lossless compressors for one-dimensional (1D) sources. The CSE
utilizes a probabilistic model built from the circular stri ng of an
input source for encoding the source. The CSE is applicable to
two-dimensional (2D) sources such as images by dealing witha
line of pixels of 2D source as a symbol of an extended alphabet.
At the initial step of the CSE encoding process, we need to
output the number of occurrences of all symbols of the extended
alphabet, so that the time complexity increase exponentially when
the size of source becomes large. To reduce the time complexity,
we propose a new CSE which can encode a 2D source in block-
by-block instead of line-by-line. The proposed CSE utilizes the
flat torus of an input 2D source as a probabilistic model for
encoding the source instead of the circular string of the source.
Moreover, we analyze the limit of the average codeword length
of the proposed CSE for general sources.

I. I NTRODUCTION

In 2010, Dubé and Beaudoin proposed an efficient off-
line data compression algorithm for a binary source known
asCompression via Substring Enumeration(CSE) [1]. In [2],
Yokoo proposed a universal CSE algorithm for a binary source
and various versions of the CSE for a binary source have
been proposed so far [3]–[5]. It is reported that performance
of the CSE [4] is as well as that of an efficient off-line
data compression algorithm using the Burrows-Wheeler trans-
formation (BWT) [6]. In [7], it is proved that an encoder,
which is a deterministic finite automaton, of the CSE and
an encoder without sinks of the antidictionary coding [8] are
isomorphic for a binary source. Moreover, an antidictionary
coding proposed in [9] provided the first CSE forq-ary (q>2)
alphabet sources as a byproduct. Iwata and Arimura proposed
the modified algorithm and evaluated the maximum redun-
dancy rate of the CSE for thekth order Markov sources [10].

For encoding an input source, the CSE utilizes a probabilis-
tic model built from the circular string which is obtained by
concatenating the first symbol to the last symbol of the source.
A probabilistic model of the circular string is also useful for
the BWT and antidictionary coding [7], [9], and in [11], it
is shown that an antidictionary built from the circular string
is useful for genome comparison such as deoxyribonucleic
acid (DNA). However, for a 2D source such as an image,
computational time of the CSE is exponential with respect to
line length since the CSE works in line-by-line. The CSE deals

with a line of 2D source as a symbol of an extended alphabet.
At the initial step of the CSE encoding process, the CSE needs
to output frequencies of all symbols of the extended alphabet.

To reduce the computational time, we propose a new CSE
for a 2D source which utilizes the flat torus of an input 2D
source as a probabilistic model instead of the circular string
of the source. In the initial step, the total number of output
blocks is constant since the new CSE works in block-by-block.
Moreover, we evaluate the limit of the average codeword
length of the proposed algorithm for general sources.

II. BASIC NOTATIONS AND DEFINITIONS

A. Alphabet and Block

Let X be a finite source alphabet{0, 1, . . . , J−1} and let
|X | be a cardinality ofX , that is |X | = J . Let X [m,n] be
the set of allm×n finite blocksp = (p(i,j))1≤i≤m,1≤j≤n

over X , where p(i,j) ∈ X is the element ofp at (i, j)-
coordinate. Furthermore, letX [∗,∗] be ∪m,n≥0X

[m,n], where
X [m,n] includes theempty blockλ[m,n] when at least one
of m and n is 0. For convenience,X [m,0] and X [0,n] are
defined as{λ[m,0]} and{λ[0,n]}, respectively. Forp ∈ X [∗,∗],
let |p|r and |p|c be the length of row (theheight) and the
length of column (thewidth), respectively. For example, when
X = {0, 1}, Fig. 1 illustratesp ∈ X [3,3] where|p|r= |p|c=3.

1 0 0

1 1 0

0 0 1

Fig. 1. A 3× 3
block p.
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Fig. 2. πc(p), σc(p), πr(p), andσr(p) of p in Fig. 1.

B. Subblock, Concatenation, and Dictionary

For p∈X [m,n], a subblockp(i+k−1,j+l−1)
(i,j) ∈X [k,l] is defined as

p
(i+k−1,j+l−1)
(i,j) :=



































λ[0,l] (k≤0 and l≥0),

λ[k,0] (k≥0 and l≤0),






p(i,j) · · · p(i,j+l−1)
...

. . .
...

p(i+k−1,j) · · · p(i+k−1,j+l−1)







(k>0 and l>0)
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where1≤ i≤m, 1≤ j ≤ n, k≤m−i+1, and l≤ n−j+1.
Hereinafter, without notice, we assume that the height and
width of p are respectively given bym (≥ 2) andn (≥ 2).
In particular,(m− 1)× n subblocksp(m−1,n)

(1,1) andp(m,n)
(2,1) are

denoted byπr(p) andσr(p), respectively. Moreover,m×(n−

1) subblocksp(m,n−1)
(1,1) andp

(m,n)
(1,2) are denoted byπc(p) and

σc(p), respectively. For example, forp in Fig. 1, Fig. 2 shows
πc(p), σc(p), πr(p), andσr(p) from the left-hand side.

For p, the dictionary ofp is defined as the set of all the
subblocks ofp, that is,

D(p) :={p
(i+k−1,j+l−1)
(i,j) s.t. 1≤ i≤m, 1≤j≤n,

0≤k≤m−i+1, 0≤ l≤n−j+1}.

Now we define a concatenation of blocks by column-wisely
as follows: For two blockss, t∈X [∗,∗] such that|s|r = |t|r,
define s : t ∈ X [|s|r,|s|c+|t|c] to be a block obtained by
concatenatingt at the end ofs in columns. Similarly, we
define a concatenation of blocks by row-wisely as follows:
for two blocks u,v ∈ X [∗,∗] such that|u|c = |v|c, define
u/v ∈ X [|u|r+|v|r,|u|c] to be a block obtained by concatenating
u at the end ofv in rows.

C. Flat Torus, Primitive, and Frequencies of Subblocks

For p, a flat torus of p, denoted bypT , is constructed by
concatenating the most left-hand side column (resp. the top
row) to the most right-hand side column (resp. the bottom
row) of p. The flat torus can be treated as an infinite pattern
such thatp(i,j) = pT(i+km,j+ln) for non-negative integerk, l.

For q ∈ X [m,n] and p̄ := (p : p)/(p : p), if there exist
positive integersi (1 ≤ i ≤ m) and j (1 ≤ j ≤ n) such that
q = p̄

(i+m−1,j+n−1)
(i,j) is satisfied, then the equivalence relation

is denoted asq ≃ p. Note thatp̄ is a 2m × 2n subblock of
pT . Let [p] be the set of all the blocksq such thatq ≃ p,

[p] := {q ∈ X [m,n] s.t. q ∈ D(p̄)}. (1)

If | [p] | = mn, p is called primitive. Hereinafter, without
notice, we assume thatp is primitive. For example,p shown
in Fig. 1 is primitive.

For p andu ∈ X [k,l] (0≤k≤m and0≤ l≤n),

N(u |p) := | {r s.t.u = r
(k,l)
(1,1), r ∈ [p]} | (2)

whereN(λ[k,l]|p) = mn (k = 0 or l = 0). For convenience,
we often adopt the notationN(u) instead ofN(u|p). For p,
0≤k≤m, and0≤ l≤n,

∑

u∈X [k,l]

N(u) = mn. (3)

Moreover, forv ∈ X [i,j] (0 ≤ i ≤ m, 0 ≤ j < n) and v′ ∈
X [k,l] (0≤k<m, 0≤ l ≤n),

N(v)=
∑

c∈X [i,1]

N(c :v)=
∑

c∈X [i,1]

N(v :c), (4)

N(v′)=
∑

r∈X [1,l]

N(r/v′)=
∑

r∈X [1,l]

N(v′/r). (5)

D. Classifications of Flat Tori and Core

For p andk (0 ≤ k ≤ m), and l (0 ≤ l ≤ n),

T (p, k, l) := {q ∈ X [m,n] s.t.N(w|q) = N(w|p),
∀w ∈ X [k,l], q is primitive.} (6)

For example,[p] = T (p,m, n). For 0 ≤ k < n and fixed
0 ≤ l ≤ n, T (p, k, l) is monotone decreasing withk, that is
T (p, k+1, l)⊂T (p, k, l). Similarly, for fixed 0≤ k′≤n and
0≤ l′<n, T (p, k′, l′+1)⊂T (p, k′, l′). Next, we defineB(p),

B(p) :={b∈X [k,l] s.t. σr(πr(b))∈D(p̄), σc(πc(b))∈D(p̄),

1≤k≤m, 1≤ l≤n} ∪ {λ[0,0]}. (7)

We assume that elements ofB(p) are ordered in ascending
order with its height (if heights of the elements are equal, then
the elements ordered with its width; if widths of the elements
are equal, then the elements are ordered in lexicographical
order column-wisely) wherebi is theith element ofB(p) (1≤
i≤|B(p)|). For i (1≤ i≤|B(p)|),

T (B(p),p, i) := {q ∈ X [m,n] s.t.N(bj | q)=N(bj |p),

1 ≤ ∀j ≤ i, q is primitive.} (8)

For example, [p] = T (B(p),p, |B(p)|). For 1 ≤ i <
|B(p)|, T (B(p),p, i) is monotone decreasing withi, that is
T (B(p),p, i+1)⊂T (B(p),p, i).

A u ∈ B(p) such thata : u, b : u,u : c,u : d ∈ D(p̄)
wherea, b(6=a), c,d(6=c)∈X [|u|r,1] is calledc-core. A v ∈
B(p) such thate/v,f/v,v/g,v/h ∈ D(p̄) where e,f(6=
e), g,h(6=g)∈X [1,|v|c ] is calledr-core.

III. R EVIEW OF CONVENTIONAL CSE
The conventional CSE is a lossless compression algorithm

for a 1D source. Forp, we can regardp as a 1D source
x ∈ X̂ [1,n] over an extended alphabet̂X (= X [m,1]), so that
the CSE can encodep as a 1D sourcex. For x, the CSE
outputs a following triplet

(E(n), e(b2, b3, . . . , b|B(x)|), ǫ(rank(x))). (9)

In (9),E(n) represents an encodedn by means of Elias integer
code [12]. And rank(x) represents an index for identifying
x in [x] such as the rank ofx in [x] with lexicographical
order. Then,ǫ(rank(x)) represents an encoded rank(x) by
⌈log2 n⌉ bits, ande(b2, b3, . . . , b|B(x)|) represents a sequence
of N(bi) (2 ≤ i ≤ |B(x)|) which are encoded by an entropy
coding whereN(bi) representsN(bi|x) in this subsection.
In encoding, forbi ∈ B(x), i is selected from 2 to|B(x)|
sinceN(b1) = N(λ[0,0]) = n andn is encoded asE(n). For
2 ≤ i ≤ |B(x)|,

(C-i) in case of|bi|c=1: EncodeN(bi) if bi 6= b|X̂ |+1,
(C-ii) in case of|bi|c≥2: EncodeN(bi) if (10) holds and

a, c ∈ X̂\{b|X̂ |+1} wherebi = a : w : c such that
w = σc(πc(bi))

whereb|X̂ |+1 is the element ofX̂ having the largest index in
B(x) and note that (10) was first shown in [10]. Note that in
(C-i), N(bi) is encoded even ifN(bi) = 0.



In (C-i), N(b|X̂ |+1) can be calculated by using (3) and

already encodedbj(j < |X̂ |+1). Similarly, in (C-ii), N(bi)
such thata = b|X̂ |+1 or c = b|X̂ |+1 can be calculated by using
(4) andbk (k < i). Therefore, they are not encoded.

min(N(a :w), N(w :c), N(w)−N(a :w),

N(w)−N(w :c)) ≥ 1. (10)

As for bi(= a :w :c) in (C-ii), satisfying (10) is the same that
w is a c-core. Moreover, sincea,w, c∈D(x̄) and (3) holds,
number of candidates ofbi for encoding in (C-ii) is polynomial
order withn. The details are described in the bottom of this
section. In (C-i),N(bi) satisfies the following inequality

0 ≤ N(bi) ≤ n− 1. (11)

In (C-ii), N(bi) satisfies the following inequality [9]

max{0, N(a :w)−
∑

d∈X̂\{c}

N(w :d), N(w :c)−
∑

b∈X̂\{a}

N(b :w)}

≤ N(a :w :c)≤min{N(a :w), N(w :c)}. (12)

The left-hand side term in (10) is given by the difference
between the 3rd term and the 1st term in (12). Therefore,
if (10) does not hold, then the 1st and the 3rd terms are equal.
In other words,N(bi) = min{N(a :w), N(w :c)} holds, so
thatN(bi) can be calculated. Hence,N(bi) is not encoded if
(10) does not hold.

Let I(a :w : c) be min(N(a :w), N(w : c), N(w)−N(a :
w), N(w)−N(w :c))+1 wheremin(·) is the left-hand term of
(10). For encodingN(bi) by an entropy coding, a probability
is assigned toN(bi) as follows [2].

1

n
(|bi|c = 1), (13)

1

I(bi)
(2 ≤ |bi|c ≤ ⌊log2 log2 n⌋), (14)

|T (B(x),x, i)|

|T (B(x),x, i−1)|
(|bi|c ≥ ⌊log2 log2 n⌋+1). (15)

The assigned probabilities are encoded by an entropy coding
such as an arithmetic coding [13].

For encoding 2D sourcep by the conventional CSE, there is
a problem with respect to computational time. In (C-i), number
of encodedN(bi) (2 ≤ i ≤ |X̂ |) is exponential with respect
to m since |X̂ | is |X |m. In practical,m is greater than 1000
for an imagep ∈ X [m,n], so that the number is greater than
21000 even if |X | = 2. Note that in (C-ii), number of encoded
N(bi) is not exponential with respect tom andn. The reason
is as follows. Sincew is a c-core, from (3) and (4), the total
number of c-cores is polynomial order with respect tom and
n. Moreover, sinceN(aw) ≥ 1 and N(wc) ≥ 1 in (10),
a, c ∈ D(x̄)∩X̂ also hold. From (3) and (4),|D(x̄)∩X̂ | never
exceedsmn. Hence, the total number of candidatesbi(= a :
w :c) for encoding in (C-ii) is polynomial order with respect
to m andn. In other words, the set of all the candidates can be
utilized instead ofB(x) in (C-ii) in practice. Note thatB(x)
is utilized for simplifying the explanation in this paper. As

for compression ratio, only a relation on column is utilizedas
shown in (10) and a relation on row is not utilized.

IV. PROPOSEDALGORITHM

For p, we assume thatm ≤ n. Let K and L be
⌊
√

log|X | log|X |m⌋ and⌊
√

log|X | log|X | n⌋, respectively.

We divideB(p) into four disjoint parts with respect to size
of its elements.

B0(p) :={b∈B(p) s.t. b = λ[0,0]},

B1(p) :={b∈B(p) s.t. b ∈ X},

B2(p) :={b∈B(p) s.t. 1≤|b|r≤ K,1 ≤|b|c≤L, b /∈X},

B3(p) :={b∈B(p) s.t.K < |b|r or L < |b|c}.

Elements ofBi(p) (i = 0, 1, 2, 3) are ordered in ascending
order with its height (if heights of the elements are equal, then
the elements ordered with its width; if widths of the elements
are equal, then the elements are ordered in lexicographical
column-wisely.) Then, elements ofB(p) are reordered with
(B0(p),B1(p),B2(p),B3(p)). For 2 ≤ i ≤ |B(p)|,

(P-i) in case ofbi∈B1(p): EncodeN(bi) if bi 6= J−1,
(P-ii) in case ofbi∈B2(p)∪B3(p):

1) if |bi|c = 1: Encode N(bi) if (10) holds and
a, c ∈ X\{J − 1} where bi = a :w : c such that
w=σc(πc(bi)),

2) if |bi|r =1: EncodeN(bi) if (16) holds ande, g ∈
X\{J−1} wherebi=e/v/g such thatv=σr(πr(bi)),

3) if |bi|c ≥ 2 and|bi|r ≥ 2: EncodeN(bi) if both (10)
and (16) hold wherea, c ∈ X [|bi|r,1]\{x(|bi|r, 1)}
ande, g∈X [1,|bi|c]\{x(1, |bi|c)},

wherex(k, 1) andx(1, l) are the element ofX [k,1] andX [1,l]

having the largest index inB(p), respectively.

min(N(e/v), N(v/g), N(v)−N(e/v),

N(v)−N(v/g)) ≥ 1. (16)

As for bi(= e/v/g) in 2) and 3), satisfying (16) is the same that
v is a r-core. As shown in the discussions in Sec. III, number
of candidates ofbi for encoding in (P-ii) is polynomial order
with m andn. The details are described in the bottom of this
section.

The conventional CSE utilizes only condition (10) with
respect to column, while the proposed algorithm utilizes
conditions (10) and (16) with respect to column and row,
respectively, for encodingp. In 1) and 2),bi is one row and
one column, so that (10) and (16) is only utilized, respectively.
In (P-i), N(bi) satisfies0≤N(bi) ≤mn−1. In (P-ii), N(bi)
such that|bi|c ≥ 2 satisfies a modified (12) which is obtained
by replacingX̂ by X [|a|r,1], andN(bi) such that|bi|r ≥ 2
satisfies the following inequality

max{0, N(e/v)−
∑

h∈X [1,|e|c]\{g}

N(v/h), N(v/g) −
∑

f∈[1,|e|c]\{e}

N(f/v)}

≤ N(e/v/g)≤min{N(e/v), N(v/g)}. (17)

As described on (10), similarly, the left-hand side term in
(16) is given by the difference between the 3rd term and the



1st term in (17). Therefore, if (16) does not hold, then the
1st and the 3rd terms are equal. In other words,N(bi) =
min{N(e/v), N(v/g)} holds, so thatN(bi) can be calculated.
Hence,N(bi) is not encoded if (16) does not hold. Therefore,
in 3), N(bi) is encoded if both (10) and (16) hold.

Let I ′(e/v/g) be min(N(e/v), N(v/g), N(v) − N(e/v),
N(v)−N(v/g)) + 1 wheremin(·) is the left-hand term of
(16). For encodingN(bi) by an entropy coding, a probability
is assigned toN(bi) as follows.

1

mn
(bi ∈ B1(p)), (18)

max

(

1

I(bi)
,

1

I ′(bi)

)

(bi ∈ B2(p)), (19)

|T (B(p),p, i)|

|T (B(p),p, i−1)|
(bi ∈ B3(p)). (20)

The assigned probabilities are encoded by an entropy coding
such as an arithmetic coding. Forp, the proposed algorithm
outputs a following quartet

(E(m), E(n), e(b2, b3, . . . , b|B(p)|), ǫ(rank(p))). (21)

In (21), E(m) and E(n) represent encodedm and n by
means of Elias integer code, respectively. And rank(p) rep-
resents an index for identifyingp in [p] such as the rank
of p in [p] with lexicographical order column-wisely. Then,
ǫ(rank(p)) represents an encoded rank(p) by ⌈log2 mn⌉ bits,
ande(b2, b3, . . . , b|B(p)|) represents a sequence ofN(bi) (2 ≤
i ≤ |B(p)|) which are encoded by an entropy coding as
described in Sec III.

In the proposed algorithm, in (P-i), number of encoded
N(bi) is |X |− 1, that is a constant, while that in (C-i) is
exponential with respect tom, that is |X |m−1. As for (P-ii),
number of candidatesN(bi) for encoding is polynomial order
with respect tom andn. The reason is as follows. As for 1),
it is the same as (C-ii). As for 2) and 3), sincev is a r-core,
from the discussions on a c-core described in Sec. III, the total
number of candidatesN(bi) for encoding is polynomial order
with m and n. In other words, the set of all the candidates
can be utilized instead ofB(p) in (P-ii) in practice. Similarly,
note thatB(p) is utilized for simplifying the explanation in this
paper. Hence, for a 2D sourcep, the total number of output
blocks of the proposed algorithm is polynomial with respect
to m andn while that of the conventional CSE is exponential
with respect tom.

V. EVALUATION OF THE PROPOSEDALGORITHM

A general sourceX is defined as

X :={X [m,n]=(X<m,n>

(1,1) , X<m,n>

(1,2) , . . . , X<m,n>

(m,n) )}∞,∞
m=1,n=1

where a random variableX [m,n] takes a value in them × n
Cartesian productX [m,n] of X [14]. The probability distribu-
tion of a random variableX [m,n] is denoted byPX[m,n] . For
X, the sup-entropy rate ofX is defined as

Ĥ(X) := lim sup
m→∞,n→∞

1

mn
H(X [m,n]). (22)

For p, let ℓ(p) be a codeword length of the proposed
algorithm. Letℓ0(p) be the total codeword length ofE(m),
E(n), and ǫ(rank(p)) in (21). The codeword length of
e(b2, b3, . . . , b|B(p)|) consists of three partsℓ1(p), ℓ2(p), and
ℓ3(p) whereℓ1(p), ℓ2(p), and ℓ3(p) are the total codeword
length ofN(bi) for bi ∈ B1(p), bi ∈ B2(p), andbi ∈ B3(p),
respectively. Here,ℓ(p) = ℓ0(p) + ℓ1(p) + ℓ2(p) + ℓ3(p).

Theorem 1 is one of our main results. To prove Theo-
rem 1, we show three lemmas. Lemma 2 is a 2D version of
Lemma 3 [2], and the proofs of Lemmas 2 and 3 are omitted
in this paper.

Theorem 1 For a general sourceX,

lim sup
m,n→∞

E

[

ℓ(X [m,n])

mn

]

= Ĥ(X).

Lemma 2 Forp, 1≤k≤m, and1≤ l≤n

log2 |T (p, k, l)| ≤ −
mn

kl

∑

w∈X [k,l]

N(w |p)

mn
log

N(w |p)

mn
.

Lemma 3 If bi+1 ∈ B(p) such that|bi+1|c ≥ 2 does not
satisfy (10) or such that|bi+1|r ≥ 2 does not satisfy (16), then
T (B(p),p, i+ 1) = T (B(p),p, i).

Lemma 4

lim sup
m,n→∞

−
1

KL

∑

w∈X [K,L]

E

[

N(w |X [m,n])

mn

]

log2 E

[

N(w |X [m,n])

mn

]

= Ĥ(X).

Proof: For w ∈ X [K,L], PX[m,n](w) can be written by

E





|{(i, j) s.t.X(i+K−1,j+L−1)
(i,j) =w, 1≤ i≤m′, 1≤j≤n′}|

m′n′





where m′ and n′ are m−K + 1 and n− L+ 1, respec-
tively, and (i, j) is a coordinate. Forp, let N ′(w |p) be
|{(i, j) s.t. p(i+K−1,j+L−1)

(i,j) = w, 1 ≤ i ≤ m′, 1 ≤ j ≤ n′}|.

Moreover, N(w |p)
mn

can be written by
(

N ′(w |p)+δ

m′n′

)(

m′n′

mn

)

where 0 ≤ δ ≤ (K − 1)(n−L+ 1)+ (L− 1)m from (2).
Since K and L are respectively⌊

√

log|X | log|X |m⌋ and

⌊
√

log|X | log|X | n⌋,
N(w|p)

mn
converges toN

′(w|p)
m′n′ as m and

n go to infinity. SinceE
[

N ′(w|X[m,n])
m′n′

]

= PX[m,n](w),

lim sup
m,n→∞

−
1

KL

∑

w∈X [K,L]

E

[

N(w |X [m,n])

mn

]

log2 E

[

N(w |X [m,n])

mn

]

= lim sup
m,n→∞

−
1

KL

∑

w∈X [K,L]

PX[m,n](w) log2 PX[m,n](w)

= lim sup
m,n→∞

H(X [K,L])

KL
= Ĥ(X).



(Proof of Theorem 1):As for ℓ0(p), from the assumption,
sincem ≤ n, ℓ0(p)≤ 2(log2 n+2 log2 log2 n+7)+⌈log2 mn⌉
where(log2 n+2 log2 log2 n+7) and ⌈log2 mn⌉ are costs of
Elias integer code forn and ǫ(rank(p)), respectively. As for
ℓ1(p), the cost ofN(bi) in (P-i) is ⌈log2 mn⌉ bits from (18),
so thatℓ1(p)≤(|X |−1)⌈log2 mn⌉. As for ℓ2(p), sinceI(bi) ≤
mn and I ′(bi) ≤ mn, costs ofI(bi) and I ′(bi) are at most
log2 mn bits. Moreover, sincem ≤ n andK ≤ L,

ℓ2(p) ≤

K
∑

h=1

L
∑

w=1

|X |wh log2 mn ≤ L2|X |L
2

log2 mn

≤ 2(log|X | log|X | n)(log|X | n)(log2 n).

Therefore,

lim
m,n→∞

(ℓ0(p) + ℓ1(p) + ℓ2(p))/mn = 0. (23)

As for ℓ3(p), from (20), cost of N(bi) is
− log2(|T (B(p),p, i)|/|T (B(p),p, i−1)|) bits.

Cost of the next encodedN(bj) such that N(bi)
has been encoded immediately beforeN(bj) is
− log2(|T (B(p),p, j)|/|T (B(p),p, j−1)|). From Lemma 3,
|T (B(p),p, j−1)|= |T (B(p),p, i)|. Therefore,N(bj) can be
written by − log2(|T (B(p),p, j)|/|T (B(p),p, i)|), Hence,
the denominator|T (B(p),p, i)| for pj is equal to the previous
numerator|T (B(p),p, i)| for bi, so that they are canceled.
Moreover, since|T (B(p),p, |B(p)|)|= |[p]|=mn,

ℓ3(p) = log2 |T (B(p),p, S−1)| − log2 mn. (24)

where S is the index of the first blockbS ∈ B3(p)
which is encoded by arithmetic coding. From Lemma 3,
|T (B(p),p, S−1)|= |T (p,K, L)|. Therefore,

ℓ3(p) = log2 |T (p,K, L)| − log2 mn. (25)

From (25) and Lemma 2,

ℓ3(p) ≤ −
mn

KL

∑

w∈X [K,L]

N(w)

mn
log2

N(w)

mn
− log2 mn. (26)

Therefore,

E

[

ℓ3(X
[m,n])

mn

]

≤

−
1

KL

∑

w∈X [K,L]

E

[

N(w|X [m,n])

mn
log2

N(w|X [m,n])

mn

]

−
log2 mn

mn
.

From Jensen’s inequality,E[N(w|X[m,n])
mn

]E[log2
N(w|X[m,n])

mn
] ≤

E[N(w|X[m,n])
mn

log2
N(w|X[m,n])

mn
]. Therefore, from Lemma 4,

lim sup
m,n→∞

E

[

ℓ3(X
[m,n])

mn

]

≤Ĥ(X). (27)

From (23) and (27),

lim sup
m,n→∞

E

[

ℓ(X [m,n])

mn

]

≤Ĥ(X). (28)

The proposed code is a prefix code, so that Kraft’s inequality

is satisfied. Therefore,lim supm,n→∞ E
[

ℓ(X[m,n])
mn

]

≥ Ĥ(X).

From Remark 1.7.3 [14], ifX is a stationary source,̂H(X)

can be expressed byH(X)(:= limm,n→∞
H(X[m,n])

mn
), that

is the entropy rate ofX. Therefore, if X is a stationary
source, the average codeword length of the proposed algorithm
converges toH(X) asm andn go to infinity.

VI. CONCLUSION

For reducing computational time, we proposed a new CSE
for a 2D source which utilizes the flat torus of the source while
the conventional CSE utilizes the circular string of the source
as a probabilistic model. The total number of output blocks of
the new CSE is polynomial while that of the conventional CSE
is exponential with respect to the source size. The new CSE
encodes the source in block-by-block while the conventional
CSE does in line-by-line. Moreover, we prove that an upper
bound on the average codeword length of the proposed CSE
converges to the sup-entropy rate for a general source as size
of the input source goes to infinity. Furthermore, if a general
source is a stationary source, then the length converges to the
entropy rate of the source as the size goes to infinity.
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