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Abstract—Applications like environmental sensing, and health
and activity sensing, are supported by networks of devices (nodes)
that send periodic packet transmissions over the wireless channel
to a sink node. We look at simple abstractions that capture the
following commonalities of such networks (a) the nodes send
periodically sensed information that is temporal and must be
delivered in a timely manner, (b) they share a multiple access
channel and (c) channels between the nodes and the sink are
unreliable (packets may be received in error) and differ in quality.

We consider scheduled access and slotted ALOHA-like random
access. Under scheduled access, nodes take turns and get feedback
on whether a transmitted packet was received successfully by
the sink. During its turn, a node may transmit more than once
to counter channel uncertainty. For slotted ALOHA-like access,
each node attempts transmission in every slot with a certain
probability. For these access mechanisms we derive the age of
information (AoI), which is a timeliness metric, and arrive at
conditions that optimize AoI at the sink. We also analyze the case
of symmetric updating, in which updates from different nodes
must have the same AoI. We show that ALOHA-like access,
while simple, leads to AoI that is worse by a factor of about 2e,
in comparison to scheduled access.

I. INTRODUCTION

Applications across domains including healthcare (monitor-
ing of patients), energy (smart meters and grids), buildings
(appliance monitoring, temperature control), and environment
monitoring (pollution information), will leverage temporal
information obtained from large numbers of sensing devices.

The wireless access networks that will transport the sensed
information from these devices to the Internet are expected
to consist of hundreds of low power sensing devices (nodes)
spread over a large area and connected to an access point, that
provides connectivity to the Internet1. The nodes periodically
send packets of sensed information (the node’s state) to the
access point (sink) over a multiaccess channel.

In this work we derive insights into the timely delivery
of nodes’ state to the sink using simple abstractions of such
networks. We use the metric of age of information (AoI) to
quantify timeliness. Suppose node i’s state as known to the
sink at time t was current at time ui(t) < t, then the age of the
node’s state at time t is the random process ∆i(t) = t−ui(t)
and the AoI of the node is the average age.

We assume that the channel between a node and the sink
is unreliable and state update packets transmitted by the node

This work was supported by NSF Award CIF-1422988 received by
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1An example effort towards the standardization of such networks is IEEE
802.11ah/WiFi-HaLow: http://www.ieee802.org/11/Reports/tgah update.htm

are decoded in error and discarded by the sink with a certain
non-zero probability. This probability may vary across nodes
in the network. For the multiaccess mechanism, we consider
scheduled access with feedback (SF) and slotted ALOHA-like
random access (ALOHA).

In SF, nodes take turns sending their packets to the sink.
The sink provides the nodes with instantaneous feedback on
whether their packet transmission was decoded successfully.
Each node is allowed up to a maximum of S ≥ 1 packet
transmission attempts during its turn. During its turn, a node
transmits until its packet is decoded successfully or the allowed
S attempts are exhausted. The selection of S is crucial to
optimizing the AoI. Under ALOHA, each node attempts trans-
mission in every transmission slot with a certain probability.
In ALOHA, tuning of the attempt probability is essential for
small AoI.

Our contributions and the organization of the paper are as
follows. Section II summarizes related work and Section III
details the network model. In Section IV we derive the AoI
(Lemma 1) for the SF network. Our analysis leads to Lemma 2
which states that if all nodes have the same success probability
for packet decoding, then every node should be allowed to
transmit during its turn until its transmission is successful.
This section ends with observations for when nodes may have
heterogeneous success probabilities.

We analyze ALOHA in Section V, where we present an
approximation of nodes’ attempt probabilities that minimize
AoI. In Section VI, we analyze SF and ALOHA under the
assumption of symmetric updating, in which all nodes must
have the same AoI at the sink. We arrive at Theorem 1, which
states that using ALOHA, instead of SF, leads to AoI that is
worse by a factor of approximately 2e. We conclude the paper
in Section VII.

II. RELATED WORK

Many recent works analyze the AoI under different system
assumptions. We considered the M/M/1 first-come-first-served
(FCFS) system with multiple sources in [1]. AoI for a single
source sending updates when update packets may be delivered
out-of-order has been analyzed by [2]–[4]. The metric peak
age of information (PAoI) was introduced in [5] and has been
studied by [6] and [7]. In [8], the authors consider AoI in
LCFS and FCFS M/M/1 systems with packet delivery error.
Energy-constrained updating has been studied in [9]–[11] in
which updates are submitted to the server with knowledge of
the server state.
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Fig. 1: An illustration of the slotted system. The rectangles at the top
of the figure denote the length of the packet transmission. They begin
at the start of a slot. An arrow denotes the propagation of the packet.
Each packet is labelled with the node sending it. An arrowhead is
when the update is received by the sink, which happens at the end
of the slot. A cross denotes a lost update.

In [12], we looked at minimizing the age of status updates
sent by vehicles over a carrier-sense multiple access (CSMA)
network. A local minimum was seen to exist in simulations.
In [13], the authors consider scheduling packets of N sources,
each of which is associated with a transmitter (TX) and a
receiver (RX). The receivers are a hop away from their trans-
mitters. Certain TX-RX links may be co-channel and cannot
be scheduled together. Each source has a certain number
of packets to send. The goal is to choose a schedule that
minimizes the peak age of information in the network. In [14],
the authors consider the problem of a base station scheduling
information to clients over a wireless network with unreliable
channels. In our work we consider scheduled and random
multiaccess. When the users are scheduled, our model for
status updating is equivalent to that of wireless broadcasting
considered in [14].

III. MULTIACCESS NETWORK MODEL

We consider a network of nodes 1, 2, . . . ,M that use a
shared channel to transmit packets containing their current
state to a sink. The goal of each node is to keep the sink
updated with its state. We assume a slotted system in which
each node’s packet transmission is a slot long. A transmission
always starts at the beginning of a slot. A packet is received
by the sink at the end of a slot and decoded instantaneously
(we assume negligible packet processing time). Slot start and
end times are synchronized across all nodes in the network.
Figure 1 illustrates a slotted system.

Let pi be the probability that a packet transmission by
node i is correctly decoded by the sink. A packet may be
decoded incorrectly by the sink due to channel impairments.
A correctly decoded packet updates the sink with node i’s
state. We will refer to this event simply as an update from
node i. A packet that is not decoded correctly is lost. The
state of node i stays unchanged at the sink. Packets decoded
in error are not retransmitted. Every packet transmission is a
new packet that contains the state of the transmitting node at
the beginning of the packet transmission slot. We assume that
pi is known for each node in the network. In practice, the
same may be estimated for each node’s link to the sink.

Let tij be the time of the jth update by node i. The time
between the jth and the (j+1)th update by node i is the inter-

∆i(t)
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Fig. 2: Example sample function of age ∆i(t) of node i at the sink.
The time tij is the time of the j th update from node i.

update time Zij = ti(j+1) − tij . We will assume the Zij of
node i are identically distributed as Zi.

We will quantify the freshness of node i’s state at the sink in
terms of the age of the state at the sink. Let the instantaneous
age of node i’s state at the sink be given by ∆i(t). Suppose
that at time t the sink has node i’s state that was current at
time t0. The age of node i’s state is ∆i(t) = t− t0. Figure 2
shows an example sample function of the instantaneous age
∆i(t) of node i. Age increases linearly with time between two
updates, which is during intervals Zij long, and is reset to 1
slot at each tij (because a packet transmission takes one slot).

Over an observation interval (0, t′), the time-average of the
age function is

〈∆i〉t′ =
1

t′

∫ t′

0

∆i(t) dt. (1)

We define the age of information (AoI) ∆i of node i as

∆i = lim
t′→∞

〈∆i〉t′ . (2)

We will assume that this limit exists. Using arguments
similar to those in [1], also detailed in Appendix A, we get

∆i =
E
[
Z2
i

]
2 E [Zi]

+ 1. (3)

We define the AoI ∆ of the network as

∆ =
1

M

M∑
i=1

∆i. (4)

Next, we look at the SF and ALOHA schemes.

IV. SCHEDULED ACCESS WITH FEEDBACK

In the SF multiaccess scheme, nodes take turns to transmit
their state update packets. All nodes receive feedback from the
sink about whether a transmitted packet was decoded correctly,
at the end of the packet transmission. We assume that the
overhead of the feedback is negligible in comparison to a
transmission slot and will ignore it in the following analysis.

During its turn, a node is allowed to transmit its packets
a maximum of S times. A node’s turn ends when it updates
the sink or when it has exhausted the allowed S transmission
attempts. Thus a node’s turn constitutes of a random number
of one or more slots with a maximum value of S. For such a



multiaccess scheme, the value of S that minimizes the AoI ∆
of the network, given by Equation (4), is of interest.

We know from (3) that the calculation of AoI ∆i of node i
requires E [Zi] and E

[
Z2
i

]
. We now outline their derivation.

Consider the slot boundary at which an update by node i takes
place. The random variable Zi is the time to the next update by
the node. An update by node i, by assumption in this scheme,
must also mark the end of node i’s turn. It must hence be
followed by the turns of all other nodes before node i gets its
next turn. Since a packet transmission by node i leads to an
update with probability pi ≤ 1, the next update by node i may
not take place for the next one or more of its turns.

Let Ni ≥ 1 be the number of turns taken by node i to
update the sink. Then node i must have taken Ni−1 turns, all
S slots long, during which all its packet transmissions were
lost and it was unable to update. During its Nith turn, however,
an update by node i must happen. Let Xi be the number of
slots for which node i transmits during its Nith turn. Further,
observe that each node j 6= i also takes Ni turns between
updates by node i. Let Ajk, 1 ≤ k ≤ Ni, be the number of
slots for which node j transmits during its kth turn since the
last update by node i. We can therefore write the inter-update
time Zi as

Zi = (Ni − 1)S +
∑
j 6=i

1≤j≤M

Ni∑
k=1

Ajk +Xi. (5)

Figure 3 depicts Zi for M = 3 and S = 2. Note that Zi in (5)
is a random sum of random variables. In Appendix B, we detail
the probability mass functions of the random variables that
constitute Zi and summarize the steps to arrive at Lemma 1
that we state next. Let ri = 1 − (1 − pi)S be the probability
that node i has at least one successful transmission in S slots.
Let ηji = rj/ri.

Lemma 1. For scheduled access with feedback, the first and
second moments of the inter-update time of node i are

E [Zi] =
M∑
j=1

ηji
pj
, (6)

E
[
Z2
i

]
=

2− pi
p2i

+
∑
j 6=i

{
2

p2j
η2ji +

2S

ripj
(ηji − 1)

+

(
2− pi
pipj

+
2(1− rj)

p2j

)
ηji + (2− ri)

∑
j′ 6=j
j′ 6=i

ηjiηj′ i
pjpj′

}
. (7)

A. Observations

We start by considering a homogeneous network of nodes.
Specifically, the probability with which a packet transmitted
by a node is successfully decoded by the sink is pi = p, for all
i and 0 < p < 1. Clearly, in a homogeneous network, ri = rj
and ηij = 1, for all i, j. The mean of the inter-update time
Zi, given by Lemma 1, becomes E [Zi] = M/p, for all nodes
i. Note that this mean is independent of S.

Aj1

j j k k i i j k i

Ak1 Aj2 Ak2 Xi

i

tin ti(n+1)

Zi

t

Nodes

Sink

Fig. 3: We have M = 3 nodes using SF with S = 2 slots. The
representation of packet transmissions is as in Figure 1. The interval
Zi starts with the nth update by node i at tin. Next, node j begins
to transmits its state. The packet is lost and j utilizes the second slot
in its turn, at the end of which it updates. Thus, Aj1 = 2. This is
followed by node k take Ak1 = 2 slots. After this i gets its next
turn but both transmitted packets are lost. Then j and k take their
turns. Both update at the end of the first slot in their respective turns
(Aj2 = 1, Ak2 = 1). Finally, there is an update by node i at the end
of the first slot of its turn. We have Ni = 2 and Xi = 1.

Now consider E
[
Z2
i

]
. It is easy to see that after setting

ηij = 1, for all i, j, minimizing E
[
Z2
i

]
is equivalent to

maximizing ri, where ri ≤ 1. This is achieved in the limit
as S →∞. This fact, together with a constant mean, implies
that the AoI ∆i, in Equation (3), of any node i in the network,
and hence also the AoI of the network ∆ (Equation (4)),
is minimized in the limit as S → ∞. We summarize this
observation in Lemma 2.

Lemma 2. For a homogeneous network of M nodes that take
turns to transmit their state to a sink and get feedback on
whether an update of state occurred, the network’s AoI is
minimized by allowing a node to keep transmitting packets
during its scheduled turn until an update by the node occurs.
Specifically, it is minimized in the limit as S →∞.

Next we show via example that the above strategy is not AoI
minimizing when nodes have different successful transmission
probabilities.

Heterogeneous Network of Nodes: We exemplify the behav-
ior of AoI as a function of S in a heterogeneous network using
a three node network. The nodes 1, 2, and 3 have probabilities
of successful transmission p1 = 0.1, p2 = 0.5, and p3 = 0.9,
respectively. In Figure 4 we compare E [Zi], E

[
Z2
i

]
, ∆i for

the three nodes and also show the AoI of the network as a
function of the maximum number of slots S allowed in a turn.
The AoI of the network is minimized at S = 7.

Intuitively, if the maximum number of slots is set to a
relatively small value, a node with a poor channel (node 1
in Figure 4) will often be interrupted by other nodes’ turns,
increasing the number of slots that elapse before a successful
update and thus hurting the node’s AoI. On the other hand,
fixing the maximum number of allowed slots to a relatively
large value will hurt a node with a very good channel as other
nodes with poorer channels will end up using a large number
of their allowed S slots.

V. SLOTTED ALOHA-LIKE RANDOM ACCESS

In ALOHA, a node i attempts to transmit a packet with
probability τi in every slot. Unlike SF, no feedback is received
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Fig. 4: We show E [Zi], E
[
Z2

i

]
, AoI ∆i of node i, and the AoI ∆ of

a network of three nodes 1, 2, 3 as a function of the maximum number
of slots S in a turn. The probabilities of successful transmission are
p1 = 0.1, p2 = 0.5, and p3 = 0.9, respectively. Clearly, S that is
best for the AoI of a given node i, is not best for the network AoI.

from the sink. Our interest is finding the τi, for all nodes i,
that minimize the network AoI ∆. If node i is the only sender
of state during a slot, then its packet is decoded correctly
with probability pi. If more that one packet transmissions
occur during the same slot all the transmissions are decoded
in error. Let γi be the probability with which an update by
node i occurs at the end of a slot. The update occurs if node
i transmits during the slot, no other node transmits during the
slot, and the node’s packet is decoded correctly by the sink.
Thus, we have

γi = τipi
∏
j 6=i

(1− τj). (8)

The inter-update interval Zi is a geometric random variable
with mean E [Zi] = 1/γi and second moment E

[
Z2
i

]
=

2/γ2i − 1/γi. Substituting in (3), node i has age

∆i =
1

2
+

1

γi
. (9)

From (4), the network AoI is

∆ =
1

2
+

1

M

M∑
i=1

1

γi
. (10)

The first order optimality conditions are obtained by differ-
entiating (10) with respect to τi, 1 ≤ i ≤M . They are

1− τi
piτ2i

=

M∑
j=1

1− τj
pjτj

, 1 ≤ i ≤M. (11)

An exact closed form solution for the age minimizing τi = τ∗i
is simple for a network of M = 2 nodes. Solving (11), we get
τ∗i = (1 + (pi/pj)

(1/3))−1, where i, j ∈ {1, 2} and i 6= j. We
are unable to derive an exact closed form solution for M > 2.
An approximation for large M , when the optimal τi will be
small, is given by

τ∗i ≈
(1/
√
pi)∑M

j=1(1/
√
pj)

, 1 ≤ i ≤M. (12)

For the derivation of the approximation and an evaluation of
its efficacy, we refer the reader to Appendix C.

VI. SYMMETRIC UPDATING SYSTEMS

When all nodes’ state updates are equally important, it is
desirable for all nodes to achieve the same AoI. We refer
to such updating systems as symmetric. We observe that SF
and ALOHA can both be configured to be symmetric systems.
In this section, we compare them under symmetric operation.
While the decoding probabilities pi may be arbitrarily close
to zero, symmetric updating requires pi > 0 for all nodes i;
otherwise; the operation of the symmetric updating system will
fail. In the following analysis, we assume pi ∈ [pmin, pmax]
for all nodes i.

SF becomes symmetric as the maximum number of packet
transmission attempts by a node, during a turn, S → ∞. In
its turn, node i transmits packets in consecutive slots until it
updates the sink. Thus node i transmits packets for Xi time
slots, where Xi is a geometric (pi) random variable. Assuming
the nodes are numbered in order of their turns, node i is
followed by node i+ 1 and so on until it’s next turn. Node i
then has an inter-update time of

Zi = Xi+1 + · · ·+XM +X1 + · · ·Xi =

M∑
j=1

Xj . (13)

Thus Z1, . . . , ZM are identically distributed and all nodes will
obtain the same AoI. We can find the moments E [Zi] and
E
[
Z2
i

]
either from first principles or from Lemma 1 in the

limit as S → ∞ and thus ri = 1 and ηji = 1. By either
method, we obtain

E [Zi] =

M∑
j=1

1

pj
, (14)

E
[
Z2
i

]
= (E [Zi])

2 − E [Zi] +

M∑
j=1

1

p2j
. (15)

From (3), the average age of each node is

∆SF =
1

2

1 +

M∑
j=1

1

pj
+R(p)

; (16)

R(p) =

∑M
j=1

1
p2j∑M

j=1
1
pj

. (17)

We now turn to ALOHA. The updating becomes symmetric
when the success probabilities γi of all nodes are the same.
We observe that we can write (8) as

γi =
τipi

1− τi

M∏
j=1

(1− τj). (18)

Since
∏M
j=1(1 − τj) is identical for all nodes, we can make

the ALOHA system symmetric by setting

βi =
piτi

1− τi
= β, 1 ≤ i ≤M. (19)



In this case, β is a parameter that can be tuned to minimize the
AoI. From (19), node i has attempt probability τi = β/(β+pi)
and from (18) each node has update success probability

γ(β) = β

M∏
j=1

pj
β + pj

. (20)

Although γ is not a concave function of β, the first order
condition d ln(γ(β))/dβ = 0 does yield a unique maximizer
β∗ satisfying

M∑
j=1

β∗

β∗ + pj
= 1. (21)

We observe that (21) implies
pmin

M − 1
≤ β∗ ≤ pmax

M − 1
. (22)

With β = β∗, each node has success probability γ∗ = γ(β∗)
in each slot. Thus, for each node i, the inter-update time Zi
is a geometric (γ∗) random variable. It follows from (3) that
each node obtains AoI

∆ALOHA =
1

2
+

1

γ∗
. (23)

We observe that the SF system requires substantial complexity
in that the nodes must be ordered in a round-robin schedule
and feedback is required to acknowledge successful transmis-
sions. By contrast, the ALOHA system is less demanding.
Slot by slot feedback is not necessary and while the success
probability can be optimized through β, this is not essential
for operation.

Thus, the interesting open question is whether the scheduled
access scheme is worth the additional complexity relative to
the simpler ALOHA system. The difficulty here is that it is
hard to tell from by directly comparing (16) and (23). With
the definitions

L ≡ ln

(
∆ALOHA

∆SF

)
and ρ ≡ pmax

pmin
, (24)

the following theorem offers a simple comparison.

Theorem 1.

ln(2e)− LM ≤ L ≤ ln(2e) + LM

where

LM =
1 + 2ρ2

M − 1
+

ρ2

(M − 1)2
.

Measured by AoI, the SF system is better by a factor of
2e ≈ 5.4 for large M . This is exemplified by the scatter plot
in Figure 5. Intuitively, this result is easy to see. With a large
number of nodes, the Aloha system has a packet success rate of
1/e. Compared to the scheduled system, this increases the age
by a factor of e. In addition, the Aloha system has geometric
inter-update times, which roughly doubles the average age
relative to scheduled round-robin inter-update times. For a
proof of Theorem 1, we refer the reader to Appendix D.
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Fig. 5: Scatter plot of (∆SF, ∆ALOHA) obtained from simulating
500 networks of 1000 nodes. For each network, the probability
pi for each node i was chosen uniformly and randomly from
(pmin = 0.1, pmax = 0.9). The fit has a slope eL = 5.76 (see (24))
that is within the bound given by Theorem 1.

VII. CONCLUSIONS

We analyzed the age of information over multiaccess chan-
nels. For scheduled access with feedback, AoI for networks
of nodes with similar probability of packet transmission error
is optimized if the nodes are allowed to keep transmitting
during their turn till a packet transmission is successful. For
ALOHA-like random access, we provided a closed form for the
approximate transmission attempt probabilities that optimize
AoI. We also considered symmetric updating systems and
showed that for such systems, measured by AoI, using ALOHA
is worse than SF by a factor of about 2e.

APPENDIX A
DERIVATION OF AGE OF INFORMATION

The time-average of the age function, over an observation
interval (0, t′), is given by Equation (1).

We assume that the age has a non-zero value ∆i(0) at time
t = 0 when we begin observation. For simplicity of exposition,
we will assume that the interval of observation ends at the time
of the (n+ 1)th update. We have t′ = ti(n+1). Using Figure 2
to express the area under ∆i(t) as a sum of the areas of the
triangles of height and width Zij and rectangles of height 1
and width Tij , we can rewrite the time-average age (1) as

〈∆i〉t′ =
T0
t′

+
n

t′
1

n

 n∑
j=1

Z2
ij

2
+ Zij

 . (25)

where T0 =
Z2

0

2 + ∆i(0)Z0.
We restate below the definition of the age of information

(AoI) ∆i of node i, earlier defined in Equation (2). It is given
by

∆i = lim
t′→∞

〈∆i〉t′ . (26)

We will assume that this limit exists.
Observe that in Equation (25) t′ = ti(n+1) = Z0+

∑n
j=1 Zij

and limt′→∞ T0/t
′ = 0. Also, as t′ →∞, n will become very

large, and the sample averages on the right-hand-side of (25)
will converge to the corresponding statistical averages. Apply-
ing these observations to the AoI ∆i, given by Equation (2),
yields the expression for ∆i that is given in Equation (3).



APPENDIX B
PROOF OF LEMMA 1

Proof: We continue the derivation of Lemma 1 we had
started in Section IV. Consider the random variable Ni. It
can take integer values ≥ 1. If Ni = n, then a node i failed
to update during n − 1 turns, where each turn is of length
S slots. Also, an update by the node occurred in one of the
S slots during turn n. The event that a node i is unable to
update during a turn occurs with probability (1 − pi)S . Let
ri = 1 − (1 − pi)S . Ni is a Geometric random variable with
the probability mass function (PMF) given by

P [Ni = n] =

{
(1− ri)n−1ri n ≥ 1,
0 otherwise. (27)

Consider the random variable Ajk. It is the number of slots
in a turn taken by node j. Note that this number of slots can
be S either when an update by node j happens at the end of
the last slot in the turn or when j fails to update during the
turn. When the number of slots is a < S, the event is one in
which the node fails to update in (a− 1) slots and the update
occurs at the end of the slot a. Thus the PMF of Ajk is given
by

P [Ajk = a] =

 (1− pj)a−1pj 1 ≤ a < S,
(1− pj)a−1 a = S,
0 otherwise.

(28)

Note that the Ajk are identically distributed for all k. Let they
be identically distributed as the random variable Aj .

Consider the random variable Xi. Note that Xi is the
number of slots in a turn during which an update from node i
is known to have occurred. This conditioning on a guaranteed
update gives us the PMF

P [Xi = x] =

{
(1−pi)x−1pi
1−(1−pi)S 1 ≤ x ≤ S,

0 otherwise.
(29)

Note that the random variables Ajk, Ni and Xi are mutually
independent. This fact and Equation (5) allows us to write
E [Zi] and E

[
Z2
i

]
in terms of the first and second moments

of Ajk, Ni and Xi. We get

E [Zi] = S(E [Ni]− 1) + E [Ni]
∑
j 6=i

E [Aj ] + E [Xi], (30)

E
[
Z2
i

]
=

∑
j 6=i,

1≤j≤M

{
E [Ni] E

[
A2
j

]
+ E

[
N2
i −Ni

]
(E [Aj ])

2

+ 2S E
[
N2
i −Ni

]
E [Aj ] + 2 E [Xi] E [Ni] E [Aj ]

+
∑

j′ 6=j,j′ 6=i,
1≤j′≤M

E
[
N2
i

]
E [Aj ] E [Aj′ ]

}
+ E

[
W 2
]
, (31)

where W = (Ni − 1)S + Xi. The first and second moments
of Ni, Aj , and Xi can be respectively obtained from the
PMF(s) given by equations (27), (28) and (29). Substituting
the moments into equations (30) and (31) yields Lemma 1.
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Fig. 6: The cumulative distribution function (CDF) of the absolute
percentage error in minimum age obtained using the approximation
in (37) in comparison to that obtained from simulations that used
a non-linear program solver to find the minimum age. The CDF is
plotted for varied number of nodes M in the network. Observe that
even for M = 5 about 95% of the time the error is less than 5%.
The approximation performs significantly better for larger M .

APPENDIX C
ATTEMPT PROBABILITY APPROXIMATION FOR ALOHA

It is reasonable to expect that for networks with large
numbers of nodes the optimal attempt probability τ∗i of node
i is small. To derive an approximate closed form solution, we
will use the inequality 1− x ≤ e−x and that when x is small
1− x ≈ e−x. Using the inequality and (8), we can write

γi ≤ pi
τi

1− τi
e−

∑M
j=1 τj . (32)

This and (10) gives us the lower bound ∆̂ on the age ∆. We
can write

∆ ≥ ∆̂ =
1

2
+
e
∑M

j=1 τj

M

M∑
i=1

1

pi

(
1

τi
− 1

)
. (33)

Note that we can approximate age ∆ by ∆̂ for small τi, when
1− τi ≈ e−τi . Define the quantities

C =

M∑
j=1

1

pj

(
1

τj
− 1

)
and C ′ =

M∑
j=1

1

pjτj
. (34)

The first order optimality conditions for the approximate
age ∆̂ are, for 1 ≤ i ≤M ,

1

piτ2i
= C. (35)

From (35) we have 1/τi =
√
Cpi and from (34) we know that

C < C ′. We can write

τi ≥
1

piC ′τi
=

√
Cpi
piC ′

=

√
C
√
pi

1∑M
j=1

1
pj

√
Cpj

(36)

=
(1/
√
pi)∑M

j=1(1/
√
pj)

:= τ̂∗i ≈ τ∗i . (37)

The efficacy of the approximation τ̂∗i with respect to simu-
lations carried out using a non-linear program solver is shown
in Figure 6. For each selection of M , we simulated 1000



randomly selected vectors [p1, p2, . . . , pM ].

APPENDIX D
PROOF OF THEOREM 1

Proof: We first prove the lower bound. From (23),

ln ∆ALOHA ≥ − ln γ∗

= − lnβ∗ −
M∑
j=1

ln

(
pj

pj + β∗

)

= − lnβ∗ −
M∑
j=1

ln

(
1− β∗

pj + β∗

)

≥ − lnβ∗ +

M∑
j=1

β∗

pj + β∗
= − lnβ∗ + 1. (38)

From (17),

R(p) ≤ Rmax ≡
M/p2min

M/pmax
=
pmax

p2min

. (39)

It then follows from (16), (24) and (38) that

L ≥ − lnβ∗ + 1 + ln 2− ln
[
1 +

M∑
j=1

1

pj
+Rmax

]
= ln(2e)− ln

[
β∗(1 +Rmax) +

M∑
j=1

β∗

pj

]
. (40)

Now we observe that
M∑
j=1

β∗

pj
= β∗

M∑
j=1

[
1

pj + β∗
+

β∗

pj(pj + β∗)

]
(41)

= 1 +

M∑
j=1

(β∗)2

pj(pj + β∗)
(42)

≤ 1 +

(
pmax

M − 1

)2
M

p2min

= 1 +
Mρ2

(M − 1)2
. (43)

Note that (42) follows from (21) and (43) is a consequence of
(22). Applying (39) and (43) to (40) yields

L ≥ ln(2e)− ln

[
1 +

pmax(1 +Rmax)

M − 1
+

Mρ2

(M − 1)2

]
≥ ln(2e)− pmax + ρ2

M − 1
− Mρ2

(M − 1)2
. (44)

The lower bound follows from pmax ≤ 1 and some algebra.
For the upper bound, we observe that (16) and (23) imply

ln ∆SF ≥ − ln 2 + ln
[
1 +

M∑
j=1

1

pj

]
, (45)

ln ∆ALOHA ≤ ln(1 + 1/γ∗). (46)

This implies

L ≤ ln 2 + ln

[
1 + 1/γ∗

1 +
∑M
j=1 1/pj

]
. (47)

Using the inequality

ln
1 + x

1 + y
≤ ln

x

y
= lnx− ln y, (48)

we obtain

L ≤ ln 2 + ln
1/γ∗∑M
j=1

1
pj

= ln 2− ln γ∗ − ln

M∑
j=1

1

pj
. (49)

Now we observe from (23) that

− ln γ∗ = − lnβ∗ +

M∑
j=1

ln

(
1 +

β∗

pj

)

≤ − lnβ∗ +

M∑
j=1

β∗

pj
. (50)

It then follows from (43) that

− ln γ∗ ≤ − lnβ∗ + 1 +
Mρ2

(M − 1)2
. (51)

Combining (49) and (51) yields

L ≤ ln(2e) +
Mρ2

(M − 1)2
− ln

 M∑
j=1

β∗

pj

 . (52)

It follows from (22) that
∑M
j=1 β

∗/pj ≥ 1 and thus
ln(
∑M
j=1 β

∗/pj) ≥ 0. Hence, the last term in (52) can be
discarded. The upper bound then follows.
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