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Characterizing the Rate-Memory Tradeoff in Cache
Networks within a Factor of 2
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Member, IEEE

Abstract—We consider a basic caching system, where a single
server with a database of N files (e.g. movies) is connected to
a set of K users through a shared bottleneck link. Each user
has a local cache memory with a size of M files. The system
operates in two phases: a placement phase, where each cache
memory is populated up to its size from the database, and a
following delivery phase, where each user requests a file from
the database, and the server is responsible for delivering the
requested contents. The objective is to design the two phases
to minimize the load (peak or average) of the bottleneck link.
We characterize the rate-memory tradeoff of the above caching
system within a factor of 2.00884 for both the peak rate and
the average rate (under uniform file popularity), improving state
of the arts that are within a factor of 4 and 4.7 respectively.
Moreover, in a practically important case where the number of
files (N ) is large, we exactly characterize the tradeoff for systems
with no more than 5 users, and characterize the tradeoff within
a factor of 2 otherwise. To establish these results, we develop two
new converse bounds that improve over the state of the art.

I. INTRODUCTION

Caching is a common strategy to mitigate heavy peak-time
communication load in a distributed network, via duplicating
parts of the content in memories distributed across the network
during off-peak times. In other words, caching allows us to
trade distributed memory in the network for communication
load reduction. Characterizing this fundamental rate-memory
tradeoff is of great practical interest, and has been a research
subject for several decades. For single-cache networks, the
rate-memory tradeoff has been characterized for various sce-
narios in the 80s [2]. However, those techniques were found
insufficient to tackle the multi-cache cases.

There has been a surge of recent results in information
theory that aim at formalizing and characterizing such rate-
memory tradeoff in multi-cache networks [3]–[17]. In partic-
ular, a basic bottleneck caching network was considered in
[3], where a set of K users is connected to a server through
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a shared error-free link. In this setting, each user has a local
cache of size M , which can be used to prefetch the contents
(a library of N files). The objective is to design the caching
functions, such that in a following delivery phase, the server
can serve the user demands with efficient bandwidth usage
(measured by the communication rate R). For this case, the
peak rate vs. memory tradeoff (the tradeoff between maximum
R over all possible user demands and M ) was formulated
and characterized within a factor of 12 [3]. This caching
framework has been extended to many scenarios, including
decentralized caching [4], online caching [5], caching with
nonuniform demands [6]–[8], device-to-device caching [9],
caching on file selection networks [10], caching on broadcast
channels [11], caching for channels with delayed feedback
with channel state information [12], hierarchical cache net-
works [13], [14], and caching on interference channels [15]–
[17], among others. Many of these extensions share similar
ideas in terms of the achievability and the converse bounds.
Therefore, if we can improve the results for the basic bottle-
neck caching network, the ideas can be used to improve the
results in other cases as well.

In the literature, various approaches have been proposed to
improve the bounds on rate-memory tradeoff for the bottleneck
network. Several caching schemes have been proposed in
[18]–[25], and converse bounds have also been introduced
in [10], [26]–[30]. For the case, where the prefetching is
uncoded, the exact rate-memory tradeoff for both peak and
average rate (under uniform file popularity) and for both
centralized and decentralized settings have been established
in [24]. However, for the general case, where the cached
content can be an arbitrary function of the files in the database,
the exact characterization of the tradeoff remains open. In this
case, the state of the art is an approximation within a factor
of 4 for peak rate [26] and 4.7 for average rate under uniform
file popularity [10].

In this paper, we improve the approximation on character-
izing the rate-memory tradeoff by proving new information-
theoretic converse bounds, and achieving an approximation
within a factor of 2.00884, for both the peak rate and the
average rate under uniform file popularity. These converse
bounds hold for the general information theoretic framework,
in the sense that there is no constraint on the caching or
delivery process. In particular it is not limited to linear coding
or uncoded prefetching. This improved characterization is
approximately a two-fold improvement with respect to the
state of the art in current literature [10], [26].

Furthermore, for a practically important case where the
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number of files is large, we exactly characterize the rate-
memory tradeoff for systems with no more than 5 users. In
this case, we also characterize the rate-memory tradeoff within
a factor of 2 for networks with an arbitrary number of users,
slightly improving our factor-of-2.00884 characterization in
the general case. In prior works, despite various attempts, this
tradeoff has only been exactly characterized in two instances:
the single-user case [3] and, more recently, the two-user
case [29].

To prove these results we develop two new converse bounds
for cache networks. The first converse is developed based on
the idea of enhancing the cutset bound, to effectively capture
the isolation of cache contents of the users that belong to
the same side of the cut. This approach strictly improves the
compound cutset bound, which was used in most of the prior
works. Furthermore, using this converse, we are able to char-
acterize both the peak rate and the average rate within factor
of 2.00884. To prove this result, we essentially demonstrate
that our new converse is within a factor of 2.00884 from the
achievable scheme developed in [21] for all possible parameter
values.

Moreover, we develop a second converse bound, which
is proved by carefully dividing the set of all user demands
into certain subsets, and lower bounding the communication
rate within each subset separately. Unlike the first converse,
it exploits the scenarios where users may have common
demands. This enables improvement upon the first converse,
and allows exact characterization of the rate-memory tradeoff
for systems with up to 5 users.

The rest of this paper is organized as follows. In Section
II, we formally define the caching framework and the rate-
memory tradeoff. Then in Section III we summarize our main
results. Section IV proves our first main result, which charac-
terizes the peak rate-memory tradeoff within a constant factor
of 2.00884 for all possible parameter values, and characterizes
this tradeoff within a factor of 2 when the number of files is
large. Section IV proves the converse bound that is needed to
establish this characterization. For brevity, we prove the rest
of the results in appendices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formally introduce the system model for
the caching problem. Then we define the rate-memory tradeoff
for both peak rate and average rate based on the introduced
framework, and state the corresponding main problems studied
in this paper.

A. System Model

We consider a system with one server connected to K
users through a shared, error-free link (see Fig. 1). The server
has access to a database of N files 1, ..., N , each of size
F bits. We assume that the contents of all files, denoted
by W1, ...,WN , are i.i.d. random variables, each of which is
uniformly distributed on set {1, ..., 2F }. Each user k has an
isolated cache memory of size MF bits, where M ∈ [0, N ].
For convenience, we define a parameter r = KM

N .

N files

shared link

K users

caches size M

server

Fig. 1: Caching system considered in this paper. The figure illustrates
the case where K = N = 3, and M = 1.

The system operates in two phases: a placement phase and
a delivery phase. In the placement phase, the users are given
access to the entire database. Each user can fill the contents
of their caches using the database without knowledge of their
future demands.1 We denote the cached content of each user
k by Zk. Then in a following delivery phase, only the server
has access to the database of files, and each user requests one
of the files in the database. To characterize the requests from
the users, we define demand d = (d1, ..., dK), where dk is the
file requested by user k.

The server is informed of the demand and proceeds by
generating a message of size RF bits, denoted by Xd, as
a function of W1, ...,WN , and sends the message over the
shared link. R is a fixed real number given the demand d.
The quantities RF and R are referred to as the load and the
rate of the shared link, respectively. Using the contents Zk of
its cache and the message Xd received over the shared link,
each user k aims to reconstruct its requested file Wdk .

B. Problem Definition
Based on the above framework, we define the rate-memory

tradeoff using the following terminology. We characterize
a prefetching scheme by its K caching functions φ =
(φ1, ..., φK), each of which maps the file contents to the cache
content of a specific user:

Zk = φk(W1, ...,WN ) ∀k ∈ {1, ...,K}. (1)
Given a prefetching scheme φ, we say that a communication
rate R is ε-achievable if and only if, for every request d,
there exists a message Xd of length RF that allows all users
to recover their desired file dk with a probability of error of
at most ε. Given parameters N , K, and M , we define the
minimum peak rate, denoted by R∗, as the minimum rate that
is ε-achievable over all prefetching schemes for large F and
any ε > 0. Rigorously,
R∗ = sup

ε>0
lim sup
F→∞

min
φ
{R |

R is ε-achievable given prefetching φ} (2)
Similarly for the average rate, we say that a communication

rate R is ε-achievable for demand d, given a prefetching

1This is due to the fact that in most caching systems the caching phase
happens during off-peak hours, in order to improve performance during the
peak hours when actual user demands are revealed.
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scheme φ, if and only if we can create a message Xd of
length RF that allows all users to recover their desired file
dk with a probability of error of at most ε. Given parameters
N , K, and M , we define the minimum average rate, denoted
by R∗ave, as the minimum rate over all prefetching schemes
such that, we can find a function R(d) that is is ε-achievable
for any demand d, satisfying R∗ave = Ed[R(d)], where d is
uniformly random in D = {1, ..., N}K , for large F and any
ε > 0.

Finding the rate-memory tradeoff is essentially finding the
values of R∗ and R∗ave as a function of N , K, and M . In this
paper, we aim to find converse bounds that characterize R∗

and R∗ave within a constant factor. Moreover, we aim to better
characterize R∗ and R∗ave for an important case where N ls
large, when K and M

N are fixed.

C. Related Works

Coded caching was originally proposed in [3], where the
peak rate vs. memory tradeoff was characterized within a
factor of 12. This result was later extended in [6], where
the minimum average rate under uniform file popularity was
characterized within a factor of 72. Since then, various efforts
has been made on improving these characterizations [10],
[26]–[28]. The state of the art is an approximation within a
factor of 4 for peak rate [26] and 4.7 for average rate [10].

In this paper, we characterize both the peak rate and the
average rate within a factor of 2.00884, which is about a
two-fold improvement upon the prior arts. This improvement
is achieved by improving both the achievability scheme and
the converse. Specifically, we use the achievability scheme we
recently proposed in [24] to upper bound the communication
rates. This upper bound strictly improves upon the communi-
cation rates achieved by [3] (and its relaxed version in [4]),
which was relied on by all the above works (i.e., [6], [10],
[26]–[28]). It also achieves the exact optimum communication
rates among all caching schemes with uncoded prefetching,
for all possible values of N , K, and M . As a shorthand
notation, we denote the peak and average rates achieved in
[24] by Ru(N,K, r) and Ru,ave(N,K, r), respectively.2 More
precisely, we define these functions as follows.
Definition 1. Given problem parameters N , K, M , and r =
KM
N , we define

Ru(N,K, r) =

(
K
r+1

)
−
(
K−min{K,N}

r+1

)(
K
r

) , (3)

Ru,ave(N,K, r) = Ed

[(
K
r+1

)
−
(
K−Ne(d)
r+1

)(
K
r

) ]
(4)

for r ∈ {0, ...,K}, where d is uniformly random in D =
{1, ..., N}K , and Ne(d) denotes the number of distinct re-
quests in d.3 Furthermore, for general (non-integer) r ∈ [0,K],

2Recall that r , KM
N

. The letter “u” in the subscript represents “upper
bound”, and “uncoded prefetching”.

3Here the letter “e” in the subscript represents “effective”, given that the
function Ne(d) can also be interpreted as the “effective” number of files for
any demand d. Specifically, for any demand d, the needed communication
rate stated in equation (4) is exactly the peak communication rate stated in
equation (3) for a caching system with N = Ne(d) files.

Ru(N,K, r) and Ru,ave(N,K, r) are defined as the lower con-
vex envelope of their values at r ∈ {0, 1, ...,K}, respectively.
Specifically, for any non-integer r ∈ [0,K], we have4

Ru(N,K, r) =

(r − brc)Ru(N,K, dre) + (dre − r)Ru(N,K, brc),
(5)

Ru,ave(N,K, r) =

(r − brc)Ru,ave(N,K, dre) + (dre − r)Ru,ave(N,K, brc).
(6)

Given the above upper bounds, we develop improved con-
verse bounds in this paper, which provides better characteri-
zations for both the peak rate and the average rate.

III. MAIN RESULTS

We summarize our main results in the following theorems.
Theorem 1. For a caching system with K users, a database
of N files, and a local cache size of M files at each user, we
have

Ru(N,K, r)

2.00884
≤ R∗ ≤ Ru(N,K, r), (7)

Ru,ave(N,K, r)

2.00884
≤ R∗ave ≤ Ru,ave(N,K, r). (8)

where Ru(N,K, r) and Ru,ave(N,K, r) are defined in Defi-
nition 1. Furthermore, if N is sufficiently large (specifically,
N ≥ K(K+1)

2 ), we have
Ru(N,K, r)

2
≤ R∗ ≤ Ru(N,K, r), (9)

Ru,ave(N,K, r)

2
≤ R∗ave ≤ Ru,ave(N,K, r). (10)

Remark 1. The above theorem characterizes R∗ and R∗ave
within a constant factor of 2.00884 for all possible values
of parameters K, N , and M . To the best of our knowledge,
this gives the best characterization to date. Prior to this work,
the best proved constant factors were 4 for peak rate [26]
and 4.7 for average rate (under uniform file popularity) [10].
Furthermore, Theorem 1 characterizes R∗ and R∗ave for large
N within a constant factor of 2.

Remark 2. The converse bound that we develop for proving
Theorem 1 also immediately results in better approximation
of rate-memory tradeoff in other scenarios, such as online
caching [5], caching with non-uniform demands [6], and
hierarchical caching [14]. For example, in the case of online
caching [5], where the current approximation result is within
a multiplicative factor of 24, it can be easily shown that this
factor can be reduced to 4.01768 using our proposed bounding
techniques.

Remark 3. Ru(N,K, r) and Ru,ave(N,K, r), as defined in
Definition 1, are the optimum peak rate and the optimum
average rate that can be achieved using uncoded prefetching,
as we proved in [24]. This indicates that for the coded caching
problem, using uncoded prefetching schemes is within a factor

4Rigorously, the fact that equations (5) and (6) define lower convex
envelopes is due to the convexity of Ru(N,K, r) and Ru,ave(N,K, r)
on r ∈ {0, 1, ...,K}. This convexity was observed in [24] and can be
proved using elementary combinatorics. A short proof of the convexity of
Ru(N,K, r) and Ru,ave(N,K, r) can be found in Appendix J.
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of 2.00884 optimal for both peak rate and average rate.
More interestingly, we can show that even for the improved
decentralized scheme we proposed in [24], where each user
fills their cache independently without coordination but the
delivery scheme was designed to fully exploit the commonality
of user demands, the optimum rate is still achieved within a
factor of 2.00884 in general, and a factor of 2 for large N . 5

Remark 4. Based on the proof idea of Theorem 1, we can
completely characterize the rate-memory tradeoff for the two-
user case, for any possible values of N and M , for both peak
rate and average rate. Prior to this work, the peak rate vs.
memory tradeoff for the two-user case was characterized in
[3] for N ≤ 2, and is characterized in [29] for N ≥ 3 very
recently. However the average rate vs. memory tradeoff has
never been completely characterized for any non-trivial case.
In this paper, we prove that the exact optimal tradeoff for
the average rate for two-user case can be achieved using the
caching scheme we provided in [24] (see Appendix H).

To prove the Theorem 1, we derive new converse bounds
of R∗ and R∗ave for all possible values of K, N , and M . We
highlight the converse bound of R∗ in the following theorem:
Theorem 2. For a caching system with K users, a database
of N files, and a local cache size of M files at each user, R∗

is lower bounded by

R∗ ≥ s− 1 + α− s(s− 1)− `(`− 1) + 2αs

2(N − `+ 1)
M, (11)

for any s ∈ {1, ...,min{N,K}}, α ∈ [0, 1], where ` ∈
{1, ..., s} is the minimum value such that6

s(s− 1)− `(`− 1)

2
+ αs ≤ (N − `+ 1)`. (12)

Remark 5. The above theorem improves the state of the art in
various scenarios. For example, when N is sufficiently large
(i.e., N ≥ K(K+1)

2 ), the above theorem gives tight converse
bound for KM

N ≤ 1, as shown in (23). The above matching
converse can not be proved directly using converse bounds
provided in [10], [26]–[30] (e.g., for K = 4, N = 10, and
M = 1, none of these bounds give R∗ ≥ 3).

Remark 6. Although Theorem 2 gives infinitely many linear
converse bounds on R∗, the region of the memory-rate pair
(M,R∗) characterized by Theorem 2 has a simple shape with
finite corner points. Specifically, by applying the arguments
used in the proof of Theorem 1, one can show that the
exact bounded region given by Theorem 2 is bounded by the
lower convex envelop of points {(N−`+1

s , s−12 + `(`−1)
2s ) | s ∈

{1, ..., J}, ` ∈ {1, ..., s}} ∪ {(0, J)}, where J = min{N,K}.
For the case of large N , we can exactly characterize the

values of R∗ and R∗ave for K ≤ 5. We formally state this
result in the following theorem:
Theorem 3. For a caching system with K users, a database
of N files, and a local cache size of M files at each user, we

5This can be proved based on the fact that, in the proof of Theorem 1,
we showed the communication rates of the decentralized caching scheme we
proposed in [24] (e.g., Rdec(M) for the peak rate) are within constant factor
optimal as intermediate steps.

6Such ` always exists, because when ` = s, (12) can be written as αs ≤
(N − s+ 1)s, which always holds true.

have
R∗ = R∗ave = Ru(N,K, r) (13)

for large N (i.e., N → +∞) when K ≤ 5, where Ru(N,K, r)
is defined in Definition 1.7

Remark 7. As discussed in [4], the special case of large N is
important to handle asynchronous demands. More specifically,
[4] showed that asynchronous demands can be handled by
splitting each file into many subfiles, and delivering concurrent
subfile requests using the optimum caching schemes. In this
case, we essentially need to solve the caching problem when
the number of files (i.e., the subfiles) is large, but the fraction
of files that can be stored at each user is fixed. In this paper,
we completely characterize this tradeoff for systems with up
to 5 users, for both peak rate and average rate, while in prior
works, this tradeoff has only been exactly characterized in two
instances: the single-user case [3] and, more recently, the two-
user case [29].
Remark 8. Although Theorem 3 only consider systems with
up to 5 users, the converse bounds used in its proof also tightly
characterize the minimum communication rate in many cases
even for systems with more than 5 users. For both peak rate
and average rate, we can show that more than half of the
convex envelope achieved by [24] are optimal for large N
(e.g., see Lemma 4 for peak rate).

To prove Theorem 3, we state the following Theorem, which
provides tighter converse bounds on R∗ for certain values of
N , K, and M .
Theorem 4. For a caching system with K users, a database
of N files, and a local cache size of M files at each user, R∗

is lower bounded by

R∗ ≥


2K−n+1
n+1 − K(K+1)

n(n+1) ·
M
N if β + αK−2n−12 ≤ 0,

2K−n+1
n+1 − 2K(K−n)

n(n+1) ·
M
N−β otherwise,

(14)
for any n ∈ {max{1,K − N + 1}, ...,K − 1}, where α =
bN−1K−nc and β = N − α(K − n).
Remark 9. The above theorem improves Theorem 2 and the
state of the art in many cases. For example, when r ∈[⌈
K − 1− N−1

d 2N
K+1e

⌉
,K − 1

)
, the converse bound (14) given

by n = br+1c is tight and we have R∗ = Ru(N,K, r). This
result can not be proved in general using the converse bounds
provided in [10], [26]–[30] (e.g., for K = 4, N = 10, and
M = 4, none of these bounds give R∗ ≥ 1).
Remark 10. We numerically compare our two converse bounds
(i.e., Theorem 2 and Theorem 4), benchmarked against the
upper bound Ru(N,K, r) we achieved in [24] under three
different settings (see Fig. 2). In all these cases, the two
converse bounds together provide a tight characterization:
Theorem 2 is tight for r ≤ 1 and r ≥ K − 1, and Theorem 4
is tight for 1 ≤ r ≤ K − 1. The same holds true in the proof
of Theorem 3, where the number of users is no more than 5
but the number of files is large.

7Rigorously, we show that the maximum possible gap between R∗, R∗ave,
and Ru(N,K, r) over M ∈ [0, N ] approaches 0 as N goes to infinity.
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Fig. 2: Numerical comparison among the two converse bounds pre-
sented in Theorem 2 and Theorem 4, and the upper bound achieved in
[24]. Our converse bounds tightly characterize the peak rate-memory
tradeoff in all three presented scenarios.

In the rest of this paper, we prove Theorem 1 for the peak
rate in Section IV, and we prove Theorem 2 in Section V.
For brevity, we prove the rest of the results in the appendices.
Specifically, Appendix A proves Theorem 3 for the peak rate,
Appendix B proves Theorem 4, Appendix G proves Theorem
1 for the average rate, and Appendix I proves Theorem 3 for

the average rate.

IV. PROOF OF THEOREM 1 FOR PEAK RATE

In this section, we prove Theorem 1 assuming the correct-
ness of Theorem 2. The proof of Theorem 2 can be found
in Section V. For brevity, we only prove Theorem 1 for the
peak rate (i.e., inequalities (7) and (9)) within this section. The
proof for the average rate (i.e., inequalities (8) and (10)) can
be found in Appendix G.

We start by proving the general factor-of-2.00884 charac-
terization for inequality (7). Then we focus on the special case
of N ≥ K(K+1)

2 and prove inequality (9). As mentioned in
Remark 3, the upper bounds of R∗ stated in Theorem 1 can
be proved using the caching scheme provided in [24]. Hence,
it suffices to prove the lower bounds of (7) and (9).

A. Proof of inequality (7)
The proof of inequality (7) consists of 2 steps. In Step 1,

we first prove, assuming the correctness of Theorem 2, that
the memory-rate pair (M,R∗) is lower bounded by the lower
convex envelope of a set of points in SLower ∪{(0, J)}, where

SLower =

{
(M,R) =

(
N − `+ 1

s
,
s− 1

2
+
`(`− 1)

2s

) ∣∣∣∣
s ∈ {1, ..., J}, ` ∈ {1, ..., s}

}
(15)

where J = min{N,K}, given parameters N and K. Then
in Step 2, we exploit the convexity of the upper bound
Ru(N,K, r), and prove that it is within a factor of 2.00884
from the above converse by checking all the corner points of
the envelope.

For Step 1, we first prove that R∗ is lower bounded by the
convex envelope. To prove this statement, it is sufficient to
show that any linear function that lower bounds all points in
SLower ∪ {(0, J)}, also lower bounds the point (M,R∗). We
prove this for any such linear function, denoted by A+BM ,
by first finding a converse bound of R∗ using Theorem 2 with
certain parameters s and α, and then proving that this converse
bound is lower bounded by the linear function. We consider
the following 2 possible cases:

If A ≥ 0, note that (0, J) should be lower bounded by
the linear function, so we have A ≤ J . Thus, we can
choose s = dAe, α = A − s + 1, and let ` be the
minimum value in {1, ..., s} such that (12) holds. Because(
N−`+1

s , s−12 + `(`−1)
2s

)
∈ SLower, we have

A+B
N − `+ 1

s
≤ s− 1

2
+
`(`− 1)

2s
. (16)

By the definition of α, we have A = s−1+α. Consequently,
the slope B can be upper bounded as follows:

B ≤ s(s− 1) + `(`− 1)− 2As

2(N − `+ 1)

= −s(s− 1)− `(`− 1) + 2αs

2(N − `+ 1)
. (17)

Thus, for any M ≥ 0, we have

A+BM ≤ s− 1 + α− s(s− 1)− `(`− 1) + 2αs

2(N − `+ 1)
M.

(18)
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Note that the RHS of the above inequality is exactly the lower
bound provided in Theorem 2. Hence, A+BM ≤ R∗.

If A < 0, let s = ` = 1, we have (N, 0) ∈ SLower from
(15). Hence, A+BN ≤ 0, and for any M ∈ [0, N ] we have

A+BM =
A(N −M) + (A+BN)M

N
≤ 0. (19)

Obviously R∗ ≥ 0, hence we have A+BM ≤ R∗.
Combining the above two cases, we have proved that the

memory-rate pair (M,R∗) is lower bounded by the lower
convex envelope of SLower∪{(0, J)}. This completes the proof
of Step 1.

For Step 2, we only need to prove that the ratio of
Ru(N,K, r) to the lower convex envelope of SLower∪{(0, J)}
is at most 2.00884. As mentioned at the beginning of this
proof, given that the upper bound Ru(N,K, r) is convex,8

this ratio can only be maximized at the corner points of the
envelope, which is a subset of SLower ∪ {(0, J)}. Hence, we
only need to check that Ru(N,K, r) ≤ 2.00884R holds for
any (M,R) ∈ SLower ∪ {(0, J)}.

To further simplify the problem, we upper bound
Ru(N,K, r) using the following inequality, which can be
easily proved using the results of [24]:9

Ru(N,K, r) ≤ Rdec(M) ,
N −M
M

(1− (1− M

N
)J). (20)

Consequently, to prove inequality (7), it suffices to prove the
following lemma.
Lemma 1. For any (M,R) ∈ SLower ∪ {(0, J)}, we have
Rdec(M) ≤ 2.00884R.

The proof of Lemma 1 can be found in Appendix C.
Assuming its correctness, we have Ru(N,K, r) ≤ 2.00884R∗

for all possible parameter values of N , K, and M . This
completes the proof of inequality (7).

B. Proof of inequality (9)

Now we prove that R∗ ≥ Ru(N,K,r)
2 holds for any N ≥

K(K+1)
2 . In this case, we can verify that inequality (12) holds

for any s ∈ {1, ...,K}, α = 1, and ` = 1. Consequently, from
Theorem 2, R∗ can be bounded as follows:

R∗ ≥ s− 1 + 1− s(s− 1) + 2s

2(N − 1 + 1)
M

= s− s2 + s

2
· M
N
. (21)

Then we prove R∗ ≥ Ru(N,K,r)
2 by considering the following

2 possible cases: If KM
N ≤ 1, we have

Ru(N,K, r) = K − K2 +K

2
· M
N

(22)

as defined in Definition 1. Let s = K, we have the following
bounds from (21) which tightly characterizes Ru(N,K, r):

R∗ ≥ K − K2 +K

2
· M
N

= Ru(N,K, r) ≥
Ru(N,K, r)

2
.

(23)

8A short proof can be found in Appendix J
9Here the upper bound Rdec(M) is the exact minimum communication rate

needed for decentralized caching with uncoded prefetching, as proved in [24].
When M = 0, Rdec(M) , J .

If KM
N > 1, let s = bNM c, we have M

N ∈ [ 1
s+1 ,

1
s ].

Consequently, we can derive the following lower bound on
R∗:

R∗ ≥ s− s2 + s

2
· M
N

=
N −M
2M

+
s2 + s

2
· N
M
·
(
M

N
− 1

s+ 1

)
·
(
1

s
− M

N

)
≥ N −M

2M
. (24)

As mentioned earlier in this section, the following upper bound
can be easily proved using the results of [24]:

Ru(N,K, r) ≤
N −M
M

(1− (1− M

N
)K). (25)

Consequently, we have Ru(N,K, r) ≤ N−M
M ≤ 2R∗. To

conclude, we have proved R∗ ≥ Ru(N,K,r)
2 for both cases.

Hence, inequality (9) holds for large N for any possible values
of K and M .

V. PROOF OF THEOREM 2

Before proving the converse bound stated in Theorem 2,
we first present the following key lemma, which gives a lower
bound on any ε-achievable rate given any prefetching scheme.
Lemma 2. Consider a coded caching problem with parame-
ters N and K. Given a certain prefetching scheme, for any
demand d, any ε-achievable rate R is lower bounded by 10

R ≥ 1

F

min{N,K}∑
k=1

H(Wdk |Z{1,...,k},W{d1,...,dk−1})


−min{N,K}( 1

F
+ ε). (26)

The above lemma is developed based on the idea of en-
hancing the cutset bound, which is further explained in the
proof of this lemma in Appendix D. One can show that this
approach strictly improves the compound cutset bound, which
was used in most of the prior works. We now continue to
prove Theorem 2 assuming the correctness of Lemma 2.

The rest of the proof consists of two steps. In Step 1,
we exploit the homogeneity of the problem, and derive a
symmetrized version of the converse presented in Lemma 2.
Then in Step 2, we derive the converse bound in Theorem 2,
which is independent of the prefetching scheme, by essentially
minimize the symmetrized converse over all possible designs.

For Step 1, we observe that the caching problem proposed in
this paper assumes that all users has the same cache size, and
all files are of the same size. To fully utilize this homogeneity,
we define the following useful notations. For any positive
integer i, we denote the set of all permutations of {1, ..., i} by
Pi. For any set S ⊆ {1, ..., i} and any permutation p ∈ Pi, we
define pS = {p(s) | s ∈ S}. For any subsets A ⊆ {1, ..., N}
and B ⊆ {1, ...,K}, we define

H∗(WA, ZB) ,
1

N !K!

∑
p∈PN ,q∈PK

H(WpA, ZqB). (27)

10By an abuse of notation, we denote a sub-array by using a set of indices
as the subscript. Besides, we define {d1, ..., dk−1} = ∅ for k = 1. Similar
convention will be used throughout this paper.
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Similarly, we define the same notation for conditional entropy
in the same way. We can verify that the functions defined
above satisfies all Shannon’s inequalities. I.e., for any sets of
random variables A, B and C, we have

H∗(A|B) ≥ H∗(A|B, C). (28)

Note that from the homogeneity of the problem, for any ε-
achievable rate R, Lemma 2 holds for any demands, under any
possible relabeling of the users. Thus, by considering the class
of demands where at least min{N,K} files are requested, we
have

R ≥ 1

F
(

min{N,K}∑
k=1

H(Wq(k)|Z{p(1),...,p(k)},W{q(1),...,q(k−1)}))

−min{N,K}( 1
F

+ ε) (29)

for any p ∈ PK and q ∈ PN . Averaging the above bound over
all possible p and q, we have

R ≥ 1

F
(

min{N,K}∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1}))

−min{N,K}( 1
F

+ ε). (30)

Recall that R∗ is defined to be the minimum ε-achievable rate
over all prefetching scheme φ for large F for any ε > 0, we
have
R∗ ≥ sup

ε>0
lim sup
F→∞

min
φ

{ 1
F
(

min{N,K}∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1}))

−min{N,K}( 1
F

+ ε)}

=sup
ε>0

lim sup
F→∞

min
φ

{ 1
F
(

min{N,K}∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1})}

≥ inf
F∈N+

min
φ

{ 1
F
(

min{N,K}∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1})}. (31)

Now we have derived a symmetrized version of the converse
bound. To simplify the discussion, we define RA(F,φ) =

1
F

min{N,K}∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1}). Consequently,

R∗ ≥ inf
F∈N+

min
φ
RA(F,φ). (32)

For Step 2, as mentioned previously in this proof, to derive
the converse bound presented in Theorem 2, we aim to mini-
mize the symmetrized converse RA(F,φ) over all prefetching
scheme φ. Moreover, we need to prove that it is no less than
the RHS of (11) for any parameters s and α. We present the
following lemma, which essentially solves this problem.

Lemma 3. For any parameters s ∈ {1, ...,min{N,K}}, α ∈

[0, 1], and any prefetching scheme φ, we have

RA(F,φ) ≥ s− 1 + α− s(s− 1)− `(`− 1) + 2αs

2(N − `+ 1)
M,

(33)
where ` ∈ {1, ..., s} is the minimum value such that

s(s− 1)− `(`− 1)

2
+ αs ≤ (N − `+ 1)`. (34)

The proof of Lemma 3 can be found in Appendix E. Note
that the lower bound in the above lemma is identical to the
converse in Theorem 2. Assuming its correctness, then given
any s and α, we can bound R∗ as follows:
R∗ ≥ inf

F∈N+

min
φ
R∗A(F, φ)

≥ (s− 1 + α)− s(s− 1)− `(`− 1) + 2αs

2(N − `+ 1)
M. (35)

This completes the proof of Theorem 2.

VI. CONCLUSION

In this paper, we developed novel converse bounding
techniques for caching networks, and characterized the rate-
memory tradeoff of the basic bottleneck caching network
within a factor of 2.00884 for both the peak rate and the
average rate. This is approximately a two-fold improvement
with respect to the state of the art. We also provided tight char-
acterization of rate-memory tradeoff for systems with no more
than 5 users, when the number of files is large. The results of
this paper can also be used to improve the approximation of
rate-memory tradeoff in several other settings, such as online
caching, caching with non-uniform demands, and hierarchical
caching.

APPENDIX A
PROOF OF THEOREM 3 FOR PEAK RATE

In this section, we prove Theorem 3 assuming the correct-
ness of Theorem 4. The proof of Theorem 4 can be found
in Appendix B. For brevity, we only prove Theorem 3 for the
peak rate (i.e., R∗ = Ru(N,K, r) for large N ) within this sec-
tion. The proof for the average rate (i.e., R∗ave = Ru(N,K, r)
for large N ) can be found in Appendix G.

As mentioned previously, the rate Ru(N,K, r) can be
exactly achieved using the caching scheme proposed in [24].
Hence, to prove Theorem 3, it is sufficient to show that
R∗ ≥ Ru(N,K, r) for large N (i.e., N → +∞) when K ≤ 5.
This statement can be easily proved using the following
lemma:
Lemma 4. For a caching problem with parameters K, N ,
and M , we have R∗ ≥ Ru(N,K, r) for large N , if r ≤ 1 or
r ≥ dK−32 e.

Assuming the correctness of Lemma 4, and noting that the
condition in Lemma 4 (i.e., r ≤ 1 or r ≥ dK−32 e) always
holds true for K ≤ 5, we have R∗ ≥ Ru(N,K, r) for large N
and for all possible values of M , in any caching system with
no more than 5 users. Hence, to prove Theorem 3, it suffices
to prove Lemma 4. We prove this lemma as follows, using
Theorem 2 and Theorem 4.

Proof of Lemma 4. We start by focusing on two easier cases,
r ≤ 1 and r ≥ K − 1. When r ≤ 1, the inequality R∗ ≥



8

Ru(N,K, r) is already proved in Section IV and given by
(23), for N ≥ K(K+1)

2 . When r ≥ K − 1, we have R∗ ≥
1 − M

N = Ru(N,K, r), which can be proved by choosing
s = 1 and α = 1 for Theorem 2. Hence, we only need to
focus on the case where r ∈

[
max{dK−32 e, 1},K − 1

)
, and

show that for large N , the maximum possible gap between
R∗ and Ru(N,K, r) approaches 0.

We prove this result using Theorem 4. Essentially, we need
to find parameter n ∈ {1, ...,K−1} for Theorem 4, such that
the corresponding converse bound approaches Ru(N,K, r) for
large N .

Let n = br + 1c, we have

Ru(N,K, r) =
2K − n+ 1

n+ 1
− K(K + 1)

n(n+ 1)
· M
N

(36)

by definition, for sufficiently large N (more specifically, N ≥
K − n+ 1). Under the same condition for large N , we have
n ∈ {max{1,K −N + 1}, ...,K − 1} given r ∈ [1,K − 1).
Hence, we can use n as the parameter of Theorem 4. Now we
prove the tightness of this converse bound by considering the
following two possible cases:

If n > K−1
2 , we have K − 2n − 1 < 0. Recall that α =

bN−1K−nc and β = N − α(K − n). We can prove that when

N is sufficiently large (i.e. N ≥ 2(K−n)2
2n+1−K + 1), the condition

β + αK−2n−12 ≤ 0 is always satisfied. Consequently,

R∗ ≥ 2K − n+ 1

n+ 1
− K(K + 1)

n(n+ 1)
· M
N

= Ru(N,K, r). (37)

If n ≤ K−1
2 , because we are considering the case where r ≥

dK−32 e, we have n = K−1
2 . Hence, we can verify that β +

αK−2n−12 ≤ 0 does not hold for any N . Consequently,

R∗ ≥ 2K − n+ 1

n+ 1
− 2K(K − n)

n(n+ 1)
· M

N − β

=
2K − n+ 1

n+ 1
− K(K + 1)

n(n+ 1)
· M

N − β
. (38)

As N approaches infinity, β is upper bounded by a constant.
Hence, we have lim

N→+∞
N

N−β = 1. Therefore, from (36) and

(38), we have
lim

N→+∞
(R∗ −Ru(N,K, r)) ≥

lim
N→+∞

K(K + 1)

n(n+ 1)
·
(
M

N
− M

N − β

)
= lim
N→+∞

r(K + 1)

n(n+ 1)
·
(
1− N

N − β

)
=0. (39)

APPENDIX B
PROOF OF THEOREM 4

Before proving the converse bounds stated in Theorem 4,
we first present the following key lemma, which gives a lower
bound on any ε-achievable rate given any prefetching scheme.

Lemma 5. Consider a coded caching problem with param-
eters N and K. Given a certain prefetching scheme, any ε-

achievable rate R is lower bounded by 11

RF ≥H∗(W1|Z1)

+
2

n(n+ 1)α

(
αn(K − n)F − nH∗(Z1|W{1,...,β})

−
K−n−1∑
i=0

H∗(Z1|W{1,...,β+iα})

)
− 2K − n+ 1

n+ 1
(1 + εF ) (40)

for any integer n ∈ {max{1,K −N + 1}, ...,K − 1}, where
α = bN−1K−nc and β = N − α(K − n).

We postpone the proof of the above lemma to Appendix F,
and continue to prove Theorem 4 assuming its correctness. To
simplify the discussion, we define

RB(F,φ) =
1

F

(
H∗(W1|Z1) +

2

n(n+ 1)α

(
αn(K − n)F

− nH∗(Z1|W{1,...,β})

−
K−n−1∑
i=0

H∗(Z1|W{1,...,β+iα})

))
. (41)

Using Lemma 5, we have

R ≥ RB(F,φ)−
2K − n+ 1

n+ 1
(
1

F
+ ε) (42)

if R is ε-achievable. Recall that R∗ is defined to be the
minimum ε-achievable rate over all prefetching scheme φ for
large F for any ε > 0, we have the following lower bound on
R∗:

R∗ ≥ sup
ε>0

lim sup
F→∞

min
φ
{RB(F,φ)−

2K − n+ 1

n+ 1
(
1

F
+ ε)}

= sup
ε>0

lim sup
F→∞

min
φ
RB(F,φ)

≥ inf
F∈N+

min
φ
RB(F,φ). (43)

Hence, to prove Theorem 4, we only need to prove that for
any prefetching scheme φ, RB(F,φ) is lower bounded by the
converse bounds given in Theorem 4 for any valid parameter
n.

Now consider any n ∈ {max{1,K − N + 1}, ...,K − 1}.
For brevity, we define

θ =

(
Kβ +

(K − n)(K − n− 1)

2
α

)
. (44)

Equivalently, we have

θ = nβ +

K−n−1∑
i=0

(β + iα). (45)

Hence,

11Here we adopt the notation of H∗(WA, ZB) which is defined in the
proof of Theorem 2.
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θH∗(W1|Z1) ≥nH∗(W{1,...,β}|Z1)

+

K−n−1∑
i=0

H∗(W{1,...,β+iα}|Z1)

=θF + nH∗(Z1|W{1,...,β})

+

K−n−1∑
i=0

H∗(Z1|W{1,...,β+iα})−KH∗(Z1).

(46)
From (41) and (46), we have

RB(F,φ)F ≥
(
1− 2θ

n(n+ 1)α

)
H∗(W1|Z1)

+
2

n(n+ 1)α
(θF −KH∗(Z1)

+ αn(K − n)F ). (47)
Depending on the value of θ, we bound H∗(W1|Z1) in 2
different ways:

When 1 ≥ 2θ
n(n+1)α , this is exactly the case where β +

αK−2n−12 ≤ 0 holds. We use the following bound:

H∗(W1|Z1) ≥ F −
H∗(Z1)

N
. (48)

Consequently,

RB(F,φ)F ≥
(
1− 2θ

n(n+ 1)α

)(
F − H∗(Z1)

N

)
+

2

n(n+ 1)α
(θF −KH∗(Z1)

+ αn(K − n)F ). (49)
Given θ defined in (44), and β = N − α(K − n) as defined
in Lemma 5, we have

RB(F,φ)F =
2K − n+ 1

n+ 1
F − K(K + 1)

n(n+ 1)
· H
∗(Z1)

N

≥ 2K − n+ 1

n+ 1
F − K(K + 1)

n(n+ 1)
· M
N
F. (50)

Hence we have the follows from (43):

R∗ ≥ 2K − n+ 1

n+ 1
− K(K + 1)

n(n+ 1)
· M
N
. (51)

On the other hand, when 1 < 2θ
n(n+1)α , this is exactly

the case where β + αK−2n−12 ≤ 0 does not hold. We use
H∗(W1|Z1) ≤ F . Similarly,

RB(F,φ)F ≥
(
1− 2θ

n(n+ 1)α

)
F

+
2

n(n+ 1)α
(θF −KH∗(Z1)

+ αn(K − n)F )

=
2K − n+ 1

n+ 1
F − 2K(K − n)

n(n+ 1)
· H
∗(Z1)

N − β

≥2K − n+ 1

n+ 1
F − 2K(K − n)

n(n+ 1)
· M

N − β
F.

(52)
Hence,

R∗ ≥ inf
F∈N+

min
φ
RB(F, φ)

≥ 2K − n+ 1

n+ 1
− 2K(K − n)

n(n+ 1)
· M

N − β
. (53)

To conclude, we have proved that the converse bound given
in Theorem 4 holds for any valid parameter n.

APPENDIX C
PROOF OF LEMMA 1

In this appendix, we aim to prove that for any (M,R) ∈
SLower ∪ {(0, J)}, Rdec(M) ≤ 2.00884R. Note that if
(M,R) = (0, J), we have Rdec(M) = J ≤ 2.00884R. Hence,
it suffices to consider the case where (M,R) ∈ SLower.

In this case, we can find s ∈ {1, ..., J} and ` ∈ {1, ..., s}
such that

(M,R) =

(
N − `+ 1

s
,
s− 1

2
+
`(`− 1)

2s

)
. (54)

Based on the parameter values, we prove Rdec(M) ≤
2.00884R by considering the following 3 possible scenarios:
a). If N ≥ 9s, we first have the follows given (20):

Rdec(M) ≤ N −M
M

. (55)

Due to (54), the above inequality is equivalent to

Rdec(M) ≤ s− 1 +
s(`− 1)

N − `+ 1
. (56)

Recall that s ≥ ` and N ≥ 9s, we have

Rdec(M) ≤ s− 1 +
s(`− 1)

N − s

≤ s− 1 +
`− 1

8
. (57)

Since s ≥ `, we have `−1
` ≤

s−1
s . Consequently,

Rdec(M) ≤ s− 1 +

√
`− 1

8
·
√

(s− 1)

s
· `

= s− 1 + 2 ·
√
s− 1

256
·
√
`(`− 1)

s
. (58)

Applying the AM-GM inequality to the second term of the
RHS, we have

Rdec(M) ≤ s− 1 +
s− 1

256
+
`(`− 1)

s
. (59)

Because ` ≥ 1, we can thus upper bound Rdec(M) as a
function of R, which is given in (54):

Rdec(M) ≤ (2 +
1

128
)(
s− 1

2
+
`(`− 1)

2s
)

≤ 2.00884R. (60)

b). If N < 9s and N ≤ 81, we upper bound Rdec(M) as
follows:

Rdec(M) ≤ N −M
M

(1− (1− M

N
)N ). (61)

Note that both the above bound and R are functions of N , s
and `, which can only take values from {1, ..., 81}. Through
a brute-force search, we can show that Rdec(M) ≤ 2.000R ≤
2.00884R.
c). If N < 9s and N > 81, recall that M = N−`+1

s from
(54), we have

M ≤ N

s
< 9. (62)
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Similarly, R can be lower bounded as follows given (54):

R =
s− 1

2
+

(N − sM)(N − sM + 1)

2s

=
(1 +M2)s

2
+
N(N + 1)

2s
− (N +

1

2
)M − 1

2
. (63)

Applying the AM-GM inequality to the first two terms of the
RHS, we have

R ≥
√

(1 +M2)N(N + 1)− (N +
1

2
)M − 1

2
. (64)

From (62), N > 81 > M2, we have
√
N(N + 1) ≥√

M2(M2 + 1) +N −M2. Consequently,

R ≥
√
1 +M2(

√
M2(M2 + 1) +N −M2)

− (N +
1

2
)M − 1

2

=(N − 81)(
√
1 +M2 −M)

+ (81−M2)(
√
1 +M2 −M) +

M − 1

2
. (65)

On the other hand, we upper bound Rdec(M) as follows:

Rdec(M) ≤ N −M
M

(1− (1− M

N
)N )

=
N −M
M

(1− eln(1−M
N )N ). (66)

From (62), MN < 9
81 = 1

9 , it is easy to show that ln(1− M
N ) ≥

−MN −
9
16

(
M
N

)2
. Hence,

Rdec(M) ≤N −M
M

(1− e−M− 9
16

M2

N )

≤N −M
M

(
1− e−M (1− 9

16

M2

N
)

)
≤N −M

M
(1− e−M ) +

N

M
e−M

9

16

M2

N

=(N − 81)
1− e−M

M
+

81−M
M

(1− e−M )

+
9

16
Me−M . (67)

Numerically, we can verify that the following inequalities hold
for M ∈ [0, 9):
1− e−M

M
≤ 2.00884(

√
1 +M2 −M), (68)

81−M
M

(1− e−M ) +
9

16
Me−M ≤

2.00884

(
(81−M2)(

√
1 +M2 −M) +

M − 1

2

)
. (69)

Hence when N > 81, by computing (N − 81)× (68) + (69),
we have Rdec(M) ≤ 2.00884R.

To conclude, Rdec(M) ≤ 2.00884R holds for any (M,R) ∈
SLower for all three cases. This completes the proof of Lemma
1.

APPENDIX D
PROOF OF LEMMA 2

If R is ε-achievable, we can find message Xd such that
for each user k, Wdk can be decoded from Zk and Xd with
probability of error of at most ε. Using Fano’s inequality, the
following bound holds:

H(Wdk |Zk, Xd) ≤ 1 + εF ∀k ∈ {1, ...,K}. (70)

Equivalently,
H(Xd|Zk) ≥ H(Wdk |Zk) +H(Xd|Wdk , Zk)

− (1 + εF ) ∀k ∈ {1, ...,K}. (71)
Note that the LHS of the above inequality lower bounds
the communication load. If we lower bound the term
H(Xd|Wdk , Zk) on the RHS by 0, we obtain the single
user cutset bound. However, we enhance this cutset bound by
bounding H(Xd|Wdk , Zk) with non-negative functions. On a
high level, we view H(Xd|Wdk , Zk) as the communication
load on an enhanced caching system, where Wdk and Zk are
known by all the users. Using similar approach, we can lower
bound H(Xd|Wdk , Zk) by the sum of a single cutset bound on
this enhanced system, and another entropy function that can be
interpreted as the communication load on a further enhanced
system. We can recursively apply this bounding technique until
all user demands are publicly known.

From (70), we have
H(Wdk |Z{1,...,k}, Xd,W{d1,...,dk−1}) ≤ 1 + εF

∀k ∈ {1, ...,K}. (72)
Equivalently,
H(Xd|Z{1,...,k},W{d1,...,dk−1}) ≥

H(Wdk |Z{1,...,k},W{d1,...,dk−1})

+H(Xd|Z{1,...,k},W{d1,...,dk})
− (1 + εF ) ∀k ∈ {1, ...,K}. (73)

Adding the above inequality for k ∈ {1, ...,min{N,K}}, we
have
H(Xd|Z{1}) ≥

min{N,K}∑
k=1

(
H(Wdk |Z{1,...,k},W{d1,...,dk−1})− (1 + εF )

)
+H(Xd|Z{1,...,min{N,K}},W{d1,...,dmin{N,K}})

≥
min{N,K}∑

k=1

H(Wdk |Z{1,...,k},W{d1,...,dk−1})

−min{N,K}(1 + εF ). (74)
Thus, R is bounded by

R ≥ 1

F
H(Xd|Z{1})

≥ 1

F
(

min{N,K}∑
k=1

H(Wdk |Z{1,...,k},W{d1,...,dk−1}))

−min{N,K}( 1
F

+ ε). (75)

One can show that this approach strictly improves the com-
pound cutset bound, which was used in most of the prior
works.

APPENDIX E
PROOF OF LEMMA 3

In this appendix, we prove that for any prefetching scheme
φ, the rate RA(F,φ) is lower bounded by the RHS of (33),
for any parameters s and α. Now we consider any such s ∈
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{1, ...,min{N,K}} and α ∈ [0, 1]. From the definition of
RA(F,φ) and the non-negativity of entropy functions, we have

R∗A(F,φ)F ≥

(
s−1∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1})

)
+ αH∗(Ws|Z{1,...,s},W{1,...,s−1}). (76)

Each term in the above lower bound can be bounded in the
following 2 ways: 12

H∗(Wk|Z{1,...,k},W{1,...,k−1})

≥
H∗(W{k,...,N}|Z{1,...,k},W{1,...,k−1})

N − k + 1

≥F −
H∗(Z{1,...,k}|W{1,...,k−1})

N − k + 1
(77)

H∗(Wk|Z{1,...,k},W{1,...,k−1})
=F −H∗(Z{1,...,k}|W{1,...,k−1})
+H∗(Z{1,...,k}|W{1,...,k})

≥F −H∗(Z{1,...,k}|W{1,...,k−1})

+
k

k + 1
H∗(Z{1,...,k+1}|W{1,...,k}) (78)

We aim to use linear combinations of the above two
bounds in (76), such that the coefficient of each
H∗(Z{1,...,k}|W{1,...,k−1}) in the resulting lower bound
is 0 for all but one k. To do so, we construct the following
sequences:

ax =
2αs+ s(s− 1)− (x+ 1)x

2x(N − x)
, (79)

bx =
2αs+ s(s− 1)− x(x− 1)

2x(N − x+ 1)
. (80)

We can verify that these sequences satisfy the following
equations:

1− ax
N − x+ 1

+ ax = bx, (81)
x

x+ 1
ax = bx+1. (82)

Let ` ∈ {1, ..., s} be the minimum value such that (12) holds,
we can prove that ax ∈ [0, 1] for x ∈ {`, ..., s−1}. Because ` is
the minimum of such values, we can also prove that bl ≥ `−1

` .
Using the above properties of sequences a and b, we lower
bound RA(F,φ) as follows:

For each x ∈ {`, ..., s−1}, by computing (1−ax)× (77)+
ax × (78), we have

H∗(Wx|Z{1,...,x},W{1,...,x−1})

≥(1− ax)
(
F −

H∗(Z{1,...,k}|W{1,...,k−1})
N − k + 1

)
+ ax(F −H∗(Z{1,...,k}|W{1,...,k−1})

+
k

k + 1
H∗(Z{1,...,k+1}|W{1,...,k}))

=F − (
1− ax

N − x+ 1
+ ax)H

∗(Z{1,...,x}|W{1,...,x−1})

+ ax
x

x+ 1
H∗(Z{1,...,x+1}|W{1,...,x})

12Rigorously, (78) requires k < K. However, we will only apply this bound
for k < s, which satisfies this condition.

=F − bxH∗(Z{1,...,x}|W{1,...,x−1})
+ bx+1H

∗(Z{1,...,x+1}|W{1,...,x}). (83)
Moreover, we have the follows from (77):

αH∗(Ws|Z{1,...,s},W{1,...,s−1})

≥ α
(
F −

H∗(Z{1,...,s}|W{1,...,s−1})
N − s+ 1

)
= αF − bsH∗(Z{1,...,s}|W{1,...,s−1}). (84)

Consequently,
s−1∑
k=`

H∗(Wk|Z{1,...,k},W{1,...,k−1})

+αH∗(Ws|Z{1,...,s},W{1,...,s−1}) ≥
(s− `+ α)F − b`H∗(Z{1,...,`}|W{1,...,`−1}). (85)

On the other hand,
`−1∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1})

≥
`−1∑
k=1

(F −H∗(Z{1,...,k}|W{1,...,k−1})

+
k

k + 1
H∗(Z{1,...,k+1}|W{1,...,k}))

=

`−1∑
k=1

(F − 1

k
H∗(Z{1,...,k}|W{1,...,k−1}))

+
`− 1

`
H∗(Z{1,...,`}|W{1,...,`−1})

≥(`− 1)F − (`− 1)MF

+
`− 1

`
H∗(Z{1,...,`}|W{1,...,`−1}). (86)

Combining (76), (85), and (86), we have
RA(F,φ)F ≥(`− 1)F − (`− 1)MF

+
`− 1

`
H∗(Z{1,...,`}|W{1,...,`−1})

+ (s− `+ α)F − b`H∗(Z{1,...,`}|W{1,...,`−1})
=(s− 1 + α)F − (`− 1)MF

+

(
`− 1

`
− bl

)
H∗(Z{1,...,`}|W{1,...,`−1}).

(87)

Recall that b` ≥ `−1
` , we have

RA(F,φ)F ≥(s− 1 + α)F − (`− 1)MF

− (b` −
`− 1

`
)`MF

=(s− 1 + α)F

− s(s− 1)− `(`− 1) + 2αs

2(N − `+ 1)
MF. (88)

This completes the proof of Lemma 3.

APPENDIX F
PROOF OF LEMMA 5

To simplify the discussion, we adopt the notation of
H∗(WA, ZB) which is defined in the proof of Theorem 2.
Moreover, we generalize this notation to include the variables
for the messages Xd. For any permutations p ∈ PN , q ∈ PK
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and for any demand d ∈ {1, ..., N}K , we define d(p, q) be
a demand where for each k ∈ {1, ...,K}, user q(k) requests
file p(dk). Then for any subset for demands D ⊆ {1, ..., N}K ,
we define D(p, q) = {d(p, q)|d ∈ D}. Now for any subsets
A ⊆ {1, ..., N}, B ⊆ {1, ...,K}, and D ⊆ {1, ..., N}K , we
define
H∗(XD,WA, ZB)

,
1

N !K!

∑
p∈PN ,q∈PK

H(XD(p,q),WpA, ZqB). (89)

For any i ∈ {1, .., n} and j ∈ {1, ..., α} let di,j be a demand
satisfying

di,jl =


l − i+ (j − 1)(K − n) + β

if i+ 1 ≤ l ≤ i+K − n,
1 otherwise.

(90)
Note that for all demands di,j , user 1 requests file 1, hence
we have

H(W1|Xdi,j , Z1) ≤ 1 + εF (91)
using Fano’s inequality. Consequently,
RF ≥ H(Xdi,j )

≥ H(Xdi,j |Z1) +H(W1|Xdi,j , Z1)− (1 + εF )

= H(W1|Z1) +H(Xdi,j |W1, Z1)− (1 + εF ). (92)
Due to the homogeneity of the problem, we have
RF ≥ H∗(W1|Z1) +H∗(Xdi,j |W1, Z1)− (1 + εF ). (93)

For each i ∈ {1, ..., n}, j ∈ {1, ..., α}, and k ∈ {1, ..., i}, we
have the following identity:

H∗(Xdi,j |W1, Z1) = H∗(Xdi,j |W1, Zk). (94)
Hence, we have

RF ≥H∗(W1|Z1)

+
2

n(n+ 1)α

n∑
k=1

n∑
i=k

α∑
j=1

H∗(Xdi,j |W1, Zk)

− (1 + εF ). (95)

For k ∈ {1, ..., n}, let Dk and D+
k denote the following set

of demands:
Dk = {dk,j |j ∈ {1, ..., α}}, (96)

D+
k =

n⋃
i=k

Di, (97)

we have

RF ≥H∗(W1|Z1) +
2

n(n+ 1)α

n∑
k=1

H∗(XD+
k
|W1, Zk)

− (1 + εF )

≥H∗(W1|Z1) +
2

n(n+ 1)α

n∑
k=1

H∗(XD+
k
|W{1,...,β}, Zk)

− (1 + εF )

≥H∗(W1|Z1)

+
2

n(n+ 1)α

n∑
k=1

(
H∗(Zk, XD+

k
|W{1,...,β})

−H∗(Zk|W{1,...,β})
)
− (1 + εF ). (98)

To further bound R, we only need a lower bound for
n∑
k=1

H∗(Zk, XD+
k
|W{1,...,β}), which is derived as follows:

For each i ∈ {1, ...,K−n}, let Si be subset of files defined
as follows:
Si = {i+ (j − 1)(K − n) + β | j ∈ {1, ..., α}}. (99)

From the decodability constraint, for any k ∈ {1, ..., n}, each
file in Si can be decoded by user i + k given XDk

. Using
Fano’s inequality, we have

H∗(WSi |XDk
, Zi+k) ≤ α(1 + εF ). (100)

Let S−i be subset of files defined as follows

S−i =

 i⋃
j=1

Sj

 ⋃
{1, ..., β}. (101)

We have
0 ≥H∗(WSi |XD+

k
, Zi+k,WS−i−1

)− α(1 + εF )

=H∗(XD+
k
, Zi+k|WSi ,WS−i−1

) +H∗(WSi |WS−i−1
)

−H∗(XD+
k
, Zi+k|WS−i−1

)− α(1 + εF )

=H∗(XD+
k
, Zi+k|WS−i ) + αF −H∗(XD+

k
, Zi+k|WS−i−1

)

− α(1 + εF ). (102)
Consequently,

0 ≥
n∑
k=1

K−n∑
i=1

(
H∗(XD+

k
, Zi+k|WS−i ) + αF

−H∗(XD+
k
, Zi+k|WS−i−1

)− α(1 + εF )
)

=

n∑
k=1

(
K−n∑
i=1

(
H∗(XD+

k
, Zi+k−1|WS−i−1

)

−H∗(XD+
k
, Zi+k|WS−i−1

)
)
+H∗(XD+

k
, ZK−n+k|WS−n )

−H∗(XD+
k
, Zk|WS−0 )

)
+ αn(K − n)(F − 1− εF )

≥
n∑
k=1

(
K−n∑
i=1

(
H∗(XD+

k
, Zi+k−1|WS−i−1

)

−H∗(XD+
k
, Zi+k|WS−i−1

)
)
−H∗(XD+

k
, Zk|WS−0 )

)
+ αn(K − n)(F − 1− εF ). (103)

Hence, we obtain the following lower bound:
n∑
k=1

H∗(XD+
k
, Zk|WS−0 ))

≥
n∑
k=1

K−n∑
i=1

(
H∗(XD+

k
, Zi+k−1|WS−i−1

)

−H∗(XD+
k
, Zi+k|WS−i−1

)
)

+ αn(K − n)(F − 1− εF )
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=

K−n∑
i=1

n∑
k=1

(
H∗(XD+

k
, Zi+k−1|WS−i−1

)

−H∗(XD+
k
, Zi+k|WS−i−1

)
)

+ αn(K − n)(F − 1− εF )

=

K−n∑
i=1

n∑
k=1

(
H∗(Zi+k−1|XD+

k
,WS−i−1

)

−H∗(Zi+k|XD+
k
,WS−i−1

)
)

+ αn(K − n)(F − 1− εF ) (104)
Note that D+

k ⊆ D
+
k−1, we have H∗(Zi+k|XD+

k+1
,WS−i−1

) ≥
H∗(Zi+k|XD+

k
,WS−i−1

). Consequently,
n∑
k=1

H∗(XD+
k
, Zk|WS−0 ))

≥
K−n∑
i=1

(
H∗(Zi|XD+

1
,WS−i−1

)−H∗(Zi+n|XD+
n
,WS−i−1

)
)

+ αn(K − n)(F − 1− εF )

≥−
K−n∑
i=1

H∗(Zi+n|WS−i−1
) + αn(K − n)(F − 1− εF )

=−
K−n∑
i=1

H∗(Z1|W{1,...,β+iα})

+ αn(K − n)(F − 1− εF ). (105)
Applying (105) to (98), we have

RF ≥H∗(W1|Z1) +
2

n(n+ 1)α

(
αn(K − n)(F − 1− εF )

−
n∑
k=1

H∗(Zk|W{1,...,β})

−
K−n−1∑
i=0

H∗(Z1|W{1,...,β+iα})

)
− (1 + εF )

=H∗(W1|Z1) +
2

n(n+ 1)α

(
αn(K − n)F

− nH∗(Z1|W{1,...,β})

−
K−n−1∑
i=0

H∗(Z1|W{1,...,β+iα})

)
− 2K − n+ 1

n+ 1
(1 + εF ). (106)

APPENDIX G
PROOF OF THEOREM 1 FOR AVERAGE RATE

Here we prove Theorem 1 for the average rate (i.e. inequal-
ities (8) and (10)). The upper bounds of R∗ave in these inequal-
ities can be achieved using the caching scheme provided in
[24], hence we only need to prove their lower bounds. To do
so, we define the following terminology:

We divide the set of all demands, denoted by D, into smaller
subsets, and refer them to as types. We use the same definition

in [24], which are stated as follows: Given an arbitrary demand
d, we define its statistics, denoted by s(d), as a sorted array
of length N , such that si(d) equals the number of users that
request the ith most requested file. We denote the set of all
possible statistics by S . Grouping by the same statistics, the
set of all demands D can be broken into many subsets. For any
statistics s ∈ S, we define type Ds as the set of queries with
statistics s. Note that for each demand d, the value Ne(d) only
depends on its statistics s(d), and thus the value is identical
across all demands in Ds. For convenience, we denote that
value by Ne(s).

Given a prefetching scheme φ and a type Ds, we say a
rate R is ε-achievable for type Ds if we can find a function
R(d) that is ε-achievable for any demand d in Ds, satisfying
R = Ed[R(d)], where d is uniformly random in Ds. Hence,
to characterize R∗ave, it is sufficient to lower bound the ε-
achievable rates for each type individually, and show that for
each type, the caching scheme provided in [24] is within the
given constant factors optimal for large F and small ε.

We first lower bound any ε-achievable rate for each type as
follows : Within a type Ds, we can find a demand d, such that
users in {1, ..., Ne(s)} requests different files. We can easily
generalize Lemma 2 to this demand, and any ε achievable
rate of this demand, denoted by Rd, is lower bounded by the
following inequality:

Rd ≥
1

F

Ne(s)∑
k=1

H(Wdk |Z{1,...,k},W{d1,...,dk−1})


−Ne(s)(

1

F
+ ε). (107)

Applying the same bounding technique to all demands in type
Ds. We can prove that any rate that is ε-achievable for Ds,
denoted by Rs, is bounded by the follows:

Rs ≥
1

F

Ne(s)∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1})


−Ne(s)(

1

F
+ ε), (108)

where function H∗(·) is defined in the proof of Theorem 2.
Following the same steps in the proof of Theorem 2, we

can prove that

Rs ≥ s−1+α−
s(s− 1)− `(`− 1) + 2αs

2(N − `+ 1)
M−Ne(s)(

1

F
+ε),

(109)
for arbitrary s ∈ {1, ..., Ne(s)}, α ∈ [0, 1], where ` ∈
{1, ..., s} is the minimum value such that

s(s− 1)− `(`− 1)

2
+ αs ≤ (N − `+ 1)`. (110)

On the other hand, the caching scheme provided in [24]

achieves an average rate of Conv
(
( K
r+1)−(

K−Ne(s)
r+1 )

(Kr )

)
within

each type Ds. Using the results in [24], we can easily prove
that this average rate can be upper bounded by Rdec(M, s),
defined as

Rdec(M, s) ,
N −M
M

(1− (1− M

N
)Ne(s)). (111)

Hence, in order to prove (8) and (10), it suffices to prove that
for large F and small ε, any ε-achievable rate Rs for any type
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Ds satisfies Rs ≥ Rdec(M, s)/2.00884 in the general case,
and Rs ≥ Rdec(M, s)/2 when N ≥ K(K+1)

2 .
Note that the above characterization of Rs exactly matches

a characterization of R∗ for a caching system with N files
and Ne(s) users. Specifically, the lower bound of Rs given
by (109) exactly matches Theorem 2, and the upper bound
Rdec(M, s) defined in (111) exactly matches the upper bound
Rdec(M) defined in (20). Thus, by reusing the same arguments
in the proof of Theorem 1 for the peak rate, we can easily
prove that Rs ≥ Rdec(M, s)/2.00884 holds for the general
case, and Rs ≥ Rdec(M, s)/2 holds for sufficiently large N
when Ne(s)M

N > 1. Hence, to prove Theorem 1 for the average
rate, we only need Rs ≥ Rdec(M, s)/2 for sufficiently large
N to also hold when Ne(s)M

N ≤ 1, which can be easily proved
as follows:

Using the same arguments in the proof of Theorem 1 for
the peak rate, the following inequality can be derived from
(109) for large N , large F and small ε:

Rs ≥ Ne(s)−
Ne(s)(Ne(s) + 1)

2
· M
N
, (112)

which is a linear function of M . Furthermore, since
Rdec(M, s) is convex, we only need to check that

Rdec(M, s)

2
≤ Ne(s)−

Ne(s)(Ne(s) + 1)

2
· M
N

(113)

holds at Ne(s)M
N ∈ {0, 1}.

For Ne(s)M
N = 0, we have

Rdec(M, s)

2
=
Ne(s)

2
≤ Ne(s) =

Ne(s)−
Ne(s)(Ne(s) + 1)

2
· M
N
. (114)

For Ne(s)M
N = 1, we have

Rdec(M, s)

2
=
Ne(s)− 1

2

(
1−

(
1− 1

Ne(s)

)Ne(s)
)

≤Ne(s)− 1

2

=Ne(s)−
Ne(s)(Ne(s) + 1)

2
· M
N
. (115)

This completes the proof of Theorem 1.

APPENDIX H
THE EXACT RATE-MEMORY TRADEOFF FOR TWO-USER

CASE

As mentioned in Remark 4, we can completely characterize
the rate-memory tradeoff for average rate for the two-user case,
for any possible values of N and M . We formally state this
result in the following corollary:
Corollary 1. For a caching system with 2 users, a database
of N files, and a local cache size of M files at each user, we
have

R∗ave = Ru,ave(N,K, r), (116)

where Ru,ave(N,K, r) is defined in Definition 1.

Proof. For the single-file case, only one possible demand
exists. The average rate thus equals the peak rate, which can
be easily characterized. Hence, we omit the proof and focus

on cases where N ≥ 2. Note that Ru,ave can be achieved
using the scheme provided in [24], we only need to prove
that R∗ave ≥ Ru,ave(N,K, r).

As shown in Appendix G, the average rate within each type
Ds is bounded by (108). Hence, the minimum average rate
under uniform file popularity given a prefetching scheme φ,
denoted by R(φ), is lower bounded by

R(φ) ≥Es

 1

F

Ne(s)∑
k=1

H∗(Wk|Z{1,...,k},W{1,...,k−1})


−Ne(s)(

1

F
+ ε)

 . (117)

Note that for the two-user case, Ne(s) equals 1 with proba-
bility 1

N , and 2 with probability N−1
N . Consequently,

R(φ) ≥ 1

F

(
H∗(W1|Z1) +

N − 1

N
·H∗(W2|Z{1,2},W1)

)
− 2N − 1

N
· ( 1
F

+ ε). (118)

Using the technique developed in proof of Theorem 2, we have
the following two lower bounds

R(φ) ≥ 1

F
H∗(W1|Z1)−

2N − 1

N
· ( 1
F

+ ε)

≥1− M

N
− 2N − 1

N
· ( 1
F

+ ε), (119)

R(φ) ≥ 1

F

(
H∗(W1|Z1) +

N − 1

N
·H∗(W2|Z{1,2},W1)

)
− 2N − 1

N
· ( 1
F

+ ε)

≥ 1

F

(
H∗(W1|Z1) +

1

N
· ((N − 1)F − 2H∗(Z1|W1))

)
− 2N − 1

N
· ( 1
F

+ ε)

≥2N − 1

N
− 3N − 2

N
· M
N
− 2N − 1

N
· ( 1
F

+ ε).

(120)
Hence we have

R∗ave ≥max

{
1− M

N
,
2N − 1

N
− 3N − 2

N
· M
N

}
=Ru,ave(N,K, r). (121)

APPENDIX I
PROOF OF THEOREM 3 FOR AVERAGE RATE

To prove Theorem 3 for the average rate, we need to show
that R∗ave = Ru(N,K, r) for large N , for any caching system
with no more than 5 users. Note that when N is large, with
high probability all users will request distinct files. Hence,
we only need to prove that the minimum average rate within
the type of the worst case demands (i.e., the set of demands
where all users request distinct files) equals Ru(N,K, r).
Since Ru(N,K, r) can already be achieved according to [24],
it suffices to prove that this average rate is lower bounded by
Ru(N,K, r).

Similar to the peak rate case, we prove that this fact
holds if KM

N ≤ 1 or KM
N ≥ dK−32 e for large N . When
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KM
N ≤ 1 or KM

N ≥ K − 1, this can be proved the same
way as Lemma 4, while for the other case (i.e. KM

N ∈[
max{dK−32 e, 1},K − 1

)
), we need to prove a new version

of Theorem 4, which lower bounds the average rate within the
type of the worst case demands. To simplify the discussion, we
adopt the notation of H∗(XD,WA, ZB) which is defined in
(89). We also adopt the corresponding notation for conditional
entropy. Suppose rate R is ε achievable for the worst case type,
we start by proving converse bounds of R for large N .

Recall that r = KM
N , and let n = br + 1c. Because r ∈

[1,K − 1), we have n ∈ {2, ...,K − 1}. Let α = bN−KK−n c and
β = N − α(K − n). Suppose N is large enough, such that
α > 0. For any i ∈ {1, .., n} and j ∈ {1, ..., α} let di,j be a
demand satisfying

di,jl =


l − i+ (j − 1)(K − n) + β

if i+ 1 ≤ l ≤ i+K − n,
l otherwise.

(122)
Note that the above demands belong to the worst case type,
so we have RF ≥ H∗(Xdi,j ) for any i and j. Following the
same steps of proving Lemma 5, we have

RF ≥H∗(W1|Z1) +
2

n(n+ 1)α

(
αn(K − n)F

−nH∗(Z1|W{1,...,β})−
K−n−1∑
i=0

H∗(Z1|W{1,...,β+iα})

)
− 2K − n+ 1

n+ 1
(1 + εF ). (123)

Then following the steps of proving Theorem 4, we have

R ≥ 2K − n+ 1

n+ 1
− K(K + 1)

n(n+ 1)
· M
N
− 2K − n+ 1

n+ 1
(ε+

1

F
)

(124)
if the following inequality holds:

Kβ + α
(K − n)(K − n− 1)

2
≤ n(n+ 1)α

2
. (125)

Otherwise, we have

R ≥2K − n+ 1

n+ 1
− 2K(K − n)

n(n+ 1)
· M

N − β

− 2K − n+ 1

n+ 1
(ε+

1

F
). (126)

Similar to the proof of Lemma 4, we have proved that
R ≥ Ru(N,K, r) from the above bounds if r ∈[
max{dK−32 e, 1},K − 1

)
for large N , large F , and small ε.

Consequently, we proved that R∗ave = Ru(N,K, r) if r ≤ 1
or r ≥ dK−32 e for large N . For systems with no more than 5
users, this gives the exact characterization.

APPENDIX J
CONVEXITY OF Ru(N,K, r) AND Ru,ave(N,K, r)

In this appendix, we prove the convexity of Ru(N,K, r) and
Ru,ave(N,K, r) as functions of r, given parameters N and K.
We start by proving the convexity of Ru(N,K, r).

Recall that for any non-integer r, the value of Ru(N,K, r)
is defined by linear interpolation. Hence, it suffices to show

that Ru(N,K, r) is convex on r ∈ {0, 1, ...,K}. Equivalently,
we only need to prove
2Ru(N,K, r)−Ru(N,K, r − 1)−Ru(N,K, r + 1) ≤ 0

(127)
for any r ∈ {1, ...,K − 1}.

The proof is as follows. We first observer that Ru(N,K, r)
can be written as

Ru(N,K, r) =

(
K
r+1

)
−
(
K−min{K,N}

r+1

)(
K
r

) (128)

=

∑min{K,N}
i=1

(
K−i
r

)(
K
r

) (129)

=

min{K,N}∑
i=1

(
K−r
i

)(
K
i

) . (130)

Consequently, the LHS of inequality (127) can be written as
2Ru(N,K, r)−Ru(N,K, r − 1)−Ru(N,K, r + 1)

=

min{K,N}∑
i=1

2
(
K−r
i

)
−
(
K−r−1

i

)
−
(
K−r+1

i

)(
K
i

) (131)

=

min{K,N}∑
i=1

(
K−r−1
i−1

)
−
(
K−r
i−1
)(

K
i

) (132)

=

min{K,N}∑
i=2

−
(
K−r−1
i−2

)(
K
i

) . (133)

Since both
(
K−r−1
i−2

)
and

(
K
i

)
are non-negative, we have

proved inequality (127). This guarantees the convexity of
Ru(N,K, r).

Note that by substituting the variable min{K,N} in func-
tion Ru(N,K, r) by Ne(d), and taking expectation over a
uniformly random demand d, we exactly obtain function
Ru,ave(N,K, r). Consequently, by applying the same substi-
tution in the above proof, we obtain a proof for the convexity
of Ru,ave(N,K, r).
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