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Abstract—The capacity of the discrete-time channel affected by
both additive Gaussian noise and Wiener phase noise is studied.
Novel inner and outer bounds are presented, which differ of at
most 6.65 bits per channel use for all channel parameters. The
capacity of this model can be subdivided in three regimes: (i) for
large values of the frequency noise variance, the channel behaves
similarly to a channel with circularly uniform iid phase noi se;
(ii) when the frequency noise variance is small, the effectsof
the additive noise dominate over those of the phase noise, while
(iii) for intermediate values of the frequency noise variance, the
transmission rate over the phase modulation channel has to be
reduced due to the presence of phase noise.

I. I NTRODUCTION

In the discrete-time Wiener phase noise (WPN) channel, the
channel input is affected by both additive white Gaussian noise
(AWGN) and multiplicative Wiener phase noise. The Wiener
phase process can be used to model a number of random
phenomena: from imperfections in the oscillator circuits at the
transceivers, to slow fading effects in wireless environments or
oscillations in the laser frequency in optical communications.
Despite its relevance in many practical scenarios, the capacity
of the WPN channel remains an open problem as the presence
of memory in the phase noise process makes the analysis
challenging. In this paper we provide the first approximate
characterization of capacity for the discrete-time WPN channel
for all channel parameters and provide an input distribution
which performs close to optimal.
State of the Art: Channel models encompassing both AWGN
and multiplicative phase noise have been considered in the
literature under different assumptions on the distribution of the
phase noise process. The channel model in which the phase
noise is randomly selected at the beginning of transmissionand
is kept fixed through the transmission block-length is referred
to asblock-memoryless phase noise channel. In [1] the authors
prove that the capacity-achieving input distribution for this
model exhibits a circular symmetry and that the distribution
of the amplitude of the input is discrete with an infinite number
of mass points. In [2], the author presents capacity outer and
inner bounds that capture the first two terms of the asymptotic
expansion of capacity as the signal-to-noise ratio (SNR) goes
to infinity.

When the phase noise process is composed of iid circularly
uniform samples, the channel is referred to asnon-coherent
phase noise channel. The capacity of this model is first studied
in [3] where it is shown that the capacity-achieving distribution

is not Gaussian. The authors of [4] improve on the results
of [3] by showing that the capacity-achieving distribution,
similarly to the block-memoryless phase noise channel, is
discrete and possesses an infinite number of mass points.

The WPN channel encompasses the block memoryless
channel and the non-coherent channel as the two limiting
cases in which the variance of the innovation process tends
to zero and infinity, respectively. This model was fist studied
in [5] where the high SNR capacity is derived using duality
arguments. The authors of [6] propose a numerical method of
evaluating tight information rate bounds for this model. In[7]
the authors derive analytical approximations to capacity which
are shown to be tight through numerical evaluations.

Capacity bounds for more complex models taking into
account oversampling at the receiver and/or effect of imperfect
matched filtering are proposed in [8]–[11]: here the bounds are
valid only at high SNR.
Contributions: In this paper we derive the capacity of the
discrete-time WPN channel to within6.65 bits per channel
use (bpcu) for all channel parameters, namely SNR and
frequency noise variance. This result is shown by separately
considering three regimes of the frequency noise variance:
small, intermediate, andhigh variance. The practical insights
into these regimes are as follows. In the small frequency
noise variance regime, the effects of the additive noise dom-
inates over those of the phase noise: for this reason the
channel behaves essentially as an AWGN channel. In the
high frequency noise variance regime, the instantaneous phase
variations dominate over the memory of the process and the
channel resembles a non-coherent phase noise channel. In
the intermediate frequency noise variance regime, part of the
transmission rate over the phase modulation channel has to be
sacrificed due to the presence of the phase noise.
Organization: The channel model and known results in litera-
ture are presented in Sec. II. Some preliminary results, useful
for obtaining tight capacity bounds, are detailed in Sec. III.
Outer bounds are derived in Sec. IV, while the capacity to
within a constant gap is shown in Sec. V. Conclusions are
drawn in Sec. VI.

II. CHANNEL MODEL AND KNOWN RESULTS

The discrete-time Wiener phase noise (WPN) channel is
described by the input-output relationship

Yi = Xie
jΘi +Wi, i = 1, . . . , N (1)
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where j =
√
−1, Wi ∼ CN (0, 2), i.e. Wi is a circularly-

symmetric complex Gaussian random variable (RV) with zero
mean and variance2. The channel inputXi is subject to an
average power constraint over the transmission block-length
N , that is

∑N
i=1 E[|Xi|2] ≤ NP , while {Θi, i ∈ N} is a

Wiener process defined by the recursive equation

Θ0 = 0, Θi+1 = Θi +∆i, i ≥ 0, (2)

where ∆i ∼ N (0, σ2
∆), and σ2

∆ is the frequency noise
variance. Standard definitions of code, achievable rate and
capacity are assumed in the following.
Known Results: As noted in [5], conditioned on|Xi| = |xi|,
the modulus square of the output has a non-central chi-
square distribution with non-centrality parameter|xi|2 and two
degrees of freedom,i.e.

|Yi|2 | |Xi| = |xi| ∼ χ2
2(|xi|2). (3)

Moreover, in the capacity-achieving distribution, the input has
iid circularly symmetric phaseXi, i ∈ [1, N ].

Lemma II.1. Ergodic phase noise capacity [5, Sec. VI].
The capacity of the model in(1) when{Θi, i ∈ N} is any
stationary ergodic process with finite entropy rate is obtained
as

C =
1

2
log

(

1 +
P

2

)

+ log(2π)− h({Θk}) + o(1), (4)

whereh({Θk}) is the entropy rate of the phase noise process
and o(1) vanishes asP → ∞.

The result in Lem. II.1 establishes the high SNR capacity
of the phase noise channel for a large class of phase processes
but does not apply to the WPN channel, as Wiener process is
not stationary.

Specializing a result of [10] to model (1) we obtain the
following lemma.

Lemma II.2. WPN channel capacity inner bound [10,
Sec. III]. The capacity of the model in(1)-(2) is lower-
bounded as

C ≥ sup
b≥0,ν>0

{
1

2
log

(
P − 2b+ 2ν

π2eνρ

)

−
(
2 + b−1

ν
+

3b

P − 2b

)

log(e)

}

, (5)

whereρ = 1− (1 − E[|Xi|−2])2e−σ2
∆/2.

The inner bound in (5) is obtained by letting the input be
a truncated exponential distribution, that is

p|Xi|2(x) =
1

P/2− b
exp

(

− x− b

P/2− b

)

, x ≥ b. (6)

III. PRELIMINARY RESULTS

In this section we present two theorems that will aid, in the
following sections, the development of tight inner and outer
bounds to capacity. The first theorem bounds the entropy of a
wrapped Gaussian RV while the second the entropy of a chi

and chi-square RVs.

Theorem III.1. Wrapped Gaussian entropy.The entropy of
the circularly wrapped Gaussian distribution∆ of variance
σ2
∆ is lower-bounded as

h(∆) ≥
{

log(2π)− 2 e−σ
2
∆

1−e−σ2
∆

log(e) σ2
∆ > 2π/e

1
2 log(2πeσ

2
∆) + g(σ2

∆) log(e) σ2
∆ ≤ 2π/e

(7)

whereg(σ2
∆) is obtained as

g(σ2
∆) =

1

2
erf

(

π
√

2σ2
∆

)

− e
− π

2

2σ2
∆

√

2πσ2
∆



π +
4(π +

σ2
∆

π )

1− e
− π2

σ2
∆



−1

2
.

Proof: The bound involving the termg(σ2
∆) is derived in

[11]: the following derivation is an alternative bound to

h(∆) ≥ 1

2
log(2πeσ2

∆) + g(σ2
∆) log(e). (8)

The pdf of a zero-mean wrapped Gaussian can be written,
using Jacobi’s triple product as

p∆(x) =
1

2π

∞∏

n=1

(1− qn)(1 + qn−1/2e+ix)(1 + qn−1/2e−ix)

(9)

whereq = e−σ2
∆ so that

h(∆) = − log

(
φ(q)

2π

)

+ 2
∞∑

j=1

(−1)j

j

qj(j+1)/2

1− qj
log(e) (10)

whereφ(x) is the Euler function. Note thatφ(q) in (10) is less
than one by definition, so that− log(φ(q)) ≥ 0. Moreover, the
functionκ(j, q) defined as

κ(j, q) =
1

j

qj(j+1)/2

1− qj
(11)

is decreasing inj whenq ∈ (0, 1) so that
∞∑

j=1

(−1)j

j

qj(j+1)/2

1− qj
≥ − q

1− q
. (12)

The upper bound in (14) follows by noting that

h(∆) = h( ejZ) ≤ h(Z). (13)

The bound in (7) essentially states that the entropy of the
wrapped Gaussian∆ = ejZ for Z ∼ N (0, σ2

∆) is well
approximated as

h (∆) ≈ min

{
1

2
log(2πeσ2

∆), log(2π)

}

, (14)

that is, the minimum between the entropy of the Gaussian
RV Z and a uniformly distributed RV with support[0, 2π].
As shown in Fig. 1, the approximation in (14) is rather tight:
this figure plots the entropy of the uniform RV over[0, 2π],
the wrapped Gaussian RV and the Gaussian RV for different
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Fig. 1: The entropy of a wrapped Gaussian RV (blue solid
line), a Gaussian RV (black dash-dotted line), and a uniform
RV in [0, 2π] (red dashed line) as in (14) forσ2

∆ ∈ [0, 6].

values ofσ2
∆.

Theorem III.2. Non-central χ2
2 and χ2 entropy. The entropy

of a non-central chi-square distribution with two degrees of
freedom and non-central parameterλ is bounded as

1

2
log(8πeλ)− log(3) ≤ h(χ2

2(λ)) ≤
1

2
log(8πe(1 + λ)).

(15)

Similarly, the entropy of a chi distribution with non-central
parameterλ is lower-bounded as

h(χ2(λ)) ≥
1

2
log(8πe)− log(6) +

1

2
Ei(−λ/2) log(e). (16)

Proof: The pdf ofT ∼ χ2
2(λ) is

pT (t) =
1

2
e−

t+λ

2 I0(
√
λt) (17)

where

E[T ] = 2 + λ (18a)

Var[T ] = 4(1 + λ). (18b)

Using the bound forI0(x) of Corollary A.2, we have

h(T ) = E[− log pT (T )] (19)

≥ E

[

3 log(2) +
1

2

(√
T −

√
λ
)2

log(e) +
1

4
log(λT )

− log(
√
π + 1)

]
. (20)

Note that12 (
√
T −

√
λ)2 is convex inT for T ≥ 0, so that we

have

E

[
1

2

(√
T −

√
λ
)2
]

≥ 1

2

(√

E[T ]−
√
λ
)2

=
1

2

(√
λ+ 2−

√
λ
)2

≥ 0. (21)

Furthermore, we have

E[log T ] = log(λ)− Ei(−λ/2) log(e) ≥ log(λ), (22)

whereEi(·) is the exponential integral function, so that the
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Fig. 2: The entropy of a chi-square distribution (blue solid
line), the inner bound (red dashed line) and the outer bound
(black dash-dotted line) in (15) for the non-centrality param-
eterλ ∈ [0, 10].

entropy bound reads as

h(T ) ≥ E

[
1

2
log(64) +

1

4
log(λ2) − log(

√
π + 1)

]
(23)

≥ 1

2
log

(
64

(
√
π + 1)2

λ

)

≥ 1

2
log(8πeλ)− 1

2
log(3). (24)

An upper bound onh(T ) can be obtained through the
“Gaussian maximizes entropy” property as

h(T ) ≤ 1

2
log(2πeVar[T ])

=
1

2
log(8πe(1 + λ)). (25)

For the entropy of a chi distribution, by change of variable,
we can write

h(
√
T ) = h(T )− E[log

√
T ]− log(2)

(15)
≥ 1

2
log(8πeλ)− log(6)− 1

2
E[log T ]

(22)
=

1

2
log(8πe)− log(6) +

1

2
Ei(−λ/2) log(e). (26)

The bounds (15) are plotted in Fig. 2 as a function of the
non-centrality parameterλ.

IV. OUTER BOUNDS

This section introduces novel outer bounds to the capacity
of phase noise channel which connect this model to the non-
coherent phase noise channel and the memoryless phase noise
channel.

In the non-coherent phase noise channel, the phase noise
process{Θi, i ∈ N} is an iid sequence of uniformly dis-
tributed RVs in[0, 2π]: for this reason reliable communication
can take place only over the amplitude modulation channel
p|Y | | |X|. The rate attainable over this channel is bounded in
the next theorem.



Theorem IV.1. Outer bound on capacity over non-coherent
AWGN channel. The capacity of the non-coherent phase noise
channel is upper-bounded as

sup
pX :E|X|2≤P

I (|X | ; |X + Z|) ≤ 1

2
log(2πe(P + 2)), (27)

whereZ ∼ CN (0, 2).

Proof: Using the Gaussian maximum entropy bound
we bound the positive entropy term ash(|X + Z|) ≤
1/2 log(2πe(P + 2)). For the conditional entropy we write

h(|X + Z| | |X |) ≥ max
x≥0

h(|X + Z| | |X |, |X | > x)

≥ max
x≥0

∫ ∞

x

h(|t+ Z|) dF|X|(t)

≥ max
x≥0

P(|X | > x)

(
1

2
log

(
8πe

62

)

+
1

2
Ei

(

−x2

2

)

log(e)

)

,

where in the last step we used the bound in Thm. III.2 and
the (increasing) monotonicity of the bound in (16). Since

max
x≥0

f(x) = max

{

max
0≤x<r

f(x),max
x≥r

f(x)

}

, (28)

and by choosing r such that 1
2 log(8πe) − log(6) +

1
2Ei(−r2/2) log(e) = 0 (there exists only one value ofr
with this property, namelyr ≈ 0.937), we conclude that
h(|X +Z| | |X |) must be positive, since the maximization for
0 ≤ x < r gives a negative number, while the maximization
for x ≥ r gives a positive number.

The next outer bound is a refinement of the result in
Lem. II.1 to yield an outer bound to the capacity of the
model in (1)-(2) valid at finite SNRs. The bound is derived
by revealing the past phase realization to the receiver, which
results in a memoryless phase noise channel.

Theorem IV.2. Memoryless phase noise channel outer
bound. The capacity of the WPN channel in(1)-(2) can be
upper-bounded as

C ≤ min

{
1

2
log(2πe(P + 2)) + log(2π)− h(∆),

log (1 + P/2)} , (29)

where h(∆) is the entropy of a wrapped Gaussian with
varianceσ2

∆.

Proof: A trivial capacity outer bound isC ≤
log (1 + P/2) and is obtained by providing the phase noise
sequence to the receiver. Another capacity outer bound is
obtained as follows:

I(XN ;Y N ) ≤
∑

k

I(XN ,Θk−1;Yk|Y k−1)

=
∑

k

(
I(XN ;Yk|Θk−1) + I(Θk−1;Yk|Y k−1)

)

=
∑

k

(
I(Xk;Yk|Θk−1) + I(Θk−1;Yk|Y k−1)

)
.

Since the additive noiseW is circularly symmetric, a uni-

formly distributed input phaseXk in [0, 2π) is capacity-
achieving. This also implies that

I(Θk−1;Yk|Y k−1)

= I(Θk−1; |Xk|ej(Θk−1+∆k−1+∠Xk) +Wk|Y k−1) = 0,

given that Xk is independent ofΘk−1. Using the polar
decompositionX = |X |ej∠X , and dropping the time index
for convenience of notation, write

I (Xk;Yk |Θk−1) = I
(
X ;Xej∆ +W

)
(30a)

= I (|X | ; |X +W |) + I
(
X;Xei∆ +W

∣
∣ |X |

)
(30b)

≤ I (|X | ; |X +W |) + I ( X ; X ⊕∆) (30c)

≤ 1

2
log(2πe(P + 2)) + log(2π)− h(∆), (30d)

where (30b) follows by circular symmetry ofW , (30c) by
revealingW to the receiver, and (30d) from Thm. IV.1 and
the circular symmetry ofX . The symbol⊕ in (30c) denotes
the addition modulo2π.

V. M AIN RESULT

Theorem V.1. Capacity to within a constant gap.The
capacity of the WPN channel in(1)-(2) is upper-bounded as

C ≤ 1

2
log(1 + P/2)

+







1
2 log(4πe) + 2 e−

2π
e

1−e−
2π
e

log(e) σ2
∆ > 2π

e

1
2 log

(
2
σ2
∆

)

+ log(2π) + log2(e) P−1 ≤ σ2
∆ ≤ 2π

e
1
2 log(1 + P/2) P−1 > σ2

∆

(31)

and the exact capacity is to withinG bpcu from the outer
bound in(31), where

G ≤







4 σ2
∆ > 2π

e
6.65 P−1 ≤ σ2

∆ ≤ 2π
e

1.21 P−1 > σ2
∆

(32)

Proof: The achievability proof relies on a simple trans-
mission scheme employing iid complex Gaussian inputs while
the converse proof is developed from the outer bound in
Thm. IV.2.
Achievability:As in [10, Eq. (18)], the WPN channel capacity
can be lower-bounded as

C ≥ 1

N

N∑

k=1

I
(
|Xk|;Y N

1

∣
∣Xk−1

1

)
+ I

(
Xk;Y

N
1

∣
∣Xk−1

1 , |Xk|
)

≥ I
(
|X1|2 ; |Y1|2

)
+ I

(
X1;Y

1
0

∣
∣X0, |X1|

)
. (33)

Next we lower-bound the termI|| = I
(
|X1|2 ; |Y1|2

)
and

I∠ = I
(

X1;Y
1
0

∣
∣X0, |X1|

)
, which we refer to as the

amplitude and phase modulation channel, respectively.

• Amplitude modulation channel: Let the input distribution
be X ∼ CN (0, P ). Recognizing that|Y |2 = (1 + P/2)K
whereK ∼ χ2

2, we obtain

I
(
|X |2 ; |Y |2

)
= log (e(2 + P ))− h(|Y |2 | |X |2). (34)



Using the outer bound of Thm. III.2, we bound the term
h(|Y |2 | |X |2) as

h(|Y |2 | |X |2) ≤ 1

2
E log(8πe(|X |2 + 1)) ≤ 1

2
log(8πe(1 + P )).

(35)

Finally, combining (34) and (35) yields

I|| ≥
1

2
log

(

1 +
P

2

)

− 1

2
log

(
2π

e

)

+
1

2
log

(
1 + P/2

1 + P

)

.

(36)

• Phase modulation channel:The second term in the RHS
of (33) can be lower-bounded as follows:

I∠ = I
(

X1;Y
1
0

∣
∣X0, |X1|

)

= I ( X1;X0 +W0 |X0, |X1|)
+ I

(
X1;X1e

j∆0 +W1

∣
∣X0, |X1|, X0 +W0

)

= I
(

X1;X1e
j∆0 +W1

∣
∣ |X1|

)

≥ I ( X1; X1 ⊕∆0 ⊕N | |X1|)
= log(2π)− h(∆0 ⊕N | |X1|), (37)

where (37) follows by considering just the phase ofY1,
and N = |X1|+W1. Since∆0 ⊕ N is defined over the
support[0, 2π], we can apply the maximum entropy theorem
to upper-bound the conditional entropy termh(∆0⊕N | |X1|)
with the entropy of a wrapped Gaussian RV with variance
σ2
∆ + 1/|X1|2:

h(∆0 ⊕N | |X1|) (38a)

≤ 1

2
E

[

log

(

2πe

(

σ2
∆ +

1

|X1|2
))]

(38b)

=
1

2
E
[
log
(
2πe

(
σ2
∆|X1|2 + 1

))]
− 1

2
E
[
log |X1|2

]

≤ 1

2
log

(

2πe

(
σ2
∆P + 1

P

))

+
γ

2
log(e), (38c)

where (38b) follows by Thm. III.1, and (38c) from Jensen’s
inequality for the first term and from the fact that
E log |X1|2 = log(Pe−γ), where γ is the Euler-Mascheroni
constant.

Putting together the contributions of amplitude and phase
modulation in (36) and (38) respectively, we obtain the inner
bound

C ≥ 1

2
log

(

1 +
P

2

)

+
1

2
log

(
1 + P/2

1 + P

Pe−γ

σ2
∆P + 1

)

. (39)

Note that, for any fixedσ2
∆, the pre-log at largeP given

by (39) is1/2. Also, note that ifσ2
∆ ≤ 1/P , then the pre-log

at largeP is 1.

Converse and gap from capacity:The outer bound in Th. IV.2
can be sub-divided in the three regimes of small, intermediate,
and high frequency noise variance.

• High frequency noise variance:σ2
∆ > 2π/e: The outer

bound from Th. IV.2 together with the conditionσ2
∆ > 2π/e

yields the outer bound

C ≤
{ 1

2 log(1 + P/2) P ≤ 10
1
2 log(2πe(P + 2)) + 2 e−

2π
e

1−e−
2π
e

log(e) P > 10

(40)

By comparing the outer bound in (40) with the inner bound
in (39) we obtain the capacity gap

G ≤
{ 1

2 log(1 + P ) + 1
2 log

(
2π
e

)
P ≤ 10

1
2 log

(
1+P
2+P

)

+ 2 e−
2π
e

1−e−
2π
e

log(e) + log (4π) P > 10

(41)

which is smaller than4 bpcu for anyP > 0 andσ2
∆ > 2π/e.

• Small frequency noise variance:σ2
∆ < P−1: In this regime

we consider the trivial outer boundC ≤ log(1 + P/2). When
P < 2, capacity is necessarily less than1bpcu. WhenP ≥ 2,
the gap between the trivial outer bound and the inner bound
in (39) is at most1.21 bpcu.
• Intermediate frequency noise variance: 1

P ≤ σ2
∆ ≤ 2π

e :
The outer bound in Th. IV.2 in this regime can be rewritten
as

C ≤ 1

2
log

(
P + 2

σ2
∆

)

+ log(2π)− g(σ2
∆) log(e)

≤ 1

2
log

(
P + 2

σ2
∆

)

+ log(2π) + log2(e), (42)

where in the last step we note thatg(σ2
∆) is decreasing inσ2

∆

so thatg(σ2
∆) ≥ − log(e). We next compare the inner bound

in (39) with the outer bound in (42) and obtain

G =
(γ

2
+ log(e)

)

log(e) +
1

2
log

(

(2π)2
1 + P

2 + P

1 + σ2
∆P

σ2
∆P

)

≤
(γ

2
+ log(e)

)

log(e) + log(2π) +
3

2
log(2) ≤ 6.65,

where, in the last passage, we have considered the worst case
with σ2

∆ = P−1 andP → ∞.
Note that the inner bound in Th. V.1 relies on iid complex

Gaussian inputs, thus showing that this input distribution
performs sufficiently close to capacity.

Some further insights on the result in Th. V.1 emerge by
simplifying the outer bound in (31) as in the following lemma.

Lemma V.2. Larger gap, simpler expression.The capacity
of the WPN channel in in(1)-(2) is upper-bounded as

C ≤







1
2 log(1 + P/2) + 4 σ2

∆ > 2π
e

1
2 log(1 + P/2)− 1

2 log σ
2
∆ + 5.5 P−1 ≤ σ2

∆ ≤ 2π
e

log(1 + P/2) P−1 > σ2
∆

(43)

and the exact capacity is to within a gap of7 bpcu from the
outer bound in(43).

The three regimes in (43) can be intuitively explained as
follows. The inequalityσ2

∆ ≷ 2π/e in (43) arises from the
result in Th. III.1 and whether the phase noise entropy is
better approximated by using a uniform RV over[0, 2π] or a
Gaussian RV. When the frequency noise variance is high, the
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Fig. 3: A contour plot of the exact gap between inner and outer
bound in the proof of Th. V.1 forP ∈ [0, 50] and 1/σ2

∆ ∈
[1, 100].

channel behaves similarly to a channel with uniform phase
noise, in which transmission takes place only in the amplitude
modulation channel. When the frequency noise variance is
small, instead, the effect of the multiplicative noise times the
channel input has variancePσ2 ≤ 1 which is smaller than
the variance of the additive noise. The inequalityP−1 ≤ σ2

∆,
as in Th. IV.2, intuitively arises from the rate attainable on
the phase modulation channel: the largest rate attainable on
this channel is close to1/2 log(P + 1), when the frequency
noise variance is relatively small. For a higher frequency noise
variance, the rate of the phase modulation channel is instead
close to1/2 log(σ−2

∆ ).
Although the largest gap between inner and outer bound is

bounded by6.65 bpcu , the difference between inner and outer
bounds for any parameter regime can be easily evaluated from
the proof of Th. V.1. A plot of the exact value ofG in (32) is
presented in Fig. 3.

VI. CONCLUSIONS

We have derived outer and inner bounds of the discrete-
time Wiener phase noise channel and have shown that they
differ of at most 6.65 bpcu at any SNR and frequency
noise variance. Both bounds have rather simple expressions
and suggest that all channels can be roughly divided in three
parameter regimes: high, intermediate, and small frequency
noise variance. Moreover, the analysis of the inner bound
shows that a complex Gaussian input distribution performs
rather close to capacity.

APPENDIX

Lemma A.1. Upper bound on modified Bessel function
The zero-th order modified Bessel function of the first kind

can be upper-bounded as

I0(x) ≤
ex

4
√
x

(

erf(
√
x)
√
π +

2e−x(1− e−x)√
x

)

(44)

for anyx ≥ 0, where

erf(x) =
2√
π

∫ x

0

e−t2dt. (45)

Proof: By definition

I0(x) =
1

π

∫ π

0

ex cos(θ)dθ

=
1

π

∫ π/2

0

ex cos(θ)dθ

︸ ︷︷ ︸

I1

+
1

π

∫ π

π/2

ex cos(θ)dθ

︸ ︷︷ ︸

I2

. (46)

Using the infinite product formula for the cosine function and
a linear lower bound for the cosine, we obtain the bound

ex cos(θ) ≤
{

ex(1−
4

π2 θ2) 0 ≤ θ ≤ π/2

ex(1−
2
π
θ) π/2 ≤ θ ≤ π

(47)

so that

I1 ≤ 1

π

∫ π/2

0

ex(1−
4

π2 θ2)dθ

=

√
π

4

ex√
x
erf(

√
x) (48)

while

I2 ≤ 1

π

∫ π

π/2

ex(1−
2
π
θ)dθ

=
1− e−x

2x
. (49)

Combining (48) and (49) we obtain the bound

I0(x) ≤
ex

4
√
x

(

erf(
√
x)
√
π +

2e−x(1− e−x)√
x

)

(50)

The result in Lemma A.1 can be further weakened to
obtain an expression which can be more easily manipulated
analytically.

Corollary A.2. An upper bound toI0(x) is

I0(x) ≤
ex√
x

√
π + 1

4
. (51)

Proof: From Lemma A.1 we have

I0(x) ≤
ex

4
√
x

(

erf(
√
x)
√
π +

2e−x(1− e−x)√
x

)

≤ ex

4
√
x

(√
π + 1

)
(52)

where the last equality follows byerf(x) ≤ 1 and the fact that
2e−x(1− e−x) <

√
x.

Note that, although simpler, the expression in (51) is not
tight as x → 0, where it actually has an asymptote. The
expression in (44), although cumbersome, is tight asx → 0.
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