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Abstract—The capacity of the discrete-time channel affected by is not Gaussian. The authors of [4] improve on the results
both additive Gaussian noise and Wiener phase noise is stel. of [3] by showing that the capacity-achieving distribution
Novel inner and outer bounds are presented, which differ of & similarly to the block-memoryless phase noise channel, is
most 6.65 bits per channel use for all channel parameters. The di t d infinit b f int ’
capacity of this model can be subdivided in three regimes: ifor ISCréte and possesses an Intinite number of mass points.
large values of the frequency noise variance, the channel baves The WPN channel encompasses the block mempryl_ess
similarly to a channel with circularly uniform iid phase noi se; channel and the non-coherent channel as the two limiting
(i) when the frequency noise variance is small, the effectsf cases in which the variance of the innovation process tends
the additive noise dominate over those of the phase noise, i 4 7619 and infinity, respectively. This model was fist stddie

(iii) for intermediate values of the frequency noise variarce, the . . L - . .
transmission rate over the phase modulation channel has toeb in [5] where the high SNR capacity is derived using duality

reduced due to the presence of phase noise. arguments. The authors o6fi [6] propose a numerical method of
evaluating tight information rate bounds for this model[[Th
|. INTRODUCTION the authors derive analytical approximations to capaciiciv

In the discrete-time Wiener phase noise (WPN) channel, thee shown to be tight through numerical evaluations.
channel input is affected by both additive white Gaussideeno Capacity bounds for more complex models taking into
(AWGN) and multiplicative Wiener phase noise. The Wienexccount oversampling at the receiver and/or effect of ifigoer
phase process can be used to model a number of randwaiched filtering are proposed Il [E]-[11]: here the bounds a
phenomena: from imperfections in the oscillator circuttth@ valid only at high SNR.
transceivers, to slow fading effects in wireless environtaer Contributions: In this paper we derive the capacity of the
oscillations in the laser frequency in optical communimasi. discrete-time WPN channel to withif.65 bits per channel
Despite its relevance in many practical scenarios, theaigpa use bpcu) for all channel parameters, namely SNR and
of the WPN channel remains an open problem as the presefféguency noise variance. This result is shown by sepgratel
of memory in the phase noise process makes the analyggssidering three regimes of the frequency noise variance:
challenging. In this paper we provide the first approximagmall intermediate and high variance. The practical insights
characterization of capacity for the discrete-time WPNncted into these regimes are as follows. In the small frequency
for all channel parameters and provide an input distrilouticnoise variance regime, the effects of the additive noise-dom
which performs close to optimal. inates over those of the phase noise: for this reason the
State of the Art: Channel models encompassing both AWGIg¢hannel behaves essentially as an AWGN channel. In the
and multiplicative phase noise have been considered in thigh frequency noise variance regime, the instantaneoaseph
literature under different assumptions on the distributbthe Variations dominate over the memory of the process and the
phase noise process. The channel model in which the phabannel resembles a non-coherent phase noise channel. In
noise is randomly selected at the beginning of transmissich the intermediate frequency noise variance regime, parhef t
is kept fixed through the transmission block-length is mefér transmission rate over the phase modulation channel has to b
to ashlock-memoryless phase noise chanhe[1] the authors sacrificed due to the presence of the phase noise.
prove that the capacity-achieving input distribution fbist Organization: The channel model and known results in litera-
model exhibits a circular symmetry and that the distributioture are presented in Séd. Il. Some preliminary resultdutse
of the amplitude of the input is discrete with an infinite nienb for obtaining tight capacity bounds, are detailed in Sek. Il
of mass points. In[2], the author presents capacity outdr a@uter bounds are derived in Séc.] IV, while the capacity to
inner bounds that capture the first two terms of the asymptowithin a constant gap is shown in Sécl V. Conclusions are
expansion of capacity as the signal-to-noise ratio (SNR)sgodrawn in Secl VI.

to infinity. [I. CHANNEL MODEL AND KNOWN RESULTS

When the phase noise process is composed of iid CirCUIarIyThe discrete-time Wiener phase noise (WPN) channel is
uniform samples, the channel is referred toram-coherent . . ipaq by the input-output relationship

phase noise channerhe capacity of this model is first studied .
in [3] where it is shown that the capacity-achieving disitibn Y; = X;e’® +W;, i=1,...,N (1)
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wherej = -1, W; ~ CN(0,2), i.e. W, is a circularly- and chi-square RVs.
symmetric complex Gaussian random variable (RV) with zetlgh L W 4G ) h ¢
mean and variancg. The channel inpufX; is subject to an eorem lll.1. Wrapped Gaussian entropy. The entropy o

average power constraint over the transmission bIocktIiengSth _C|r|cularl)k/) wragp((jad Gaussian distributiod of variance
N, that is YN E[|X,|2] < NP, while {©,, i € N} is a Ca S lowerbounded as

; i . ; s
Wiener process defined by the recursive equation log(27) — 2—"2__log(e) 0% > 21 /e

. M) > ——
©0=0, Oi11=06;+4; >0, (2) 1log(2mead) + g(od)log(e) oi < 2m/e

where A; ~ N(0,0%), and 0% is the frequency noise )
variance. Standard definitions of code, achievable rate anﬁereg(o—i) is obtained as
capacity are assumed in the following.

2
Known Results: As noted in [5], conditioned ohX;| = |z;|, 1 < - ) e 2% ( A + i)) 1
T4 — m |

2
the modulus square of the output has a non-central cHIOA) = §erf = |~ o) ) 5
o ; . \/2 V2 oz 2
square distribution with non-centrality parametes? and two 7a oA
Proof: The bound involving the term(s% ) is derived in

l1—e °A
degrees of freedoni.e.
Y2 | 1X5| = || ~ xa(|z:]?)- (3) [11]: the following derivation is an alternative bound to
_I\_/Ior_eover, in the capa_city-achieving distribution, theuhpas h(A) > %1Og(277602A) + g(o2) log(e). (8)
iid circularly symmetric phasgX;, i € [1, N].
The pdf of a zero-mean wrapped Gaussian can be written,

Lemma II.1. Ergodic phase noise capacity[[5, Sec. VI]. using Jacobi's triple product as

The capacity of the model i) when{©;, i € N} is any

stationary ergodic process with finite entropy rate is obéal 1 ™ n n— iz n— ix
Do SHodiE P Py pa(@) = o= [T =g +q 214 g1 2e)
& n=1
1 P 9
C= 3 log <1 + 5) +log(2m) — h({Ok}) +0(1), (4) ©)

whereq = e~7A so that
whereh({O}) is the entropy rate of the phase noise process

j X (1) gili+1)/2
and o(1) vanishes asP? — oo. h(A) = —log (@) + QZ &qlig log(e) (10)
- : _
The result in Lem[IL]L establishes the high SNR capacity =7 1

of the phase noise channel for a large class of phase precesggeres () is the Euler function. Note that(q) in (I0J) is less
but does not apply to the WPN channel, as Wiener processtian one by definition, so thatlog(¢(q)) > 0. Moreover, the

not stationary. function k(j, ¢) defined as
Specializing a result of [10] to modell(1) we obtain the 1 il
following lemma. k(j, q) = _qli (11)
J 1=
Lemma I1.2. WPN channel capacity inner bound [10, is decreasing iy wheng € (0,1) so that
Sec. Illl. The capacity of the model ifl)-(2) is lower- gm q ’
bounded as > (=1} ¢i+1)/2
1 P—2b+2v Z( - ql_ j ——13 : (12)
C> sup {—log (27> = 7 a4 q
v>0,0>0 (2 mevp _ _
94 -1 3 The upper bound if{14) follows by noting that
- ( PR 2b) k’g(e)}’ ©) h(A) = h(/eiZ) < h(Z). (13)
wherep = 1 — (1 — E[|X;|2])2e4/2, n

The inner bound in[{5) is obtained by letting the input be r‘;heet()jo%n: 'Sr;[gg eisentjlgm;osrtaztes thfft (t)hegent_;opyelc:f the
a truncated exponential distribution, that is wrapp ussi = [eZ ~ N(0,03) is w

approxill ated as
p\X1|2 € P/2 exp P/2 l ) xr =z b. 6

IIl. PRELIMINARY RESULTS

h(A) ~ min {% log(2mea?), 10g(27r)} ) (14)

that is, the minimum between the entropy of the Gaussian
In this section we present two theorems that will aid, in theV Z and a uniformly distributed RV with suppof®, 27].
following sections, the development of tight inner and outé\s shown in Fig[lL, the approximation ih_{14) is rather tight:
bounds to capacity. The first theorem bounds the entropy oftas figure plots the entropy of the uniform RV ovgr, 2],
wrapped Gaussian RV while the second the entropy of a ¢hie wrapped Gaussian RV and the Gaussian RV for different
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Fig. 2: The entropy of a chi-square distribution (blue solid

Fig. 1: The entropy of a wrapped Gaussian RV (blue sollifre). the inner bound (red dashed line) and the outer bound

line), a Gaussian RV (black dash-dotted line), and a unifor

RV in [0, 27] (red dashed line) as il .(14) fork € [0,6].

2
values ofo}.

Theorem 111.2. Non-central 2 and x» entropy. The entropy

of a non-central chi-square distribution with two degreds o

freedom and non-central parametaris bounded as
log(8me(1 + N)).
(15)

Similarly, the entropy of a chi distribution with non-cealtr
parameter) is lower-bounded as

N~

%bg(sm —log(3) < h(x3()) <

h(x2(\)) > %log(&re) — log(6) + %Ei(—)x/?) log(e). (16)

Proof: The pdf of T ~ x3()\) is

pr(t) = %6_%10(\/%) (17)

where
E[T] =2+ A (18a)
Var[T] = 4(1 + A). (18b)

Using the bound foi(z) of Corollary[A.2, we have
hT) = E[—log pr(T)] (19)
>E {3 log(2) + % (VT - \/X)2 log(e) + i log(AT)
—log(v/m+1)]. (20)

Note that} (v7 — /)2 is convex inT for T' > 0, so that we
have

a3 (7 - 3) = 4 (v vy

(Vi+2- \FA)Q >0, (21)

N = N

Furthermore, we have

E[log T] = log(X) — Ei(—\/2) log(e) > log(A), (22)

(Rlack dash-dotted line) i (15) for the non-centrality qrar
eter A € [0, 10].

entropy bound reads as

n(T)>E E log(64) + ilog()\Q) —log(vT+1)] (23)

1 1 o A

2 8 (Vm+1)2

1 1

3 log(8me\) — 3 log(3).

Y

Y

(24)

An upper bound onik(T) can be obtained through the
“Gaussian maximizes entropy” property as

hT) < %1og(27reVar[T])

- %10g(87re(1 ). (25)

For the entropy of a chi distribution, by change of variable,
we can write

h(VT) = h(T) — E[log VT] — log(2)

(i)
> %log(&re/\) — log(6) — %E[log T)

@ % log(8re) — log(6) + %Ei(—/\/2) log(c). (26)

[ |
The bounds[{dI5) are plotted in Figl. 2 as a function of the
non-centrality parametex.

IV. OUTER BOUNDS

This section introduces novel outer bounds to the capacity
of phase noise channel which connect this model to the non-
coherent phase noise channel and the memoryless phase noise
channel.

In the non-coherent phase noise channel, the phase noise
process{©,, i € N} is an iid sequence of uniformly dis-
tributed RVs in[0, 27]: for this reason reliable communication
can take place only over the amplitude modulation channel
p|y|||x|- The rate attainable over this channel is bounded in

whereEi(-) is the exponential integral function, so that théhe next theorem.



Theorem IV.1. Outer bound on capacity over non-coherent formly distributed input phasg’X; in [0,27) is capacity-
AWGN channel. The capacity of the non-coherent phase noisechieving. This also implies that
channel is upper-bounded as

pp I(Gk—l;yklyk_l)

sup I (|X]; X + Z]) < 5 log(2me(P +2)), (27) = I(Op—1; | Xg|e/Orr T+ 2X0) Ly [y Rty =,

px:E|X|2<P

where Z ~ CN(0, 2).

l\JI»—A

given that /X, is independent of©; ;. Using the polar

decompositionX = |X|e/“X, and dropping the time index
Proof: Using the Gaussian maximum entropy bountbr convenience of notation, write

we bound the positive entropy term as|X + Z|)

. _ TN
1/21og(2me(P + 2)). For the conditional entropy we write (X Yy | Op-) = I (X5 Xe + W) (302)
§ =T(|X|;|X+W|)+1(/X; X" +W||X]) (30b)
h(|X+Z|||X|)_filggh(|X+Z|||X|a|X|>~”C) <T(X|:|X+W) +T(/X:/X @A) (30¢)
i 1
> m&(}){/ h(|t + Z|) dFjx/(t) < B log(2me(P + 2)) 4 log(27) — h(A), (30d)
< P(LX 11 8me 1E' z? 1 where [30b) follows by circular symmetry df/, (30d) by
= s (X >a) { 5log | 45 | + 5B { —5 ] 108(c) ). revealing to the receiver, and (3Dd) from Thi1V.1 and

. . the circular symmetry of{. The symbol® in (30d) denotes
where in the last step we used the bound in Thm.IIl.2 al Ee addition modulor. -

the (increasing) monotonicity of the bound [n]16). Since
V. MAIN RESULT

max f(z) = Inax{ max f(x), max f(a:)} ,  (28)
©20 Osz<r z2zr Theorem V.1. Capacity to within a constant gap.The

and by choosingr such that }log(8me) — log(6) + capacity of the WPN channel if))-(2) is upper-bounded as
$Ei(—r%/2)log(e) = 0 (there exists only one value of

1
with this property, namelyr =~ 0.937), we conclude that €= §1Og(1+P/2)

h(]X + Z|||X]|) must be positive, since the maximization for 1 -2 252
. ; . N = log(4 2—<=—<—1 T
0 <z < r gives a negative number, while the maximization 3 log(dme) + 1—e & og(e) oa >
for z > r gives a positive number. B T llog (Ulz) +log(2m) +log’(e) P '<oi <
The next outer bound is a refinement of the_ result in %1og(1iP/2) Pl>03
Lem. [I[.1 to yield an outer bound to the capacity of the (31)

model in [1)42) valid at finite SNRs. The bound is derived
by revealing the past phase realization to the receiverghvhi@nd the exact capacity is to withig bpcu from the outer
results in a memoryless phase noise channel. bound in(31), where

2 27
Theorem [V.2. Memoryless phase noise channel outer < 265 ;’—DA >< < 2 32
bound. The capacity of the WPN channel {@)-(@) can be g < 1'21 1o 02 > (32)
upper-bounded as : Z OA
1 Proof: The achievability proof relies on a simple trans-
C < min {5 log(2me(P + 2)) 4+ log(2m) — h(A), mission scheme employing iid complex Gaussian inputs while
the converse proof is developed from the outer bound in
where h(A) is the entropy of a wrapped Gaussian W,ﬂAchlevabmty:As in [10, Eq. (18)], the WPN channel capacity
varianceo?. can be lower-bounded as
Proof: A trivial capacity outer bound isC < I(1x ol -1 VN | yk—1
— + 1 (/XY | X7 X
log (1 + P/2) and is obtained by providing the phase n0|se Z (1Xf U T (Y| X 1K)
sequence to the receiver. Another capacity outer bound § (|X1|2 ;| )+I( X LY |X0,|X1|) (33)

obtained as follows:
- Next we lower-bound the ternd; = I (|X;/?;|¥3]?) and
N.yN N . k—1 = 1 1
X%y )S;I(X  Or—13 Vi [Y77) I, = I(/Xy;Yy|Xo,|X1]), which we refer to as the

amplltude and phase modulation channel, respectively.

e Amplitude modulation channel: Let the input distribution
B be X ~ CN(0, P). Recognizing thatY|?> = (1 + P/2)K
= Z (1(Xk; Yel®k—1) + 1Okt Yil Y1) - here i ~ X3, we obtain

k

2, 2\ _ 2 2
Since the additive noiséV is circularly symmetric, a uni- I(|X]*5[Y[?) =log(e(2+ P)) = (Y P [ IX]).  (34)

- Z (I(XN; Y5 |Ok—1) + I(O—1; Y [Y1))



Using the outer bound of Thni_1Il.2, we bound the ternyields the outer bound
h(Y P |1X[%) as

1log(1+ P/2) P <10
1 1 C< _ax
R(JY 21X < 51E10g(87re(|X|2 +1)) < 5 log(8me(1+ P)). ~ — | 3log(2me(P+2))+ 2 log(e) P > 10
(35) (40)
Finally, combinin and_(35) yields By comparing the outer bound i 0) with the inner bound
y g y Yy paring
1 p 1 o 1 1+ P/2 in (39) we obtain the capacity gap
L > zlog({1+—+ ) —;log| — | + 5 log . 1 1 o
2 2 2 2 14+ P 3 log(1 4 P) + 3 log (%) P <10
_ 27
(36) 9= 1log (éi—ﬁ) + 21i <= log(e) +log (47) P > 10
e Phase modulation channel:The second term in the RHS (41)
of (33) can be lower-bounded as follows: which is smaller thar bpcu for any P > 0 ando? > 27/e.
I,=1 ( {Xl;Yol |X0, |X1|) ¢ Small frequency noise variancer3 < P~!: In this regime
= (/X1 Xo + Wo | Xo, | X4]) we consider t_he_trivial outer bour@ < log(1 + P/2). When
' iAo P < 2, capacity is necessarily less thahpcu. WhenP > 2,
+1 (@7 Xl_e + W ’XO’ [ X, Xo + WO) the gap between the trivial outer bound and the inner bound
=1 (/X1 Xqe% + Wy | X)) in (39) is at mostlL.21 bpcu.
> 1(/X1; /X1 & Do @ N | X1)) e Intermediate frequency noise variance:+ < o3 < 2%
— log(27) — h(Ao ® N [X1]), (37) Zze outer bound in TH_IVI2 in this regime can be rewritten
where [37) follows by considering just the phase Yf, 1 P+2 )
and N = /|Xi|+ Wi. Since Ag & N is defined over the C< 510g< ) ) +log(27) — g(oa) log(e)
: A
support[0, 27|, we can apply the maximum entropy theorem 1 Pio
to upper-bound the conditional entropy tetf\o & N| | X1|) < = log < 3 ) + log(27) + log?(e), (42)
with the entropy of a wrapped Gaussian RV with variance 2 A
o2 +1/|1X1|*% where in the last step we note thgt% ) is decreasing i3
so thatg(o%) > —log(e). We next compare the inner bound
h(Alo @ N |X) . (383) (39) with the outer bound iH{#2) and obtain
<;E [1og <27Te <UZ+—)>} (38b) 1 1+P1l+oiP
2 X2 = (2 - 2. T2 T OIAT
X 2 2| 1 . 2 g (2 + log(e)) log(e) + 5 log ((27T) 25D oLP )
= —E |log (27e (64| X1|* +1))| — <E |log | X 3
2 [oe ( (QAP| 1 ) 2 [og 1Xa’) < (% + log(e)) log(e) + log(2m) + 3 log(2) < 6.65,
1 oAP+1 o
< 5 log (2”6 ( P )) T3 log(e), (38C)  \here, in the last passage, we have considered the worst case

Wwith 0% = P~! and P — cc. [ ]
where [38D) follows by Thri IIl11, and(3Bc) from Jensen's Note that the inner bound in Th_V.1 relies on iid complex

]lglequz';ytyz iolr trlf _f7'r5t Lerm a_ndthfrolgnl thl\e/l faﬁt th‘?“Gaussian inputs, thus showing that this input distribution
ogtl 1t| =log(Pe™), where is the Euler-Mascheroni performs sufficiently close to capacity.
constant. Some further insights on the result in Th. V.1 emerge by

Putting together the contributions of amplitude and phaglempllfymg the outer bound L {31) as in the following lemma

modulation in [36) and(38) respectively, we obtain the mnéemma V.2. Larger gap, simpler expressionThe capacity

bound of the WPN channel in i))-@) is upper-bounded as
1 P 1 1+ P/2 Pe™ 1 2 2m
C2—10g<1+—>+—10g< T+ P/2_Pe > (39) 7log(1+P/2) +4 A>T
2 2 2 1+P okP+1 C<{ Zlog(l+P/2)—3logoX +55 P 1<oi<Z
log(1 + P/2) Pt >3

Note that, for any fixedr%, the pre-log at largeP given

43
by (39) is1/2. Also, note that ifeX < 1/P, then the pre-log o o (43)
at largeP is 1. and the exact capacity is to within a gap dhpcu from the

outer bound in(43).
Converse and gap from capaciyhe outer bound in TR.IVI2 e three regimes i {#3) can be intuitively explained as
can be sub-divided in the three regimes of small, intermtedias|ows. The inequalityc? = 2r/c in @3) arises from the

and high frequency noise variance. result in Th.[OIL1 and whether the phase noise entropy is
e High frequency noise variance:o3 > 2m/e: The outer better approximated by using a uniform RV over2x] or a
bound from Th[IV:2 together with the conditiark > 27/e Gaussian RV. When the frequency noise variance is high, the



5 Proof: By definition

50
40 45 IQ(.T) _ l /F e® cos(@)de
A, 30 ‘ T Jo
35 1 [™/2 1 [m
20 . =_ / e? s gp 4 =~ / e”es0qe . (46)
T Jo ™ Jr/2
10 25 7 _Z_’
10 20 30 40 50 60 70 80 90 100 Using the infinite product formula for the cosine functiordan
1/0} a linear lower bound for the cosine, we obtain the bound
Fig. 3: A contour plot of the exact gap between inner and outer weos(6) < 1732 0 < g <rn/2 47
bound in the proof of THCZVI1 fot” € [0,50] and1/0% € € =) (-2 g2<o<n (47)
[1,100]. -
so that

channel behaves similarly to a channel with uniform phase I, < 1 /2 =(1-%9%) 19
noise, in which transmission takes place only in the amghéitu 7 Jo
modulation channel. When the frequency noise variance is N
small, instead, the effect of the multiplicative noise tathe - Tﬁerf(\/g) (48)
channel input has variancBs? < 1 which is smaller than .
the variance of the additive noise. The inequality' < o3, while i
as in Th.[IV:2, intuitively arises from the rate attainable o 7, < l/ ce(1-20) 59
the phase modulation channel: the largest rate attainable o T T g2
this channel is close ta/2log(P + 1), when the frequency 1] —e @
noise variance is relatively small. For a higher frequenuiga - oy (49)

variance, the rate of the phase modulation channel is msm@ombining [48) and{29) we obtain the bound

close to1/2log(o,?).
Although the largest gap between inner and outer bound is In(z) < € <erf(\/5)\/E+ 2e"(1 - e_m)) (50)
bounded by6.65 bpcu , the difference between inner and outer e Vo

bounds for any parameter regime can be easily evaluated from m

the proof of Th[V1. A plot of the exact value &fin 32) is  The result in Lemmd_All can be further weakened to
presented in Fid.]3. obtain an expression which can be more easily manipulated

analytically.

x

VI. CONCLUSIONS .
Corollary A.2. An upper bound tdy(x) is

We have derived outer and inner bounds of the discrete- e JT+1
time Wiener phase noise channel and have shown that they In(z) < N (51)
differ of at most6.65 bpcu at any SNR and frequency
noise variance. Both bounds have rather simple expressions Proof: From Lemmd Al we have

and suggest that all channels can be roughly divided in three e 2e=7(1 — e~ 7)
parameter regimes: high, intermediate, and small frequenc Iy(z) < m (erf(\/@ﬁ-i- T)
noise variance. Moreover, the analysis of the inner bound et
shows that a complex Gaussian input distribution performs < i (ﬁ+ 1) (52)
rather close to capacity. vV
where the last equality follows byf(x) < 1 and the fact that
APPENDIX 2¢7"(1—e7") < V/a. u

Note that, although simpler, the expression[inl (51) is not
Lemma A.1. Upper bound on modified Bessel function  tight asz — 0, where it actually has an asymptote. The
The zero-th order modified Bessel function of the first kirekpression in[{44), although cumbersome, is tightas 0.
can be upper-bounded as

IQ(,T) S

4% (erf(\/g)ﬁ_’_ 26—1(3/% e—m)) (44) REFERENCES
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