
ar
X

iv
:1

70
7.

06
66

4v
1 

 [
cs

.I
T

] 
 2

0 
Ju

l 2
01

7

1

Estimation of Sparsity via Simple

Measurements
Abhishek Agarwal Larkin Flodin Arya Mazumdar

Abstract

We consider several related problems of estimating the ‘sparsity’ or number of nonzero elements d in a length n

vector x by observing only b = M ⊙ x, where M is a predesigned test matrix independent of x, and the operation
⊙ varies between problems. We aim to provide a ∆-approximation of sparsity for some constant ∆ with a minimal
number of measurements (rows of M ). This framework generalizes multiple problems, such as estimation of sparsity
in group testing and compressed sensing. We use techniques from coding theory as well as probabilistic methods to
show that O(D logD log n) rows are sufficient when the operation ⊙ is logical OR (i.e., group testing), and nearly
this many are necessary, where D is a known upper bound on d. When instead the operation ⊙ is multiplication over
R or a finite field Fq , we show that respectively Θ(D) and Θ(D logq

n

D
) measurements are necessary and sufficient.

I. INTRODUCTION

Suppose that we want to identify an n dimensional vector x ∈ F
n, however, we can only observe the output b

where

M ⊙ x = b (1)

for a designed matrix M ∈ F
m×n. Let Mij denote the (i, j)th entry of M and let xi denote the ith component

of x. We will frequently refer to a single row of M as a “test” or “measurement.” If we define the operation ⊙
in eq. (1) as standard matrix multiplication over the field, and F = R, the problem of identifying x is known as

compressed sensing (and solvable with m ≪ n tests when x is ‘sparse’). If instead we define the operation ⊙ as

the logical OR, so that bi :=
∨

j:Mij=1 xj , and F = F2, the identification problem is known as group testing. We

can easily identify x when m ≥ n, for example by taking M to be the identity matrix. Let d be the sparsity or

number of nonzero entries of the vector x. For the case when it is known a priori that x is sparse (that is to say

d ≪ n), it has been shown that m = O(d2 log n) measurements are sufficient for identification in the group testing

setting, and even fewer measurements, m = 2d, are necessary and sufficient in the compressed sensing setting. The

group testing result is only a log d factor away from the known lower bound [8].

Without any information about x, it would be desirable to first estimate d, and then use this estimate to choose

a suitable strategy to identify the d-sparse vector x. A considerable body of research (see surveys in [11], [8]) has

focused on the identification problem when an upper bound on d is known in advance. In comparison less work has

been done on the problem of simply estimating d, without trying to determine which specific entries are nonzero

[7], [6], [4], [5], [14], [2]. For group testing in the adaptive setting (when each subsequent test can depend on the

results of previous tests), a recent result of Falahatgar et al. [9] allows approximation of d in as few as O(log log d)
tests, though with a small probability of error. In this paper, we solely concentrate on the non-adaptive version, in

which the entire test matrix is specified before the results of any tests are seen.

In particular, we provide tight upper and lower bounds on the number of measurements required by any

deterministic algorithm for estimating d within a constant multiplicative factor of ∆ (∆-approximation) in three
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different settings of this problem (i.e., definitions of the operation ⊙ and field F in eq. (1)). Note that ∆-

approximation implies an estimate d̂ such that

1

∆
≤

d̂

d
≤ ∆. (2)

Earlier results by Damaschke and Muhammad [7], [6] in the non-adaptive group testing setting show that when

no upper bound on the number of defectives is known, O(log n) queries are needed to approximate d even when

the scheme is allowed to fail for a small number of inputs, and that any deterministic strategy capable of exactly

determining d requires enough information to reconstruct the vector x exactly. In the group testing model, we

restrict our attention to the unstudied problem of bounds for non-adaptive approximation schemes which work for

all inputs, i.e., those that always produce an estimate of d within the specified range of allowable estimates.

The majority of work in the area of compressed sensing is concerned with the more difficult problem of how

to proceed when x is not exactly sparse, but instead is approximately sparse, meaning it is close in ℓ2 norm to a

sparse vector. To our knowledge all such works are concerned with recovery of the vector x, rather than estimation

of its sparsity. Another set of works from both the compressed sensing and signal processing literatures [12], [13],

[15], [10] focus on the related problem of “sparsity pattern recovery,” which involves identifying the positions of

the nonzero (or largest) entries of the vector x, but not their values.

We will require our tests to be non-adaptive, but in contrast to existing works, we focus only on estimating the

sparsity of x, under the assumptions of absolute sparsity (as opposed to approximate sparsity) and no additional

noise, over both finite fields and R.

First, in section II we identify a necessary and sufficient condition on the matrix M for ∆-approximation

to be possible. This condition applies to all models which we consider. In section III, we look at the group

testing model specifically; given an upper bound D on the number of defectives d, we demonstrate a lower bound

Ω(min(n,D logn)) on the number of measurements needed to ∆-approximate d without error. The lower bound

uses a simple and elegant combinatorial approach to bound the size of a cover of the space of possible input

vectors x, by showing all such vectors with the same output b = M ⊙ x must be elements of the same poset of

the Boolean lattice. We also show that this lower bound is nearly tight by demonstrating the existence of a matrix

M with m = O(min(n,D logn logD
log∆ )) rows along with a deterministic algorithm that ∆-approximates d.

In section IV we generalize the results of the previous section by assuming adversarial output noise is added

to the test results. We recover similar lower and upper bounds on the number of necessary tests in this new

setting, with additional additive terms that depend on the amount of noise. In section V, we take the operation

⊙ to be multiplication over either Fq or R, and exhibit close connections between the number of tests needed to

approximate d and existing quantities in coding theory; this allows us to prove lower and upper bounds on the

number of necessary tests that are tight up to constant factors. Our main results are summarized in table I, though

some are more fine-grained than the table implies.

TABLE I: Number of Measurements Needed

Model D = n
D = o(n)

Lower Bound Upper Bound

Group Testing Θ(n) Ω( D

∆2 log n
D
) O( logD

log ∆
D logn)

Compressed
Sensing over
Fq, q < n

Θ(n) D
2
logq

n
D

∗ 2D logq
n
D

∗

Compressed
Sensing over R

or Fq, q ≥ n
Θ(n) D − 1∗∗ 2D

∗Omitting lower order terms.
∗∗Assuming D ≥ 2⌊∆2⌋ − 4.
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II. PRELIMINARIES AND CONDITION FOR APPROXIMABILITY

Throughout, we write log x to mean log2 x, and ||x||ℓ0 to mean the sparsity or number of nonzero entries of the

vector x. We will denote the set {1, 2, . . . , n} by [n]. An ℓ-subset of a set S is a simply a subset of S of size ℓ.
For the estimation problem defined in section I in all models, we have the following necessary and sufficient

condition on the matrix M for it to be used to ∆-approximate d, the sparsity of the vector in question.

Theorem 1. Fix ∆ > 1. Let M ∈ F
m×n be a matrix such that there exists a decoder producing a ∆-approximation

d̂ of d = ||x||ℓ0 from observing b = M ⊙ x, for any x ∈ F
n, and assuming D to be a known upper bound on d.

Consider any two defective vectors v1,v2 ∈ F
n such that ||v2||ℓ0 ≤ ||v1||ℓ0 ≤ D. Then M must have the property

that
||v1||ℓ0
||v2||ℓ0

> ∆2 =⇒ M ⊙ v1 6= M ⊙ v2. (3)

Conversely, for any matrix M satisfying the above property, there exists a decoder producing an estimate d̂ that

satisfies the approximation criteria in eq. (2).

Proof. In the forward direction, given a matrix M we show that if eq. (3) is not satisfied for two vectors, then

no estimation algorithm satisfying eq. (2) can exist. If eq. (3) is not satisfied for two vectors v1,v2 ∈ F
n, then

||v1||ℓ0
||v2||ℓ0

> ∆2 and M⊙v1 = M⊙v2. Then a deterministic decoder must output the same estimate d̂ when observing

M ⊙v1 and M ⊙v2, but ||v1||ℓ0 and ||v2||ℓ0 differ by more than a ∆2 factor, so whatever d̂ is output will violate

eq. (2) for one of v1 or v2. Thus no decoding scheme can deterministically produce an estimate d̂ satisfying eq. (2)

in this case.

For the converse assume eq. (3) holds for the matrix M . When observing the result vector b, we define

d̂ =

√
√
√
√
√
√
√
√








max
y∈F

n

||y||ℓ0≤D
b=M⊙y

||y||ℓ0










 min
y∈F

n

b=M⊙y

||y||ℓ0



,

i.e., we estimate d by the geometric mean of the weights of the minimum and maximum weight vectors y with

weight ≤ D and M ⊙ y = b.

From eq. (3) we are guaranteed that the estimate above is within a ∆ factor of both the lowest and highest weight

vectors y with b = M ⊙ y, so will satisfy eq. (2).

Note that the above proof of decoder existence does not imply the existence of an efficient decoder; the obvious

implementation of the decoder described in the proof would take time exponential in n to determine the minimum

and maximum weight vectors y with b = M ⊙ y. We will see that despite this, efficient decoding is possible for

some specific matrices with this property.

III. DEFECTIVE APPROXIMATION FOR GROUP TESTING

Throughout this section we take F = F2 and assume that the operation ⊙ denotes logical OR as defined in

section I. For a subset S ⊆ [n], we write v(S) to mean the unique binary vector with support S. We establish upper

and lower bounds on the number of rows of a matrix capable of ∆-approximating d without error. As is standard in

non-adaptive group testing, we will typically assume that an initial upper bound D on the number of defectives d
is known. We then show that the number of rows m of the matrix M in eq. (1) must satisfy m = Ω(D log n

D ). On

the other hand, we show that there exists a matrix M with m = O(D logD logn) rows satisfying eq. (3). When

no upper bound on the number of defectives is known, we can take D = n, and in this scenario our bound shows

that a linear (in n) number of measurements is required to find an estimate d̂ satisfying eq. (2). This implies only

constant factor improvement is possible, as n measurements suffice to determine d exactly.
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Theorem 2. Suppose M ∈ F
m×n
2 is a matrix capable of ∆-approximating d when d ≤ D ≤ n

2 . Then it is necessary

that

m ≥

(
D

∆2
− 1

)

log
n

D −∆2
−

(
D

∆2
− 1

)

log e

= Ω

(
D

∆2
log

n

D

)

.

Proof. Assume two sets S1, S2 ⊆ [n] satisfy M ⊙ v(S1) = M ⊙ v(S2). Then using the definition of the operation

⊙ as logical OR, we have M ⊙ v(S1) = M ⊙ v(S2) = M ⊙ v(S1 ∪ S2).
Let PD([n]) denote the set {A ⊆ [n] : |A| ≤ D} of possible defective subsets with size at most D. Let

P1,P2, . . . ,Pt denote a partition of PD([n]) such that A,B ∈ Pi if and only if M ⊙ v(A) = M ⊙ v(B). Then

we must have

A,B ∈ Pi =⇒ A ∪B ∈ Pi. (4)

Since the matrix M is capable of ∆-approximation, by theorem 1 any two sets A,B with |B| ≤ |A| ≤ D in the

same part of the partition Pi must also satisfy

|A| ≤ ∆2 · |B|. (5)

For any matrix M , let t be the number of distinct vectors b arising as b = M ⊙ x for any potential vector of

defectives x. Then each row of M corresponds to a test with either a positive or negative result, so there can be at

most 2m distinct vectors b. Thus t ≤ 2m, so m ≥ log t. Since any partition is also a cover, we lower bound t by

finding a lower bound on the minimum size of a cover of PD([n]) with posets (ordered by inclusion) P1, P2, . . . , Pt

in PD([n]) satisfying eqs. (4) and (5).

From eq. (5), we see that any poset P containing an ℓ-subset cannot contain elements of size between ℓ∆2

and D, inclusive. Assume that P contains an ℓ-subset for ℓ < D
∆2 , so ℓ ≤ D

∆2 − 1. Suppose that P has more

than one maximal element in PD([n]), and call two such elements A and B. Since all elements of P have size

≤ ℓ∆2 ≤ D −∆2, the union of A with any one element of B \A must be of size at most D −∆2 + 1 ≤ D. But

since the union must be in the poset as well, this contradicts the maximality of A and B. Thus for ℓ < D
∆2 there

exists a unique maximal element in any poset containing an ℓ-subset.

Then as a poset P containing an ℓ-subset of [n] cannot have an element of size greater than ℓ∆2, we know that the

minimum size tℓ of a cover of all ℓ-subsets of [n] with posets satisfying eqs. (4) and (5) is at least tℓ ≥
(
n
ℓ

)
/
(
ℓ∆2

ℓ

)
.

The minimum size of any cover of PD([n]) is at least the size of the minimum cover of the ℓ-subsets of [n], for

any particular value of ℓ ≤ D. Thus, t ≥ t D
∆2 −1. Then as m ≥ log t, we have

m ≥ log

((
n

D
∆2 − 1

)

/

(
D −∆2

D
∆2 − 1

))

≥ log

((
n

D/∆2 − 1

) D
∆2 −1

/

(

(D −∆2)
D
∆2 −1

( D
∆2 − 1)!

))

=

(
D

∆2
− 1

)

logn−

(
D

∆2
− 1

)

log

(
D

∆2
− 1

)

−

(
D

∆2
− 1

)

log(D −∆2) + log

((
D

∆2
− 1

)

!

)

≥

(
D

∆2
− 1

)

log
n

D −∆2
−

(
D

∆2
− 1

)

log e,

using Stirling’s approximation in the last step.

Now consider the case when no nontrivial upper bound on d is known. When D = n we have the following

result.
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Corollary 3. Fix ∆ > 1. Consider a matrix M ∈ F
m×n
2 that can be used for ∆-approximation in the group testing

model with only the trivial upper bound D = n on the true number of defectives d. Then for large n, it is necessary

that

m ≥ n

(

h

(
1

∆4

)

−
1

∆2
h

(
1

∆2

))

= Ω(n),

where h(x) denotes the binary entropy function.

Proof. From the proof of the previous theorem, we have

m ≥ max
l≤n

log

((
n

l

)

/

(
l∆2

l

))

≥ log

((
n

n/∆4

)

/

(
n/∆2

n/∆4

))

by setting l = n
∆4 . For large n using Stirling’s approximation, we have that the last term above converges to

n
(
h
(

1
∆4

)
− 1

∆2h
(

1
∆2

))
. This expression is positive for ∆ > 1, so the entire expression is Ω(n) assuming ∆ is a

fixed constant.

We now show the existence of a matrix M capable of ∆-approximation with m = O(D logD
log∆ logn) rows for any

D and ∆ > 1. We modify a construction of Damaschke and Muhammad [6] for non-adaptive sparsity approximation

with error, and show that with additional repetition of certain tests, we can achieve no error.

Theorem 4. Given an initial upper bound D on the number of defectives, there exists a matrix M ∈ F
m×n
2 that

can ∆-approximate d in the group testing model such that m = O(D logD
log ∆ logn). Furthermore, this matrix has a

decoding scheme that requires only O(m) = O(D logD
log∆ logn) time.

Proof. Let Bern(p) denote the Bernoulli variable on F2 such that P(Bern(p) = 1) = p. Let d̂ denote the estimate

of d, which is specific to the matrix M . We show that a matrix constructed in a random way combined with a

specific estimator d̂ works simultaneously for all vectors of defectives with nonzero probability. To this end, we

define the bad events E1 and E2 to be the events that our estimate is too far off, the complements of the estimation

criteria in eq. (2):

E1 :
d̂

d
> ∆, (6a)

E2 :
d̂

d
<

1

∆
. (6b)

Construction: We modify the random construction in [6] to construct M ∈ F
m×n
2 . For this matrix M , we show

that the probability of either bad event occurring over all defective vectors with d ≤ D is strictly less than 1 when

m = O(D logD
log∆ logn). Thus there exists a matrix M with m rows for which none of the bad events in eq. (6)

occur for any defective vector of weight at most D.

Consider a fixed parameter b > 1, and let δ := logb ∆. Take s to be a fixed parameter such that s < δ−1, and let

l ∈ {⌊logb ln 2⌋, ⌊logb ln 2⌋+ 1, . . . , ⌈logb D⌉} denote indices for subsets of tests. For each index l, we construct t
random identically and independently distributed (iid) tests such that each element is selected in the test for index l
with probability 1−(1− 1

D )b
l

. Then the total number of such indices is N := ⌈logb D⌉−⌊logb ln 2⌋+1, so the matrix

M consists of tN rows with the elements in row indices j ∈ {(l− 1)t+ 1, (l− 1)t+ 2, . . . , lt} selected randomly

and independently as Bern(1− (1− 1
D )b

l

). Thus the probability of row j for j ∈ {(l− 1)t+1, (l− 1)t+2, . . . , lt}

having a negative result (containing no defectives) is ql(d) := (1 − 1
D )db

l

. Now, there exists an index ℓ(d) ∈
{⌊logb ln 2⌋, ⌊logb ln 2⌋+ 1, . . . , ⌈logb D⌉} (or simply ℓ) such that 1

2 ≤ qℓ−s(d) <
1

21/b
, because ql+1 = qbl .

Let L ∈ {⌊logb ln 2⌋, ⌊logb ln 2⌋+ 1, . . . , ⌈logb D⌉} denote the random variable corresponding to the maximum

index for which the majority of test results were negative. Our decoding algorithm will be to take the estimate d̂
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of d such that qL−s(d̂) =
1
2 , i.e., d̂ = −1

bL−s log(1− 1
D )

. Then the probability of bad event E1 for a defective set of

size d is

P(E1) = P

(

d̂

d
> ∆

)

≤ P

(

d̂ ≥ d∆
)

= P

(

1

2
≤

(

1−
1

D

)d bL+δ−s)

= P

(
1

2
≤ qL+δ−s(d)

)

= P(L ≤ ℓ(d)− δ)

=
∏

ℓ(d)−δ<l≤⌈logb D⌉

F

(⌈
t− 1

2

⌉

; t, ql(d)

)

,

where F (k;n, p) = P(X ≤ k) denotes the cumulative distribution function for X =
∑n

i=1 Xi for Xi ∼ Bern(p)
iid. Similarly, for bad event E2 we have

P(E2) = P

(

d̂

d
<

1

∆

)

≤ P

(

d̂ ≤ d/∆
)

= P

(

1

2
≥

(

1−
1

D

)d bL−δ−s)

= P

(
1

2
≥ qL−δ−s(d)

)

= P(L ≥ ℓ(d) + δ)

=

⌈logb D⌉
∑

l=ℓ(d)+δ

F

(⌈
t− 1

2

⌉

; t, 1− ql(d)

)

.

Thus the probability of the event Ẽ2, defined to be the union of the events E2 for all defective sets of size

d ≤ D, can be upper bounded by union bound as follows:

P

(

Ẽ2

)

≤
∑

1≤i≤D

(
n

i

)

P(E2)

≤
∑

i

(
n

i

)
∑

ℓ(d)+δ≤l≤⌈logb D⌉

F

(⌈
t− 1

2

⌉

; t, 1− ql(i)

)

≤
∑

i

(
n

i

)

·N · F

(⌈
t− 1

2

⌉

; t, 1− q⌈logb D⌉(i)

)

≤
∑

i

(
n

i

)

·N · exp

(

−t D

(
1

2
||1− q⌈logb D⌉(i)

))

,
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where D(a||p) := a log(ap ) + (1− a) log(1−a
1−p ) denotes the KL divergence between a and p, and the last inequality

follows from the bound on F (k;n, p) in [3]. Then applying the inequalities
(
n
i

)
≤ ni and q⌈logb D⌉ ≤ e−i, we have

that P
(

Ẽ2

)

is at most

N
∑

1≤i≤D

exp

(

i lnn+
t

2

(

1 + log(1 − q⌈logb D⌉)−
i

ln 2

))

.

Now, it can be seen that for t = O(log n), P
(

Ẽ2

)

goes to 0.

Similarly, we bound the probability of Ẽ1, the union of the events E1 for all defective sets of size d ≤ D,

recalling that δ > s+ 1:

P

(

Ẽ1

)

≤
∑

1≤i≤D

(
n

i

)

P(E1)

≤
∑

i

(
n

i

)
∏

ℓ(i)−δ<l≤⌈logb D⌉

F

(⌈
t− 1

2

⌉

; t, ql(i)

)

≤
∑

i

(
n

i

)
∏

ℓ(i)−δ<l≤ℓ(i)−s

F

(⌈
t− 1

2

⌉

; t, ql(i)

)

≤
∑

i

(
n

i

)

exp

(

−
δ − s− 1

2qℓ(i)−s−1
· t

(

qℓ(d)−s−1 −
1

2

)2
)

,

where the last inequality follows from the Chernoff bound applied to the binomial distribution. Thus P

(

Ẽ1

)

is at

most

D · exp

(

D lnn−
δ − s− 1

2qℓ(d)−s−1
· t

(

qℓ(d)−s−1 −
1

2

)2
)

≤ D · exp

(

D lnn−
δ − s− 1

21−b−1 · t

(
1

2b−1 −
1

2

)2
)

.

It can be seen that for t = O(Dδ logn), P
(

Ẽ1

)

goes to 0.

Therefore when the number of tests m = O(D logD
log∆ logn), there exists a test matrix and estimation algorithm

which estimates d within a multiplicative factor of ∆ for all defective vectors of weight ≤ D.

The decoding requires only computing a function of the largest index l for which the corresponding block of t
tests had a majority of test results negative, and this index can easily be determined in a single pass over the result

vector, requiring O(m) time.

IV. GROUP TESTING APPROXIMATION WITH OUTPUT NOISE

We now consider the group testing scenario with the additional complication that the output b = M ⊙ x is

corrupted by noise. Assume that the output vector y contains at most e0 false positives (0s flipped to 1s) and at

most e1 false negatives (1s flipped to 0s). We will aim to bound the number of tests required to ∆-approximate

the number of defectives in such a noisy setting.

Denote the support set of a vector x ∈ F
m
2 as supp(x) ⊆ [n]. We first give a necessary and sufficient condition

under which a non-adaptive group testing matrix and deterministic estimator capable of ∆-approximation exist in

the presence of bounded asymmetric noise.

Definition 1. For x,y ∈ F
m
2 , (x,y) are called (e0, e1)-far iff |supp(y)− supp(x)| > e0 or |supp(x)− supp(y)| >

e1. If neither condition occurs, then (x,y) are said to be (e0, e1)-close.
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We note that closeness is in general not symmetric; if (x,y) are (e0, e1)-close, then (y,x) are (e1, e0)-close,

but need not be (e0, e1)-close.

Lemma 5. Consider two vectors x1,x2 ∈ F
n
2 such that (x1,x2) are (e0 + e1, e0 + e1)-close. Then there exists a

vector y ∈ F
n
2 such that both (x1,y) and (x2,y) are (e0, e1)-close.

Proof. Let X1 := supp(x1), X2 := supp(x2). We define the support of the vector y, Y := supp(y) as

Y := (X1 ∩X2) ∪ P ∪R,

where P ⊆ X2 \X1 such that |P | = min(|X2 \X1|, e0) and R ⊆ X1 \X2 such that |R| = min(|X1 \X2|, e0).
Now supp(Y \X1) = P and supp(Y \X2) = R. Thus, |Y \X1| = |P | ≤ e0 and |X1\Y | = |X1\X2|−|R| ≤ e1.

Similarly, |Y \X2| = |R| ≤ e0 and |X2 \ Y | = |X2 \X1| − |P | ≤ e1.

We can now state the condition for a matrix to be capable of ∆-approximation in this noisy setting.

Theorem 6. Let ∆ > 1. Let M ∈ F
m×n be a matrix such that there exists a decoder producing a ∆-approximation

d̂ of d = ||x||ℓ0 for any x ∈ F
n of weight at most D when observing

y = M ⊙ x+ n,

where n denotes a noise vector such that (M ⊙ x,y) are (e0, e1)-close. Then for any two sets S1, S2 ⊆ [n] with

|S2| ≤ |S1| ≤ D, M must satisfy

|S1|

|S2|
> ∆2 =⇒ (M ⊙ v(S1),M ⊙ v(S2))

are (e0 + e1, e0 + e1)−far. (7)

Conversely, for any matrix M satisfying eq. (7), there exists a decoder producing an estimate d̂ that satisfies the

approximation criteria in eq. (2) for all x of weight at most D.

Proof. Consider a matrix M ∈ F
m×n
2 that does not satisfy equation eq. (7). Then there must exist sets S1, S2 ⊆ [n]

such that |S1|/|S2| > ∆2 and (M ⊙ v(S1),M ⊙ v(S2)) are (e0 + e1, e0 + e1)-close. Thus, there exists a vector

y ∈ F
m
2 such that (M ⊙ v(S1),y) and (M ⊙ v(S2),y) are both (e0, e1)-close from lemma 5. As a result, there

exist valid noise vectors n1,n2 with the property that y = M ⊙x1+n1 = M ⊙x2+n2. Since the estimate d̂ must

be the same for both cases, the estimate cannot satisfy the approximation criteria in both cases simultaneously.

For sufficiency, consider the following set S = {S ⊂ [n] : (M ⊙ v(S),y) are (e0, e1)−close}. We take

d̂ =

√
(

min
S∈S

|S|

)(

max
S∈S

|S|

)

Our estimate d̂ is then within a ∆ factor of the cardinality of any set in S, so as the actual defective set must

belong to S, d̂ satisfies the approximation criteria.

For an upper bound on the minimum size of such a matrix, we can make a simple modification to the construction

used in the noiseless case. Recall that there, we constructed a matrix with l = O(logD) “indices,” where each index

consisted of t = O(D logn) tests, with each element selected for the test uniformly at random with probability pl.
Then to decode, we computed a function of the largest index l for which the corresponding block of t tests had

the majority of test results negative. Adding a noise vector to the output flips the results of at most e0 + e1 tests,

so to ensure this construction is resilient to noise, we simply add 2(e0 + e1) tests to each index l, again with each

element chosen uniformly to be tested with probability pl. Then we are guaranteed that the majority of test results

for each index will be the same as it would have been in the noiseless case, so the argument of theorem 4 applies

to show correctness. Thus we have the following theorem.
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Theorem 7. There exist m × n matrices capable of ∆-approximation of all vectors with at most D defectives,

when the output is corrupted by noise so that at most e0 negative results become positive, and at most e1 positive

results become negative, with

m = O

(
D logD

log∆
logn+ (e0 + e1) logD

)

rows. Furthermore, some such matrices have decoding schemes that require only O(m) time.

Next we turn to a lower bound on the number of rows of such a matrix. Consider the undirected graph G = (V, E)
on the vertex set V = {A ⊆ [n] : |A| ≤ D}. The edges in G are defined as follows: (A,B) ∈ E if and only if

(M ⊙ v(A),M ⊙ v(B)) are (e0 + e1, e0 + e1)-close. This is a “confusion graph” for the set of possible inputs; by

lemma 5 there is an edge between vertices corresponding to two inputs whenever there exists a vector that both

the corresponding outputs could map to after being corrupted by noise, so these inputs are “confusable.” Then an

independent set I in the graph G corresponds to a set of inputs for which the corresponding outputs are all pairwise

(e0 + e1, e0 + e1)-far.

Lemma 8. For a matrix M satisfying the noisy approximation criteria in eq. (7), the confusion graph G as defined

above must satisfy the following conditions, for A,B ∈ V :

i) If (A,B) ∈ E and |A ∪B| ≤ D, then (A ∪B,A) ∈ E and (A ∪B,B) ∈ E .

ii) If
|A|
|B| 6∈

[
1
∆2 ,∆

2
]
, then (A,B) 6∈ E .

Proof. For the first condition, by definition of the edge set we have (A,B) are (e0 + e1, e0 + e1)-close. Then (as

long as A ∪ B corresponds to a vertex in G, guaranteed by |A ∪ B| ≤ D), (A ∪ B,A) are (0, e0 + e1)-close, so

have an edge between them, and similarly for (A∪B,B). The second condition follows immediately from the fact

that M satisfies eq. (7).

Thus, any independent set in G corresponds to a packing of Fm
2 with balls of (asymmetric) radius ( e0+e1

2 , e0+e1
2 ),

defined as follows:

Bas(x, (r1, r2)) := {y ∈ F
m
2 : |supp(x)− supp(y)| ≤ r1 and |supp(y)− supp(x)| ≤ r2}.

The size of the largest independent set, Imax, can be upper bounded as

|Imax| ≤ A

(

m,

(
e0 + e1

2
,
e0 + e1

2

))

, (8)

where A(m, ( e0+e1
2 , e0+e1

2 )) denotes the size of the maximum packing of Fm
2 with balls of radius (e0+e1, e0+e1).

Then we have

min
x∈F

m
2

|Bas(x, (r, r))| = min
x∈F

m
2

min(r,|x|)
∑

i=0

min(r,n−|x|)
∑

j=0

(
|x|

i

)(
n− |x|

j

)

≥ min
x∈F

m
2

(
|x|

min
(

r, |x|
2

)

)(
m− |x|

min
(

r, m−|x|
2

)

)

≥ min
x∈F

m
2

2r≤|x|≤m−2r

(
|x|

r

)(
m− |x|

r

)

≥ min
x∈F

m
2

2r≤|x|≤m−2r

(
|x|

r

)r (
m− |x|

r

)r

≥
(2r)r(m− 2r)r

r2r
.
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We use the sphere-packing bound to upper bound A(m, (e0 + e1, e0 + e1)):

A(m, (e0 + e1, e0 + e1)) ≤
2m

minx∈F
m
2
|Bas(x, (

e0+e1
2 , e0+e1

2 ))|

≤ (2m)/

(
(e0 + e1)

(e0+e1)/2 · (m− (e0 + e1))
(e0+e1)/2

( e0+e1
2 )e0+e1

)

. (9)

Note that since the graph G is an edge super-graph of the confusion graph corresponding to the noiseless case, the

lower bound on the number of partitions in theorem 2 can also be used to lower bound the size of an independent

set in G. Thus, we have the following lower bound on m.

Theorem 9. Let E be the maximum weight of a noise vector, and assume E grows no faster than O( D
∆2 logn). For

an m× n matrix M capable of ∆-approximation when the output is corrupted by such a noise vector, assuming

the weight of the input vector of defectives is at most D ≤ n
2 , we must have

m ≥

(
D

∆2
− 1

)

log
n

D −∆2
−

(
D

∆2
− 1

)

log e + E −
E

2
logE +Ω

(
E

2
log

(
D

∆2
logn− E

))

= Ω

(
D

∆2
logn

)

+Ω

(

E log

(
D

∆2
logn− E

))

.

Proof. Let e0 be the number of 0s flipped to 1s, and e1 the number of 1s flipped to 0s, so E = e0 + e1. From the

above discussion, by plugging in the bound from theorem 2, we have
(

D

∆2
− 1

)

log
n

D −∆2
−

(
D

∆2
− 1

)

log e ≤ log 2m − log
EE/2 · (m− E)E/2

(E2 )
E

,

thus

m ≥

(
D

∆2
− 1

)

log
n

D −∆2
−

(
D

∆2
− 1

)

log e + log
EE/2 · (m− E)E/2

(
E
2

)E

≥

(
D

∆2
− 1

)

log
n

D −∆2
−

(
D

∆2
− 1

)

log e +
E

2
log(E) +

E

2
log(m− E)− E log

(
E

2

)

=

(
D

∆2
− 1

)

log
n

D −∆2
−

(
D

∆2
− 1

)

log e + E −
E

2
logE +

E

2
log(m− E).

As m is Ω( D
∆2 logn) by the noiseless lower bound, we have at least

E

2
log(m− E) = Ω

(
E

2
log

(
D

∆2
logn− E

))

,

from which the result follows.

V. DEFECTIVE APPROXIMATION BY LINEAR OPERATIONS

In this section we assume that the operation ⊙ denotes standard matrix multiplication over a field F, and as

such will typically write Mx instead of M ⊙ x. We take F to be either finite or R, the latter of which is the

setting of the well-studied compressed sensing problem. Our aim now is to bound the size of a matrix M that

satisfies the criteria for ∆-approximation in this model. Consider a vector space V ⊆ F
n. Call such a vector space

(∆, D)-distinguishing if it has the property that for parameters ∆ > 1, D ≤ n, any two vectors x and y in the

same coset of V (so there exists v1,v2 ∈ V such that x = z+v1,y = z+v2 for some z ∈ F
n) both having weight

at most D differ in weight by a factor of at most ∆2. In other words, if ||x||ℓ0 ≤ ||y||ℓ0 , then ||y||ℓ0 ≤ ∆2||x||ℓ0 .

We can use this property to lower bound the rank (and thus the number of rows) of any ∆-approximating matrix.
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Theorem 10. For an m × n matrix M which can ∆-approximate the sparsity, d, of any vector with sparsity at

most D in the linear operations model, it is necessary that

rank(M) ≥ n− max
(∆,D)-distinguishing V

dim(V ). (10)

Proof. We show that the nullspace of any such matrix M is a (∆, D)-distinguishing vector space. By our necessary

criteria for ∆-estimation, we have for any vectors x,y with ||x||ℓ0 ≤ ||y||ℓ0 ≤ D, that when Mx = My, then

||y||ℓ0 ≤ ∆2||x||ℓ0 . Now, since M(x − y) = 0 if and only if x and y are in the same coset of kerM , we have

rank(M) ≥ min{rank(N) : kerN is (∆, D)-distinguishing}.

We use the condition in theorem 10 to bound the number of measurements needed, as rank(M) is a lower bound

on the number of rows of M . Let AF(n, dmin) denote the maximum dimension of a subspace in F
n that does not

contain any nonzero vector in {x ∈ F
n : ||x||ℓ0 < dmin}. Note that for finite fields Fq, the quantity AFq (n, dmin)

denotes the maximum dimension of a linear q-ary code with minimum distance dmin. A generalization of this

quantity is studied in [1], which defines AF(n, a, b) as the maximum dimension of a subspace in F
n that does not

contain any vector in the annulus {x ∈ F
n : a < ||x||ℓ0 < b}. Let U be a (∆, D)-distinguishing vector space,

and let x be a nonzero vector of maximum weight in U subject to ||x||ℓ0 < D. If no such vector exists, then

dimU ≤ AF(n,D). Otherwise, there exists a vector y ∈ F
n with ||y||ℓ0 = 1 and ||y + x||ℓ0 = ||x||ℓ0 + 1 ≤ D.

Since y = 0+ y and x+ y are in the same coset of U , we have

||x+ y||ℓ0 ≤ ∆2 ||y||ℓ0
︸ ︷︷ ︸

=1

=⇒ ||x||ℓ0 ≤ ⌊∆2⌋ − 1.

Thus, dimU ≤ AF(n, ⌊∆
2⌋ − 1, D). As AF(n,D) ≤ AF(n, a,D) for any a ≤ D, the above inequality applies to

any (∆, D)-distinguishing space U . Therefore we have

rank(M) ≥ n−AF(n, ⌊∆
2⌋ − 1, D)

for any matrix M that can ∆-approximate d for every defective vector of sparsity up to D in the linear operations

model. Define m⋆
F
(a, b, n) := n − AF(n, a, b). We have from [1, Proposition 1] that whenever 2a − 2 ≤ b,

m⋆
F
(a, b, n) = m⋆

F
(1, b, n− a+ 1). The work in [1] is oriented towards finite fields, but their proof is independent

of the choice of field F, so in particular applies also when F = R. Note that m⋆
F
(1, b, n) is just the rank of the

parity check matrix of the largest dimension linear code on n coordinates with minimum distance b. Thus, as long

as D ≥ 2⌊∆2⌋ − 4,

rank(M) ≥ m⋆
F
(1, D, n− ⌊∆2⌋+ 2).

If F is a finite field of size greater than or equal to n, or F = R, we know that m⋆
F
(1, D, n−⌊∆2⌋+2) ≥ D− 1

by the Singleton bound. Since we can exactly identify the set of defectives for d ≤ D in 2D queries using basic

techniques from compressed sensing, there is at most a factor 2 improvement possible.

For |F| = q < n, a stronger lower bound is possible since in general the Singleton bound is not tight. From the

sphere-packing bound on AF(n− ⌊∆2⌋+ 2, 1, D), we have that m⋆
Fq
(1, D, n− ⌊∆2⌋+ 2) is lower bounded by

⌊
D − 1

2

⌋

logq(n− ⌊∆2⌋+ 2)−O(D logD)

= Ω
(

D log
n

D

)

,

as long as ⌊D−1
2 ⌋ ≤ n

2 .

For an upper bound on the minimum possible rank of M when |F| = q < n, recall that such a matrix must have

the property that in every coset of the nullspace, any two vectors of weight less than or equal to D must differ in

weight by at most a ∆2 factor. As the difference of any two vectors in the same coset lies in the nullspace, this
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condition is satisfied if every nonzero vector in the nullspace has weight at least 2D+1, so we have the following

result.

Theorem 11. In the linear operations model, when |F| = q < n, and D ≤ n(q−1)−q
2 , there exist matrices M that

can ∆-approximate the true number of defectives, d, for every possible vector of defectives of weight at most D,

with at most nHq(
2D+1

n ) rows, where Hq is the q-ary entropy function, Hq(x) := x logq(q− 1)−x logq(x)− (1−
x) logq(1 − x).

Proof. We have

min
M

M ∆−approximates d

rank(M) ≤ min
M

∀x 6=0∈kerM, ||x||ℓ0>2D

rank(M)

= m⋆
Fq
(1, 2D+ 1, n) ≤ nHq

(
2D + 1

n

)

,

where the last inequality follows from the asymptotic Gilbert-Varshamov bound, using the assumption that 2D+1
n ≤

1− 1
q .

Corollary 12. Under the conditions of the previous theorem with the additional assumption that D = o(n), there

exist matrices M that can ∆-approximate d with (2D + 1) logq

(
n

2D+1

)

+ O(D) = O(D log(n/D)) rows for

sufficiently large n.

Proof. By the previous theorem, such matrices exist with nHq(
2D+1

n ) rows. Expanding, we have

nHq

(
2D + 1

n

)

= n

(

(2D + 1) logq(q − 1)−
2D + 1

n
logq

(
2D + 1

n

)

−

(

1−
2D + 1

n

)

logq

(

1−
2D + 1

n

))

= (2D + 1) logq(q − 1)− (2D + 1) logq

(
2D + 1

n

)

− (n− 2D − 1) logq

(

1−
2D + 1

n

)

= O(D) + (2D + 1) logq

(
n

2D + 1

)

− (n− 2D − 1) logq

(

1−
2D + 1

n

)

,

and then note that the last term goes to 0 for large n, as 2D+1
n goes to 0 since D = o(n).

The above result is asymptotically tight with the lower bound given previously, so only improvements in the

constant factor are possible. For certain settings of parameters these improvements follow easily from known results;

for instance, the existence of binary BCH codes with n− k ≤ D log2(n + 1) for certain values of n implies that

when q = 2 the bound in corollary 12 improves by about a factor of 2.

Remark: Adaptive Tests. In the case of linear measurements over R, a simple trick yields a very efficient adaptive

scheme as well. First, suppose the entries of the vector x are nonnegative. In this case, the result of a test is nonzero

if and only if some nonzero entry of x is included in the test. Then for the purpose of determining sparsity, each

test tells us as least as much information as the corresponding test in the group testing model, as we can simply

threshold the real-valued test result to 1 if it is nonzero and 0 otherwise. Thus we can exploit existing results for

adaptive group testing sparsity approximation [9] to obtain an estimate of the sparsity that is accurate with high

probability in as few as O(log log d) measurements. However, if not all entries of the vector x are nonnegative,

then there is the additional complication that it is possible to observe a test result of 0 even when a nonzero entry

of x is included in the test. This will happen exactly when the vector corresponding to some test is orthogonal to

x. It is easy to counteract this by slightly perturbing each test vector, adding a small real-valued random vector

that is nonzero only on the support of the test vector to each test. This ensures that the new test vector lies in the

space orthogonal to x with probability 0.
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