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Abstract—In the present paper, we derive an upper bound of sensor node and an edge corresponds to a wireless link
the average network breakdown probability of packet netwoks  connecting two sensor nodes. Connectivity of such grapbis is
with unreliable relay nodes. We here assume that relay nodeget prime importance because it ensures successful packet-bas

independently broken with a given node breakdown probabiliy. icati th work with iat Hif
A survivor graph is the induced subgraph obtained by removirg communications over the network with- appropriate routing.

the broken relay nodes and their connecting edges from the any two distinct nodes in a graph have a path connecting both
original graph. If the survivor network is disconnected, we nodes, the graph is said to be connected. The paper by Li et
consider a network breakdown happens. The primal contributon g, [1]] gives a survey of the works regarding the connegtivit

of the paper is to derive an upper bound of the average of several random graph classes.

network breakdown probability, where the expectation is t&ken Th bl ¢ luat bust f networks in t
over a regular graph ensemble. The proof of the bound is € problem to evajuate robusiness of Networks in terms

based on a natural one-to-one correspondence between a régu  Of the connectivity under the assumption of some edge break-
graph and a regular bipartite graph, and also on enumeration downs is known as theetwork reliability problemThe origin
of bipartite graphs satisfying certain conditions. This proof of the network reliability problem is the celebrated paper
argument is inspired by the analysis of weight distributionfor 1, \joore and Shannon[2] which dates back to 50's. Since
low-density parity-check codes. Compared w!th estimatesfahe then, the topic has been extensively studied primarily in
average network breakdown probability obtained by compute ! > - .
experiments, it is observed that the upper bound provides ta the fields of theoretical computer science. Evaluation ef th
values which are not only upper bounds but also precise estiates network breakdown probability for a given undirected graph
of the network breakdown probability when the node breakdown s known to be a computationally hard problem. Provan and
probability is small. Ball [3] and Valiant [4] showed that the network reliability
problems are#P-complete, which is a complexity class at
least as intractable a§P. Karger [5] presented a randomized

Wireless sensor networks (WSN) regain huge interest fromolynomial time approximation algorithm for the all terraln
both academia and industry in the context of the developmeratwork reliability problems.
of 10T (Internet of Things). It is expected that WSN can In this paper, we discuss the problem to evaluate the proba-
provide tremendous applications in the near future such liity that a random network becomes disconnected under the
security surveillance, environmental monitoring, disashon- assumption ohode breakdown§.e., relay node breakdowns)
itoring, factory monitoring, and so on. In many cases, sensastead of edge breakdowns assumed in the literatures of
nodes have short-range wireless communication conngctivthe network reliability problem. The main motivation of our
and packet relay capability in addition to its sensing cé#jipgb work is to establish a solid theoretical foundation to amaly
The sensor data are aggregated by gateways and a padk&tN with unreliable relay nodesAlthough breakdowns of
based relaying protocol is commonly used to convey the datday nodes degrade the system performance, they may not
from sensors to the gateway. Sensor nodes are deployed ineadevastating if the network retains its connectivity. rkro
large area which may not be an ideal environment to platiis respect, the robustness of WSN can be evaluated by
small electronic devices. In some situations, sensor nodesasuring the probability of events that the network bemme
are directly exposed to severe environments, e.g., outdelisconnected. One may be able to use such information to
environment, and it may continuously cause damage to tbptimize certain parameters of WSN under the cost constrain
sensor nodes. Another source of unreliability is limited- baThe problem setup introduced in this paper appears simple
teries of sensor nodes that are not easy to recharge. Saifficend natural but it has not been seriously studied as far as the
maintenance to a number of sensor nodes may be hopekasthors know.
in some situations because of its huge cost. This means thaiVe will present a probabilistic analysis of connectivity of
we need to take care of possible breakdowns, malfunctionsgular random graphs with relay node breakdowns in this
and flat batteries of sensor nodes for designing and opgratpaper. We here assume that relay nodes get independently
WSN. broken with the node breakdown probabilityThe remaining

A natural abstraction of WSN is to exploit an undirectedraph, called a survivor graph in this paper, is the induced
graph to represent the network. A node corresponds tosabgraph obtained by removing the broken relay nodes and

I. INTRODUCTION
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their connecting edges from the original graph. If the stowi graph ensemblg(n, \) is the multiset of the counterparts of

network is disconnected, we considematwork breakdown the bipartite graphs iff (n, A, 2) and the probabilityl / (An)!

happens. is assigned to each elementdiin, A), i.e., A-regular graph.
The primal contribution of the paper is to derive an upNamely, there are one-to-one correspondence bet@éem)

per bound of the expected network breakdown probabilitgnd 7 (n, A, 2). This means that a regular graph ing(n, \)

The network breakdown probability is the probability suchas the unique counterpart ii(n, A, 2) (vice versa) and the

that a randomly chosen network is disconnected under ts@me probability is assigned to both graphs. Some graphs in

assumption of probabilistic breakdowns of relay nodes. TlgEn, \) contain self-loops or multiple edges but the fact causes

expectation is taken over A-regular graph ensemble. Theno harmful effects on the following analysis.

upper bound indicates the typical behavior of the network

breakdown probability. The proof argument of the bound - Node Fault Model

inspired by the analysis of weight distribution for low-dég Let G = (N,E) be aA-regular undirected graph. We assume

parity-check (LDPC) codes. In order to derive the bound, what each node i independently breaks down with proba-

introduced a special class of bipartite graphs that is aintd  bility ¢. Let Z be the set of broken nodes. Thervivor graph

the Tanner graph§][6] of LDPC codes. Counting the number &% Z is the induced subgraph obtained by removing the broken

bipartite graphs satisfying certain conditions leads ®nfain nodesz and their connected edges from the original graph

result. The argument is similar to the ensemble analysis lbtthe survivor graphG \ Z is separatedor disconnectey we

low-density generator matrix codes with column weight 2 [7Fonsider the networkreakdownhappens because there is at

Similar arguments were successfully used in Yano-Wadayaieast a pair of nodes i&\ Z such that they cannot communicate

[8] and Fujii-Wadayama [9] as well. with each other. In this paper, we consider the null graph is

connected. Hence, in the case that all the nodésaire broken,

Il. MODELS AND DEFINITIONS we consider the network isot broken

A. Random Graph Model

In this paper, we assume undirectedegular graphs with
nodes, i.e., all the nodes have degkeas a model of wireless  In this section, we present the main result of this paper,
packet-based networks. i.e., an upper bound of average network breakdown prolbpabili

Any undirected graplé can be converted into a bipartiteunder the node fault model defined in Subsedfionlll-B.
graphGy, by replacing each edge in with a node of degree _

2 and its connecting edges. This bipartite graphis said A~ Main Theorem

to be thecounterpartof G. ConverselyG is also said to be  Firstly, we give the notation to describe the theorem. Let
the counterpart ofy,. Then, the bipartite graph,, contains Z™* be the set of non-negative integers. The indicator function
n nodes of degree\ and (An)/2 nodes of degree 2. By I[cond] takes the value 1 itond is true, otherwise it gives
borrowing terms from the Tanner graph of LDPC codes, we value 0. We define the binomial coefficient as

refer the nodes of degree(resp. 2) as variable (resp. check) m .l "

nodes. Summarizing above, we can convert amgegular (k) - k!(n—k)!l[k’n_k €.
graph into the counterpart, i.e.{&, 2)-regular bipartite graph. Similarly, the multinomial coefficient is defined by
Conversely, any), 2)-regular bipartite graph can be converted
into the A-regular counterpart.

In this work, we will consider the robustness of networks Tpe following theorem presents an upper bound of average
over a random graph model based on a regular graph ensembleyork breakdown probability under the node fault model.
We now define the regular graph ensemble associated with &heorem 1:Assume the node fault model defined in Sub-
regular bipartite graph ensemble, i.e., a regular Tann@plor section [JI-B. The average network breakdown probability

ensemble. For given parametersand )\, the (A, 2)-regular Py..(€), whose expectation is taken ovéi(n, \), is upper
Tanner graph ensemblg(n, A, 2) is defined as follows[[6]. bo7unded byP(U

, wh
Any graph instance if7 (n,\,2) hasn variable nodes of '\ (€), Where

Il. M AIN RESULT

(a1+a2+"'+ak) = Mﬂ[al, as,...,ar € 7).

a1,a2,...,0% ailaz!---ap!

degree\ and(An)/2 check nodes of degree A variable node ) ~ (n\ ) -
of degree\ has\ sockets accepting edge connections from the A n (€) == Z (j) Qj.,A,nEJ(l —e)" 7, 1)
check nodes. Similarly, a check node of degree 2 has 2 sockets =0
Hence, there are totallyn sockets in the both variable and ) 1 ot (”*j) Amin{n,j}
. . — ni 1
check node sides. Let be a permutation og1,2,...,An}. Jam T 2()\n) Z (A(n_.j)) Z 2
The i-th socket on the variable node side is connected to the Aj/ o ma=1\ Amy 01=0
7(i)-th socket on the check node side by an edge. In the A Aln —mn1) — iy
ensembleT (n, A\, 2), we assume the uniform distribution on x <21, Ay iy A(nzl)il) </\(n —m —j)>' @)

the set of permutations, i.e., the probability( A\n)! is assigned
to each bipartite graph. The regular random graph ensembl&kemark 1:The vaIueQ%{n given in Theorerall is an upper
G(n, A) is the counterpart off (n, A, 2). More precisely, the bound ofQ;  ,, where@), » ., is the probability that a graph



in G(n,\) become separated if a given set pfodes are
broken. The precise definition @, » ,, will be given in [4).

We can easily verify tha@ff{in = 0 from (2). This implies
that the network is not broken down if all the nodes in

G € G(n,\) are broken. Suppose that one wish to consider
that a network breakdown happens if all the nodes in the
graph are broken. In such a case, by repla@iﬁin with 1,

one can easily obtain an upper bound of the average netwesk 1. Bipartite configuration. A variable (resp. checkdads depicted by
breakdown probability. a circle (resp. square). If all the red variable notlgsthe adjacent red check

nodesCo U I; U I, and their connecting red edges are removed from the
graph, the remaining induced subgraph becomes separated.
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B. Proof of Theorerqll
Vi I Vo Iy Vay Ca C1 \t I Vo Iy Vay
1) Ensemble average of network breakdown probability: G el el g
Let G = (N,E) be an undirected graph @(n, ). Recall that :
G\ Z gives the survivor graph fofZ C N. Since each node
is independently broken down with probabilitythe network

breakdown probabilityPs ,, (G, €) for G is given by

P (G, €) = Xn: Z 1[G\ Z : separateld’ (1 — )" 7.

J=02ZCN,|z|=j

By taking ensemble average ov@(n, \), we have

Pan(e)=>_ > E[[G\Z: separateie’ (1 — )"/
=0 2N [2)=
= Z?ZO ZZCN,\2|:ij,/\,n€'7(1 —e)"

= Z?:o (?) Qj_)ynej(l — e)”*j. (3) Fig. 2. An example of four distinct bipartite configuratio@, (b). (c), (d)
which have an identical base graph.

The first equality is due to the linearity of expectation. The

second equality directly follows from the definition @f; x ..
Let V (resp.C) be the set of variable (resp. check) nodes.
Qjn = E[I[G\ 2 : separateg (4)  Assume thaw andc are partitioned into/ = Vo U V; U Vs

wherez is any subset off of sizej. Due to the symmetry of ahd C = I; U I U Co U C1 U Cy, respectively. A tuple
the ensemble, the right-hand side Bf (4) depends only on the= (Vo, V1, V2, I1, I3, Co, C1, C2, E) is called abipartite con-
size of z (|z| = j) instead ofz itself. This fact leads to the figuration if each edge irE C V x C satisfies the connection
last equality [(B). constraints shown in Fidg] 1. In words, the variable nodgs

2) Bipartite Configuration:We further proceed the evalu-V1, @nd Vo are adjacent to the check nodesU I, U I,
ation of Q; x... Let us fix anyz C v (jz| = j). Denote the C_l U I_l, andc_z U Ig_, res_p(_ectwely. From this def|n|t|_on o_f the
counterpart of \ Z, by (G \ Z),. The quantityQ, ., can be bipartite configuration, it is clear that the graphs bipartite.

rewritten as This means that a bipartite configuration represents a fitpar
graph that are separated if all the variable node¥ rand

Qjxn = E[I[G\ Z : separatefd the adjacent check node% U I, U I, are removed. The

= Zceg(n,)\)PrOb(G)H[G \ Z : separateld bipartite graphG;, = (V U C,E) corresponding to the bipartite

B ] configurationF is said to be théase graphof F.
= La,e7na LG\ 2) - separated/(nA)t. - (5) It should be remarked that two (or more) distinct bipartite
The third equality is due to the one-to-one correspondencenfigurations have an identical base graph. Fiflire 2 ptesen
betweeng(n, \) and7 (n, A, 2). The equation[(5) implies that an example that four distinct bipartite configurations give

the evaluation ofQ; » » can be reduced to the enumeratiosame base graph. Thisany-to-one correspondengdays a
problem of bipartite graphs iff (n, A,2) that are separated crucial role to bound the number of bipartite graphs satisfy

if the nodes inzZ are removed, namely, if the variable nodea certain condition.

corresponding t@ and the check nodes corresponding to the 3) Enumeration of Bipartite Configurationd\le here enu-
edges connecting t@ are removed. The exact enumeratiomerate the number of the bipartite configurations. Define
of such bipartite graphs is not a trivial problem. Instead ofy := |Vi| and ¢, := |Ck| for kK = 0, 1,2, and letiy := |I]

the exact enumeration, we will derive an upper bound of thier £ = 1,2. Since the total number of the variable nodes
number of such graphs by counting bipartite configuratiois n, n = ng + n1 + ng holds. Since the sockets of;
defined as follows. (resp. V3) are connected to the edges stemming from



(resp.Cs) and I; (resp.Is), we havein; = 2¢; + ip (resp. For a givenWw C V such thatjw| = j, let 7 be the set
Ang = 2c¢a + i2). Similarly, we have\ng = 2¢o + i1 + é2. of bipartite configurations defined hf := {F | V; = W}.
From the above constraints, if we fixy,n1,41,42, then the Assume that we have the base graph corresponding to
size ofVy, Cy, Cy, Co are given by F € F. By removingVoUCyoUI; UIs and the connecting edges
from the bipartite grapl;,, the remaining induced subgraph
) , (6) becomes separated (see also Eig. 1). Due to the many-to-
¢ = (A —i1)/2,  c2 ={AMn—no—n1) —is}/2. one correspondence between bipartite configurations asel ba
For a given set of free parametets, ny, i1, i», we denote 9raphs, we immediately have the following upper bound:
the total number of the bipartite configurations with these ) _ .
parametersng, ny, i1, ia, BY Angm,.ii.i,- We will evaluate LoeTnall(G\ 2)o : separatedi < |F1/2 = K(j)/2,
Aoy iy, @S follows. for a givenZ C N such that|Z] = j. The factor1/2
The total numbers of assignments of variable nodeg incompensates the over counting due to the trivial many-t-on
to Vo, V1, V2 and check nodes to I, I,,Co,Cy,Cs are given correspondence, i.e., the swap of the left-hand &dev;, I;)
by ( " ) and( An/2 )’ respective|y_ For the Socketsand the right—hand Sid@g,Vg, Ig) in Flg[]] From the above

no,n1,M2 41,%2,€0,C1,C2 .
of V1 (resp.V2), (M) (resp. (%)) gives the number of argument and{5), we get the bound@f »...:

1

Nng =N —Ng — Ny, 60:(/\710—1'1—1'2)/2,

constellations of sockets which connect to the edges stegimi Qinm < K(j)/{2(0n)!}. 9)
from 1, (resp. Ip). Similarly, (,, ?2”,300) gives the number o

of socket constellations iv,. Note that for every check From [8), [7) and the definitiod’(;), we have

node in I; (resp.I;), one of its sockets connects g K(j)/{20m)1)

and the other socket connects 1g (reps.V.). Hence, the _ , . )

number of socket constellations i (resp.I,) is 2 (resp. 1 ") Amin{n,j} An

2%2), The total number of the edge permutations is given b?z(kﬂ) Z (A(nfj)) Z (21, Ang—is A(nm)il)
(2¢1)!(2¢2)!(i1!)%(i2!)%(2i0)!. By multiplying these numbers, N A 2 2

we immediately obtain

ni=1 11 =0
2
Nj—i1—iz AMn—j—ni)—is
2 ) 2

x 24

min{A(n—n1—j), \j—i1} Aln—ni1)—iy
( >2i2.

i5=0 12,

( n )( l>\n/2 )
An i i = ()\ )| no,M1,M2/ \11,22,C0,C1,C2 2i1+i2 (7)
0,71,21,22 : .

(xmo o Ana) The identity on the following sufh

4) Derivation of an Upper Bound af); ,,: Recall that mineh o ath o), it e ezt
the number of the graphs that become separated by removing (a—i b—i Z-)2 o ¢ otherwise
Z leads to an upper bound 6§, » .. We here prepare a tool =0 202 ’

to evaluate the number of such graphs. E&tw) (W C V) be leads to the identity:
the number of the bipartite configurations satisfyihg= w

; _ 0
(lW| = j). From the definition of4;.,,, ;, ,, and the reasons K20 = Q5 X (10)
described in laterf (W) is given by By combining [[3), [®) and{10), we finally obtain the claim of
1 n—j—1Amin{j,n1} min{Ana,\j—i1} the theorem.
K(W) = (_n) Zl _ZO _X:O Ajmiinia- (8) ¢ Computer Experiments
J ni= 1= 2=

The details of the experiments are as follows. One exper-

The factprl/(?) is introduced because the triple summationg,ent includeso,,..-unit experimental trials. A unit experi-
in the right-hand side count the number of the bipartit,enia| trial consists of two phases: generation of a network
configurations to be separated diny set of j nodes are j,gtance and depth first search (DFS) processes for exagninin
removed. Since the right-hand side depend only one will - e connectivity of survivor graphs. In the first phase ofia,tr
denotek (W) by K(j). we randomly pick up a bipartite graggh, from the ensemble
The upper and lower bounds of;, i1, iy in (8) are deter- 77, ) 2) and then we construct its counterparti.e., an
mined as follows. Even fof; = 0 or iy = 0, the survivor yndirected\-regular graph representing a network. Ligl,,
graph becomes separated if the nodei/Co UL, UI; are pe the number of iterations for the DFS processes. For a
removed. Hencej; > 0 andi; > 0 holds. The size off; is  fixed ¢, the second phase consistsigf,,-times executions
upper bounded by the number of connecting edge&@nd of the DFS processes. For each DFS process, some of the
Vi. This fact leads to the inequality < iy < Amin{j,n1}. npodes are destroyed according to the node fault model with
Similarly, for a fixedi,, the size ofI, is upper bounded by the given probability. The connectivity of the survivor graph
the number of connecting edges v and the number of is checked by using a simple DFS. This means thaf,-
remaining edges connecting ¥g. This gives the inequalities gyryvivor networks are checked for a fixed graghDuring

0 < iy < min{Aj — i1, Ang}. A survivor graph becomes the experimental trials, we can count the number of network
separated ifn; > 1 and no > 1 when the nodes in

VoUCoUI;UI5 are removed. We thus have< ny <n—j—1. 1This identity can be derived in a similar way fo [10, Exersige24].
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Fig. 3. Comparisons of network breakdown probabilitiesasted by Fig. 4. Upper bounds of network breakdown probabilities dsration of
computer experiments and upper bounds (Thedllerh .5, » = 100, 1000.  the degree\ (n = 100).

breakdown events and it gives an estimate of the averag@ph. On the other hand, the average network breakdown

network breakdown probability. In the following experinten probability is a global quantity that indicates the robesgof

we used the parametess,., = 10* andipq. = 10°. the networks against possible breakdowns of unreliabkyrel
Figure[3 presents the average network breakdown probades. It is interesting to pursue a rigorous argument o thi

bilities estimated by the computer experiments in the cdse relationship in the asymptotic regime.

n = 100,1000 and A = 5. The horizontal axis represents the

node breakdown probability. The figure also includes the ACKNOWLEDGMENT
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