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Abstract—In the present paper, we derive an upper bound of
the average network breakdown probability of packet networks
with unreliable relay nodes. We here assume that relay nodesget
independently broken with a given node breakdown probability.
A survivor graph is the induced subgraph obtained by removing
the broken relay nodes and their connecting edges from the
original graph. If the survivor network is disconnected, we
consider a network breakdown happens. The primal contribution
of the paper is to derive an upper bound of the average
network breakdown probability, where the expectation is taken
over a regular graph ensemble. The proof of the bound is
based on a natural one-to-one correspondence between a regular
graph and a regular bipartite graph, and also on enumeration
of bipartite graphs satisfying certain conditions. This proof
argument is inspired by the analysis of weight distribution for
low-density parity-check codes. Compared with estimates of the
average network breakdown probability obtained by computer
experiments, it is observed that the upper bound provides the
values which are not only upper bounds but also precise estimates
of the network breakdown probability when the node breakdown
probability is small.

I. I NTRODUCTION

Wireless sensor networks (WSN) regain huge interest from
both academia and industry in the context of the development
of IoT (Internet of Things). It is expected that WSN can
provide tremendous applications in the near future such as
security surveillance, environmental monitoring, disaster mon-
itoring, factory monitoring, and so on. In many cases, sensor
nodes have short-range wireless communication connectivity
and packet relay capability in addition to its sensing capability.
The sensor data are aggregated by gateways and a packet-
based relaying protocol is commonly used to convey the data
from sensors to the gateway. Sensor nodes are deployed in a
large area which may not be an ideal environment to place
small electronic devices. In some situations, sensor nodes
are directly exposed to severe environments, e.g., outdoor
environment, and it may continuously cause damage to the
sensor nodes. Another source of unreliability is limited bat-
teries of sensor nodes that are not easy to recharge. Sufficient
maintenance to a number of sensor nodes may be hopeless
in some situations because of its huge cost. This means that
we need to take care of possible breakdowns, malfunctions,
and flat batteries of sensor nodes for designing and operating
WSN.

A natural abstraction of WSN is to exploit an undirected
graph to represent the network. A node corresponds to a

sensor node and an edge corresponds to a wireless link
connecting two sensor nodes. Connectivity of such graphs isof
prime importance because it ensures successful packet-based
communications over the network with appropriate routing.If
any two distinct nodes in a graph have a path connecting both
nodes, the graph is said to be connected. The paper by Li et
al. [1] gives a survey of the works regarding the connectivity
of several random graph classes.

The problem to evaluate robustness of networks in terms
of the connectivity under the assumption of some edge break-
downs is known as thenetwork reliability problem. The origin
of the network reliability problem is the celebrated paper
by Moore and Shannon [2] which dates back to 50’s. Since
then, the topic has been extensively studied primarily in
the fields of theoretical computer science. Evaluation of the
network breakdown probability for a given undirected graph
is known to be a computationally hard problem. Provan and
Ball [3] and Valiant [4] showed that the network reliability
problems are#P-complete, which is a complexity class at
least as intractable asNP . Karger [5] presented a randomized
polynomial time approximation algorithm for the all terminal
network reliability problems.

In this paper, we discuss the problem to evaluate the proba-
bility that a random network becomes disconnected under the
assumption ofnode breakdowns(i.e., relay node breakdowns)
instead of edge breakdowns assumed in the literatures of
the network reliability problem. The main motivation of our
work is to establish a solid theoretical foundation to analyze
WSN with unreliable relay nodes. Although breakdowns of
relay nodes degrade the system performance, they may not
be devastating if the network retains its connectivity. From
this respect, the robustness of WSN can be evaluated by
measuring the probability of events that the network becomes
disconnected. One may be able to use such information to
optimize certain parameters of WSN under the cost constraint.
The problem setup introduced in this paper appears simple
and natural but it has not been seriously studied as far as the
authors know.

We will present a probabilistic analysis of connectivity of
regular random graphs with relay node breakdowns in this
paper. We here assume that relay nodes get independently
broken with the node breakdown probabilityǫ. The remaining
graph, called a survivor graph in this paper, is the induced
subgraph obtained by removing the broken relay nodes and
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their connecting edges from the original graph. If the survivor
network is disconnected, we consider anetwork breakdown
happens.

The primal contribution of the paper is to derive an up-
per bound of the expected network breakdown probability.
The network breakdown probability is the probability such
that a randomly chosen network is disconnected under the
assumption of probabilistic breakdowns of relay nodes. The
expectation is taken over aλ-regular graph ensemble. The
upper bound indicates the typical behavior of the network
breakdown probability. The proof argument of the bound is
inspired by the analysis of weight distribution for low-density
parity-check (LDPC) codes. In order to derive the bound, we
introduced a special class of bipartite graphs that is similar to
the Tanner graphs [6] of LDPC codes. Counting the number of
bipartite graphs satisfying certain conditions leads to the main
result. The argument is similar to the ensemble analysis of
low-density generator matrix codes with column weight 2 [7].
Similar arguments were successfully used in Yano-Wadayama
[8] and Fujii-Wadayama [9] as well.

II. M ODELS AND DEFINITIONS

A. Random Graph Model

In this paper, we assume undirectedλ-regular graphs withn
nodes, i.e., all the nodes have degreeλ, as a model of wireless
packet-based networks.

Any undirected graphG can be converted into a bipartite
graphGb by replacing each edge inG with a node of degree
2 and its connecting edges. This bipartite graphGb is said
to be thecounterpartof G. Conversely,G is also said to be
the counterpart ofGb. Then, the bipartite graphGb contains
n nodes of degreeλ and (λn)/2 nodes of degree 2. By
borrowing terms from the Tanner graph of LDPC codes, we
refer the nodes of degreeλ (resp. 2) as variable (resp. check)
nodes. Summarizing above, we can convert anyλ-regular
graph into the counterpart, i.e., a(λ, 2)-regular bipartite graph.
Conversely, any(λ, 2)-regular bipartite graph can be converted
into theλ-regular counterpart.

In this work, we will consider the robustness of networks
over a random graph model based on a regular graph ensemble.
We now define the regular graph ensemble associated with a
regular bipartite graph ensemble, i.e., a regular Tanner graph
ensemble. For given parametersn and λ, the (λ, 2)-regular
Tanner graph ensembleT (n, λ, 2) is defined as follows [6].
Any graph instance inT (n, λ, 2) has n variable nodes of
degreeλ and(λn)/2 check nodes of degree2. A variable node
of degreeλ hasλ sockets accepting edge connections from the
check nodes. Similarly, a check node of degree 2 has 2 sockets.
Hence, there are totallyλn sockets in the both variable and
check node sides. Letπ be a permutation on{1, 2, . . . , λn}.
The i-th socket on the variable node side is connected to the
π(i)-th socket on the check node side by an edge. In the
ensembleT (n, λ, 2), we assume the uniform distribution on
the set of permutations, i.e., the probability1/(λn)! is assigned
to each bipartite graph. The regular random graph ensemble
G(n, λ) is the counterpart ofT (n, λ, 2). More precisely, the

graph ensembleG(n, λ) is the multiset of the counterparts of
the bipartite graphs inT (n, λ, 2) and the probability1/(λn)!
is assigned to each element inG(n, λ), i.e., λ-regular graph.
Namely, there are one-to-one correspondence betweenG(n, λ)
andT (n, λ, 2). This means that aλ regular graph inG(n, λ)
has the unique counterpart inT (n, λ, 2) (vice versa) and the
same probability is assigned to both graphs. Some graphs in
G(n, λ) contain self-loops or multiple edges but the fact causes
no harmful effects on the following analysis.

B. Node Fault Model

Let G = (N, E) be aλ-regular undirected graph. We assume
that each node inN independently breaks down with proba-
bility ǫ. Let Z be the set of broken nodes. Thesurvivor graph
G\Z is the induced subgraph obtained by removing the broken
nodesZ and their connected edges from the original graphG.
If the survivor graphG \ Z is separated(or disconnected), we
consider the networkbreakdownhappens because there is at
least a pair of nodes inG\Z such that they cannot communicate
with each other. In this paper, we consider the null graph is
connected. Hence, in the case that all the nodes inG are broken,
we consider the network isnot broken.

III. M AIN RESULT

In this section, we present the main result of this paper,
i.e., an upper bound of average network breakdown probability
under the node fault model defined in Subsection II-B.

A. Main Theorem

Firstly, we give the notation to describe the theorem. Let
Z
+ be the set of non-negative integers. The indicator function

I[cond] takes the value 1 ifcond is true, otherwise it gives
the value 0. We define the binomial coefficient as

(

n
k

)

:= n!
k!(n−k)! I[k, n− k ∈ Z

+].

Similarly, the multinomial coefficient is defined by
(

a1+a2+···+ak

a1,a2,...,ak

)

:= (a1+a2+···+ak)!
a1!a2!···ak!

I[a1, a2, . . . , ak ∈ Z
+].

The following theorem presents an upper bound of average
network breakdown probability under the node fault model.

Theorem 1:Assume the node fault model defined in Sub-
section II-B. The average network breakdown probability
Pλ,n(ǫ), whose expectation is taken overG(n, λ), is upper
bounded byP (U)

λ,n (ǫ), where

P
(U)
λ,n (ǫ) :=

n
∑

j=0

(

n

j

)

Q
(U)
j,λ,nǫ

j(1− ǫ)n−j , (1)

Q
(U)
j,λ,n :=

1

2
(

λn
λj

)

n−j−1
∑

n1=1

(

n−j
n1

)

(

λ(n−j)
λn1

)

λmin{n1,j}
∑

i1=0

2i1

×

( λn
2

i1,
λn1−i1

2 , λ(n−n1)−i1
2

)(

λ(n− n1)− i1
λ(n− n1 − j)

)

. (2)

Remark 1:The valueQ(U)
j,λ,n given in Theorem 1 is an upper

bound ofQj,λ,n, whereQj,λ,n is the probability that a graph



in G(n, λ) become separated if a given set ofj nodes are
broken. The precise definition ofQj,λ,n will be given in (4).

We can easily verify thatQ(U)
n,λ,n = 0 from (2). This implies

that the network is not broken down if all the nodes in
G ∈ G(n, λ) are broken. Suppose that one wish to consider
that a network breakdown happens if all the nodes in the
graph are broken. In such a case, by replacingQ

(U)
n,λ,n with 1,

one can easily obtain an upper bound of the average network
breakdown probability.

B. Proof of Theorem 1

1) Ensemble average of network breakdown probability:
Let G = (N, E) be an undirected graph inG(n, λ). Recall that
G \ Z gives the survivor graph forZ ⊂ N. Since each node
is independently broken down with probabilityǫ, the network
breakdown probabilityPλ,n(G, ǫ) for G is given by

Pλ,n(G, ǫ) =

n
∑

j=0

∑

Z⊂N,|Z|=j

I[G \ Z : separated]ǫj(1− ǫ)n−j .

By taking ensemble average overG(n, λ), we have

Pλ,n(ǫ) =

n
∑

j=0

∑

Z⊂N,|Z|=j

E[I[G \ Z : separated]]ǫj(1− ǫ)n−j

=
∑n

j=0

∑

Z⊂N,|Z|=jQj,λ,nǫ
j(1− ǫ)n−j

=
∑n

j=0

(

n
j

)

Qj,λ,nǫ
j(1− ǫ)n−j . (3)

The first equality is due to the linearity of expectation. The
second equality directly follows from the definition ofQj,λ,n:

Qj,λ,n := E[I[G \ Z : separated]], (4)

whereZ is any subset ofN of sizej. Due to the symmetry of
the ensemble, the right-hand side of (4) depends only on the
size of Z (|Z| = j) instead ofZ itself. This fact leads to the
last equality (3).

2) Bipartite Configuration:We further proceed the evalu-
ation of Qj,λ,n. Let us fix anyZ ⊂ V (|Z| = j). Denote the
counterpart ofG \ Z, by (G \ Z)b. The quantityQj,λ,n can be
rewritten as

Qj,λ,n = E[I[G \ Z : separated]]

=
∑

G∈G(n,λ)Prob(G)I[G \ Z : separated]]

=
∑

Gb∈T (n,λ,2) I[(G \ Z)b : separated]]/(nλ)!. (5)

The third equality is due to the one-to-one correspondence
betweenG(n, λ) andT (n, λ, 2). The equation (5) implies that
the evaluation ofQj,λ,n can be reduced to the enumeration
problem of bipartite graphs inT (n, λ, 2) that are separated
if the nodes inZ are removed, namely, if the variable nodes
corresponding toZ and the check nodes corresponding to the
edges connecting toZ are removed. The exact enumeration
of such bipartite graphs is not a trivial problem. Instead of
the exact enumeration, we will derive an upper bound of the
number of such graphs by counting bipartite configurations
defined as follows.

C1 V1

I1 V0 I2

V2 C2

C0

Fig. 1. Bipartite configuration. A variable (resp. check) node is depicted by
a circle (resp. square). If all the red variable nodesV0, the adjacent red check
nodesC0 ∪ I1 ∪ I2, and their connecting red edges are removed from the
graph, the remaining induced subgraph becomes separated.
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Fig. 2. An example of four distinct bipartite configurations(a), (b), (c), (d)
which have an identical base graph.

Let V (resp.C) be the set of variable (resp. check) nodes.
Assume thatV and C are partitioned intoV = V0 ∪ V1 ∪ V2

and C = I1 ∪ I2 ∪ C0 ∪ C1 ∪ C2, respectively. A tuple
F = (V0, V1, V2, I1, I2, C0, C1, C2, E) is called abipartite con-
figuration if each edge inE ⊂ V × C satisfies the connection
constraints shown in Fig. 1. In words, the variable nodesV0,
V1, and V2 are adjacent to the check nodesC0 ∪ I1 ∪ I2,
C1 ∪ I1, andC2 ∪ I2, respectively. From this definition of the
bipartite configuration, it is clear that the graphF is bipartite.
This means that a bipartite configuration represents a bipartite
graph that are separated if all the variable nodes inV0 and
the adjacent check nodesC0 ∪ I1 ∪ I2 are removed. The
bipartite graphGb = (V ∪ C, E) corresponding to the bipartite
configurationF is said to be thebase graphof F.

It should be remarked that two (or more) distinct bipartite
configurations have an identical base graph. Figure 2 presents
an example that four distinct bipartite configurations givethe
same base graph. Thismany-to-one correspondenceplays a
crucial role to bound the number of bipartite graphs satisfying
a certain condition.

3) Enumeration of Bipartite Configurations:We here enu-
merate the number of the bipartite configurations. Define
nk := |Vk| and ck := |Ck| for k = 0, 1, 2, and letik := |Ik|
for k = 1, 2. Since the total number of the variable nodes
is n, n = n0 + n1 + n2 holds. Since the sockets ofV1
(resp. V2) are connected to the edges stemming fromC1



(resp.C2) andI1 (resp.I2), we haveλn1 = 2c1 + i1 (resp.
λn2 = 2c2 + i2). Similarly, we haveλn0 = 2c0 + i1 + i2.
From the above constraints, if we fixn0, n1, i1, i2, then the
size ofV2, C0, C1, C2 are given by

n2 = n− n0 − n1, c0 = (λn0 − i1 − i2)/2,

c1 = (λn1 − i1)/2, c2 = {λ(n− n0 − n1)− i2}/2.
(6)

For a given set of free parametersn0, n1, i1, i2, we denote
the total number of the bipartite configurations with these
parametersn0, n1, i1, i2, by An0,n1,i1,i2 . We will evaluate
An0,n1,i1,i2 as follows.

The total numbers of assignments of variable nodes inV

to V0, V1, V2 and check nodesC to I1, I2, C0, C1, C2 are given
by

(

n
n0,n1,n2

)

and
(

λn/2
i1,i2,c0,c1,c2

)

, respectively. For the sockets

of V1 (resp. V2),
(

λn1

i1

)

(resp.
(

λn2

i2

)

) gives the number of
constellations of sockets which connect to the edges stemming
from I1 (resp. I2). Similarly,

(

λn0

i1,i2,2c0

)

gives the number
of socket constellations inV0. Note that for every check
node in I1 (resp. I2), one of its sockets connects toV0
and the other socket connects toV1 (reps. V2). Hence, the
number of socket constellations inI1 (resp.I2) is 2i1 (resp.
2i2 ). The total number of the edge permutations is given by
(2c1)!(2c2)!(i1!)

2(i2!)
2(2i0)!. By multiplying these numbers,

we immediately obtain

An0,n1,i1,i2 = (λn)!

(

n
n0,n1,n2

)(

λn/2
i1,i2,c0,c1,c2

)

(

λn
λn0,λn1,λn2

) 2i1+i2 . (7)

4) Derivation of an Upper Bound ofQj,λ,n: Recall that
the number of the graphs that become separated by removing
Z leads to an upper bound ofQj,λ,n. We here prepare a tool
to evaluate the number of such graphs. LetK(W) (W ⊂ V) be
the number of the bipartite configurations satisfyingV0 = W

(|W| = j). From the definition ofAj,n1,i1,i2 and the reasons
described in later,K(W) is given by

K(W) =
1
(

n
j

)

n−j−1
∑

n1=1

λmin{j,n1}
∑

i1=0

min{λn2,λj−i1}
∑

i2=0

Aj,n1,i1,i2 . (8)

The factor1/
(

n
j

)

is introduced because the triple summations
in the right-hand side count the number of the bipartite
configurations to be separated ifany set of j nodes are
removed. Since the right-hand side depend only onj, we will
denoteK(W) by K(j).

The upper and lower bounds ofn1, i1, i2 in (8) are deter-
mined as follows. Even fori1 = 0 or i2 = 0, the survivor
graph becomes separated if the nodes inV0 ∪ C0 ∪ I1 ∪ I2 are
removed. Hence,i1 ≥ 0 and i2 ≥ 0 holds. The size ofI1 is
upper bounded by the number of connecting edges ofV0 and
V1. This fact leads to the inequality0 ≤ i1 ≤ λmin{j, n1}.
Similarly, for a fixedi1, the size ofI2 is upper bounded by
the number of connecting edges ofV2 and the number of
remaining edges connecting toV0. This gives the inequalities
0 ≤ i2 ≤ min{λj − i1, λn2}. A survivor graph becomes
separated ifn1 ≥ 1 and n2 ≥ 1 when the nodes in
V0∪C0∪I1∪I2 are removed. We thus have1 ≤ n1 ≤ n−j−1.

For a givenW ⊂ V such that|W| = j, let F be the set
of bipartite configurations defined byF := {F | V0 = W}.
Assume that we have the base graphGb corresponding to
F ∈ F . By removingV0∪C0∪I1∪I2 and the connecting edges
from the bipartite graphGb, the remaining induced subgraph
becomes separated (see also Fig. 1). Due to the many-to-
one correspondence between bipartite configurations and base
graphs, we immediately have the following upper bound:

∑

Gb∈T (n,λ,2)I[(G \ Z)b : separated]] ≤ |F|/2 = K(j)/2,

for a given Z ⊂ N such that |Z| = j. The factor 1/2
compensates the over counting due to the trivial many-to-one
correspondence, i.e., the swap of the left-hand side(C1, V1, I1)
and the right-hand side(C2, V2, I2) in Fig. 1. From the above
argument and (5), we get the bound ofQj,λ,n:

Qj,λ,n ≤ K(j)/{2(λn)!}. (9)

From (6), (7) and the definitionK(j), we have

K(j)/{2(λn)!}

=
1

2
(

λn
λj

)

n−j−1
∑

n1=1

(

n−j
n1

)

(

λ(n−j)
λn1

)

λmin{n1,j}
∑

i1=0

( λn
2

i1,
λn1−i1

2 , λ(n−n1)−i1
2

)

× 2i1
min{λ(n−n1−j),λj−i1}

∑

i2=0

( λ(n−n1)−i1
2

i2,
λj−i1−i2

2 , λ(n−j−n1)−i2
2

)

2i2 .

The identity on the following sum1

min{a,b}
∑

i=0

( a+b
2

a−i
2 , b−i

2 , i

)

2i =

{

(

a+b
a

)

, if a+b
2 ∈ Z

+,

0, otherwise,

leads to the identity:

K(j)/{2(nλ)!} = Q
(U)
j,λ,n. (10)

By combining (3), (9) and (10), we finally obtain the claim of
the theorem.

C. Computer Experiments

The details of the experiments are as follows. One exper-
iment includesomax-unit experimental trials. A unit experi-
mental trial consists of two phases: generation of a network
instance and depth first search (DFS) processes for examining
the connectivity of survivor graphs. In the first phase of a trial,
we randomly pick up a bipartite graphGb from the ensemble
T (n, λ, 2) and then we construct its counterpartG, i.e., an
undirectedλ-regular graph representing a network. Letimax

be the number of iterations for the DFS processes. For a
fixed G, the second phase consists ofimax-times executions
of the DFS processes. For each DFS process, some of the
nodes are destroyed according to the node fault model with
the given probabilityǫ. The connectivity of the survivor graph
is checked by using a simple DFS. This means thatimax-
survivor networks are checked for a fixed graphG. During
the experimental trials, we can count the number of network

1This identity can be derived in a similar way to [10, Exercises 5.24].



Fig. 3. Comparisons of network breakdown probabilities obtained by
computer experiments and upper bounds (Theorem 1).λ = 5, n = 100, 1000.

breakdown events and it gives an estimate of the average
network breakdown probability. In the following experiments,
we used the parametersomax = 104 and imax = 105.

Figure 3 presents the average network breakdown proba-
bilities estimated by the computer experiments in the case of
n = 100, 1000 andλ = 5. The horizontal axis represents the
node breakdown probabilityǫ. The figure also includes the
values of upper bound in Theorem 1 as a function ofǫ. We
can observe that the values of the estimated average and the
upper bound are very close in both cases (i.e.,n = 100, 1000)
especially whenǫ is less than 0.15. This result provides an
evidence that the upper bound in Theorem 1 is tight ifǫ is
small enough. Figure 4 shows a relationship between the upper
bound of average network breakdown probability and the
degreeλ. As intuition tells us, the average network breakdown
probability is increased when the degreeλ gets larger. From
Fig. 4, we can observe that the average network breakdown
probability appears an exponential function of the degreeλ.

IV. CONCLUDING SUMMARY

In the present paper, we have derived an upper bound of
the average network breakdown probability of packet networks
with unreliable relay nodes. Experimental results indicate that
the upper bound is extremely tight whenǫ is small. This
implies that the over counting introduced in the proof of the
bound becomes negligible ifǫ is small. The random geometric
graph models are often used to model WSNs. It is known that
the degree distribution of a random geometric graph becomes
tightly concentrated to the average degree of it when the
number of nodes are large enough. We might be able to expect
that our bound gives reasonable approximations in such cases
as well.

From the upper bound and the experimental results, we
have observed that the average network breakdown probability
behaves as an exponential function of the degreeλ. The degree
λ is a local quantity that indicates local connectivity of the

Fig. 4. Upper bounds of network breakdown probabilities as afunction of
the degreeλ (n = 100).

graph. On the other hand, the average network breakdown
probability is a global quantity that indicates the robustness of
the networks against possible breakdowns of unreliable relay
nodes. It is interesting to pursue a rigorous argument on this
relationship in the asymptotic regime.
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